1
Rainfall simulation experiments and Water Drop Penetration Time measurements shed light on the impact of water repellency on soils under organic farming management in Eastern Spain Water repellency is a well-know soil property since the research of professor Stefan Helmut Doerr recovered and powered the research developed by professor DeBano (Atanassova and Doerr, 2011; ; Jordán et al., 2011; Bodí et al., 2012; González Peñaloza et al., 2012 Bodí et al., 2013; García Moreno et al., 2013; Jordán et al., 2013; Badía-Villas et al., 2014; Jordán et al., 2013; Jiménez Morillo et al., 2015). However, little is known about the impact of water repellency in surface runoff generation, although usually is accepted that when more soil water repellent is a soil, higher will be the surface runoff discharge (Stoff et al., 2011; Madsen et al., 2011; León et al., 2013; Lozano et al., 2013; Mataix-Solera et al., 2013; Santos et al., 2015). And the impact of the water repellency and then the higher surface wash discharge can trigger high erosion rates (Kröpfl et al., 2013; Mandal and Sharda 2013; Zhao et al., 2013). However these relationships were not demonstrated as the most water repellent soils are the one with high organic contents, and those soils do not have soil losses, probably due to the high infiltration rates due to the macropore flow. Artemi Cerdà (1), Óscar González-Pelayo (1), Javier León (1) and Antonio Jordán (2) (1) Soil Erosion and Degradation Research Group, Department of Geography, University of Valencia, Valencia, Spain. [email protected], [email protected], www.soilerosion.eu, (2) MED_Soil Research Group. Dep. of Crystallography, Mineralogy andAgricultural Chemistry, University of Seville, Spain. [email protected] Acknowledgements To the “Ministerio de Economía and Competitividad” of Spanish Government for finance the POSTFIRE project (CGL2013- 47862-C2-1-R). The research projects GL2008-02879/BTE, LEDDRA 243857 and PREVENTING AND REMEDIATING DEGRADATION OF SOILS IN EUROPE THROUGH LAND CARE (RECARE)FP7- ENV-2013- supported this research. References Arye, G., Tarchitzky, J., Chen, Y. 2011. Treated wastewater effects on water repellency and soil hydraulic properties of soil aquifer treatment infiltration basins.Journal of Hydrology, 397(1), 136-145. DOI:10.1016/j.jhydrol.2010.11.046 Atanassova, I., Doerr, S. H. 2011. Changes in soil organic compound composition associated with heat-induced increases in soil water repellency. European Journal of Soil Science, 62(4), 516-532. DOI: 10.1111/j.1365-2389.2011.01350.x Badía-Villas, D., González-Pérez, J. A., Aznar, J. M., Arjona-Gracia, B., & Martí-Dalmau, C. 2014. Changes in water repellency, aggregation and organic matter of a mollic horizon burned in laboratory: soil depth affected by fire. Geoderma, 213, 400-407. DOI:10.1016/j.geoderma.2013.08.038 Bodí, M.B. Doerr, S.H., Cerdà, A., Mataix-Solera, J. 2012. Hydrological effects of a layer of vegetation ash on underlying wettable and water repellent soils. Geoderma, 191, 14-23. http://dx.doi.org/10.1016/j.geoderma.2012.01.006 Bodí, M.B. Doerr, S.H., Cerdà, A., Mataix-Solera, J. 2012. Hydrological effects of a layer of vegetation ash on underlying wettable and water repellent soils. Geoderma, 191, 14-23. DOI:10.1016/j.geoderma.2012.01.006 Bodí, M.B., Muñoz-Santa, I., Armero, C., Doerr, S.H., Mataix-Solera, J., Cerdà, A. 2013. Spatial and temporal variations of water repellency and probability of its occurrence in calcareous Mediterranean rangeland soils affected by fires. Catena, 108, 14-24. DOI:10.1016/j.catena.2012.04.002 Butzen, V., Seeger, M., Wirtz, S., Huemann, M., Mueller, C., Casper, M., Ries, J. B. 2014. Quantification of Hortonian overland flow generation and soil erosion in a Central European low mountain range using rainfall experiments. Catena, 113, 202-212. DOI:10.1016/j.catena.2013.07.008 Cerdà, A. 1998a. Effect of climate on surface flow along a climatological gradient in Israel. A field rainfall simulation approach. Journal of Arid Environments, 38, 145-159. DOI:10.1006/jare.1997.0342 Cerdà, A. 1998b. The influence of aspect and vegetation on seasonal changes in erosion under rainfall simulation on a clay soil in Spain. Canadian Journal of Soil Science, 78, 321-330. DOI: 10.4141/S97-060 Cerdà, A., Jurgensen, M. F. 2011. Ant mounds as a source of sediment on citrus orchard plantations in eastern Spain. A three-scale rainfall simulation approach. Catena, 85(3), 231-236. DOI:10.1016/j.catena.2011.01.008 Cerdà, A., Schnabel, S., Gómez-Amelia, D. & Ceballos, A. 1998. Soil hydrological response under simulated rainfall in the Dehesa land system, Extremadura, SW, Spain. Earth Surface Processes and Landforms, 23, 195- 209. DOI: 10.1002/(SICI)1096-9837(199803)23:3<195::AID- ESP830>3.0.CO;2-I Dougherty, W. J., Mason, S. D., Burkitt, L. L., Milham, P. J. 2011. Relationship between phosphorus concentration in surface runoff and a novel soil phosphorus test procedure (DGT) under simulated rainfall. Soil Research, 49(6), 523-528. DOI: 10.1071/SR11151 Dunkerley, D. 2012. Effects of rainfall intensity fluctuations on infiltration and runoff: rainfall simulation on dryland soils, Fowlers Gap, Australia. Hydrological Processes, 26(15), 2211-2224. DOI: 10.1002/hyp.8317 García-Moreno, J., Gordillo-Rivero, Á. J., Zavala, L. M., Jordán, A., & Pereira, P. 2013. Mulch application in fruit orchards increases the persistence of soil water repellency during a 15-years period. Soil and Tillage Research, 130, 62-68. DOI:10.1016/j.still.2013.02.004 Garel, E., Marc, V., Ruy, S., Cognard-Plancq, A. L., Klotz, S., Emblanch, C., Simler, R. 2012. Large scale rainfall simulation to investigate infiltration processes in a small landslide under dry initial conditions: the Draix hillslope experiment. Hydrological Processes, 26(14), 2171-2186. DOI: 10.1002/hyp.9273 González-Peñaloza, F.A., Cerdà, A., Zavala, L.M., Jordán, A., Giménez-Morera, A., Arcenegui, V. 2012. Do conservative agriculture practices increase soil water repellency? A case study in citrus-cropped soils. Soil and Tillage Research, 124, 233-239. DOI: 10.1016/j.still.2012.06.015 Granged, A. J., Jordán, A., Zavala, L. M., Bárcenas, G. 2011. Fire-induced changes in soil water repellency increased fingered flow and runoff rates following the 2004 Huelva wildfire. Hydrological Processes, 25, 1614-1629. DOI: 10.1002/hyp.7923 Iserloh, T., Ries, J.B., Arnaez, J., Boix Fayos, C., Butzen, V., Cerdà, A., Echeverría, M.T., Fernández-Gálvez, J., Fister, W., Geißler, C., Gómez, J.A., Gómez-Macpherson, H., Kuhn, N.J., Lázaro, R., León, F.J., Martínez-Mena, M., Martínez-Murillo, J.F., Marzen, M., Mingorance, M.D., Ortigosa, L., Peters, P., Regüés, D., Ruiz-Sinoga, J.D., Scholten, T., Seeger, M., Solé-Benet, A., Wengel, R., Wirtz, S. 2013. European small portable rainfall simulators: a comparison of rainfall characteristics. Catena, 110, 100-112. DOI: 10.1016/j.catena.2013.05.013 Iserloh, T., Ries, J.B., Cerdà, A., Echeverría, M.T., Fister, W., Geißler, C., Kuhn, N.J., León, F.J., Peters, P., Schindewolf, M., Schmidt, J., Scholten, T., Seeger, M. 2012: Comparative measurements with seven rainfall simulators on uniform bare fallow land. Zeitschrift für Geomorphologie, 57, 193-201. DOI: 10.1127/0372- 8854/2012/S-00118. Jiménez-Morillo, N. T., González-Pérez, J. A., Jordán, A., Zavala, L. M., Rosa, J. M., Jiménez-González, M. A., & González-Vila, F. J. 2014. Organic matter fractions controlling soil water repellency in Sandy soils from the Doñana National Park (Southwestern Spain). Land Degradation & Development. DOI: 10.1002/ldr.2314 Jordán, A., García-Moreno, J., Gordillo-Rivero, Á. J., Zavala, L. M., Cerdà, A. 2014. Organic carbon, water repellency and soil stability to slaking under different crops and managements, a case study at aggregate and intra-aggregate scales. SOIL Discussions, 1(1), 295-325. DOI: 10.5194/soild-1-295-2014 Jordán, A., Zavala, L. M., Mataix-Solera, J., Doerr, S. H. 2013. Soil water repellency: origin, assessment and geomorphological consequences. Catena, 108, 1-5. DOI:10.1016/j.catena.2013.05.005 Jordán, A., Zavala, L. M., Mataix-Solera, J., Nava, A. L., & Alanís, N. 2011. Effect of fire severity on water repellency and aggregate stability on Mexican volcanic soils. Catena, 84(3), 136-147. DOI:10.1016/j.catena.2010.10.007 Jouquet, P., Janeau, J. L., Pisano, A., Sy, H. T., Orange, D., Minh, L. T. N., Valentin, C. 2012. Influence of earthworms and termites on runoff and erosion in a tropical steep slope fallow in Vietnam: A rainfall simulation experiment. Applied Soil Ecology, 61, 161-168. DOI:10.1016/j.apsoil.2012.04.004 Kibet, L. C., Saporito, L. S., Allen, A. L., May, E. B., Kleinman, P. J., Hashem, F. M., Bryant, R. B. 2013. A protocol for conducting rainfall simulation to study soil runoff. Journal of visualized Experiments, 86, 51664. DOI: 10.3791/51664 Kröpfl, A. I., Cecchi, G. A., Villasuso, N. M., Distel, R. A. 2013. Degradation and recovery processes in Semi-Arid patchy rangelands of northern Patagonia, Argentina. Land Degradation & Development, 24, 393- 399. DOI: 10.1002/ldr.1145 León, J. Bodí, M.B., Cerdà, A., Badía, D. 2013. The contrasted response of ash to wetting. The effects of ash type, thickness and rainfall events. Geoderma, 209-210, 143-152. DOI:10.1016/j.geoderma.2012.01.006 Lozano, E., Jiménez-Pinilla, P., Mataix-Solera, J., Arcenegui, V., Bárcenas, G. M., González-Pérez, J. A., Mataix-Beneyto, J. 2013. Biological and chemical factors controlling the patchy distribution of soil water repellency among plant species in a Mediterranean semiarid forest. Geoderma, 207, 212-220. DOI:10.1016/j.geoderma.2013.05.021 Ma, W., Li, Z., Ding, K., Huang, J., Nie, X., Zeng, G., Liu, G. 2014. Effect of soil erosion on dissolved organic carbon redistribution in subtropical red soil under rainfall simulation. Geomorphology, 226, 217-225. DOI:10.1016/j.geomorph.2014.08.017 Madsen, M. D., Zvirzdin, D. L., Petersen, S. L., Hopkins, B. G., Roundy, B. A., Chandler, D. G. 2011. Soil water repellency within a burned piñon–juniper woodland: Spatial distribution, severity, and ecohydrologic implications. Soil Science Society of America Journal, 75(4), 1543-1553. DOI:10.2136/sssaj2010.0320 Mandal, D., Sharda, V. N. 2013. Appraisal of soil erosion risk in the Eastern Himalayan region of India for soil conservation planning. Land Degradation & Development, 24: 430-437. 2013. DOI 10.1002/ldr.1139 Martínez-Murillo, J. F., Nadal-Romero, E., Regüés, D., Cerdà, A., Poesen, J. 2013. Soil erosion and hydrology of the western Mediterranean badlands throughout rainfall simulation experiments: A review. Catena, 106, 101-112. DOI:10.1016/j.catena.2012.06.001 Mataix-Solera, J., Arcenegui, V., Tessler, N., Zornoza, R., Wittenberg, L., Martínez, C., Jordán, M. M. 2013. Soil properties as key factors controlling water repellency in fire-affected areas: evidences from burned sites in Spain and Israel. Catena, 108, 6-13. DOI:10.1016/j.catena.2011.12.006 Podwojewski, P., Janeau, J. L., Grellier, S., Valentin, C., Lorentz, S., Chaplot, V. 2011. Influence of grass soil cover on water runoff and soil detachment under rainfall simulation in a sub-humid South African degraded rangeland. Earth Surface Processes and Landforms, 36(7), 911-922. DOI: 10.1002/esp.2121 Santos, J. M., Verheijen, F. G., Tavares Wahren, F., Wahren, A., Feger, K. H., Bernard-Jannin, L., Nunes, J. P. 2015. Soil water repellency dynamics in pine and eucalupt plantation in Portugal - a high- resolution series. Land Degradation & Development. DOI: 10.1002/ldr.2251 Stoof, C. R., Moore, D., Ritsema, C. J., Dekker, L. W. 2011. Natural and fire-induced soil water repellency in a Portuguese shrubland. Soil Science Society of America Journal, 75(6), 2283-2295. DOI:10.2136/sssaj2011.0046 Zhao, G., Mu, X., Wen, Z., Wang, F., and Gao, P. 2013. Soil erosion, conservation, and Eco-environment changes in the Loess Plateau of China. Land Degradation & Development, 24, 499- 510. DOI: 10.1002/ldr.2246 Ziadat, F. M., Taimeh, A. Y. 2013. Effect of rainfall intensity, slope and land use and antecedent soil moisture on soil erosion in an arid environment. Land Degradation & Development, 24: 582-590. DOI: 10.1002/ldr.2239 European Geosciences Union General Assembly 2015 Vienna | Austria | 12 – 17 April 2015 Geophysical Research Abstracts Vol. 17, EGU2015-15845, 2015 EGU General Assembly 2015 © Author(s) 2015. CC Attribution 3.0 License. POSTFire 0 20 40 60 80 100 0 10 20 30 40 50 60 WDPT (s) fc (mmh-1) Organic olive Organic persimmon Organic vineyard Organic orange Chemical farming Orange organic Orange organic Orange chemical Orange chemical Olive organic Olive organic Olive chemical Olive chemical Vineyard organic Vineyard organic Vineyard organic Vineyard organic Persimmon organic Persimmon organic Persimmon organic Persimmon organic Plots fc (mm h-1) WDPT (s) fc (mm h-1) WDPT (s) fc (mm h-1) WDPT (s) fc (mm h-1) WDPT (s) fc (mm h-1) WDPT (s) fc (mm h-1) WDPT (s) fc (mm h-1) WDPT (s) fc (mm h-1) WDPT (s) 1 44 54 12 2 45 32 15 0 33 0 10 0 42 10 10 1 2 46 68 12 1 46 36 14 1 34 1 14 1 36 9 9 2 3 46 48 15 3 48 35 17 0 21 0 14 0 42 32 9 1 4 52 59 23 2 49 15 19 2 26 0 10 0 52 65 10 1 5 42 26 10 5 52 15 18 0 24 0 10 0 53 82 7 1 6 46 98 26 3 42 12 14 1 26 1 10 1 54 10 7 2 7 52 75 15 2 47 14 17 2 45 0 9 0 53 12 9 1 8 54 84 18 4 44 16 12 3 48 0 9 0 46 15 9 2 9 51 65 14 1 49 15 14 2 36 1 9 1 48 14 10 10 10 52 36 13 2 48 19 16 0 45 0 10 0 45 19 10 0 11 54 59 17 1 49 18 14 3 26 0 15 0 49 92 10 0 12 51 78 18 0 39 12 19 2 49 2 12 2 47 53 11 1 13 47 45 18 2 48 13 17 1 42 0 16 0 42 62 11 0 14 49 96 11 1 49 16 16 2 42 0 19 0 36 35 8 2 15 49 85 14 0 49 14 16 3 47 0 17 0 39 25 9 0 16 47 75 18 3 49 15 10 2 24 1 19 1 34 42 10 1 17 41 45 17 2 53 19 12 3 36 0 17 0 38 15 19 0 18 46 65 19 3 45 2 11 2 29 0 17 0 35 28 12 2 19 45 35 25 2 49 14 10 3 36 1 18 1 46 56 13 1 20 50 65 9 1 48 19 10 1 36 1 14 1 46 54 10 1 Average 48,31 63,05 16,39 2,00 47,6 17,55 14,71 1,65 35,37 0,40 13,53 0,40 44,35 36,50 10,25 1,45 Max 54,36 98,00 26,32 5,00 59,32 36,00 19,35 3,00 48,56 2,00 19,32 2,00 54,21 92,00 19,22 10,00 Min 41,02 26,00 9,32 0,00 39,35 2,00 9,65 0,00 21,26 0,00 8,65 0,00 34,36 9,00 6,65 0,00 Std 3,83 20,07 4,70 1,26 4,15 8,12 3,02 1,09 8,95 0,60 3,69 0,60 6,26 25,47 2,53 2,14 Rainfall simulation experiments can shed light in the runoff generation mechanism as they can control the rainfall intensity (Bodí et al., 2012; Iserloh et al., 2012; Iserloh et al., 2013), and inform about the main mechanism of the soil erosion process Cerdà and Jurgensen, 2011; Daugherty et al., 2011; Podwojewski et al., 2011; Dunkerley, 2012; Garel et al., 2012; Jouquet et al., 2012; Kibet et al., 2013; Butzen et al., 2014; Ma et al., 2014; Martínez Murillo et al., 2013). To determine the relationship between surface runoff generated under simulated rainfall (Cerdà, 1988a; 1988b; Cerdà et al., 1998; Ziadat and Taimeh, 2013) with a small rainfall simulator (0.25 m2) and water repellency measurements with the Water Drop Penetration time methods were done (Bodí et al., 2012). The results show that the most water repellent soils generate a fast surface runoff that use to be infiltrate in macropores (cracks and fauna) and that runoff at plot scales was negligible in water repellent soils.

Rainfall simulation experiments and Water Drop Penetration ...postfire.weebly.com/uploads/2/2/2/8/22283836/egu... · The research projects GL2008-02879/BTE, LEDDRA 243857 and PREVENTING

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Rainfall simulation experiments and Water Drop Penetration ...postfire.weebly.com/uploads/2/2/2/8/22283836/egu... · The research projects GL2008-02879/BTE, LEDDRA 243857 and PREVENTING

Rainfall simulation experiments and Water Drop Penetration Time measurements shed light on the impact of water

repellency on soils under organic farming management in Eastern Spain

Water repellency is a well-know soil property since the research of professor Stefan Helmut Doerr recovered

and powered the research developed by professor DeBano (Atanassova and Doerr, 2011; ; Jordan et al., 2011;

Bodi et al., 2012; Gonzalez Penaloza et al., 2012 Bodi et al., 2013; Garci a Moreno et al., 2013; Jordan et al.,

2013; Badia-Villas et al., 2014; Jordan et al., 2013; Jimenez Morillo et al., 2015). However, little is known about

the impact of water repellency in surface runoff generation, although usually is accepted that when more soil

water repellent is a soil, higher will be the surface runoff discharge (Stoff et al., 2011; Madsen et al., 2011; Leo n

et al., 2013; Lozano et al., 2013; Mataix-Solera et al., 2013; Santos et al., 2015). And the impact of the water

repellency and then the higher surface wash discharge can trigger high erosion rates (Kro pfl et al., 2013;

Mandal and Sharda 2013; Zhao et al., 2013). However these relationships were not demonstrated as the most

water repellent soils are the one with high organic contents, and those soils do not have soil losses, probably

due to the high infiltration rates due to the macropore flow.

Artemi Cerdà (1), Óscar González-Pelayo (1), Javier León (1) and Antonio Jordán (2)(1) Soil Erosion and Degradation Research Group, Department of Geography, University of Valencia, Valencia, Spain. [email protected], [email protected], www.soilerosion.eu, (2) MED_Soil Research Group. Dep. of Crystallography, Mineralogy and Agricultural Chemistry, University of Seville, Spain. [email protected]

Acknowledgements

To the “Ministerio de Economi a and Competitividad” of Spanish Government for finance the POSTFIRE project (CGL2013- 47862-C2-1-R). The research projects GL2008-02879/BTE, LEDDRA 243857 and PREVENTING AND

REMEDIATING DEGRADATION OF SOILS IN EUROPE THROUGH LAND CARE (RECARE)FP7- ENV-2013- supported this research.

References

• Arye, G., Tarchitzky, J., Chen, Y. 2011. Treated wastewater effects on water repellency and soil hydraulic properties of soil aquifer treatment infiltration basins. Journal of Hydrology, 397(1), 136-145. DOI:10.1016/j.jhydrol.2010.11.046

• Atanassova, I., Doerr, S. H. 2011. Changes in soil organic compound composition associated with heat-induced increases in soil water repellency. European Journal of Soil Science, 62(4), 516-532. DOI: 10.1111/j.1365-2389.2011.01350.x

• Badia-Villas, D., Gonza lez-Perez, J. A., Aznar, J. M., Arjona-Gracia, B., & Marti-Dalmau, C. 2014. Changes in water repellency, aggregation and organic matter of a mollic horizon burned in laboratory: soil depth affected by fire. Geoderma, 213, 400-407. DOI:10.1016/j.geoderma.2013.08.038

• Bodi, M.B. Doerr, S.H., Cerda, A., Mataix-Solera, J. 2012. Hydrological effects of a layer of vegetation ash on underlying wettable and water repellent soils. Geoderma, 191, 14-23. http://dx.doi.org/10.1016/j.geoderma.2012.01.006

• Bodi, M.B. Doerr, S.H., Cerda, A., Mataix-Solera, J. 2012. Hydrological effects of a layer of vegetation ash on underlying wettable and water repellent soils. Geoderma, 191, 14-23. DOI:10.1016/j.geoderma.2012.01.006

• Bodi, M.B., Munoz-Santa, I., Armero, C., Doerr, S.H., Mataix-Solera, J., Cerda, A. 2013. Spatial and temporal variations of water repellency and probability of its occurrence in calcareous Mediterranean rangeland soils affected by fires. Catena, 108, 14-24. DOI:10.1016/j.catena.2012.04.002

• Butzen, V., Seeger, M., Wirtz, S., Huemann, M., Mueller, C., Casper, M., Ries, J. B. 2014. Quantification of Hortonian overland flow generation and soil erosion in a Central European low mountain range using rainfall experiments. Catena, 113, 202-212. DOI:10.1016/j.catena.2013.07.008

• Cerda, A. 1998a. Effect of climate on surface flow along a climatological gradient in Israel. A field rainfall simulation approach. Journal of Arid Environments, 38, 145-159. DOI:10.1006/jare.1997.0342

• Cerda, A. 1998b. The influence of aspect and vegetation on seasonal changes in erosion under rainfall simulation on a clay soil in Spain. Canadian Journal of Soil Science, 78, 321-330. DOI: 10.4141/S97-060

• Cerda, A., Jurgensen, M. F. 2011. Ant mounds as a source of sediment on citrus orchard plantations in eastern Spain. A three-scale rainfall simulation approach. Catena, 85(3), 231-236. DOI:10.1016/j.catena.2011.01.008

• Cerda, A., Schnabel, S., Gomez-Amelia, D. & Ceballos, A. 1998. Soil hydrological response under simulated rainfall in the Dehesa land system, Extremadura, SW, Spain. Earth Surface Processes and Landforms, 23, 195- 209. DOI: 10.1002/(SICI)1096-9837(199803)23:3<195::AID-

ESP830>3.0.CO;2-I

• Dougherty, W. J., Mason, S. D., Burkitt, L. L., Milham, P. J. 2011. Relationship between phosphorus concentration in surface runoff and a novel soil phosphorus test procedure (DGT) under simulated rainfall. Soil Research, 49(6), 523-528. DOI: 10.1071/SR11151

• Dunkerley, D. 2012. Effects of rainfall intensity fluctuations on infiltration and runoff: rainfall simulation on dryland soils, Fowlers Gap, Australia. Hydrological Processes, 26(15), 2211-2224. DOI: 10.1002/hyp.8317

• Garcia-Moreno, J., Gordillo-Rivero, A. J., Zavala, L. M., Jorda n, A., & Pereira, P. 2013. Mulch application in fruit orchards increases the persistence of soil water repellency during a 15-years period. Soil and Tillage Research, 130, 62-68. DOI:10.1016/j.still.2013.02.004

• Garel, E., Marc, V., Ruy, S., Cognard-Plancq, A. L., Klotz, S., Emblanch, C., Simler, R. 2012. Large scale rainfall simulation to investigate infiltration processes in a small landslide under dry initial conditions: the Draix hillslope experiment. Hydrological Processes, 26(14), 2171-2186. DOI:

10.1002/hyp.9273

• Gonza lez-Penaloza, F.A., Cerda, A., Zavala, L.M., Jorda n, A., Gimenez-Morera, A., Arcenegui, V. 2012. Do conservative agriculture practices increase soil water repellency? A case study in citrus-cropped soils. Soil and Tillage Research, 124, 233-239. DOI: 10.1016/j.still.2012.06.015

• Granged, A. J., Jorda n, A., Zavala, L. M., Barcenas, G. 2011. Fire-induced changes in soil water repellency increased fingered flow and runoff rates following the 2004 Huelva wildfire. Hydrological Processes, 25, 1614-1629. DOI: 10.1002/hyp.7923

• Iserloh, T., Ries, J.B., Arnaez, J., Boix Fayos, C., Butzen, V., Cerda , A., Echeverri a, M.T., Fernandez-Galvez, J., Fister, W., Geißler, C., Gomez, J.A., Gomez-Macpherson, H., Kuhn, N.J., Lazaro, R., Leon, F.J., Martinez-Mena, M., Martinez-Murillo, J.F., Marzen, M., Mingorance, M.D., Ortigosa,

L., Peters, P., Regues, D., Ruiz-Sinoga, J.D., Scholten, T., Seeger, M., Sole-Benet, A., Wengel, R., Wirtz, S. 2013. European small portable rainfall simulators: a comparison of rainfall characteristics. Catena, 110, 100-112. DOI: 10.1016/j.catena.2013.05.013

• Iserloh, T., Ries, J.B., Cerda, A., Echeverri a, M.T., Fister, W., Geißler, C., Kuhn, N.J., Leon, F.J., Peters, P., Schindewolf, M., Schmidt, J., Scholten, T., Seeger, M. 2012: Comparative measurements with seven rainfall simulators on uniform bare fallow land. Zeitschrift fur Geomorphologie, 57,

193-201. DOI: 10.1127/0372- 8854/2012/S-00118.

• Jimenez-Morillo, N. T., Gonza lez-Perez, J. A., Jorda n, A., Zavala, L. M., Rosa, J. M., Jimenez-Gonza lez, M. A., & Gonza lez-Vila, F. J. 2014. Organic matter fractions controlling soil water repellency in Sandy soils from the Donana National Park (Southwestern Spain). Land Degradation &

Development. DOI: 10.1002/ldr.2314

• Jorda n, A., Garcia-Moreno, J., Gordillo-Rivero, A. J., Zavala, L. M., Cerda, A. 2014. Organic carbon, water repellency and soil stability to slaking under different crops and managements, a case study at aggregate and intra-aggregate scales. SOIL Discussions, 1(1), 295-325. DOI:

10.5194/soild-1-295-2014

• Jorda n, A., Zavala, L. M., Mataix-Solera, J., Doerr, S. H. 2013. Soil water repellency: origin, assessment and geomorphological consequences. Catena, 108, 1-5. DOI:10.1016/j.catena.2013.05.005

• Jorda n, A., Zavala, L. M., Mataix-Solera, J., Nava, A. L., & Alanis, N. 2011. Effect of fire severity on water repellency and aggregate stability on Mexican volcanic soils. Catena, 84(3), 136-147. DOI:10.1016/j.catena.2010.10.007

• Jouquet, P., Janeau, J. L., Pisano, A., Sy, H. T., Orange, D., Minh, L. T. N., Valentin, C. 2012. Influence of earthworms and termites on runoff and erosion in a tropical steep slope fallow in Vietnam: A rainfall simulation experiment. Applied Soil Ecology, 61, 161-168.

DOI:10.1016/j.apsoil.2012.04.004

• Kibet, L. C., Saporito, L. S., Allen, A. L., May, E. B., Kleinman, P. J., Hashem, F. M., Bryant, R. B. 2013. A protocol for conducting rainfall simulation to study soil runoff. Journal of visualized Experiments, 86, 51664. DOI: 10.3791/51664

• Kropfl, A. I., Cecchi, G. A., Villasuso, N. M., Distel, R. A. 2013. Degradation and recovery processes in Semi-Arid patchy rangelands of northern Patagonia, Argentina. Land Degradation & Development, 24, 393- 399. DOI: 10.1002/ldr.1145

• Leon, J. Bodi, M.B., Cerda, A., Badia, D. 2013. The contrasted response of ash to wetting. The effects of ash type, thickness and rainfall events. Geoderma, 209-210, 143-152. DOI:10.1016/j.geoderma.2012.01.006

• Lozano, E., Jimenez-Pinilla, P., Mataix-Solera, J., Arcenegui, V., Ba rcenas, G. M., Gonza lez-Perez, J. A., Mataix-Beneyto, J. 2013. Biological and chemical factors controlling the patchy distribution of soil water repellency among plant species in a Mediterranean semiarid forest. Geoderma,

207, 212-220. DOI:10.1016/j.geoderma.2013.05.021

• Ma, W., Li, Z., Ding, K., Huang, J., Nie, X., Zeng, G., Liu, G. 2014. Effect of soil erosion on dissolved organic carbon redistribution in subtropical red soil under rainfall simulation. Geomorphology, 226, 217-225. DOI:10.1016/j.geomorph.2014.08.017

• Madsen, M. D., Zvirzdin, D. L., Petersen, S. L., Hopkins, B. G., Roundy, B. A., Chandler, D. G. 2011. Soil water repellency within a burned pinon–juniper woodland: Spatial distribution, severity, and ecohydrologic implications. Soil Science Society of America Journal, 75(4), 1543-1553.

DOI:10.2136/sssaj2010.0320

• Mandal, D., Sharda, V. N. 2013. Appraisal of soil erosion risk in the Eastern Himalayan region of India for soil conservation planning. Land Degradation & Development, 24: 430-437. 2013. DOI 10.1002/ldr.1139

• Martinez-Murillo, J. F., Nadal-Romero, E., Regues, D., Cerda, A., Poesen, J. 2013. Soil erosion and hydrology of the western Mediterranean badlands throughout rainfall simulation experiments: A review. Catena, 106, 101-112. DOI:10.1016/j.catena.2012.06.001

• Mataix-Solera, J., Arcenegui, V., Tessler, N., Zornoza, R., Wittenberg, L., Martinez, C., Jorda n, M. M. 2013. Soil properties as key factors controlling water repellency in fire-affected areas: evidences from burned sites in Spain and Israel. Catena, 108, 6-13. DOI:10.1016/j.catena.2011.12.006

• Podwojewski, P., Janeau, J. L., Grellier, S., Valentin, C., Lorentz, S., Chaplot, V. 2011. Influence of grass soil cover on water runoff and soil detachment under rainfall simulation in a sub-humid South African degraded rangeland. Earth Surface Processes and Landforms, 36(7), 911-922. DOI:

10.1002/esp.2121

• Santos, J. M., Verheijen, F. G., Tavares Wahren, F., Wahren, A., Feger, K. H., Bernard-Jannin, L., Nunes, J. P. 2015. Soil water repellency dynamics in pine and eucalupt plantation in Portugal - a high- resolution series. Land Degradation & Development. DOI: 10.1002/ldr.2251

• Stoof, C. R., Moore, D., Ritsema, C. J., Dekker, L. W. 2011. Natural and fire-induced soil water repellency in a Portuguese shrubland. Soil Science Society of America Journal, 75(6), 2283-2295. DOI:10.2136/sssaj2011.0046

• Zhao, G., Mu, X., Wen, Z., Wang, F., and Gao, P. 2013. Soil erosion, conservation, and Eco-environment changes in the Loess Plateau of China. Land Degradation & Development, 24, 499- 510. DOI: 10.1002/ldr.2246

• Ziadat, F. M., Taimeh, A. Y. 2013. Effect of rainfall intensity, slope and land use and antecedent soil moisture on soil erosion in an arid environment. Land Degradation & Development, 24: 582- 590. DOI: 10.1002/ldr.2239

European Geosciences UnionGeneral Assembly 2015

Vienna | Austria | 12 – 17 April 2015Geophysical Research Abstracts

Vol. 17, EGU2015-15845, 2015

EGU General Assembly 2015

© Author(s) 2015. CC Attribution 3.0 License.POSTFire

0

20

40

60

80

100

0 10 20 30 40 50 60

WD

PT

(s

)fc (mmh-1)

Organic olive

Organic persimmon

Organic vineyard

Organic orange

Chemical farming

Orange organic Orange organic Orange chemical Orange chemical Olive organic Olive organic Olive chemical Olive chemical Vineyard organic Vineyard organic Vineyard organic Vineyard organic

Persimmon

organic

Persimmon

organic

Persimmon

organic

Persimmon

organic

Plots fc (mm h-1) WDPT (s) fc (mm h-1) WDPT (s) fc (mm h-1) WDPT (s) fc (mm h-1) WDPT (s) fc (mm h-1) WDPT (s) fc (mm h-1) WDPT (s) fc (mm h-1) WDPT (s) fc (mm h-1) WDPT (s)

1 44 54 12 2 45 32 15 0 33 0 10 0 42 10 10 1

2 46 68 12 1 46 36 14 1 34 1 14 1 36 9 9 2

3 46 48 15 3 48 35 17 0 21 0 14 0 42 32 9 1

4 52 59 23 2 49 15 19 2 26 0 10 0 52 65 10 1

5 42 26 10 5 52 15 18 0 24 0 10 0 53 82 7 1

6 46 98 26 3 42 12 14 1 26 1 10 1 54 10 7 2

7 52 75 15 2 47 14 17 2 45 0 9 0 53 12 9 1

8 54 84 18 4 44 16 12 3 48 0 9 0 46 15 9 2

9 51 65 14 1 49 15 14 2 36 1 9 1 48 14 10 10

10 52 36 13 2 48 19 16 0 45 0 10 0 45 19 10 0

11 54 59 17 1 49 18 14 3 26 0 15 0 49 92 10 0

12 51 78 18 0 39 12 19 2 49 2 12 2 47 53 11 1

13 47 45 18 2 48 13 17 1 42 0 16 0 42 62 11 0

14 49 96 11 1 49 16 16 2 42 0 19 0 36 35 8 2

15 49 85 14 0 49 14 16 3 47 0 17 0 39 25 9 0

16 47 75 18 3 49 15 10 2 24 1 19 1 34 42 10 1

17 41 45 17 2 53 19 12 3 36 0 17 0 38 15 19 0

18 46 65 19 3 45 2 11 2 29 0 17 0 35 28 12 2

19 45 35 25 2 49 14 10 3 36 1 18 1 46 56 13 1

20 50 65 9 1 48 19 10 1 36 1 14 1 46 54 10 1

Average 48,31 63,05 16,39 2,00 47,6 17,55 14,71 1,65 35,37 0,40 13,53 0,40 44,35 36,50 10,25 1,45

Max 54,36 98,00 26,32 5,00 59,32 36,00 19,35 3,00 48,56 2,00 19,32 2,00 54,21 92,00 19,22 10,00

Min 41,02 26,00 9,32 0,00 39,35 2,00 9,65 0,00 21,26 0,00 8,65 0,00 34,36 9,00 6,65 0,00

Std 3,83 20,07 4,70 1,26 4,15 8,12 3,02 1,09 8,95 0,60 3,69 0,60 6,26 25,47 2,53 2,14

Rainfall simulation experiments can shed light in the runoff generation

mechanism as they can control the rainfall intensity (Bodi et al., 2012; Iserloh

et al., 2012; Iserloh et al., 2013), and inform about the main mechanism of

the soil erosion process Cerda and Jurgensen, 2011; Daugherty et al., 2011;

Podwojewski et al., 2011; Dunkerley, 2012; Garel et al., 2012; Jouquet et al.,

2012; Kibet et al., 2013; Butzen et al., 2014; Ma et al., 2014; Martinez Murillo

et al., 2013).

To determine the relationship between surface runoff generated under

simulated rainfall (Cerda, 1988a; 1988b; Cerda et al., 1998; Ziadat and

Taimeh, 2013) with a small rainfall simulator (0.25 m2) and water repellency

measurements with the Water Drop Penetration time methods were done

(Bodi et al., 2012). The results show that the most water repellent soils

generate a fast surface runoff that use to be infiltrate in macropores (cracks

and fauna) and that runoff at plot scales was negligible in water repellent

soils.