25
Quantum Super-resolution Imaging in Fluorescence Microscopy Dept. of Physics of Complex Systems Weizmann Institute of Science, Israel FRISNO 12, Ein Gedi (February 2013) Osip Schwartz, Dan Oron, Jonathan M. Levitt, Ron Tenne, Stella Itzhakov and Dan Oron

Quantum Super-resolution Imaging in Fluorescence Microscopy Dept. of Physics of Complex Systems Weizmann Institute of Science, Israel FRISNO 12, Ein Gedi

Embed Size (px)

Citation preview

Page 1: Quantum Super-resolution Imaging in Fluorescence Microscopy Dept. of Physics of Complex Systems Weizmann Institute of Science, Israel FRISNO 12, Ein Gedi

Quantum Super-resolution Imaging in Fluorescence Microscopy

Dept. of Physics of Complex SystemsWeizmann Institute of Science, Israel

FRISNO 12, Ein Gedi (February 2013)

Osip Schwartz, Dan Oron, Jonathan M. Levitt, Ron Tenne, Stella Itzhakov and Dan Oron

Page 2: Quantum Super-resolution Imaging in Fluorescence Microscopy Dept. of Physics of Complex Systems Weizmann Institute of Science, Israel FRISNO 12, Ein Gedi

Slide 2 of 18

Microscopy and resolution

Workarounds:•Nonlinear optical methods: use nonlinear optical response to produce narrower point spread function

•Stochastic methods: use fluorophores turning on and off randomly

•Quantum optics?

Resolution of far-field optical microscopes is limited by about half wavelength.(Ernst Abbe, 1873)

o Multi-photon interference Afek et al., Science 328 (2010) Walther et al., Nature 429 (2004)

o Entangled images Boyer et al., Science 321 (2008)o Sub shot noise imaging Brida et al., Nat. Photonics 4 (2010)o Resolution enhancement?

Page 3: Quantum Super-resolution Imaging in Fluorescence Microscopy Dept. of Physics of Complex Systems Weizmann Institute of Science, Israel FRISNO 12, Ein Gedi

Slide 3 of 18

Object Light detecto

r

Imaging system

Quantum light

Quantum super-resolution

Kolobov, Fabre, PRL2000

Saleh et al., PRL 2005

M.Tsang PRL 2009

Shin et al., PRL 2011

Thiel et al., PRL 2007

Thiel et al., PRA 2009

Giovannetti, PRA 2009

Guerrieri et al., PRL 2010

• Quantum Limits on Optical Resolution

• Wolf equations for two-photon light

• Quantum Imaging beyond the Diffraction Limit by Optical Centroid Measurements

• Quantum spatial superresolution by optical centroid measurements

• Quantum imaging with incoherent photons,

• Sub-Rayleigh quantum imaging using single-photon sources

• Sub-Rayleigh-diffraction-bound quantum imaging,

• Sub-Rayleigh Imaging via N-Photon Detection,

Page 4: Quantum Super-resolution Imaging in Fluorescence Microscopy Dept. of Physics of Complex Systems Weizmann Institute of Science, Israel FRISNO 12, Ein Gedi

Slide 4 of 18

Classical light

Quantum emitters

Light detector

Imaging system

Quantum light

Quantum emitters

S.W. Hell et al., Bioimaging (1995)

What if we had an emitter that would always emit photon pairs?

Page 5: Quantum Super-resolution Imaging in Fluorescence Microscopy Dept. of Physics of Complex Systems Weizmann Institute of Science, Israel FRISNO 12, Ein Gedi

Slide 5 of 18

Multi-photon detection microscopy

Spatial distribution of photon pairs carries high spatial frequency information (up to double resolution)

cascaded emitters

Photon pair detector

Imaging system

Photon pairτ1

τ2

τ1>>τ2

Point spread function: h2phot(x) = h2(x)

Similarly, in N-photon detection microscopy hNphot(x) = hN(x)

Page 6: Quantum Super-resolution Imaging in Fluorescence Microscopy Dept. of Physics of Complex Systems Weizmann Institute of Science, Israel FRISNO 12, Ein Gedi

Slide 6 of 18

Antibunching microscopy

0 1 2 30

0.5

1Classical

0 1 2 30

0.5

1Pair source

0 1 2 30

0.5

1Single photon source

Instead of actual photon pairs, consider ‘missing’ pairs.

Fluorescence intensity autocorrelation g(2)

10 μs interval between pulses

Number of photons emitted after excitation:Organic dyes: W. Ambrose et al. (1997)

Quantum dots: B. Lounis et al. (2000).

NV centers: R. Brouri et al. (2000).

Observations of antibunching:

Page 7: Quantum Super-resolution Imaging in Fluorescence Microscopy Dept. of Physics of Complex Systems Weizmann Institute of Science, Israel FRISNO 12, Ein Gedi

Slide 7 of 18

Antibunching-induced correlations

Two adjacent detectors in the image plane:

x0

For individual fluorophore:For individual fluorophore:

Sum over fluorophores

For multiple fluorophores:For multiple fluorophores:

Page 8: Quantum Super-resolution Imaging in Fluorescence Microscopy Dept. of Physics of Complex Systems Weizmann Institute of Science, Israel FRISNO 12, Ein Gedi

Slide 8 of 18

450 500 550 600 6500

0.2

0.4

0.6

0.8

1

Wavelength, nm

EmittersFluorescence saturation

Schwartz et al.,ACS Nano 6 (2012)

CdSe / ZnSe / ZnS quantum dots

Page 9: Quantum Super-resolution Imaging in Fluorescence Microscopy Dept. of Physics of Complex Systems Weizmann Institute of Science, Israel FRISNO 12, Ein Gedi

Slide 9 of 18

At 1 kHz:

Schwartz et al.,ACS Nano 6 (2012)

Page 10: Quantum Super-resolution Imaging in Fluorescence Microscopy Dept. of Physics of Complex Systems Weizmann Institute of Science, Israel FRISNO 12, Ein Gedi

Slide 10 of 18

Photon counting with a CCD

threshold

Dark counts

Less noiseMore signal

Read noisePixel signal distribution

CCD ADC units

arXiv:1212.6003

Page 11: Quantum Super-resolution Imaging in Fluorescence Microscopy Dept. of Physics of Complex Systems Weizmann Institute of Science, Israel FRISNO 12, Ein Gedi

Slide 11 of 18

Computing correlations

• compute correlations for all pixel configurations

• Fourier-interpolate the resulting images

• Sum the interpolated images

2nd order:

3rd order:

Quantifies the missing pairs

Missing 3-photon events (except those due to missing pairs, already accounted for)

arXiv:1212.6003

Page 12: Quantum Super-resolution Imaging in Fluorescence Microscopy Dept. of Physics of Complex Systems Weizmann Institute of Science, Israel FRISNO 12, Ein Gedi

Slide 12 of 18

Antibunching with a CCD

Third order:g(3)(τ1, τ2)==<n(t)n(t+τ1)n(t+ τ2)>

Second order autocorrelation function:g(2)(τ)=<n(t)n(t+ τ)>

τ, ms τ, ms

τ1, ms τ1, ms

τ 2, m

sτ 2,

ms

Quantum dot Classical signal

arXiv:1212.6003

Page 13: Quantum Super-resolution Imaging in Fluorescence Microscopy Dept. of Physics of Complex Systems Weizmann Institute of Science, Israel FRISNO 12, Ein Gedi

Slide 13 of 18 arXiv:1212.6003

2 4 6 8 10 12

1

2

3

4

5

6

70

2000

4000

6000

8000

2 4 6 8 10 12

1

2

3

4

5

6

7 0

100

200

300

400

500

2 4 6 8 10 12

1

2

3

4

5

6

7 0

5

10

15

20

25

Fluorescence image

Page 14: Quantum Super-resolution Imaging in Fluorescence Microscopy Dept. of Physics of Complex Systems Weizmann Institute of Science, Israel FRISNO 12, Ein Gedi

Slide 14 of 18 arXiv:1212.6003

2 4 6 8 10 12

1

2

3

4

5

6

70

2000

4000

6000

8000

2 4 6 8 10 12

1

2

3

4

5

6

7 0

100

200

300

400

500

2 4 6 8 10 12

1

2

3

4

5

6

7 0

5

10

15

20

25

Fluorescence image

2nd order antibunching

Page 15: Quantum Super-resolution Imaging in Fluorescence Microscopy Dept. of Physics of Complex Systems Weizmann Institute of Science, Israel FRISNO 12, Ein Gedi

Slide 15 of 18 arXiv:1212.6003

2 4 6 8 10 12

1

2

3

4

5

6

70

2000

4000

6000

8000

2 4 6 8 10 12

1

2

3

4

5

6

7 0

100

200

300

400

500

2 4 6 8 10 12

1

2

3

4

5

6

7 0

5

10

15

20

25

Fluorescence image

2nd order antibunching

3rd order antibunching

Resolution: 271 nm FWHM

216 nm FWHM(x1.26)

181 nm FWHM(x1.50)

Page 16: Quantum Super-resolution Imaging in Fluorescence Microscopy Dept. of Physics of Complex Systems Weizmann Institute of Science, Israel FRISNO 12, Ein Gedi

Slide 16 of 18

Optical sectioning

200300400

51015

-1 -0.5 0 0.5 10

0.2

0.4

0.6

0.8

1

Fluorescence imaging

2nd order antibunching

imaging

Defocused image of a quantum dot:

Optical signal integrated over the field of view:

200300400

51015

-1 -0.5 0 0.5 10

0.2

0.4

0.6

0.8

1

Defocusing, μm

Page 17: Quantum Super-resolution Imaging in Fluorescence Microscopy Dept. of Physics of Complex Systems Weizmann Institute of Science, Israel FRISNO 12, Ein Gedi

Slide 17 of 18

Summary

•Far-field super-resolution imaging demonstrated by using quantum properties of light naturally present in fluorescence microscopy

•The experiment was performed with commercially available equipment, at room temperature, with commonly used quantum dot fluorophores

•With further development of detector technology, antibunching imaging may become feasible as a practical imaging method

Page 18: Quantum Super-resolution Imaging in Fluorescence Microscopy Dept. of Physics of Complex Systems Weizmann Institute of Science, Israel FRISNO 12, Ein Gedi

Slide 18 of 18

The team

Jonathan M. Levitt

Dan Oron

Zvicka DeutschStella Itzhakov

Ron Tenne

Page 19: Quantum Super-resolution Imaging in Fluorescence Microscopy Dept. of Physics of Complex Systems Weizmann Institute of Science, Israel FRISNO 12, Ein Gedi

Slide 19 of 18

2 4 6 8 10 12

1

2

3

4

5

6

70

2000

4000

6000

8000

2 4 6 8 10 12

1

2

3

4

5

6

7 0

100

200

300

400

500

2 4 6 8 10 12

1

2

3

4

5

6

7 0

5

10

15

20

25

2 4 6 8 10 12

1

2

3

4

5

6

70

2000

4000

6000

8000

2 4 6 8 10 12

1

2

3

4

5

6

7 0

100

200

300

400

500

2 4 6 8 10 12

1

2

3

4

5

6

7 0

5

10

15

20

25

A

B

C

D

E

F

Page 20: Quantum Super-resolution Imaging in Fluorescence Microscopy Dept. of Physics of Complex Systems Weizmann Institute of Science, Israel FRISNO 12, Ein Gedi

Slide 20 of 18

Superresolved images

Regular (photon counting) image Second order correlations Third order correlations

Reconstructed high resolution images

Page 21: Quantum Super-resolution Imaging in Fluorescence Microscopy Dept. of Physics of Complex Systems Weizmann Institute of Science, Israel FRISNO 12, Ein Gedi

Slide 21 of 18

Superresolved images

arXiv:1212.6003

Page 22: Quantum Super-resolution Imaging in Fluorescence Microscopy Dept. of Physics of Complex Systems Weizmann Institute of Science, Israel FRISNO 12, Ein Gedi

Slide 22 of 18

Superresolved images

Page 23: Quantum Super-resolution Imaging in Fluorescence Microscopy Dept. of Physics of Complex Systems Weizmann Institute of Science, Israel FRISNO 12, Ein Gedi

Slide 23 of 18

Superresolved images

Page 24: Quantum Super-resolution Imaging in Fluorescence Microscopy Dept. of Physics of Complex Systems Weizmann Institute of Science, Israel FRISNO 12, Ein Gedi

Slide 24 of 18

253

280

269

262 286

267277

258

262

267

260

268283

270

276

283

282267283

288

273

271

279

274271

266

274273

262

251

287

276

262

266

268

279

258

284 264255

277

279286292

286

274

282 282

266

282304

268

286284

283

278

263291

259

277

271 299

273266

262

268

266

272258

244

256259

283

280 273

281292

253

256

283

276270262

267270

267

269260

263

271

273272

268

253

259271295

261249

277289

253274

5 10 15 20 25

2

4

6

8

10

12

240 250 260 270 280 290 300 3100

2

4

6

8

10

12

140.27182

213

219

217 217

217

212 213

227

221213

217

210 212

223

217216

215

217206215

219216219

220

217

221

215

213

220

217

210

215223

224

206207

212219

215

215215

215

212

224203

209

216

2 4 6 8 10 12

1

2

3

4

5

6

7

200 205 210 215 220 225 2300

2

4

6

80.21557

162

180189

180

181183

181

189

185185

181175

178186

176

185

186 181

185

188

191

173

178

181181 166

168185188

181

180

181186

180

171181

175

171186 186

183 171171

188

178186

194

189

186191

168

188

180189

178

175

175171

178 186171183 189

205

188

157

166175

194

196

178191

185

196

183

185

2 4 6 8 10 12

1

2

3

4

5

6

7

150 160 170 180 190 200 2100

5

10

150.18143

A

E

C

D

B

F

PSF width (nm)

PSF width (nm)

PSF width (nm)

Page 25: Quantum Super-resolution Imaging in Fluorescence Microscopy Dept. of Physics of Complex Systems Weizmann Institute of Science, Israel FRISNO 12, Ein Gedi

Slide 25 of 18

Quantum super-resolution

Conceptual difficulty: an absorptive grating with sub-wavelength period acts as an attenuator for every photon

• Transmitted light contains no information on the grating phase or period • Any linear absorber mask is a superposition of gratings• High spatial frequency components of the mask are lost