80
• Valence quark model of hadrons • Quark recombination • Hadronization dynamics • Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest, Univ. Giessen) School of Collective Dynamics in High-Energy Collisions, Berkeley, 19-26 May, 2005

Quark Coalescence and Hadron Statistics

  • Upload
    pekelo

  • View
    37

  • Download
    1

Embed Size (px)

DESCRIPTION

Quark Coalescence and Hadron Statistics. Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics. T.S.Bir ó (RMKI Budapest, Univ. Giessen). School of Collective Dynamics in High-Energy Collisions, Berkeley, 19-26 May, 2005. Collaborators. - PowerPoint PPT Presentation

Citation preview

Page 1: Quark Coalescence and Hadron Statistics

• Valence quark model of hadrons

• Quark recombination

• Hadronization dynamics

• Hadron statistics

Quark Coalescence and Hadron Statistics

T.S.Biró (RMKI Budapest, Univ. Giessen)

School of Collective Dynamics in High-Energy Collisions, Berkeley, 19-26 May, 2005

Page 2: Quark Coalescence and Hadron Statistics

Collaborators• József Zimányi, KFKI RMKI Budapest• Péter Lévai, KFKI• Tamás Csörgő, KFKI• Berndt Müller, Duke Univ. NC USA• Christoph Traxler• Gábor Purcsel, KFKI• Antal Jakovác, BMGE (TU) Budapest• Géza Györgyi, ELTE Budapest• Zsolt Schram, DE Debrecen

Page 3: Quark Coalescence and Hadron Statistics

Valence Quark Model of Hadrons

1. Mass formulas (flavor dependence)

2. Spin dependence

3. Alternatives: partons, strings, ...

Basic cross sections e p : e = 3 : 2

Page 4: Quark Coalescence and Hadron Statistics

Valence Quark Model of Hadrons

Quark masses: M = (u,d) m, (s) ms

Quark hypercharges: Y = (u,d) 1/3, (s) -2/3

Naive quark mass formula:

M = M - M Y0 1

with M = (2m + m ) / 3 and M = m - mss0 1

M ≠ 0 breaks SU(3) flavor symmetry1

Page 5: Quark Coalescence and Hadron Statistics

Valence Quark Model of Hadrons

More terms: M = a + bY + c T(T+1) + d Y2

Test on baryon decuplet masses with last 2 terms linear (like x + y Y)

(3/2, 1): 15c/4 + d = x + y

(1/2,-1): 3c/4 + d = x - y

( 0,-2): 4d = x - 2y

Solution: x = 2c, y = 3c/2 d = -c/4.

*

Page 6: Quark Coalescence and Hadron Statistics

Valence Quark Model of Hadrons

M = a + bY + c (T(T+1) - Y / 4)2

Gell-Mann Okubo mass formula:

N (qqq: ½, +1) a + b + c / 2 (qqs: 1, 0) a + 2 c (qqs: 0, 0) a (qss: ½, -1) a – b + c / 2

Check 3M( ) + M( ) = 2M(N) + 2M( ) : difference 8 MeV/ptl.

Page 7: Quark Coalescence and Hadron Statistics

Valence Quark Model of Hadrons

M = a + bY + c (T(T+1) - Y / 4) + d S(S+1)2

Gürsey - Radicati mass formula:

SU(6) quark model: (flavor SU(3), spin SU(2))

1. quark: [6] = [3,2]

2. meson: (3,2)×(3,2) = (1,1)+(8,1)+(1,3)+(8,3)

3. baryon: 6×6×6 = 20+56+70+70 (only 56 is color singlet)

Page 8: Quark Coalescence and Hadron Statistics

Valence Quark Model of Hadrons

Fit to 56-plet masses: a = 1066.6 MeV, b = -196.1 MeV c = 38.8 MeV, d = 65.3 MeV

More success: magnetic moments

No hint for formation probability

Linear dominance!

additive mass hadronization

Page 9: Quark Coalescence and Hadron Statistics

Quark Recombination

1. (Non)Linear coalescence (Bialas, ZLB)

2. ALCOR (Zimanyi, Levai, Biro)

3. Distributed mass quarks (ZLB)

hep-ph/9904501

PLB347:6,1995PLB472:243,2000

nucl-th/0502060

Page 10: Quark Coalescence and Hadron Statistics

Quark Recombination

Linear vs nonlinear coalescence

meson[ij] = a q[i] q[j]

baryon[ijk] = b q[i] q[j] q[k]

With lowest multiplets: quarks are redistributed in a few mesons and baryons # counting all flavors

q = + K + 3N + 2Y + Xq = + K + 3N + 2Y + Xs = + K + Y + 2X + 3s = + K + Y + 2X + 3

coalesced numbers

N = C b q 3 3

qN

et cetera

Page 11: Quark Coalescence and Hadron Statistics

Quark Recombination

Q = b qqA simple example: q, q , N, N

_

_ _

q = C Q Q + 3C Q = + 3 NN

3

q = C Q Q + 3C Q = + 3 NN

3

_ __ _

N / C * N / C = ( / C )3NN

_

(r ) = (q - ) ( q - ) with r = (3C ) / CN3 2/3_

Page 12: Quark Coalescence and Hadron Statistics

Quark Recombination

(q + q ) / 2

(q q )_

qq_

small r limit:

N = r q / 3(q – q)3 3__ _

N = (q – q)/3 + N

= q - 3 N

_ _

__

Features: N ≠ …q , ≠ … q q3

q > q_RHSLHS

_

Page 13: Quark Coalescence and Hadron Statistics

Quark Recombination

Note: ≠ possible due to S ≠ S while s = s

Key: b is sensitive to the q – q inbalance!s

ratios of ratios and their powers are testable!d(K) = K/K = 1.80 ± 0.2d(Y) = (Y/Y) / (N/N) = 1.9 ± 0.3d(X) = (X/X) / (N/N) = 1.89 ± 0.15d() = (/) / (N/N) = 1.76 ±0.15

CERN SPS data

1/2 1/2

1/31/3

Page 14: Quark Coalescence and Hadron Statistics

Quark Recombination

ALCOR: 2Nflavor parameters = Nf che-mical potentials + Nffugacities

this is just not grandcanonical, but explicitin the particle numbers.

Page 15: Quark Coalescence and Hadron Statistics

Quark Recombination

Distributed mass quarks form hadrons.

1.) assume hadronic wave packet is narrow in relative momentum p(a) = p(b) = p/22.) mass is nearly additive m = m(a)+m(b)3.) coalescence convolves phase space densities

F(m,p) = dm dm (m-m -m ) f(m ,p/2) f(m ,p/2)∫ a a a bbb∫0 0

The product f(x) f(m-x) is maximal at x = m /2 .

nucl-th/0502060

Page 16: Quark Coalescence and Hadron Statistics

Quark Recombination

ln (m) = - (a/T) (a/m + m/a )½

f(m,p) = (m) exp ( - E(m,p) / T )

Page 17: Quark Coalescence and Hadron Statistics

Quark Recombinationpion

Page 18: Quark Coalescence and Hadron Statistics

Quark Recombinationproton

Page 19: Quark Coalescence and Hadron Statistics

Quark Recombinationratio

Page 20: Quark Coalescence and Hadron Statistics

Hadronization dynamics

1. Parton kinetics + recombination (MFBN)

2. Colored molecular dynamics (TBM)

3. Color confinement as 1/density (ZBL)

4. Multpilicative noise in quark matter (JB)

5. Non-extensive Boltzmann equation (BP)

PRC59:1620, 1999

JPG27:439, 2001

PRL94:132302, 2005

hep-ph/0503204

Page 21: Quark Coalescence and Hadron Statistics

Colored Molecular Dynamics

g

Page 22: Quark Coalescence and Hadron Statistics

Colored Molecular Dynamics

Page 23: Quark Coalescence and Hadron Statistics

Colored Molecular Dynamics

Page 24: Quark Coalescence and Hadron Statistics

Color confinement as 1/density

reaction A + B C

conserved: N + N = N (0), N + N = N (0)A A B BCC

rate eq.: N = -R ( N - N )(N - N )C C -+

resulted number:

C

N () = N N (1-K) / (N -KN )C ++ --

with K = exp(r (N - N )), r = R(t)dt+ - ∫

Page 25: Quark Coalescence and Hadron Statistics

Color confinement as 1/density

If A and B colored, C not: N () = N (0) = N (0) = N

limit: r(N - N ) 0, K exp linearized

N () = r N / ( 1 + rN ) (r is required!)

1-dim exp : r = v/V t ln ( t / t ) 3-dim exp : r = v/3V t ( 1 - (t /t ) )

conclusion: ~ t ~ 1 / density for all quarks to be hadronized

C A B 0

0

+ -

000

000 1

1 3

3

02

Page 26: Quark Coalescence and Hadron Statistics

Color confinement as 1/density

Page 27: Quark Coalescence and Hadron Statistics

Additive and multiplicative noise

1. Langevin

p = - p = G = F

2C 2B 2D

2. Fokker Planck

∂f∂t

∂∂p

∂∂p

= ( K f ) - ( K f )1

2

2 2

K = F – Gp

K = D – 2Bp + Cp22

1

c c c

Equivalent descriptions: AJ+TSB, PRL 94, 2005

Page 28: Quark Coalescence and Hadron Statistics

Exact stationary distribution:

f = f (D/K ) exp(- atan( ) ) 0

v2 D – Bp

p

with v = 1 + G/2C

= GB/C – F

= DC – B22

For F = 0 characteristic scale: p = D/C.c2

power

exponent

(small or large) parameter

Page 29: Quark Coalescence and Hadron Statistics

Exact stationary distribution for F = 0, B = 0:

f = f ( 1 + ) 0

-(1+G/2C)2

D

C p

With E = p / 2m this is a Tsallis distribution!

f = f ( 1 + (q-1) ) 0

E

2

T

q

1 – q

Tsallis index: q = 1 + 2C / GTemperature: T = D / mG

Page 30: Quark Coalescence and Hadron Statistics

Limits of the Tsallis distribution:

p p : Gauss

p p : Power-law

c

f ~ exp( - Gp /2D )

f ~ ( p / p )

2

c

-2vc

Page 31: Quark Coalescence and Hadron Statistics

E E :

E E :

c f ~ exp( - E / T )

f ~ (E / E )-v

c c

Relation between slope, inflection and power !!

v = 1 + E / Tc

Energy distribution limits:

Page 32: Quark Coalescence and Hadron Statistics

Stationary distributions

For F=0, B=0 the Tsallis distribution is the exact stationary solution

Gamma:p = 0.1 GeV F ≠ 0

Gauss: p = ∞

Zero:p = 10 GeV

B = D/C

Power: p = 1 GeV

F ≠ 0

c

c

c

c

2

Page 33: Quark Coalescence and Hadron Statistics

Generalization

p = z - G(E) ∂E∂p

. < z(t) > = 0

< z(t)z(t') > = 2 D(E) (t-t')

In the Fokker – Planck equation:K (p) = D(E)

K (p) -G(E) ∂E∂p1

2

Stationary distribution:

f(p) = exp - G(E)∫ D(E)dE

D(E)A ( )

=

TSB+GGy+AJ+GP, JPG31, 2005

Page 34: Quark Coalescence and Hadron Statistics

GeneralizationStationary distribution:

f(p) = A exp - ∫T(E)dE

1) Gibbs: T(E) = T exp(-E/T)

2) Tsallis: T(E) = T/q + (1-1/q) E

( 1 + (q-1) E / T) -q /(q-1)

( )

Page 35: Quark Coalescence and Hadron Statistics

Inverse logarithmic slope temperature

T(E)1

= ln f (E)ddE

T (E) = D(E)

G(E) + D'(E)

T = D(0) / G(0) Gibbs

T = D(E) / G(E) Einstein

Page 36: Quark Coalescence and Hadron Statistics

slope

c

T

T

E E

TEinstein

Gibbs

Walton – Rafelski ?

TGibbsT

EinsteincE

111= +

Special case: both D(E) and G(E) are linear

Page 37: Quark Coalescence and Hadron Statistics

Fluctuation Dissipation theorem

D (E) = 1

f(E)

with f(E) stationary distribution

∫E

G (x) f(x) dxij ij

D (E) = T(E)ij

G (E) + ij

D' (E) ij ( )

(Hamiltonian eom does not change energy E!)

p = -G E + z i ijij.

Page 38: Quark Coalescence and Hadron Statistics

Fluctuation Dissipation theorem

particular cases ( for constant G ):

D = Tij

G ij

D (E) = T + (q-1) Eij

G ij

( )

Gibbs:

Tsallis:

Page 39: Quark Coalescence and Hadron Statistics

T. S. Bíró and G. Purcsel (University of Giessen, KFKI RMKI Budapest)

Non-Extensive Boltzmann Equation

• Non-extensive thermodynamics

• 2-body Boltzmann Equation + non-ext. rules

• Unconventional distributions

• H-theorem and non-extensive entropy

• Numerical simulation

hep-ph/0503204

Page 40: Quark Coalescence and Hadron Statistics

Non-extensive thermodynamics

f = f f12 1 2 statistical independence

E = h ( E , E )12 1 2

non-extensive additionrule

non-extensive addition rules for energy, entropy, etc.

h ( x, y ) ≠ x + y

Page 41: Quark Coalescence and Hadron Statistics

Sober addition rules

associativity:

h ( h ( x, y ) , z ) = h ( x, h ( y, z ) )

1,22,33

1

general math. solution: maps it to additivity

X ( h ) = X ( x ) + X ( y )

X( t ) is a strict monotonic, continous real function, X(0) = 0

Page 42: Quark Coalescence and Hadron Statistics

Boltzmann equation

∫ 4 1 2

f = w ( f f - f f )1 1234

234

1

2

3 4 w = M ( p + p - p - p )

1234 1234

1 2 3 4 ( h( E , E ) - h( E , E ) )

3

2

Page 43: Quark Coalescence and Hadron Statistics

Test particle simulation

x

y

h(x,y) = const.

E

E

EE

13

4

2

uniform random: Y(E ) = ( h/ y) dx-1

∫0

E3

3

E

E

h=const

Page 44: Quark Coalescence and Hadron Statistics

Consequences

• canonical equilibrium: f ~ exp ( - X( E ) / T )

• 2-body collisions: X(E ) + X(E ) = X(E ) + X(E )

• non-extensive entropy density: s = df X ( - ln f )

• H-theorem for X( S ) = - f ln f tot

-1

∫∫

1 2 3 4

Page 45: Quark Coalescence and Hadron Statistics

rule additive equilibrium entropy name

h ( x, y ) X ( E ) f ( E ) s [ f ] general

x + y E exp( - E / T) - f ln f Gibbs

x + y + a xy ln(1+aE) (1+aE) (f - f)/(q-1) Tsallis-1/aT q

( x + y ) E exp( - E / T) … Lévyqqqq 1/q

x y ln E E f Rényiq

1- q

1 - 1/ (1-q)

T h e r m o d y n a m i c s e sT h e r m o d y n a m i c s e s

a1

Page 46: Quark Coalescence and Hadron Statistics

S o m e m o r e . . .

k-deformed statistics (G.Kaniadakis),

X( E ) = (T / k) asinh ( kE / T ), h( x, y ) = x sqrt( 1 + ( ky / T ) ) + y sqrt( 1 + ( kx / T ) )

s[ f ] = ( f /(1-k) - f /(1+k) ) / 2k

also gives a power-law tail: ~ (2kE/T)

1-k 1+k

2 2

-1/k

Page 47: Quark Coalescence and Hadron Statistics

Cascade simulation

• Momenta and energies of N “test” particles

• Microevent: new random momenta, so that X(E1) + X(E2) = X(E1’) + X(E2’)

• Relative angle rejection or acceptance

• Initially momentum spheres, Lorentz-boosted

• Distribution of E is followed and plotted logarithmically

Page 48: Quark Coalescence and Hadron Statistics

Movie: Boltzmann a = 0 proton y=2

Page 49: Quark Coalescence and Hadron Statistics

Movie: Boltzmann a = 0 proton y=2

Page 50: Quark Coalescence and Hadron Statistics

Movie: Boltzmann a = 0 pion y=2

Page 51: Quark Coalescence and Hadron Statistics

Movie: Boltzmann a = 0 pion y=2

Page 52: Quark Coalescence and Hadron Statistics

Snapshot: Tsallis a = -0.2

Page 53: Quark Coalescence and Hadron Statistics

Snapshot: Tsallis a = -0.2

Page 54: Quark Coalescence and Hadron Statistics

Snapshot: Tsallis a = -0.2

Page 55: Quark Coalescence and Hadron Statistics

Snapshot: Tsallis a = -0.2

Page 56: Quark Coalescence and Hadron Statistics

Snapshot: Tsallis a = -0.2

Page 57: Quark Coalescence and Hadron Statistics

Snapshot: Tsallis a = -0.2

Page 58: Quark Coalescence and Hadron Statistics

Snapshot: Tsallis a = -0.2

Page 59: Quark Coalescence and Hadron Statistics

Non-extensive Boltzmann eq.

BG TS (a = 2)

Page 60: Quark Coalescence and Hadron Statistics

Tsallis distribution

Page 61: Quark Coalescence and Hadron Statistics

Hadron statistics

1. Gibbs thermodynamics: exponential

2. Non-extensive thermodynamics: power-law

3. Collective flow effects: scaling breakdown

4. low pt and high pt: connected?

hep-ph/0409157JPG31:1, 2005

Page 62: Quark Coalescence and Hadron Statistics

Particle spectra and Eq. Of State

(2h) d N 3

V dk3= d , k) f(/T)

3

Spectrum Spectral function thermodynamics

Gibbs

Tsallis

. . .

Peak: particle

bgd.: field

Shifted peak: quasiparticle

Page 63: Quark Coalescence and Hadron Statistics

Quasiparticle approximation: k

In this case: ~ f ( / T)k

d Ndk 3

3

T : parameter of environment

= b F ( k/b ) : result of interactionsk

Modified quark matter dispersion: change F( x )

Modified thermodynamics: change f( x )

Page 64: Quark Coalescence and Hadron Statistics

Experimental spectra: pp

mesons, 30 GeV, p -tail v = 10.1 ± 0.3

pions, 30 GeV, m -tail v = 9.8 ± 0.1

pions, 540 GeV, m -tail v = 8.1 ± 0.1

quarkonia, 1.8 TeV, m -tail v = 7.7 ± 0.4

t

t

t

t

Gazdiczki + Gorenstein (hep-ph / 0103010)

tt

tt

tt

tt

Page 65: Quark Coalescence and Hadron Statistics

Experimental spectra: AuAu

pi, K, p, 200 GeV, m -scaling (i.e. E = m )

v = 16.3

(E = 2.71 GeV, T = 177 MeV)

t

t

t

t

Schaffner-Bielich, McLerran, Kharezeev (NPA 705, 494, 2002)

t t

c

Page 66: Quark Coalescence and Hadron Statistics

Experimental spectra: cosmic rays

before knee, m -scaling (i.e. E = m )

v = 5.65 (E = 0.50 GeV, T = 107 MeV)

in ankle,

v = 5.50 (E = 0.48 GeV, T = 107 MeV)

t

t

t

Ch. Beck cond-mat / 0301354

t t

c

c

Page 67: Quark Coalescence and Hadron Statistics

Experimental spectra: e-beam

integral over longitudinal momenta

TASSO 14 GeV v = 51 (E = 6.6 GeV)

TASSO 34 GeV v = 9.16 (E = 0.94 GeV)

DELPHI 91 GeV v = 5.50 (E = 0.56 GeV)

DELPHI 161 GeV v = 5.65 (E = 0.51 GeV)

t

t

t

t

Bediaga et.al. hep-ph / 9905255

c

c

c

c

Page 68: Quark Coalescence and Hadron Statistics

Gaussian fit to parton distribution: < p > = D / G = 1 ... 1.5 GeV Power-tail in e+e- experiment (ZEUS): v = 5.8 ± 0.5 -> G / C = 9.6 ± 1

Derived inclination point at

p = √ D / C = 3 ... 4 GeV.

t2

c

Test v = 1 + E / T

c

Page 69: Quark Coalescence and Hadron Statistics

pions

RHIC Au Au heavy ion collision 200 GeV

q = 1.11727 T = 118 ± 9 MeV

v = 9.527 ± 0.181E = 1.008 ± 0.0973 GeV

T = 364 ± 18 MeV

from AuAu at 200 GeV (PHENIX) 0

c

0 2 4 6 8 10 12 14 p (GeV) t

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E-0

d 2

2p dp dyt t

min. bias

Page 70: Quark Coalescence and Hadron Statistics

Central 5% transverse spectrum 0

Page 71: Quark Coalescence and Hadron Statistics

Central 5% transverse slope 0

D(E) T(E) =

G(E) + D (E) '

Page 72: Quark Coalescence and Hadron Statistics

All central transverse slopes

Flow

All central transverse slopes

Page 73: Quark Coalescence and Hadron Statistics

Transverse flow correction

E = u p = (m cosh(y-) - v p cos(-) )

Energy in flowing cell:

Most detected: forward flying (blue shiftedblue shifted) at = y, = .

E = (m - v p )

TT

TT

Spectrum ~ ∫d d f(E)

Page 74: Quark Coalescence and Hadron Statistics

Transverse flow corrected spectra

forward flow !

Page 75: Quark Coalescence and Hadron Statistics

E/N with Tsallis distributionMassless particles, d-dim. momenta, one ptl. average

E = Ec v – d – 1

d=

1 – d (q – 1)

d T

(Ito: =0)

QGP

E =∫ dE E (1 + E / E )

dc

∫ dE E (1 + E / E )d-1

c

-v

-v

Page 76: Quark Coalescence and Hadron Statistics

E/N with Tsallis distributionMassive particles, 2-dim. momenta, one ptl. average energy

E = a (2T + bm /(m+T) )

hadrons

2

with 1/a = 3 – 2q, b = 4q - 11q + 82

(BG: a=1, b=1)E > BG case for q > 1E > BG case for q > 1

_

_

Page 77: Quark Coalescence and Hadron Statistics

Average transverse momentumR.Witt

Page 78: Quark Coalescence and Hadron Statistics

Average transverse momentum

Page 79: Quark Coalescence and Hadron Statistics

Limiting temperature with Tsallis distribution

<E>N

=E – j T

TE T = E / d

Hagedorn

;c

cj=1

d

cH

Massless particles, d-dim. momenta, N-fold

For N 2: Tsallis partons Hagedorn hadrons

( with A. Peshier, Giessen )

Page 80: Quark Coalescence and Hadron Statistics

Summary

• Basis of coalescence: valence quark model• ALCOR: microcanonical nonlinear, non-eq.• Mol.dyn.: nice spectra, but too slow• Power-tailed stationary distributions from• a) multiplicative noise• b) Non-extensive Boltzmann-Equation• Simple relation: v = 1 + E / T.• Limiting temperature, m-scaling of exp.values

c