22
R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Ericksonecee.colorado.edu/~ecen5797/course_material/Lecture42.pdf · 2018-12-08 · ECEN 5807, Spring 2015 11 Design of Input Filters that Do Not Degrade Converter Transfer

  • Upload
    others

  • View
    33

  • Download
    1

Embed Size (px)

Citation preview

Page 1: R. W. Ericksonecee.colorado.edu/~ecen5797/course_material/Lecture42.pdf · 2018-12-08 · ECEN 5807, Spring 2015 11 Design of Input Filters that Do Not Degrade Converter Transfer

R. W. EricksonDepartment of Electrical, Computer, and Energy Engineering

University of Colorado, Boulder

Page 2: R. W. Ericksonecee.colorado.edu/~ecen5797/course_material/Lecture42.pdf · 2018-12-08 · ECEN 5807, Spring 2015 11 Design of Input Filters that Do Not Degrade Converter Transfer

ECEN5807, Spring 2007

Power Electronics Program at CU Boulder

ECEN 4/5797 Introduction to Power

Electronics

ECEN5807Modeling and Control of PE

ECEN5817Resonant and Soft-Switching

ECEN 4/5517 Power Electronics Lab

Fall semesters

Spring semesters

Techniques in PEAlternate Spring semesters (2020)

SystemsAlternate Spring semesters (2019) Professional

Certificate in Power

Electronics

Page 3: R. W. Ericksonecee.colorado.edu/~ecen5797/course_material/Lecture42.pdf · 2018-12-08 · ECEN 5807, Spring 2015 11 Design of Input Filters that Do Not Degrade Converter Transfer

ECEN 5807, Spring 2015 2

Power Electronics Courses at the University of Colorado, Boulder

ECEN 2260 Circuits 2

ECEN 3250 Circuits 3

ECEN3170 Energy Conversion

ECEN 4797/5797 Intro to Power Electr.

ECEN 5807 Modeling and Control of

Power Electronics Systems

ECEN 5817 Res. and Soft-Sw. Tech

ECEN 4517/5517 Power Electronics Lab

ECEN 4827/5827 Analog IC Design

ECEN 5837 Mixed-Signal IC Design

ECEN 4167/5737 Energy Conversion 2

ECEN 5737 AC Drives

graduateundergraduate

ECEN 2250 Circuits 1

ECEN 5017 Pwr Elect for Electric

Drive Vehicles

Professional certificate in power electronics

Graduate certificate in electric drivetrain technology

Power management

Coursera (MOOC): Introduction to Power Electronics

Prerequisite for either ECEN 5807 or ECEN 5817: ECEN 5797

Page 4: R. W. Ericksonecee.colorado.edu/~ecen5797/course_material/Lecture42.pdf · 2018-12-08 · ECEN 5807, Spring 2015 11 Design of Input Filters that Do Not Degrade Converter Transfer

Power Electronics Laboratory Lecture 11

ECEN 4517ECEN 5517

POWER ELECTRONICS AND PHOTOVOLTAIC POWER SYSTEM LABORATORYhttp://ece.colorado.edu/~ecen4517

• Photovoltaic power systems• Power conversion and control electronics

PVPanel

85 W

Battery

Deep-dischargelead-acid

12 V, 56 A-hr

Inverter

120 V 60 Hz300 W

true sinewave

Charge control

DC-DC converterfor maximum powerpoint tracking and

battery charge profile

ACloads

DC loads

Digital control

Prerequisite: ECEN 4797 or ECEN 5797

Instructor: Roger BellSpring 2019

Page 5: R. W. Ericksonecee.colorado.edu/~ecen5797/course_material/Lecture42.pdf · 2018-12-08 · ECEN 5807, Spring 2015 11 Design of Input Filters that Do Not Degrade Converter Transfer

Power Electronics Laboratory Lecture 12

Experiment 1Direct Energy Transfer System

• Model PV panel• Investigate direct energy transfer system behavior• Investigate effects of shading• Observe behavior of lead-acid battery

Page 6: R. W. Ericksonecee.colorado.edu/~ecen5797/course_material/Lecture42.pdf · 2018-12-08 · ECEN 5807, Spring 2015 11 Design of Input Filters that Do Not Degrade Converter Transfer

Power Electronics Laboratory Lecture 13

Experiments 2 and 3Maximum Power Point Tracking

• Design and construct dc-dc converter• Employ microcontroller to achieve maximum power point tracking

(MPPT) and battery charge control

Page 7: R. W. Ericksonecee.colorado.edu/~ecen5797/course_material/Lecture42.pdf · 2018-12-08 · ECEN 5807, Spring 2015 11 Design of Input Filters that Do Not Degrade Converter Transfer

Power Electronics Laboratory Lecture 14

Experiments 4 and 5Add Inverter to System

• Build your own inverter system to drive AC loads from your battery• Step up the battery voltage to 200 VDC as needed by inverter• Regulate the 200 VDC with an analog feedback loop• Change the 200 VDC into 120 VAC

Page 8: R. W. Ericksonecee.colorado.edu/~ecen5797/course_material/Lecture42.pdf · 2018-12-08 · ECEN 5807, Spring 2015 11 Design of Input Filters that Do Not Degrade Converter Transfer

Power Electronics Laboratory Lecture 15

Mini-ProjectECEE Expo Competition

• Operate yourcomplete system

• Competition duringECEE Expo: capturethe most energy withyour system outside

Solar PowerCompetition and Expo

Awards given to the stand-alone solar power system demonstrating the highest efficiency and energy capture

Featuring Photovoltaics and

Power Electronics Laboratory

Classes ECEN 4517 and 5517

Thursday 4/30 9 a.m. to noon Herbst Plaza, CU Engr Center

A previous year’s competition poster

Page 9: R. W. Ericksonecee.colorado.edu/~ecen5797/course_material/Lecture42.pdf · 2018-12-08 · ECEN 5807, Spring 2015 11 Design of Input Filters that Do Not Degrade Converter Transfer

ECEN 5807 Topics

1. Simulation and averaged switch modeling• CCM, DCM, and other examples• Simulation

2. Techniques of design-oriented analysis, with application to switched-mode converter systems• Middlebrook’s feedback and extra-element theorems• Input filter design• Writing complex transfer function expressions by inspection

3. Current-programmed control of PWM converters4. Introduction to digital control of PWM converters5. Rectifiers

• Rectifier harmonics in power systems• Low-harmonic rectifiers and power factor correction converters

Spring 2019 Instructor: Prof. Dragan Maksimovic

Page 10: R. W. Ericksonecee.colorado.edu/~ecen5797/course_material/Lecture42.pdf · 2018-12-08 · ECEN 5807, Spring 2015 11 Design of Input Filters that Do Not Degrade Converter Transfer

ECEN 5807, Spring 2015 6

1. Simulation and Averaged Switch Modeling

• Additional notes, Section 7.4, Chapter 11, and Appendix B• Averaged switch modeling is another approach to derive the averaged model of a PWM

converter.• Well suited to Spice modeling of PWM converters• We will use this approach to model CCM, DCM, and current-programmed converters• Also useful for incorporation of ac losses (switching loss, core loss) into averaged models of PWM converters

• Computer simulation of small-signal transfer functions• Objectives of simulation• Spice models• Matlab/Simulink models

Page 11: R. W. Ericksonecee.colorado.edu/~ecen5797/course_material/Lecture42.pdf · 2018-12-08 · ECEN 5807, Spring 2015 11 Design of Input Filters that Do Not Degrade Converter Transfer

ECEN 5807, Spring 2015 7

Averaged Switch Modeling and Simulation

ECEN5807, Spring 2007

Page 12: R. W. Ericksonecee.colorado.edu/~ecen5797/course_material/Lecture42.pdf · 2018-12-08 · ECEN 5807, Spring 2015 11 Design of Input Filters that Do Not Degrade Converter Transfer

ECEN 5807, Spring 2015 8

2. Techniques of Design-Oriented Analysis

Chapter 10, Appendix C, and supplementary notes on websiteNull double injection methods for analysis of complex analog systems•  Converter applications

Input filter design

Exact analysis of a fifth-order converter system

•  Middlebrook’s extra element theoremHow to easily determine the effect of an added element on a circuit transfer function, without starting the analysis all over again

•  The n extra element theoremHow to write complicated transfer functions by inspection, in rational form

•  Middlebrook’s feedback theoremHow to easily construct the loop gain and transfer functions of a complex feedback circuit

Page 13: R. W. Ericksonecee.colorado.edu/~ecen5797/course_material/Lecture42.pdf · 2018-12-08 · ECEN 5807, Spring 2015 11 Design of Input Filters that Do Not Degrade Converter Transfer

ECEN 5807, Spring 2015 9

Middlebrook’s Extra Element Theorem

Appendix CHow a transfer function G(s) is modified by addition of an extra element Z(s):

Transistor voltage:

v

Q1(t) = V

Q1 + v

Q1(t)

where V

Q1 = hvQ1(t)i (dc component)

and hvQ1(t)i = 0 (v

Q1(t) is the ac component)

Similarly, the transistor current is

i

Q1(t) = I

Q1 + i

Q1(t)

The power p

Q

(t) flowing into the transistor is:

p

Q

(t) = v

Q1(t)iQ1(t) = 0 =

�V

Q1 + v

Q1(t)� ⇣

I

Q1 + i

Q1(t)⌘

Now multiply out and average over one period:

0 = V

Q1I

Q1 + hvQ1(t)iQ1(t)i

The transistor “consumes” power at DC,

and “generates” power at the switching

frequency. The transistor functions as an

inverter.

V

Q1I

Q1 = �hvQ1(t)iQ1(t)i

v

out

(s)v

in

(s)=

G(s)

�����Z(s)!1

!0BBBBBBBBBBBB@

1 +Z

N

(s)Z(s)

1 +Z

D

(s)Z(s)

1CCCCCCCCCCCCA

1

Simple methods to find ZN(s) and ZD(s) using null double injectionHow to design circuits so that the extra element doesn’t significantly change G(s):

Transistor voltage:

v

Q1(t) = V

Q1 + v

Q1(t)

where V

Q1 = hvQ1(t)i (dc component)

and hvQ1(t)i = 0 (v

Q1(t) is the ac component)

Similarly, the transistor current is

i

Q1(t) = I

Q1 + i

Q1(t)

The power p

Q

(t) flowing into the transistor is:

p

Q

(t) = v

Q1(t)iQ1(t) = 0 =

�V

Q1 + v

Q1(t)� ⇣

I

Q1 + i

Q1(t)⌘

Now multiply out and average over one period:

0 = V

Q1I

Q1 + hvQ1(t)iQ1(t)i

The transistor “consumes” power at DC,

and “generates” power at the switching

frequency. The transistor functions as an

inverter.

V

Q1I

Q1 = �hvQ1(t)iQ1(t)i

v

out

(s)v

in

(s)=

G(s)

�����Z(s)!1

!0BBBBBBBBBBBB@

1 +Z

N

(s)Z(s)

1 +Z

D

(s)Z(s)

1CCCCCCCCCCCCA

kZ( j!)k � kZN

( j!)k kZ( j!)k � kZD

( j!)k

1

Transistor voltage:

v

Q1(t) = V

Q1 + v

Q1(t)

where V

Q1 = hvQ1(t)i (dc component)

and hvQ1(t)i = 0 (v

Q1(t) is the ac component)

Similarly, the transistor current is

i

Q1(t) = I

Q1 + i

Q1(t)

The power p

Q

(t) flowing into the transistor is:

p

Q

(t) = v

Q1(t)iQ1(t) = 0 =

�V

Q1 + v

Q1(t)� ⇣

I

Q1 + i

Q1(t)⌘

Now multiply out and average over one period:

0 = V

Q1I

Q1 + hvQ1(t)iQ1(t)i

The transistor “consumes” power at DC,

and “generates” power at the switching

frequency. The transistor functions as an

inverter.

V

Q1I

Q1 = �hvQ1(t)iQ1(t)i

v

out

(s)v

in

(s)=

G(s)

�����Z(s)!1

!0BBBBBBBBBBBB@

1 +Z

N

(s)Z(s)

1 +Z

D

(s)Z(s)

1CCCCCCCCCCCCA

kZ( j!)k � kZN

( j!)k kZ( j!)k � kZD

( j!)k

1

Design-oriented result: construct Bode plots of above equations, and use to shape Z(s)

Page 14: R. W. Ericksonecee.colorado.edu/~ecen5797/course_material/Lecture42.pdf · 2018-12-08 · ECEN 5807, Spring 2015 11 Design of Input Filters that Do Not Degrade Converter Transfer

ECEN 5807, Spring 2015 10

Input Filter Design

ECEN 5807 : Introduction� 8�

Input filter design�

•� Filter can seriously degrade converter control system behavior�

•� Use extra element theorem to derive conditions which ensure that converter dynamics are not affected by input filter�

•� Must design input filter having adequate damping�

+–

Inputfilter

Converter

T(s)

Controller

vgZo(s) Zi(s)

H(s)

d

v

f

�� Gvd �� � Gvd

– 360˚

– 540˚

0 dB

– 10 dB

20 dB

30 dB

100 Hz

40 dB

1 kHz 10 kHz

– 180˚

10 dB

�� Gvd ��

� Gvd

ECEN 5807 : Introduction� 8�

Input filter design�

•� Filter can seriously degrade converter control system behavior�

•� Use extra element theorem to derive conditions which ensure that converter dynamics are not affected by input filter�

•� Must design input filter having adequate damping�

+–

Inputfilter

Converter

T(s)

Controller

vgZo(s) Zi(s)

H(s)

d

v

f

�� Gvd �� � Gvd

– 360˚

– 540˚

0 dB

– 10 dB

20 dB

30 dB

100 Hz

40 dB

1 kHz 10 kHz

– 180˚

10 dB

�� Gvd ��

� Gvd

•  Input filter can seriously degrade control system behavior and cause instability

•  Use Extra Element Theorem derive conditions that ensure that input filter does not disrupt dynamics of control system

•  Must design input filter having adequate damping

Page 15: R. W. Ericksonecee.colorado.edu/~ecen5797/course_material/Lecture42.pdf · 2018-12-08 · ECEN 5807, Spring 2015 11 Design of Input Filters that Do Not Degrade Converter Transfer

ECEN 5807, Spring 2015 11

Design of Input Filters that Do Not Degrade Converter Transfer Functions

ECEN 5807 : Introduction� 9�

Design of damped input filters that don’t degrade converter transfer functions�

-20 dB�

-10 dB�

0 dB�

10 dB�

20 dB�

1 kHz 10 kHz 100 kHz

Section 1

alone

Cascaded

sections 1 and 2

30 dB�

�� ZN ��

�� ZD ��

fo

+–

vg

L1

n1L

1R

1

C1

L2

n2L

2R

2

C2

6.9 �F

31.2 �H

15.6 �H1.9 �0.65 � 2.9 �H

5.8 �H

11.7 �F

Design criteria derived via Extra

Element theorem:�

Two-section damped input filter

design:�

Z( j�) > ZN( j�)

Z( j�) > ZD( j�)

Design criteria derived via Extra Element Theorem:

Two-section damped input filter design:

Page 16: R. W. Ericksonecee.colorado.edu/~ecen5797/course_material/Lecture42.pdf · 2018-12-08 · ECEN 5807, Spring 2015 11 Design of Input Filters that Do Not Degrade Converter Transfer

ECEN 5807, Spring 2015 12

Write the line-to-output transfer function by inspection

ECEN 5807 : Introduction� 10�

Write the line-to-output transfer functionby inspection�

+–

+–

L

RC

1 : D D' : 1Lf

RfCf

Cb

vg(t) I d(t)

(Vg

– V)d (t)

I d(t)

Solution: use n extra element theorem�

Example: buck-boost with input filter�Example: buck-boost with input filter

Solution: use n extra element theorem

Page 17: R. W. Ericksonecee.colorado.edu/~ecen5797/course_material/Lecture42.pdf · 2018-12-08 · ECEN 5807, Spring 2015 11 Design of Input Filters that Do Not Degrade Converter Transfer

ECEN 5807, Spring 2015 13

3. Current-Programmed Control

ECEN 5807 : Introduction� 11�

3. Current Programmed Control�

+–

Buck converter

Current-programmed controller

Rvg(t)

is(t)

+

v(t)

iL(t)

Q1

L

CD1

+

Analogcomparator

Latch

Ts

0

S

R

Q

Clock

is(t)

Rf

Measureswitch

current

is(t)Rf

Controlinput

ic(t)Rf

–+

vref

v(t)Compensator

Conventional output voltage controller

•� Chapter 12�

•� A very popular method for controlling PWM converters�

•� Transistor turns off when its current is(t) is equal to the

control input ic(t) �

•� Simpler dynamics, more

robust compensator�

Switchcurrentis(t)

Control signalic(t)

m1

t0 dTs Ts

on offTransistor

status:

Clock turnstransistor on

Comparator turnstransistor off

ECEN 5807 : Introduction� 11�

3. Current Programmed Control�

+–

Buck converter

Current-programmed controller

Rvg(t)

is(t)

+

v(t)

iL(t)

Q1

L

CD1

+

Analogcomparator

Latch

Ts

0

S

R

Q

Clock

is(t)

Rf

Measureswitch

current

is(t)Rf

Controlinput

ic(t)Rf

–+

vref

v(t)Compensator

Conventional output voltage controller

•� Chapter 12�

•� A very popular method for controlling PWM converters�

•� Transistor turns off when its current is(t) is equal to the

control input ic(t) �

•� Simpler dynamics, more

robust compensator�

Switchcurrentis(t)

Control signalic(t)

m1

t0 dTs Ts

on offTransistor

status:

Clock turnstransistor on

Comparator turnstransistor off

•  Chapter 12•  A very popular method for controlling PWM converters•  Transistor turns off when its current is(t) is equal to a

control signal ic(s)•  Simpler dynamics, more robust compensator

Page 18: R. W. Ericksonecee.colorado.edu/~ecen5797/course_material/Lecture42.pdf · 2018-12-08 · ECEN 5807, Spring 2015 11 Design of Input Filters that Do Not Degrade Converter Transfer

ECEN 5807, Spring 2015 14

Effect of current programming on converter transfer functions!Buck converter example

ECEN 5807 : Introduction� 12�

Effect of current programming on transfer functionsBuck converter example�

�� Gvd ��

� Gvd

f

–90˚

–180˚

� G

–20 dB

–40 dB

0 dB

20 dB

40 dB

10 Hz 100 Hz 10 kHz 100 kHz1 kHz

�� G ��

–60 dB

�� Gvc ��

� Gvc

21

345

CCM-DCM1

+–

+–

35 �H

100 �F

Vg

12 V

L

C R

vc

+

v

iLOAD

CPM

control current 1 2

d

+

+

+

iL RL1 2 3 4

d

Rf iL v(1)–v(3) v(3)

0.05 �

10 �

Rf = 1 �

fs = 200 kHz

L = 35 ��

Va = 0.6 V

Xcpm

Xswitch

fs = 200 kHz

L = 35 ��

EiE1 E2

Comparison of control-to-output

transfer functions�

Averaged switch model used in

PSPICE simulations�Comparison of control-to-output transfer functions Averaged switch model used in spice simulations

Page 19: R. W. Ericksonecee.colorado.edu/~ecen5797/course_material/Lecture42.pdf · 2018-12-08 · ECEN 5807, Spring 2015 11 Design of Input Filters that Do Not Degrade Converter Transfer

ECEN 5807, Spring 2015 15

Digitally Controlled Buck Converter!Simulink ModelCoPEC

5ECEN5807

Digitally Controlled Buck ConverterSimulink Model

• The buck converterblock is the same as in the continuous-time system

• Note the parts of the system that model the digital controller including:

– A/D converter– Discrete-time

compensator, and – Digital PWM

Digital PWM

Discrete-time compensator

A/D converter

•  Buck converter block is same as in continuous-time system

•  Note the parts of the system that model the digital controller, including:•  A/D converter•  Discrete-time compensator•  Digital PWM

Page 20: R. W. Ericksonecee.colorado.edu/~ecen5797/course_material/Lecture42.pdf · 2018-12-08 · ECEN 5807, Spring 2015 11 Design of Input Filters that Do Not Degrade Converter Transfer

ECEN 5807, Spring 2015 16

4. Modern Rectifiers, Power System Harmonics, and Low-Harmonic Rectifiers

ECEN 5807 : Introduction� 13�

4. Modern rectifiers, power system harmonics, and low harmonic rectifiers�

100%

91%

73%

52%

32%

19%15% 15% 13%

9%

0%

20%

40%

60%

80%

100%

1 3 5 7 9 11 13 15 17 19

Harmonic number

Harm

onic

am

pli

tude,

per

cen

t o

f fu

nd

am

enta

l

THD = 136%Distortion factor = 59%

•  The traditional peak-detection rectifier injects very large harmonic currents into the ac power line.

•  At substantial power levels, this type of rectifier is not allowed

Page 21: R. W. Ericksonecee.colorado.edu/~ecen5797/course_material/Lecture42.pdf · 2018-12-08 · ECEN 5807, Spring 2015 11 Design of Input Filters that Do Not Degrade Converter Transfer

ECEN 5807, Spring 2015 17

The Ideal Rectifier

ECEN 5807 : Introduction� 14�

The Ideal Rectifier�

+–

1 : M(D)

Vg R

+

V

Re(vcontrol)

+

vac(t)

iac(t)

vcontrol

v(t)

i(t)

+

p(t) = vac

2 / Re

Ideal rectifier (LFR)

acinput

dcoutput

Modeling the basic functions of ideal converters�

Dc-dc converter:

dc transformer�

Ac-dc rectifier: “loss-free resistor”�

Modeling the basic functions of ideal converters

DC-DC converter: DC transformer

AC-DC rectifier: “Loss-free resistor”

Page 22: R. W. Ericksonecee.colorado.edu/~ecen5797/course_material/Lecture42.pdf · 2018-12-08 · ECEN 5807, Spring 2015 11 Design of Input Filters that Do Not Degrade Converter Transfer

ECEN 5807, Spring 2015 18

Controlling a DC-DC Converter to Behave as an Ideal Rectifier

ECEN 5807 : Introduction� 15�

Controlling a dc-dc converterto behave as an ideal rectifier�

1 : M(d(t))

dc-dc converter

controller

d(t)

Rvac(t)

iac(t)+

vg(t)

ig(t)

ig

vg

+

v(t)

i(t)

C

Controller varies d(t) as necessary, to cause ig(t) to

be proportional to vg(t)�

Controller varies d(t) as necessary, to cause ig(t) to be proportional to vg(t)