65
Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold E. Kainhofer Rigorosumsvortrag, Hnstitut f¨ ur Mathematik Fraz, 16. Mai 2003

Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Quasi-Monte Carlo Algorithms withApplications in Numerical Analysis and

FinanceReinhold F. Kainhofer

Rigorosumsvortrag, Institut fur Mathematik

Graz, 16. Mai 2003

Page 2: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Inhalt

1. Quasi-Monte Carlo Methoden

2. Sublineare Dividendenschranken in der Risikotheorie

3. Runge-Kutte QMC Methoden fur retardierte Differentialgleichungen

(a) Losungsskizze des Algorithmus

(b) RKQMC Losungsmethoden (Hermite Interpolation, QMC Methoden)

(c) Konvergenzbeweis

(d) Numerische Beispiele

4. QMC Methoden fur singulare gewichtete Integration

(a) Konvergenztheorem und -beweis

(b) Hlawka-Muck Konstruktion

(c) Numerisches Beispiel (Bewertung von asiatischen Optionen)

Page 3: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Quasi-Monte Carlo methods

Integrals approximated by a discrete sum over N (quasi-)random points:∫[0,1]s

f (x)dx =1

N

N∑i=1

f (xi)

Page 4: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Quasi-Monte Carlo methods

Integrals approximated by a discrete sum over N (quasi-)random points:∫[0,1]s

f (x)dx =1

N

N∑i=1

f (xi)

MC methods: xi random points

QMC methods: xi low-discrepancy sequences

Low discrepancy sequences: deterministic point sequences {xi}1≤n≤N ∈[0, 1)

s, good uniform distribution

Page 5: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Quasi-Monte Carlo methods

Integrals approximated by a discrete sum over N (quasi-)random points:∫[0,1]s

f (x)dx =1

N

N∑i=1

f (xi)

MC methods: xi random points

QMC methods: xi low-discrepancy sequences

Low discrepancy sequences: deterministic point sequences {xi}1≤n≤N ∈[0, 1)

s, good uniform distribution

discrepancy of the point set S

DN(S) = supJ⊆[0,1]s

∣∣∣∣A(J , S)

N− λs(J )

∣∣∣∣

Page 6: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Quasi-Monte Carlo methods

Integrals approximated by a discrete sum over N (quasi-)random points:∫[0,1]s

f (x)dx =1

N

N∑i=1

f (xi)

MC methods: xi random points

QMC methods: xi low-discrepancy sequences

Low discrepancy sequences: deterministic point sequences {xi}1≤n≤N ∈[0, 1)

s, good uniform distribution

discrepancy of the point set S

DN(S) = supJ⊆[0,1]s

∣∣∣∣A(J , S)

N− λs(J )

∣∣∣∣Koksma-Hlawka inequality (f of bounded Variation):∣∣∣∣∣ 1

N

N∑n=1

f(xn)−∫

[0,1)s

f(u)du

∣∣∣∣∣ ≤ V ([0, 1)s, f)D∗N (x1, . . . , xN ) .

Page 7: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Low-Discrepancy sequences

D∗N (S) ≤ O

((log N)s

N

)

Page 8: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Low-Discrepancy sequences

D∗N (S) ≤ O

((log N)s

N

)• Halton-sequence in bases (b1, . . . bs): inversion of digit expansion of n in base bi at the

comma

• (t, s) nets in base b (Niederreiter, Sobol, Faure): net-like structure → best possible uniformdistribution on elementary intervals

Page 9: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Low-Discrepancy sequences

D∗N (S) ≤ O

((log N)s

N

)• Halton-sequence in bases (b1, . . . bs): inversion of digit expansion of n in base bi at the

comma

• (t, s) nets in base b (Niederreiter, Sobol, Faure): net-like structure → best possible uniformdistribution on elementary intervals

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1Monte Carlo, 3000 points

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1Halton sequence, 3000 points

Page 10: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Low-Discrepancy sequences

D∗N (S) ≤ O

((log N)s

N

)• Halton-sequence in bases (b1, . . . bs): inversion of digit expansion of n in base bi at the

comma

• (t, s) nets in base b (Niederreiter, Sobol, Faure): net-like structure → best possible uniformdistribution on elementary intervals

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1Monte Carlo, 3000 points

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1Halton sequence, 3000 points

Problem: correlations between elements

Page 11: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Risk Model with constant interest forceand non-linear dividend barrier

������������������

������������������

tt

������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������

timet

claims ~ F(y)premiums

xb

dividend barrier breserve R

dividends

ruin

φ(u, b) . . . probability of survival

W (u, b) . . . expected value of discounted dividend payments

Page 12: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Integro-differential equation for W (u, b):

(c+i u) ∂W∂u + 1

α m bm−1∂W∂b − (i+λ) W +λ

u∫0

W (u−z,b)dF (z)=0

with boundary condition ∂W∂u

∣∣u=b

= 1.

Solution is fixed point of integral operator ⇒ apply it iteratively orrecursively

Ag(u, b) =

∫ t∗

0λe−(λ+i)t

∫ (c′+u)eit−c′

0g

((c′ + u)eit − c′ − z,

(bm +

t

α

)1/m)

dF (z)dt

+

∫ ∞

t∗λe−(λ+i)t

∫ (bm+ tα)

1/m

0g

((bm +

t

α

)1/m

− z,

(bm +

t

α

)1/m)

dF (z)dt

+

∫ ∞

t∗λe−λt

∫ t

t∗e−is

((c + i u)eis − 1

mα(bm + s

α

)1−1/m

)ds dt,

=⇒ Solution is just a high-dimensional integration problem.

Page 13: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Numerical solution of delayed differen-tial equations using QMC methods

1. Sketch of the numerical solution

2. The RKQMC solution methods (Hermite Interpolation, QMC meth-ods)

3. Convergence proofs

4. Numerical examples

Page 14: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

The problem

Heavily varying delay differential equations (DDE) or DDE with heavilyvarying solutions.

y′(t) = f (t, y(t), y(t− τ1(t)), . . . , y(t− τk(t))) , for t ≥ t0, k ≥ 1,

y(t) = φ(t), for t ≤ t0 ,

with

Page 15: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

The problem

Heavily varying delay differential equations (DDE) or DDE with heavilyvarying solutions.

y′(t) = f (t, y(t), y(t− τ1(t)), . . . , y(t− τk(t))) , for t ≥ t0, k ≥ 1,

y(t) = φ(t), for t ≤ t0 ,

with

f (t, y(t), yret(t)) . . .piecewise smooth in y and yret,

bounded and Borel measurable in t

y(t) . . .solution, d-dimensional real-valued function

τ1(t), ..., τk(t) . . .cont. delay functions, bounded from below by τ0 > 0,

satisfy t1 − τj(t1) ≤ t2 − τj(t2) for t1 ≤ t2

φ(t) . . .initial function, cont. on

[inf

t0≤t,1≤j≤k(t− τj(t)) , t0

].

Page 16: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Sketch of the numerical solution

For heavily oscillating DDE: conventional Runge-Kutta methods unsta-ble.

• Hermite interpolation for retarded argument ⇒ ODE

Page 17: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Sketch of the numerical solution

For heavily oscillating DDE: conventional Runge-Kutta methods unsta-ble.

• Hermite interpolation for retarded argument ⇒ ODE

• use RKQMC methods for ODE:Large Runge-Kutta error for heavily oscillating DEIdea (Stengle, Lecot): integrate over whole step size

Page 18: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Sketch of the numerical solution

For heavily oscillating DDE: conventional Runge-Kutta methods unsta-ble.

• Hermite interpolation for retarded argument ⇒ ODE

• use RKQMC methods for ODE:Large Runge-Kutta error for heavily oscillating DEIdea (Stengle, Lecot): integrate over whole step size

– Runge Kutta: Integration over y and t discretized

– RK(Q)MC: Integration over y discretized, numerical Integrationin t (using MC or QMC integration to minimize the error)

Page 19: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Hermite interpolation

Use hermite interpolation for the retarded arguments:

Page 20: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Hermite interpolation

Use hermite interpolation for the retarded arguments:

zj(t) := y(t− τj(t)) =

{φ(t− τj(t)), if t− τj(t) ≤ t0

Pq(t− τj(t); (yi); (y′i)) otherwise

Page 21: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Hermite interpolation

Use hermite interpolation for the retarded arguments:

zj(t) := y(t− τj(t)) =

{φ(t− τj(t)), if t− τj(t) ≤ t0

Pq(t− τj(t); (yi); (y′i)) otherwise

DDE transforms to a ODE:

y′(t) = f (t, y(t), y(t− τ1(t)), . . . , y(t− τk(t))) ≈≈ f (t, y(t), z1(t), . . . , zk(t)) =: g(t, y(t)) .

Page 22: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Hermite interpolation

Use hermite interpolation for the retarded arguments:

zj(t) := y(t− τj(t)) =

{φ(t− τj(t)), if t− τj(t) ≤ t0

Pq(t− τj(t); (yi); (y′i)) otherwise

DDE transforms to a ODE:

y′(t) = f (t, y(t), y(t− τ1(t)), . . . , y(t− τk(t))) ≈≈ f (t, y(t), z1(t), . . . , zk(t)) =: g(t, y(t)) .

Solution has to be piecewise r/2-times continuously differentiable in t.

Page 23: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Hermite interpolation

Use hermite interpolation for the retarded arguments:

zj(t) := y(t− τj(t)) =

{φ(t− τj(t)), if t− τj(t) ≤ t0

Pq(t− τj(t); (yi); (y′i)) otherwise

DDE transforms to a ODE:

y′(t) = f (t, y(t), y(t− τ1(t)), . . . , y(t− τk(t))) ≈≈ f (t, y(t), z1(t), . . . , zk(t)) =: g(t, y(t)) .

Solution has to be piecewise r/2-times continuously differentiable in t.Resulting ODE has to fulfill requirements for RKQMC methods (Borel-measurable in t, continously differentiable in y(t)).

Page 24: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Runge Kutta QMC methods for ODE

G. Stengle, Ch. Lecot, I. Coulibaly, A. Koudiraty

y′(t) = f (t, y(t)), 0 < t < T, y(0) = y0

f smooth in y, bounded and Borel measurable in t.

Page 25: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Runge Kutta QMC methods for ODE

G. Stengle, Ch. Lecot, I. Coulibaly, A. Koudiraty

y′(t) = f (t, y(t)), 0 < t < T, y(0) = y0

f smooth in y, bounded and Borel measurable in t.

f is Taylor-expanded only in y ⇒ integral equation in t.

Page 26: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Runge Kutta QMC methods for ODE

G. Stengle, Ch. Lecot, I. Coulibaly, A. Koudiraty

y′(t) = f (t, y(t)), 0 < t < T, y(0) = y0

f smooth in y, bounded and Borel measurable in t.

f is Taylor-expanded only in y ⇒ integral equation in t.

yn+1 = yn +hn

s!N

∑0≤j<N

Gs (tj,n; y)

Gs (tj,n; y) . . . differential increment function of scheme

Page 27: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Runge Kutta QMC methods for ODE

G. Stengle, Ch. Lecot, I. Coulibaly, A. Koudiraty

y′(t) = f (t, y(t)), 0 < t < T, y(0) = y0

f smooth in y, bounded and Borel measurable in t.

f is Taylor-expanded only in y ⇒ integral equation in t.

yn+1 = yn +hn

s!N

∑0≤j<N

Gs (tj,n; y)

Gs (tj,n; y) . . . differential increment function of scheme

G1 (u; y) = f (u, y)

G2 (u; y) = f (u1, y) +1

βf (u2, y)) +

1

αf (u2, y + αhnf (u1, y)))

G3 (u; y) = a1f(u1, y) +L2∑l=1

a2,lf(u2, y + b2,lhnf(u1, y)

)+

+L3∑l=1

a3,l

(u3, y + b

(1)3,l hnf (u1, y) + b

(2)3,l hnf

(u2, yn + c3,lhn(u1, yn)

))

Page 28: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

RKQMC for Volterra functional equations

y′(t) = f (t, y(t), z(t)) t ≥ t0

z(t) = (Fy)(t)

y(s) = φ(s) s ≤ t0

Page 29: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

RKQMC for Volterra functional equations

y′(t) = f (t, y(t), z(t)) t ≥ t0

z(t) = (Fy)(t)

y(s) = φ(s) s ≤ t0

• (Fy)(t) contains dependence on retarded values.

• F and f are Lipschitz continuous in all arguments except t.

Page 30: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

RKQMC for Volterra functional equations

y′(t) = f (t, y(t), z(t)) t ≥ t0

z(t) = (Fy)(t)

y(s) = φ(s) s ≤ t0

• (Fy)(t) contains dependence on retarded values.

• F and f are Lipschitz continuous in all arguments except t.

RKQMC method (n ≥ 0):

yn+1 = yn + hn

N∑i=1

Gs (tn,i; yn, z(t))

z(t) = (F yj)(t)

Page 31: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Convergence: RKQMC for DDE

Theorem[K., 2002] If

(i) RKQMC method converges for ordinary differential equations withorder p

(ii) the increment function Gs of the method and F are Lipschitz

(iii) the interpolation fulfills a Lipschitz condition

(iv) Hermite interpolation is used with order r

(v) the initial error ‖e0‖ vanishes

then the method converges.

Page 32: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Convergence: RKQMC for DDE

Theorem[K., 2002] If

(i) RKQMC method converges for ordinary differential equations withorder p

(ii) the increment function Gs of the method and F are Lipschitz

(iii) the interpolation fulfills a Lipschitz condition

(iv) Hermite interpolation is used with order r

(v) the initial error ‖e0‖ vanishes

then the method converges. If at least ii and iii hold, the error is boundedby

‖ej+1‖ ≤ ‖e0‖ eLtj +(etjL − 1)

L(∥∥EODE

G

∥∥ + L1L2

∥∥E interpolr

∥∥) .

Page 33: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Special case: one retarded argument

Choose the RKQMC method:

• Gs Lipschitz (L2) in 2nd and 3rd argument, bounded variation (in the sense of Hardy andKrause).

• ∃ c1, c2, c3 such that for a p > 0

loc. trunc. error ‖εn‖ ≤ c1(hn)hpn

RK error ‖δn‖ ≤ c2(hn) ‖en‖QMC error ‖dn‖ ≤ c3(hn)D∗

N (S)

• interpolation order p, fulfils a certain Lipschitz condition

Page 34: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Special case: one retarded argument

Choose the RKQMC method:

• Gs Lipschitz (L2) in 2nd and 3rd argument, bounded variation (in the sense of Hardy andKrause).

• ∃ c1, c2, c3 such that for a p > 0

loc. trunc. error ‖εn‖ ≤ c1(hn)hpn

RK error ‖δn‖ ≤ c2(hn) ‖en‖QMC error ‖dn‖ ≤ c3(hn)D∗

N (S)

• interpolation order p, fulfils a certain Lipschitz condition

Then the error ‖en‖ = ‖yn − y(tn)‖ of the method is bounded fromabove by:

‖en‖ ≤ ‖e0‖ etn(c2+L2s! ) +

etn(c2+L2s! ) − 1

c2 + L2

s!

·

·{

c3D∗N(X) +

L2

s!MHq + c1H

p

}

Page 35: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Numerical examples

y′(t) = 3y(t− 1) sin(λt) + 2y(t− 1.5) cos(λt), t ≥ 0

y(t) = 1, t ≤ 0 ,

Page 36: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Numerical examples

y′(t) = 3y(t− 1) sin(λt) + 2y(t− 1.5) cos(λt), t ≥ 0

y(t) = 1, t ≤ 0 ,

0 5 10 15 20Log2HΛL

-12

-10

-8

-6

-4

Log2HSHmethL,ΛL

RKQMC3, N=10RKQMC3, N=100RKQMC3, N=1000RKQMC2, N=1000RKQMC1, N=1000RungeHeunButcher

Fig: Error of the RK and RKQMC methods, hn = 0.001 for RK, hn = 0.01 for RKQMC

Page 37: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Numerical examples

y′(t) = 3y(t− 1) sin(λt) + 2y(t− 1.5) cos(λt), t ≥ 0

y(t) = 1, t ≤ 0 ,

0 5 10 15 20Log2HΛL

-12

-10

-8

-6

-4

Log2HSHmethL,ΛL

RKQMC3, N=10RKQMC3, N=100RKQMC3, N=1000RKQMC2, N=1000RKQMC1, N=1000RungeHeunButcher

Fig: Error of the RK and RKQMC methods, hn = 0.001 for RK, hn = 0.01 for RKQMC

slowly varying (small λ): conventional RK betterrapidly varying (high λ): RKQMC outperform higher order RK

Page 38: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Advantage of RKQMC for unstable DDE

y′(t) = πλ

2

(y

(t− 2− 3

)− y

(t− 2− 1

)), t ≥ 0

y(t) = sin(λtπ), t < 0 ,

Page 39: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Advantage of RKQMC for unstable DDE

y′(t) = πλ

2

(y

(t− 2− 3

)− y

(t− 2− 1

)), t ≥ 0

y(t) = sin(λtπ), t < 0 ,

Exact Solution: y(t) = sin(λtπ)

• No discontinuities in any derivative

• k-th derivative only bounded by λk → ”exploding” error

Page 40: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Advantage of RKQMC for unstable DDE

y′(t) = πλ

2

(y

(t− 2− 3

)− y

(t− 2− 1

)), t ≥ 0

y(t) = sin(λtπ), t < 0 ,

Exact Solution: y(t) = sin(λtπ)

• No discontinuities in any derivative

• k-th derivative only bounded by λk → ”exploding” error

5 10 15 20Log2HΛL5

10

15

20

Log2HSΛ,HmethLL

RKQMC3, N=1000

RKQMC2, N=1000

RKQMC1, N=1000

Runge

Heun

Butcher

RKQMC schemes can delay the instability of the solution for heavilyoscillating delay differential equations.

Page 41: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Time-corrected error

QMC integration is more expensive than 1 evaluation (Runge-Kutta)

Page 42: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Time-corrected error

QMC integration is more expensive than 1 evaluation (Runge-Kutta)→ Compare a time-corrected error

Page 43: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Time-corrected error

QMC integration is more expensive than 1 evaluation (Runge-Kutta)→ Compare a time-corrected error

5 10 15 20Log2HΛL5

10

15

Log2HSTΛ,HmethLL

RKQMC3, N=1000

RKQMC2, N=1000

RKQMC1, N=1000

Runge

Heun

Butcher

Fig: Time-corrected error of the RK and RKQMC methods

Result: RKQMC methods loose some advantage, but still better thanRunge-Kutta for heavily oscillating DDE.

Page 44: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Non-uniform QMC integration of singu-lar integrands

1. Convergence theorem

2. Sketch of proof

3. Hlawka-Muck construction for h-distributed low-discrepancy se-quences

4. Numerical example (pricing of Asian options)

Page 45: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

H-Diskrepancy

H-discrepancy of a sequence ω = (y1, y2, . . . ):

DN,H(ω) = supJ⊆L

∣∣∣∣ 1

NAN(J, ω)−H(J)

∣∣∣∣ ,with L . . . support of H ,

J . . . intervals[~a,~b], AN . . . number of elements of ω lying in J .

Page 46: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

H-Diskrepancy

H-discrepancy of a sequence ω = (y1, y2, . . . ):

DN,H(ω) = supJ⊆L

∣∣∣∣ 1

NAN(J, ω)−H(J)

∣∣∣∣ ,with L . . . support of H ,

J . . . intervals[~a,~b], AN . . . number of elements of ω lying in J .

Koksma-Hlawka inequality (arbitrary distribution)

Let f a function of bounded variation (in the sense of Hardy andKrause) on L and ω = (y1, y2, . . . ) a sequence on L. Then∣∣∣∣∣

∫L

f (x)dH(x)− 1

N

N∑n=1

f (yn)

∣∣∣∣∣ ≤ V (f )DN,H(ω).

Page 47: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Convergence of the multidimensional QMC estimator

Page 48: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Convergence of the multidimensional QMC estimator

Theorem[Hartinger, K., Tichy, 2003] Let f (x) be a function on L =[a, b] with singularities only at the left boundary of the definition interval(i.e. f → ±∞ only if x(j) → aj for at least one j),

Page 49: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Convergence of the multidimensional QMC estimator

Theorem[Hartinger, K., Tichy, 2003] Let f (x) be a function on L =[a, b] with singularities only at the left boundary of the definition interval(i.e. f → ±∞ only if x(j) → aj for at least one j),

and let furthermore

cN,j = min1≤n≤N

y(j)n ∧ aj < cj ≤ cN,j.

Page 50: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Convergence of the multidimensional QMC estimator

Theorem[Hartinger, K., Tichy, 2003] Let f (x) be a function on L =[a, b] with singularities only at the left boundary of the definition interval(i.e. f → ±∞ only if x(j) → aj for at least one j),

and let furthermore

cN,j = min1≤n≤N

y(j)n ∧ aj < cj ≤ cN,j.

If the improper integral exists, and if

DN,H (ω) · V[c,b](f ) = o(1),

then the QMC estimator converges to the value of the improper integral:

limN→∞

1

N

N∑n=1

f (yn) =

∫[a,b]

f (x) dH(x).

Page 51: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Hlawka-Muck Transformation (1 dimension)

yk =1

N

N∑r=1

b1 + xk −H(xr)c =1

N

N∑r=1

χ[0,xk](H(xr))

Page 52: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Hlawka-Muck Transformation (1 dimension)

yk =1

N

N∑r=1

b1 + xk −H(xr)c =1

N

N∑r=1

χ[0,xk](H(xr))

DN,H(ω) ≤ (1 + 2sM)DN(ω)

Page 53: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

0 might appear among the yk ⇒ adapt the construction as follows(needed for singular integrands): We define the sequence ω for i =1, . . . , N as:

yk =

{yk wenn yk ≥ 1

N,

1N

wenn yk = 0.

Page 54: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

0 might appear among the yk ⇒ adapt the construction as follows(needed for singular integrands): We define the sequence ω for i =1, . . . , N as:

yk =

{yk wenn yk ≥ 1

N,

1N

wenn yk = 0.

The discrepancy of this sequence can be bounded as

DN,H(ω) ≤ (1 + 4M)sDN(ω).

Page 55: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Sample problem: Valuing Asian options

arithmetic mean until expiration time

Pay-Off (discrete Asian option, call)

P (ST ) =

(1

n

n∑i=1

Sti −K

)+

(St)t≥0 ... price process, K ... strike price

St = eXt with Levy process (Xt)t≥0

Increments hi = Xi −Xi−1 with distribution H(e.g. NIG, Variance-Gamma, Hyperbolic, ...)

Page 56: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

NIG distribution

Use the NIG distribution for the increments hi ∼ HQ.Advantage: closed under convolution ⇒ dimension reduction, sampleonly weekly instead of daily

Valuation

Using fundamental theorem (Schachermayer):

Ct0 := e−r(tn−t0)EQ

[(1

n

n∑i=1

Sti −K

)+]r ... constant interest rateQ ... equivalent martingale measure (Esscher measure)

Page 57: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

NIG distribution

Use the NIG distribution for the increments hi ∼ HQ.Advantage: closed under convolution ⇒ dimension reduction, sampleonly weekly instead of daily

Valuation

Using fundamental theorem (Schachermayer):

Ct0 := e−r(tn−t0)EQ

[(1

n

n∑i=1

Sti −K

)+]r ... constant interest rateQ ... equivalent martingale measure (Esscher measure)

Straigforward simulation (crude Monte Carlo): sample N price pathesand take the mean

Page 58: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Quasi-Monte Carlo schemes

Problem: QMC numbersi.i.d.∼ NIG(α, β, δ, µ)

Page 59: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Quasi-Monte Carlo schemes

Problem: QMC numbersi.i.d.∼ NIG(α, β, δ, µ)

2 Solutions:

1. Hlawka-Muck method for direct creation of (xn)1≤n≤N

i.i.d.∼ NIG⇒ direct QMC calculation of the expectation value

Page 60: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Quasi-Monte Carlo schemes

Problem: QMC numbersi.i.d.∼ NIG(α, β, δ, µ)

2 Solutions:

1. Hlawka-Muck method for direct creation of (xn)1≤n≤N

i.i.d.∼ NIG⇒ direct QMC calculation of the expectation value

2. Transformation of the integral using a suitable density (Ratio ofuniforms, ”Hat”) ⇒ variance reduction (if done right)

Transformation

Using a distribution K(~x) = u:∫Rn

P (~x)fQH (~x)d~x =

∫[0,1]n

P (K−1(u))fQ

H (K−1(u))

k(K−1(u))du

Problem: ”Usual” transformation F (x) = u leads to unbounded varia-tion

Page 61: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Discrepancy for Hlawka-Muck

The discrepancy of (yk)1≤k≤N can be bounded by

DN ((yk), ρ) ≤ (2 + 6sM(ρ))DN ((yk))

with M(ρ) = sup ρ.

Page 62: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Discrepancy for Hlawka-Muck

The discrepancy of (yk)1≤k≤N can be bounded by

DN ((yk), ρ) ≤ (2 + 6sM(ρ))DN ((yk))

with M(ρ) = sup ρ.

QMC estimator

1. Creation of low-discrepancy points with densityfQ

H (K−1(x))k(K−1(x))

(Transformation of the integral Rn to [0, 1]n using double-exponential distribution K(x))

Page 63: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Discrepancy for Hlawka-Muck

The discrepancy of (yk)1≤k≤N can be bounded by

DN ((yk), ρ) ≤ (2 + 6sM(ρ))DN ((yk))

with M(ρ) = sup ρ.

QMC estimator

1. Creation of low-discrepancy points with densityfQ

H (K−1(x))k(K−1(x))

(Transformation of the integral Rn to [0, 1]n using double-exponential distribution K(x))

2. Transformation [0, 1]n

to Rn of the sequence using double-exponential distribution K−1(x).

Estimator similar to crude Monte Carlo

Page 64: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Numerical results (4 dimensions)

210 212 214 216 218N

-14

-12

-10

-8

-6

-4

Log2HerrL 4 dimensions

double exp.

HM IS

Hlawka-Mück

Ratio of unif.

Import. samp.

MC

ROU and Hlawka-Muck are considerably better than Monte Carlo andcontrol variate

Page 65: Quasi-Monte Carlo Algorithms with Applications in ... · Quasi-Monte Carlo Algorithms with Applications in Numerical Analysis and Finance Reinhold F. Kainhofer Rigorosumsvortrag,

Dimension 12

210 212 214 216 218N

-9

-8

-7

-6

-5

-4

Log2HerrL 12 dimensions

double exp.

HM IS

Hlawka-Mück

Ratio of unif.

Import. samp.

MC

• ROU looses performance

• Hlawka-Muck gives best results