36
Quantum Spectrometers of Electrical Noise Rob Schoelkopf Applied Physics Yale University Gurus: Michel Devoret, Steve Girvin, Aash Clerk And many discussions with D. Prober, K. Lehnert, D. Esteve, L. Kouwenhoven, B. Yurke, L. Levitov, K. Likharev, … Thanks for slides: L. Kouwenhoven, K. Schwab, K. Lehnert,… Noise and Quantum Measurement R. Schoelkopf 1

Quantum Spectrometers of Electrical Noiseboulderschool.yale.edu/sites/default/files/files/... · 2019. 12. 18. · Outline of Lecture 2 • A spin or two-level system (TLS) as spectrometer

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • Quantum Spectrometers of Electrical Noise

    Rob SchoelkopfApplied PhysicsYale University

    Gurus: Michel Devoret, Steve Girvin, Aash Clerk

    And many discussions with D. Prober, K. Lehnert, D. Esteve, L. Kouwenhoven, B. Yurke, L. Levitov, K. Likharev, …

    Thanks for slides: L. Kouwenhoven, K. Schwab, K. Lehnert,…

    Noise and Quantum MeasurementR. Schoelkopf

    1

  • Overview of LecturesLecture 1: Equilibrium and Non-equilibrium Quantum Noise

    in CircuitsReference: “Quantum Fluctuations in Electrical Circuits,”

    M. Devoret Les Houches notes

    Lecture 2: Quantum Spectrometers of Electrical NoiseReference: “Qubits as Spectrometers of Quantum Noise,”

    R. Schoelkopf et al., cond-mat/0210247

    Lecture 3: Quantum Limits on MeasurementReferences: “Amplifying Quantum Signals with the Single-Electron Transistor,”

    M. Devoret and RS, Nature 2000.“Quantum-limited Measurement and Information in Mesoscopic Detectors,”

    A.Clerk, S. Girvin, D. Stone PRB 2003.

    And see also upcoming RMP by Clerk, Girvin, Devoret, & RSNoise and Quantum Measurement

    R. Schoelkopf2

  • Outline of Lecture 2• A spin or two-level system (TLS) as spectrometer

    • The meaning of a two-sided spectral density

    • The Cooper-pair box (CPB): an electrical TLS

    • Using the CPB to analyze quantum noise of an SETMajer and Turek, unpub.

    • Other quantum analyzers:• SIS junction: a continuum edge

    (DeBlock, Onac, & Kouwenhoven)• Nanomechanical system: a harmonic oscillator

    (Schwab et al.; Lehnert et al.)Noise and Quantum Measurement

    R. Schoelkopf3

  • The Electrical Engineer’s Spectrum Analyzers

    FFT

    ( )VS ω

    ω0ω =( )V t

    Noise and Quantum MeasurementR. Schoelkopf

    4

    Both measure only the symmetrized spectral density:

    ( ) ( ) (0) (0) ( )S i tVVS dt e V t V V V tωω

    −∞= +∫

    ( )VS ω

    ω0ω =

    tunedfilter( )V t

    ( ) ( )VV VVS Sω ω= + + −

  • The Quantum Mechanic’s Analyzer – a Spin

    Noise and Quantum MeasurementR. Schoelkopf

    5

    tomagnetometer

    0 ˆB z

    ( )xB t( )V t

    =

    Spins only absorb at Larmor frequency01 0 /g Bω ω µ= =

    Resolution = inverse of spin coherence time

    Able to measure both sides of a spectral density!

  • Spin as Spectrum Analyzer - II0 ˆB z

    ( )xB t( )V t

    010 2 z

    H ω σ= −

    1 ( ) xH AV t σ=

    ( )( )

    g

    e

    tt

    αψ

    α⎛ ⎞

    = ⎜ ⎟⎝ ⎠

    10

    ( ) (0) ( ) (0)tit d H tψ ψ τ ψ= − ∫with initial condition:(0) gψ =

    01

    0 0

    ( ) ( ) ( ) ( )t t

    ie x

    iA iAt d e g V d e Vω τα τ σ τ τ τ τ= − = −∫ ∫

    01 1 2

    2 2( )

    1 2 1 2 012 20 0

    ( ) ( ) ( ) ( )t t

    ie V

    A Ap t d d e V V t Sω τ ττ τ τ τ ω− −= = −∫ ∫

    ( )012

    2 Vg e SA

    ω→Γ −= ( )012

    2 Ve g SA

    ω→Γ +=

    Noise and Quantum MeasurementR. Schoelkopf

    6

  • Interpretation of Two-Sided Spectrum

    0T ≠0T =

    01ω+01ω−

    absorption by spin emission by spin

    ↑Γ ↓Γ

    g

    e

    01ω( ) /

    2 R1V kT

    Se ωωω −= −

    kTω =

    ( )VS ω

    0 ω

    absorption by sourceemission by source

    ( )01VS ω↓Γ +∝( )01VS ω↑Γ −∝

    Noise and Quantum MeasurementR. Schoelkopf

    7

  • Polarization of Spin and Noise Spectra

    ↑Γ ↓Γ

    g

    e

    01ω

    eg e

    ge g

    dp p pdtdp

    p pdt

    ↑ ↓

    ↓ ↑

    = Γ − Γ

    = Γ − Γ

    g ep p↑ ↓Γ = ΓSteady-state:

    g eP p p= −

    Define polarization of spin:

    If noise is truly classical,

    g ep p≡ and no polarization!

    01 // kTe gp p eω−=Thermal equilibrium:

    01 /01 01( ) ( )

    kTV VS e S

    ωω ω+ = −Requires particular asymmetry!Noise and Quantum Measurement

    R. Schoelkopf8

  • Polarization of Spin - IIDefine steady-state polarization:

    ( ) ( )( ) ( )

    01 01

    01 01SS

    S SPS S

    ω ωω ω

    ↓ ↑

    ↓ ↑

    Γ −Γ + − −= =Γ + Γ + + −

    due to relative asymmetry of noise

    ( ) ( ) 1( ) ( ) ( )d P t P t P t

    dt ↓ ↑∆

    = −∆ Γ + Γ = −∆ Γ

    ( ) ( )[ ]2

    1 01 0121

    1 A S ST

    ω ωΓ = = + + −

    ( ) ( ) SSP t P t P∆ = −Define deviation from steady state:

    So relaxation rate (Γ1) due to total noise (and coupling)Noise and Quantum Measurement

    R. Schoelkopf9

  • Ways to Characterize a Quantum Reservoir

    Fermi’s Golden Rule

    Fluctuation-Dissipation RelationNMR

    Harmonic Oscillator

    Quantum Optics10

    ( )2

    VA S ω↑

    ⎛ ⎞Γ = −⎜ ⎟⎝ ⎠

    ( )2

    VA S ω↓

    ⎛ ⎞Γ = +⎜ ⎟⎝ ⎠

    2( )

    n ↑↓ ↑

    Γ=

    Γ −Γ [ ] 2( )

    Re ( )ZA

    ωω

    ↓ ↑Γ −Γ=

    P ↓ ↑↓ ↑

    Γ −Γ=Γ +Γ

    ( ) 11T−

    ↑ ↓= Γ +Γ

    ( )2( )

    Eω ↑ ↓

    ↓ ↑

    Γ + Γ=

    Γ −Γ( )

    Qωγ ↓ ↑= = Γ −Γ

    EinsteinA ↓ ↑= Γ −ΓEinsteinB ↑= Γ

  • Cooper Pair Box as Two-Level System

    11 /g g gn C V e=

    2~ 5

    2( )jc

    gE e GHz

    C C=

    +

    4 ( / )ˆc gel gE n C V eE = −

    CgBox

    Vg

    2 ˆq en= ˆ ˆ2box xelEH σ=

    Cj

    Vg

    1

    0n =

    1n =

    4 CEE

    nerg

    y

    (Buttiker ’87; Bouchiat et al., 98)

  • Cooper Pair Box as Two-Level Systemˆ ˆ ˆ

    2 2el J

    box x zHEE σ σ= −

    2~ 5

    2( )jc

    gE e GHz

    C C=

    +

    4 ( / )ˆc gel gE n C V eE = −

    12 /g g gn C V e=

    CgBox

    Vg

    2 ˆq en= ˆ ˆ2box xelEH σ=

    Cj

    2 5 GHz4 JJ e R

    E π∆= ≈

    Vg4 CE

    1

    EJ

    0 1−

    0 1+E

    nerg

    y

    (Buttiker ’87; Bouchiat et al., 98)

  • Cooper Pair Box as Two-Level Systemˆ ˆ ˆ

    2 2el J

    box x zHEE σ σ= −

    2~ 5

    2( )jc

    gE e GHz

    C C=

    +

    4 ( / )ˆc gel gE n C V eE = −

    13 /g g gn C V e=

    CgBox

    Vg

    2 ˆq en= ˆ ˆ2box xelEH σ=

    Cj

    2 5 GHz4 JJ e R

    E π∆= ≈

    Vg

    1

    EJ 4 CE

    ↑E

    nerg

    y

    (Buttiker ’87; Bouchiat et al., 98)

  • Cooper Pair Box as Two-Level Systemˆ ˆ ˆ

    2 2el J

    box x zHEE σ σ= −

    2~ 5

    2( )jc

    gE e GHz

    C C=

    +

    4 ( / )ˆc gel gE n C V eE = −

    14 /g g gn C V e=

    CgBox

    Vg

    2 ˆq en= ˆ ˆ2box xelEH σ=

    Cj

    2 5 GHz4 JJ e R

    E π∆= ≈

    Vg

    1

    EJ 4 CE

    ↑E

    nerg

    y

    (Buttiker ’87; Bouchiat et al., 98)

  • Cooper-pair Box Coupled to an SET

    Box

    SET Vg Vge

    Cg Cc CgeVds

    Box SET Electrometer

    Superconducting tunnel junction

    SET TransistorCooper-pair BoxQuantum state readout

    orQubit

    Noise and Quantum MeasurementR. Schoelkopf

    15

    Nonequilibriumnoise source

    Quantum spectrum analyzer

  • What Does SET Measure?

    16

    effB

    effB

    ggC Ve1

    0

    1

    1

    0 1

    0E

    ggC Ve

    2JE

    ( )1 / 2xn σ= +Measure box charge

    2ˆ ˆ ˆ

    2x ze JlH E Eσ σ= −

    4 ( / )ˆc gel gE n C V eE = −

    Excited state

    Ground state

    2elE a b c

    a b c

    n

    2JE

    2JE

    a 0 2effB

    2elE

    b

    c

  • Noise and Quantum MeasurementR. Schoelkopf

    17

    Box Gate Charge (e)

    Ene

    rgy

    2

    0

    Cha

    rge

    2

    0

    10

    1 2with microwave

    Spectroscopy of Box

    ( )VS ω

    ω

    Spectrum of oscillator

    peaks saturateto q=1e

  • Noise and Quantum MeasurementR. Schoelkopf

    18

    Effects of Voltage Noise on Pseudo-Spin

    θ

    sinelB E⊥ =δµ δ θcoselB Eδµ δ θ=

    slow fluctuations of B dephasing

    resonant fluctuations of B⊥ transitions

    ( )2

    201

    1 sinboxmix V

    mix

    e ST

    ω θ⎛ ⎞= Γ = ⎜ ⎟⎝ ⎠

    01 effBω µ= ( )2

    21 0 cosboxV

    e ST ϕϕ

    ω θ⎛ ⎞= Γ = →⎜ ⎟⎝ ⎠

    2el boxeE V=δ δ

    effBẑ

    2JE

    θ

    01

    sin JEθω

    =

    2elE x̂

  • Spontaneous Emission of Cooper-pair Box1 xH AVσ=

    Noise and Quantum MeasurementR. Schoelkopf

    19

    Box 50 envR ≈ Ω0T =

    ( )1 2 sin

    / sin

    gC g x

    g g x

    CH E V

    ee C C V

    θ δ σ

    θ δ σΣ

    =

    =

    gC

    Vg

    01( ) 0envVS ω− =

    01 01( ) 2 (50 )envVS ω ω+ = × Ω

    Excited-statelifetime, T1

    ( )2

    201

    1

    21 sinenvV

    eS

    Tκ ω θ↓= Γ = +⎛ ⎞⎜ ⎟⎝ ⎠

    1 0.1 1 sT µ≈ −/ 12%gC Cκ Σ= ∼ estimate:

    Polarization = 100%

  • Cooper-pair Box at Finite Temperature0T >

    Noise and Quantum MeasurementR. Schoelkopf

    20

    Box 50 envR ≈ Ω

    Vg

    gC

    ( )01 01( ) 2 1envVS R nω ω+ = +01 01( ) 2envVS R nω ω− =

    ( ) ( )( ) ( )

    01 01 01

    01 01

    1 tanh2 1 2

    S S n nPS S n kT

    ω ω ωω ω+ − − + − ⎡ ⎤= = = ⎢ ⎥+ + − + ⎣ ⎦

    ( )2

    2

    1

    201

    12 sin 2 1e

    TR nκ θω↓ ↑= Γ Γ =

    ⎛ ⎞+ +⎜ ⎟⎝ ⎠

  • Excited-state Lifetime Measurement of Box

    21

    Pea

    k he

    ight

    (e)

    0 time 10 µs

    2ggC V

    e

    n

    0 10.50

    1

    0.3e

    follow peak height after turning

    off microwaves

    with continuous measurement

    K. Lehnert et al., PRL 90,

    027002 (2003).

    1 1.3 sP ~ 1

    T

    (@ 76 GHz)

    µ=

    901

    01

    ( ) 5 10 pairs /

    ( ) ~ 0box

    box

    n

    n

    S Hz

    S

    ω

    ω

    −+ ×

  • Coupling of SET Backaction to Box

    SET Box

    Noise and Quantum MeasurementR. Schoelkopf

    22

    Cge-

    Cc

    2e

    VgeenvR

    Charge fluctuationson SET island with

    ( )01QS ω±Environmentrelaxes box

    SET couplesbackaction to box

  • 23

    Double JQP Process in the SSET

    Reflected power from RF-SET ~ Conductance of SSET

    qpΓ0 2

    0 2→

    1 1→ −

    2 /cE e

    JQP

    DJQP

  • Quantum Shot Noise of DJQP* Process*Double Josephson-quasiparticle cycle: (A. Clerk et al. PRL 89 176804 (2002))

    24

    Excitationof box

    Relaxation of box

    0ω =

    ω = +∆ω = −∆

    ( )log VS ω⎡ ⎤⎣ ⎦

    2ggC V

    e

    n

    1

    0

    Predicted box chargeSET noise spectrum

    on resonanceoff resonance

  • SET Determines Relaxation Time (T1)Calculated symmetric noise at 30 GHz

    25

    low highH. Majer and B. Turek, unpublished

    T1 ~ 1 µs

    T1 < 100 ns

    Theory of quantum noise for DJQPA. Clerk et al., PRL 89 176804 (2002)

  • What About Asymmetry in SET Noise?Calculated 5 GHz asymmetric noise

    Measured reflected power

    ( ) ( )Q QS Sω ω+ −−

    Blue:relaxes

    Red:excites

    qpΓ0 2 26

    Below resonance SET relaxes boxabove resonance SET excites…

  • Population Inversion

    Calculated asymmetric noise at 5 GHz

    Measured box charge

    negative

    positive

    SE

    T excitesQ

    ubit S

    ET relaxes

    Qubit

    SET Gate Charge (e)

    SET creates an negative effective spin temperature27

  • Inversion: Theory and Experiment

    28

    Numerical calculation including strong coupling to SET + environmental relaxation (A. Clerk)

  • Other Quantum Spectrometers – Delft Group

    Equivalent AC circuit

    Deblock, Onac, Gurevich, and Kouwenhoven, Science 301, 203 (2003)

    29

  • SIS detection principleSIS detection principle

    High-frequency detection based on Photon Assisted Tunneling

    30

    Density of States

    superconductor

    insulator

    superconductorhν

    VSIS

    Voltage biased SIS junction

    Numerical simulations

  • QuasiQuasi--particle shot noiseparticle shot noise

    White noise fit

    31

    SI as fit parameter

    Only emission part: SI(ω)=eI

    Resolution: 80 fA2/Hz(3mK on a 1 kΩ resistor)

  • Summary of Lecture 2• Positive frequency noise = reservoir absorbs• Negative frequency noise = reservoir emits

    • A quantum system can act as a “quantum spectrometer,”able to measure both positive and negative frequency components of a non-classical noise source.

    • Using CPB (= electrical TLS) as quantum spectrometer

    • Observed quantum noise (at > GHz) of SET backaction- SET controlling relaxation time of box- SET can create population inversion in box

    due to asymmetry of noise

    Noise and Quantum MeasurementR. Schoelkopf

    32

  • 33

  • Single Quantum Dot as Noise DetectorSingle Quantum Dot as Noise Detector

    Device picture

    Quantum Dot in CB regime: noise detector

    Quantum Point Contact: noise source

    Inverse picture: QPC as acharge detector

    Detector back-action on the studied quantum system

    34

    J.M.Elzerman et.al, Nature 430, 431 (2004)

  • Single Quantum Dot as Noise DetectorSingle Quantum Dot as Noise Detector

    35

    Transport through orbital states QPC transmission dependence

    eVdotδ1

    δ2

    κ2κ1

    κ1= κ2 = 0.0167

    κ∗1= κ∗2 = 0.0048

    VQPC= 1.27 meVVdot= 30 µeVTemperature=200 mKδ1= 245 meV ~ 60 GHzδ2= 580 meV ~ 140 GHzΓgs = 0.575 GHz

    Γ1es = 5.75 GHzΓ2es = 4.025 GHz

    Set of fitting parameters

  • Double Quantum Dot DetectionDouble Quantum Dot Detection

    • Non-coherent limit ε »TC ; Γi«ΓL, ΓR

    • Iinel = e/ħ (ΓL-1+ Γi-1+ ΓR-1)-1 ≈ e/ħ Γi-1

    • P(ε) probability for energy exchange with the enviroment

    • Circuit transimpedanceSV(ω) = |Z(ω)|2 SI(ω)|Z(ω)|2 = κ2 RK2

    36R. Aguado and L.P. Kouwenhoven, PRL 84, 1986 (2000)

    Overview of LecturesOutline of Lecture 2The Electrical Engineer’s Spectrum AnalyzersThe Quantum Mechanic’s Analyzer – a SpinSpin as Spectrum Analyzer - IIInterpretation of Two-Sided SpectrumPolarization of Spin and Noise SpectraPolarization of Spin - IIWays to Characterize a Quantum ReservoirCooper Pair Box as Two-Level SystemCooper Pair Box as Two-Level SystemCooper Pair Box as Two-Level SystemCooper Pair Box as Two-Level SystemCooper-pair Box Coupled to an SETSpectroscopy of BoxDouble JQP Process in the SSETQuantum Shot Noise of DJQP* ProcessSET Determines Relaxation Time (T1)What About Asymmetry in SET Noise?Population InversionInversion: Theory and ExperimentOther Quantum Spectrometers – Delft GroupSIS detection principleQuasi-particle shot noiseSummary of Lecture 2Single Quantum Dot as Noise DetectorSingle Quantum Dot as Noise DetectorDouble Quantum Dot Detection