17
References [1] Adams, RA.: Sobolev Spaces. Academic Press, New York 1975. [2] Angell, T.S., Colton, D., and Kirsch, A.: The three dimensional inverse scat- tering problem for acoustic waves. J. Diff. Equations 46,46-58 (1982). [3] Angell, T.S., Colton, D., and Kress, R: Far field patterns and inverse scattering problems for imperfectly conducting obstacles. Math. Proc. Camb. Phil. Soc. 106, 553-569 (1989). [4] Angell, T.S., Jiang, X. and Kleinman, R.E.: On a numerical method for inverse acoustic scattering. Inverse Problems 13, 531-545 (1997). [5] Angell, T.S., and Kirsch, A.: The conductive boundary condition for Maxwell's equations. SIAM J. Appl. Math. 52, 1597-1610 (1992). [6] Angell, T.S., Kleinman, RE., and Hettlich, F.: The resistive and conductive problems for the exterior Helmholtz equation. SIAM J. Appl. Math. 50, 1607- 1622 (1990). [7] Angell, T.S., Kleinman, R.E., Kok, 8., and Roach, G.F.: A constructive method for identification of an impenetrable scatterer. Wave Motion 11, 185-200 (1989). [8] Angell, T.S., Kleinman, RE., Kok, B., and Roach, G.F.: Target reconstruction from scattered far field data. Ann. des Telecommunications 44, 456-463 (1989). [9) Angell, T.S., Kleinman, R.E., and Roach, G.F.: An inverse transmission prob- lem for the Helmholtz equation. Inverse Problems 3, 149-180 (1987). [10) Ari, N., and Firth, J.R.: Acoustic inverse scattering problems of polygonal shape reconstruction. Inverse Problems 6, 299-310 (1990). [11] Atkinson, K.E.: The numerical solution of Laplace's equation in three dimen- sions. SIAM J. Numer. Anal. 19, 263-274 (1982). [12] Bakushinskii, A.B.: The problem of the convergence of the iteratively regu- larized Gauss-Newton method. Comput. Maths. Maths. Phys. 32, 1353-1359 (1992). [13] Baumeister, J.: Stable Solution of Inverse Problems. Vieweg, Braunschweig 1986. [14] Bers, L., John, F., and Schechter, M.: Partial Differential Equations. John Wi- ley, New York 1964. [15] Blaschke, B., Neubauer, A., and Scherzer, 0: On convergence rates for the iteratively regularized Gauss-Newton method. IMA Jour. Numerical Anal. 17, 421-436 (1997). [16] Bleistein, N.: Mathematical Methods for Wave Phenomena. Academic Press, Orlando 1984.

References - Springer978-3-662-03537-5/1.pdf · References 321 [58] Colton, D., and Monk, P.: A modified dual space method for solving the electro magnetic inverse scattering problem

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: References - Springer978-3-662-03537-5/1.pdf · References 321 [58] Colton, D., and Monk, P.: A modified dual space method for solving the electro magnetic inverse scattering problem

References

[1] Adams, RA.: Sobolev Spaces. Academic Press, New York 1975. [2] Angell, T.S., Colton, D., and Kirsch, A.: The three dimensional inverse scat­

tering problem for acoustic waves. J. Diff. Equations 46,46-58 (1982). [3] Angell, T.S., Colton, D., and Kress, R: Far field patterns and inverse scattering

problems for imperfectly conducting obstacles. Math. Proc. Camb. Phil. Soc. 106, 553-569 (1989).

[4] Angell, T.S., Jiang, X. and Kleinman, R.E.: On a numerical method for inverse acoustic scattering. Inverse Problems 13, 531-545 (1997).

[5] Angell, T.S., and Kirsch, A.: The conductive boundary condition for Maxwell's equations. SIAM J. Appl. Math. 52, 1597-1610 (1992).

[6] Angell, T.S., Kleinman, RE., and Hettlich, F.: The resistive and conductive problems for the exterior Helmholtz equation. SIAM J. Appl. Math. 50, 1607-1622 (1990).

[7] Angell, T.S., Kleinman, R.E., Kok, 8., and Roach, G.F.: A constructive method for identification of an impenetrable scatterer. Wave Motion 11, 185-200 (1989).

[8] Angell, T.S., Kleinman, RE., Kok, B., and Roach, G.F.: Target reconstruction from scattered far field data. Ann. des Telecommunications 44, 456-463 (1989).

[9) Angell, T.S., Kleinman, R.E., and Roach, G.F.: An inverse transmission prob­lem for the Helmholtz equation. Inverse Problems 3, 149-180 (1987).

[10) Ari, N., and Firth, J.R.: Acoustic inverse scattering problems of polygonal shape reconstruction. Inverse Problems 6, 299-310 (1990).

[11] Atkinson, K.E.: The numerical solution of Laplace's equation in three dimen­sions. SIAM J. Numer. Anal. 19, 263-274 (1982).

[12] Bakushinskii, A.B.: The problem of the convergence of the iteratively regu­larized Gauss-Newton method. Comput. Maths. Maths. Phys. 32, 1353-1359 (1992).

[13] Baumeister, J.: Stable Solution of Inverse Problems. Vieweg, Braunschweig 1986.

[14] Bers, L., John, F., and Schechter, M.: Partial Differential Equations. John Wi­ley, New York 1964.

[15] Blaschke, B., Neubauer, A., and Scherzer, 0: On convergence rates for the iteratively regularized Gauss-Newton method. IMA Jour. Numerical Anal. 17, 421-436 (1997).

[16] Bleistein, N.: Mathematical Methods for Wave Phenomena. Academic Press, Orlando 1984.

Page 2: References - Springer978-3-662-03537-5/1.pdf · References 321 [58] Colton, D., and Monk, P.: A modified dual space method for solving the electro magnetic inverse scattering problem

References 319

[17] Blohbaum, J.: Optimisation methods for an inverse problem with time­harmonic electromagnetic waves: an inverse problem in electromagnetic scat­tering. Inverse Problems 5, 463-482 (1989).

[18] Bojarski, N.N.: Three dimensional electromagnetic short pulse inverse scatter­ing. Spec. Proj. Lab. Rep. Syracuse Univ. Res. Corp., Syracuse 1967.

[19] Bojarski, N.N.: A survey of the physical optics inverse scattering identity. IEEE Trans. Ant. Prop. AP-20, 980-989 (1982).

[20] Brakhage, H., and Werner, P.: tIber das Dirichletsche Aussenraumproblem fur die Helmholtzsche Schwingungsgleichung. Arch. Math. 16, 325-329 (1965).

[21] Brebbia, C.A., Telles, J.C.F., and Wrobel, L.C.: Boundary Element Techniques. Springer-Verlag, Berlin Heidelberg New York 1984.

[22] Calderon, A.P.: The multipole expansions of radiation fields. J. Rat. Mech. Anal. 3, 523-537 (1954).

[23] Calderon, A.P.: On an inverse boundary value problem. In: Seminar on Nu­merical Analysis and its Applications to Continuum Mechanics. Soc. Brasileira de Matematica, Rio de Janerio, 65-73 (1980).

[24] Chadan, K, Colton, D., Paiviirinta, L., and Rundell, W.: An Introduction to Inverse Scattering and Inverse Spectml Problems. SIAM Publications, Philadel­phia 1997.

[25] Chadan, K, and Sabatier, P. C.: Inverse Problems in Quantum Scattering The­ory. Springer-Verlag, Berlin Heidelberg New York 1989.

[26] Charalambopoulos, A.: On the Fnkhet differentiability of boundary integral operators in the inverse elastic scattering problem. Inverse Problems 11, 1137-1161 (1995).

[27] Chavent, G., Papanicolaou, G., Sacks, P., and Symes, W.: Inverse Problems in Wave Propagation. Springer-Verlag, New York 1997.

[28] Chew, W: Waves and Fields in Inhomogeneous Media. Van Nostrand Reinhold, New York 1990.

[29] Colonius, F., and Kunisch, K: Stability for parameter estimation in two point boundary value problems. J. Reine Angew. Math. 370, 1-29 (1986).

[30] Colonius, F., and Kunisch, K: Output least squares stability in elliptic systems. Appl. Math. Opt. 19, 33-63 (1989).

[31] Colton, D.: Partial Differential Equations. Random House, New York 1988. [32] Colton, D., and Erbe, C.: Spectral theory of the magnetic far field operator in

an orthotropic medium. In: Nonlinear Problems in Applied Mathematics (Angell et aI, eds). SIAM, Philadelphia, 96-103 (1995).

[33] Colton, D., and Hahner, P.: Modified far field operators in inverse scattering theory. SIAM J. Math. Anal. 24, 365-389 (1993).

[34] Colton, D., and Kirsch, A.: Dense sets and far field patterns in acoustic wave propagation. SIAM J. Math. Anal. 15,996-1006 (1984).

[35] Colton, D., and Kirsch, A.: Karp's theorem in acoustic scattering theory. Proc. Amer. Math. Soc. 103, 783-788 (1988).

[36] Colton, D., and Kirsch, A.: An approximation problem in inverse scattering theory. Applicable Analysis 41, 23-32 (1991).

[37] Colton, D., and Kirsch, A.: The use of polarization effects in electromagnetic inverse scattering problems. Math. Meth. in the Appl. Sci. 15, 1-10 (1992).

[38] Colton, D., and Kirsch, A.: A simple method for solving inverse scattering problems in the resonance region. Inverse Problems 12, 383-393 (1996).

Page 3: References - Springer978-3-662-03537-5/1.pdf · References 321 [58] Colton, D., and Monk, P.: A modified dual space method for solving the electro magnetic inverse scattering problem

320 References

[39J Colton, D., Kirsch, A., and Piiiviirinta, L.: Far field patterns for acoustic waves in an inhomogeneous medium. SIAM J. Math. Anal. 20, 1472-1483 (1989).

[40] Colton, D., and Kress, R.: The impedance boundary value problem for the time harmonic Maxwell equations. Math. Meth. in the Appl. Sci. 3, 475-487 (1981).

[41J Colton, D., and Kress, R.: Integral Equation Methods in Scattering Theory. Wiley-Interscience Publication, New York 1983.

[42J Colton, D., and Kress, R.: Dense sets and far field patterns in electromagnetic wave propagation. SIAM J. Math. Anal. 16, 1049-1060 (1985).

[43] Colton, D., and Kress, R.: Karp's theorem in electromagnetic scattering theory. Proc. Amer. Math. Soc. 104, 764-769 (1988).

[44J Colton, D., and Kress, R.: Time harmonic electromagnetic waves in an inho­mogeneous medium. Proc. Royal Soc. Edinburgh 116 A, 279-293 (1990).

[45J Colton, D., and Kress, R.: Eigenvalues of the far field operator and inverse scattering theory. SIAM J. Math. Anal. 26,601-615 (1995).

[46J Colton, D., and Kress, R.: Eigenvalues ofthe far field operator for the Helmholtz equation in an absorbing medium. SIAM J. Appl. Math. 55, 1724-1735 (1995).

[47J Colton, D., Kress, R., and Monk, P.: A new algorithm in electromagnetic inverse scattering theory with an application to medical imaging. Math. Meth. in the Appl. Sci. 20, 385-401 (1997).

[48] Colton, D., and Monk, P.: A novel method for solving the inverse scattering problem for time-harmonic acoustic waves in the resonance region. SIAM J. Appl. Math. 45, 1039-1053 (1985).

[49J Colton, D., and Monk, P.: A novel method for solving the inverse scattering problem for time-harmonic acoustic waves in the resonance region II. SIAM J. Appl. Math. 46, 506-523 (1986).

[50] Colton, D., and Monk, P.: The numerical solution of the three dimensional inverse scattering problem for time-harmonic acoustic waves. SIAM J. Sci. Stat. Compo 8, 278-291 (1987).

[51] Colton, D., and Monk, P: The inverse scattering problem for time harmonic acoustic waves in a penetrable medium. Quart. J. Mech. Appl. Math. 40, 189-212 (1987).

[52] Colton, D., and Monk, P: The inverse scattering problem for acoustic waves in an inhomogeneous medium. Quart. J. Mech. Appl. Math. 41, 97-125 (1988).

[53J Colton, D., and Monk, P: A new method for solving the inverse scattering problem for acoustic waves in an inhomogeneous medium. Inverse Problems 5, 1013-1026 (1989).

[54] Colton, D., and Monk, P: A new method for solving the inverse scattering problem for acoustic waves in an inhomogeneous medium II. Inverse Problems 6, 935-947 (1990).

[55] Colton, D., and Monk, P: A comparison of two methods for solving the inverse scattering problem for acoustic waves in an inhomogeneous medium. J. Compo Appl. Math. 42, 5-16 (1992).

[56] Colton, D., and Monk, P: The numerical solution of an inverse scattering prob­lem for acoustic waves. IMA J. Appl. Math. 49, 163-184 (1992).

[57J Colton, D., and Monk, P.: On a class of integral equations of the first kind in inverse scattering theory. SIAM J. Appl. Math. 53, 847-860 (1993).

Page 4: References - Springer978-3-662-03537-5/1.pdf · References 321 [58] Colton, D., and Monk, P.: A modified dual space method for solving the electro magnetic inverse scattering problem

References 321

[58] Colton, D., and Monk, P.: A modified dual space method for solving the electro­magnetic inverse scattering problem for an infinite cylinder. Inverse Problems 10,87-107 (1994).

[59] Colton, D., and Monk, P.: The detection and monitoring of leukemia using electromagnetic waves: Mathematical theory. Inverse Problems 10, 1235-1251 (1994).

[60] Colton, D., and Monk, P.: The detection and monitoring of leukemia using elec­tromagnetic waves: Numerical analysis. Inverse Problems 11, 329-342 (1995).

[61] Colton, D., and Monk, P.: A new approach to detecting leukemia: Using com­putational electromagnetics. Compo Science and Engineering 2, 46-52 (1995).

[62] Colton, D., and Monk, P.: A linear sampling method for the detection of leukemia using microwaves. SIAM J. Appl. Math. (to appear).

[63] Colton, D., and Piiiviixinta, L.: Far field patterns and the inverse scattering problem for electromagnetic waves in an inhomogeneous medium. Math. Proc. Camb. Phil. Soc. 103, 561-575 (1988).

[64] Colton, D., and L. Piiiviixinta, L.: Far-field patterns for electromagnetic waves in an inhomogeneous medium. SIAM J. Math. Anal. 21, 1537-1549 (1990).

[65] Colton, D. and Piiiviirinta, L.: The uniqueness of a solution to an inverse scat­tering problem for electromagnetic waves. Arch. Rational Mech. Anal. 119, 59-70 (1992).

[66] Colton, D., Piana, M., and Potthast, R.: A simple method using Morozov's discrepancy principle for solving inverse scattering problems. Inverse Problems (to appear).

[67] Colton, D., and Sleeman, B.D.: Uniqueness theorems for the inverse problem of acoustic scattering. IMA J. Appl. Math. 31, 253-259 (1983).

[68] Dassios, G., and Rigou, Z.: On the density of traction traces in scattering of elastic waves. SIAM J. Appl. Math. 53, 141-153 (1993).

[69] Dassios, G., and Rigou, Z.: Elastic Herglotz functions. SIAM J. Appl. Math. 55, 1345-1361 (1995).

[70] Dassios, G., and Rigou, Z.: On the reconstruction of a rigid body in the theory of elasticity. Z. Angew. Math. Mech. 77, 1-13 (1997).

[71] Davis, P.J.: Interpolation and Approximation. Blaisdell Publishing Company, Waltham 1963.

[72] Davis, P.J., and Rabinowitz, P.: Methods of Numerical Integmtion. Academic Press, New York 1975.

[73] Devaney, A.J.: Acoustic tomography. In: Inverse Problems of Acoustic and Elas­tic Waves (Santosa et aI, eds). SIAM, Philadelphia, 250-273 (1984).

[74] Dolph, C. L.: The integral equation method in scattering theory. In: Problems in Analysis (Gunning, ed). Princeton University Press, Princeton, 201-227 (1970).

[75] Elliott, D. and Prossdorf, S.: An algorithm for the approximate solution of integral equations of Mellin type. Numer. Math. 70, 427-452 (1995).

[76) Engl, H.W., Hanke, M. and Neubauer, A.: Regularization of Inverse Problems. Kluwer Academic Publisher, Dordrecht 1996.

[77] Engl, H.W., Kunisch, K., and Neubauer, A.: Tikhonov regularisation of non­linear ill-posed problems. Inverse Problems 5, 523-540 (1989).

[78] Erdelyi, A.: Asymptotic Expansions. Dover Publications, New York 1956.

Page 5: References - Springer978-3-662-03537-5/1.pdf · References 321 [58] Colton, D., and Monk, P.: A modified dual space method for solving the electro magnetic inverse scattering problem

322 References

[79] Ganesh, M., Graham, I.H., and Sivaloganathan, J: A Pseudospectral3D Bound­ary Integral Method Applied to a Nonlinear Model Problem From Finite Elas­ticy. SIAM J. Numer. Anal. 31, 1368-1377 (1994).

[80] Gerlach, T. and Kress, R.: Uniqueness in inverse obstacle scattering with con­ductive boundary condition. Inverse Problems 12, 619-625 (1996).

[81] Gieseke, B.: Zum Dirichletschen Prinzip fur selbstadjungierte elliptische Diffe­rentialoperatoren. Math. Z. 68, 54-62 (1964).

[82] Gilbarg, D., and Trudinger, N.S.: Elliptic Partial Differential Equations of Sec­ond Order. Springer-Verlag, Berlin Heidelberg New York 1977.

[83] Gilbert, R.P., and Xu, Yongzhi: Dense sets and the projection theorem for acoustic harmonic waves in a homogeneous finite depth ocean. Math. Meth. in the Appl. Sci. 12, 69-76 (1990).

[84] Gilbert, R.P., and Xu, Yongzhi: The propagation problem and far field patterns in a stratified finite depth ocean. Math. Meth. in the Appl. Sci. 12, 199-208 (1990).

[85] Goldstein, C.I.: The finite element method with non-uniform mesh sizes applied to the exterior Helmholtz problem. Numer. Math. 38, 61-82 (1981).

[86] Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston 1985. [87] Groetsch, C.W.: The Theory of Tikhonov Regularization for Fredholm Equa­

tions of the First Kind. Pitman, Boston 1984. [88] Gutman, S., and Klibanov, M.: Regularized quasi-Newton method for inverse

scattering problems. Math. Comput. Modeling 18, 5-31 (1993). [89) Gutman, S., and Klibanov, M.: Two versions of quasi-Newton method for multi­

dimensional inverse scattering problem. J. Comput. Acoust. 1, 197-228 (1993). [90] Gutman, S., and Klibanov, M.: Iterative method for multidimensional inverse

scattering problems at fixed frequencies. Inverse Problems 10, 573-599 (1994). [91] Gutman, S., and Klibanov, M.: Three dimensional inhomogeneous media imag­

ing. Inverse Problems 10, L39-L46 (1994). [92] Haas, M., and Lehner, G.: Inverse 2D obstacle scattering by adaptive iteration.

IEEE Transactions on Magnetics 33, 1958-1961 (1997) [93] Haas, M., Rieger, W., Rucker, W., and Lehner, G.: Inverse 3D acoustic and

electromagnetic obstacle scattering by iterative adaption. In: Inverse Problems of Wave Propagation and Diffraction (Chavent and Sabatier, eds). Springer­Verlag, Heidelberg 1997.

[94] Hackbusch, W.: Multi-grid Methods and Applications. Springer-Verlag, Berlin Heidelberg New York 1985.

[95] Hadamard, J.: Lectures on Cauchy's Problem in Linear Partial Differential Equations. Yale University Press, New Haven 1923.

[96] Hahner, P.: Abbildungseigenschaften der Randwertoperatoren bei Randwert­aufgaben fur die Maxwellschen Gleichungen und die vektorielle Helmholtz­gleichung in Hi:ilder- und L2-Raumen mit einer Anwendung auf vollstandige Flachenfeldsysteme. Diplomarbeit, Gi:ittingen 1987.

[97] Hahner, P.: An exterior boundary-value problem for the Maxwell equations with boundary data in a Sobolev space. Proc. Roy. Soc. Edinburgh 109A, 213-224 (1988).

[98J Hahner, P.: Eindeutigkeits- und Regularitatssatze fur Randwertprobleme bei der skalaren und vektoriellen Helmholtzgleichung. Dissertation, Gi:ittingen 1990.

Page 6: References - Springer978-3-662-03537-5/1.pdf · References 321 [58] Colton, D., and Monk, P.: A modified dual space method for solving the electro magnetic inverse scattering problem

References 323

[99] Hahner, P.: A uniqueness theorem for the Maxwell equations with L2 Dirichlet boundary conditions. Meth. Verf. Math. Phys. 37, 85-96 (1991).

[100] Hahner, P.: A uniqueness theorem for a transmission problem in inverse elec­tromagnetic scattering. Inverse Problems 9, 667-678 (1993).

[101] Hahner, P.: An approximation theorem in inverse electromagnetic scattering. Math. Meth. in the Appl. Sci. 17, 293-303 (1994).

[102] Hahner, P.: A periodic Faddeev-type solution operator. Jour. of Differential Equations 128, 300-308 (1996).

[103] Hanke, M., Hettlich, F. and Scherzer, 0.: The Landweber iteration for an in­verse scattering problem. In: Proceedings of the 1995 Design Engineering Tech­nical Conferences, Vol. 3, Part C (Wang et aI, eds). The American Society of Mechanical Engineers, New York, 909-915 (1995).

[104] Hanke, M., Neubauer, A., and Scherzer, 0.: A convergence analysis for the Landweber iteration for nonlinear ill-posed problems. Numer. Math. 72, 21-37 (1995).

[105] Hartman, P., and Wilcox, C.: On solutions of the Helmholtz equation in exterior domains. Math. Z. 75, 228-255 (1961).

[106] Hellwig, G.: Partial Differential Equations. Blaisdell Publishing, New York 1964.

[107] Hettlich, F.: Die Integralgleichungsmethode bei Streuung an Korpern mit einer dunnen Schicht. Diplomarbeit, Gottingen 1989.

[108] Hettlich, F.: On the uniqueness of the inverse conductive scattering problem for the Helmholtz equation. Inverse Problems 10, 129-144 (1994).

[109] Hettlich, F.: Fnkhet derivatives in inverse obstacle scattering. Inverse Problems 11, 371-382 (1995).

[110] Hettlich, F.: An iterative method for the inverse scattering problem from sound­hard obstacles. In: Proceedings of the ICIAM 95, Vol. II, Applied Analysis (Mahrenholz and Mennicken, eds). Akademie Verlag, Berlin (1996).

[111] Hohage, T.: Logarithmic convergence rates ofthe iteratively regularized Gauss­Newton method for an inverse potential and an inverse scattering problem. Inverse Problems 13, 1279-1299 (1997).

[112] Hsiao, G.C.: The coupling of boundary element and finite element methods. Z. Angew. Math. Mech. 70, T493-T503 (1990).

[113] Imbriale, W.A., and Mittra, R.: The two-dimensional inverse scattering prob­lem. IEEE Trans. Ant. Prop. AP-18, 633-642 (1970).

[114] Isakov, V.: On uniqueness in the inverse transmission scattering problem. Comm. Part. Diff. Equa. 15, 1565-1587 (1990).

[115] Isakov, V.: Stability estimates for obstacles in inverse scattering. J. Compo Appl. Math. 42, 79-89 (1992).

[116] Isakov, V.: New stability results for soft obstacles in inverse scattering. Inverse Problems 9, 535-543 (1993).

[117] Ivanov, K.V.: Integral equations of the first kind and an approximate solution for the inverse problem of potential. Soviet Math. Doklady 3, 210-212 (1962) (English translation).

[118] Ivanov, K.V.: On linear problems which are not well-posed. Soviet Math. Dok­lady 3, 981-983 (1962) (English translation).

[119] Jeon, Y.: A Nystrom method for boundary integral equations in domains with a piecewise smooth boundary. Jour. Integral Equations Appl. 5, 221-242 (1993).

Page 7: References - Springer978-3-662-03537-5/1.pdf · References 321 [58] Colton, D., and Monk, P.: A modified dual space method for solving the electro magnetic inverse scattering problem

324 References

[120] Ji:irgens, K.: Lineare Integraloperatoren. Teubner-Verlag, Stuttgart 1970. [121] Johnson, S.A. and Tracy, M.L.: Inverse scattering solutions by a sine basis,

multiple source, moment method - Part I: theory. Ultrasonic Imaging 5, 361-375 (1983).

[122] Jones, D.S.: Methods in Electromagnetic Wave Propagation. Clarendon Press, Oxford 1979.

[123] Jones, D.S.: Acoustic and Electromagnetic Waves. Clarendon Press, Oxford 1986.

[124] Jones, D.S. and Mao, X.Q.: The inverse problem in hard acoustic scattering. Inverse Problems 5, 731-748 (1989).

[125] Jones, D.S. and Mao, X.Q.: A method for solving the inverse problem in soft acoustic scattering. IMA Jour. Appl. Math. 44, 127-143 (1990).

[126] Karp, S.N.: Far field amplitudes and inverse diffraction theory. In: Electromag­netic Waves (Langer, ed). Univ. of Wisconsin Press, Madison, 291-300 (1962).

[127] Kedzierawski, A.: The inverse scattering problem for time-harmonic acoustic waves in an inhomogeneous medium with complex refraction index. J. Compo Appl. Math. 47, 83-100 (1993).

[128] Kellogg, O.D.: Foundations of Potential Theory. Springer-Verlag, Berlin Hei­delberg New York 1929.

[129] Kersten, H.: Grenz- und Sprungrelationen fur Potentiale mit quadratsummier­barer Dichte. Resultate d. Math. 3, 17-24 (1980).

[130] Kirsch, A.: Generalized Boundary Value and Control Problems for the Helmholtz Equation. Habilitationsschrift, Gi:ittingen 1984.

[131] Kirsch, A.: The denseness of the far field patterns for the transmission problem. IMA J. Appl. Math. 37,213-225 (1986).

[132] Kirsch, A.: Properties of far field operators in acoustic scattering. Math. Meth. in the Appl. Sci. 11, 773-787 (1989).

[133) Kirsch, A.: Surface gradients and continuity properties for some integral oper­ators in classical scattering theory. Math. Meth. in the Appl. Sci. 11, 789-804 (1989).

[134] Kirsch, A.: Remarks on some notions of weak solutions for the Helmholtz equa­tion. Applicable Analysis 47, 7-24 (1992).

[135] Kirsch, A.: The domain derivative and two applications in inverse scattering. Inverse Problems 9, 81-96 (1993).

[136] Kirsch, A.: Numerical algorithms in inverse scattering theory. In: Ordinary and Partial Differential Equations, Vol. IV, (Jarvis and Sleeman, eds). Pitman Research Notes in Mathematics 289, Longman, London 93-111 (1993).

[137] Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems. Springer-Verlag, New York 1996.

[138J Kirsch, A., and Kress, R: On an integral equation of the first kind in inverse acoustic scattering. In: Inverse Problems (Cannon and Hornung, eds). ISNM 77,93-102 (1986).

[139] Kirsch, A., and Kress, R: A numerical method for an inverse scattering prob­lem. In: Inverse Problems (Engl and Groetsch, eds). Academic Press, Orlando, 279-290 (1987).

[140] Kirsch, A., and Kress, R: An optimization method in inverse acoustic scatter­ing. In: Boundary elements IX, Vol 9. Fluid Flow and Potential Applications (Brebbia et ai, eds). Springer-Verlag, Berlin Heidelberg New York, 3-18 (1987).

Page 8: References - Springer978-3-662-03537-5/1.pdf · References 321 [58] Colton, D., and Monk, P.: A modified dual space method for solving the electro magnetic inverse scattering problem

References 325

[141] Kirsch, A., and Kress, R: Uniqueness in inverse obstacle scattering. Inverse Problems 9, 285-299 (1993).

[142] Kirsch, A., Kress, R, Monk, P., and Zinn, A.: Two methods for solving the inverse acoustic scattering problem. Inverse Problems 4, 749-770 (1988).

[143] Kirsch, A., and Monk, P.: An analysis of the coupling of finite element and Nystrom methods in acoustic scattering. IMA Jour. Numerical Anal. 14, 523-544 (1994).

[144] Kirsch, A., and Piiiviirinta, L.: On recovering obstacles inside inhomogeneities. Math. Meth. in the Appl. Sci. (to appear).

[145} Kleinman, R, and van den Berg, P.: A modified gradient method for two di­mensional problems in tomography. J. Compo Appl. Math. 42, 17-35 (1992).

[146] Kleinman, R, and van den Berg, P.: An extended range modified gradient technique for profile inversion. Radio Science 28, 877-884 (1993).

[147} Kleinman, R., and van den Berg, P.: Two-dimensional location and shape re­construction. Radio Science 29, 1157-1169 (1994).

[148} Knauff, W., and Kress, R.: On the exterior boundary value problem for the time-harmonic Maxwell equations. J. Math. Anal. Appl. 72, 215-235 (1979).

[149] Kravaris, C., and Seinfeld, J.H.: Identification of parameters in distributed pa­rameter systems by regularization. SIAM J. Control Opt. 23, 217-241 (1985).

[150] Kress, R: Ein ableitungsfreies Restglied fur die trigonometrische Interpolation periodischer analytischer F'unktionen. Numer. Math. 16, 389-396 (1971).

[151] Kress, R.: On boundary integral methods in stationary electromagnetic reflec­tion. In: Ordinary and Partial Differential Equations (Everitt and Sleeman, eds). Springer-Verlag Lecture Notes in Mathematics 846, Berlin Heidelberg New York, 210-226 (1980).

[152] Kress, R: Minimizing the condition number of boundary integral operators in acoustic and electromagnetic scattering. Q. Jl. Mech. appl. Math. 38, 323-341 (1985).

[153} Kress, R: On the boundary operator in electromagnetic scattering. Proc. Royal Soc. Edinburgh 103A, 91-98 (1986).

[154] Kress, R: On the low wave number asymptotics for the two-dimensional exterior Dirichlet problem for the reduced wave equation. Math. Meth. in the Appl. Sci. 9, 335-341 (1987).

[155] Kress, R.: Linear Integral Equations. Springer-Verlag, Berlin Heidelberg New York 1989.

[156] Kress, R: A Nystrom method for boundary integral equations in domains with corners. Numer. Math. 58, 145-161 (1990).

[157] Kress, R: Boundary integral equations in time-harmonic acoustic scattering. Mathl. Comput. Modelling 15, 229-243 (1991).

[158} Kress, R: A Newton method in inverse obstacle scattering. In: Inverse Prob­lems in Engineering Mechanics (Bui et aI, eds). Balkema, Rotterdam 425-432, (1994).

[159] Kress, R.: On the numerical solution of a hypersingular integral equation in scattering theory. J. Compo Appl. Math. 61, 345-360 (1995).

[160] Kress, R: Inverse scattering from an open arc. Math. Meth. in the Appl. Sci. 18, 267-293 (1995).

[161} Kress, R: Inverse scattering from a crack. Jour. on Inverse and Ill-Posed Prob­lems 3, 305-313 (1995).

Page 9: References - Springer978-3-662-03537-5/1.pdf · References 321 [58] Colton, D., and Monk, P.: A modified dual space method for solving the electro magnetic inverse scattering problem

326 References

[162] Kress, R: Integral equation methods in inverse obstacle scattering. Engineering Anal. with Boundary Elements 15, 171-179 (1995).

[163] Kress, R: Inverse elastic scattering from a crack. Inverse Problems 12, 667-684 (1996).

[164] Kress, R: Integral equation methods in inverse acoustic and electromagnetic scattering. In: Boundary Integral Formululations for Inverse Analysis (Ingham and Wrobel, eds). Computational Mechanics Publications, Southampton, 67-92 (1997).

[165) Kress, R, and Rundell, W.: A quasi-Newton method in inverse obstacle scat­tering. Inverse Problems 10, 1145-1157 (1994).

[166] Kress, R, and Rundell, W.: Inverse obstacle scattering with modulus of the far field pattern as data. In: Inverse Problems in Medical Imaging and Nondestruc­tive Testing (Engl et ai, eds). Springer-Verlag, Wien, 75-92 (1997).

[167] Kress, R, and Rundell, W.: Inverse obstacle scattering using reduced data. SIAM J. Appl. Math. (to appear).

[168) Kress, R., and Zinn, A.: Three dimensional reconstructions in inverse obsta­cle scattering. In: Mathematical Methods in Tomography (Hermans et ai, eds). Springer-Verlag Lecture Notes in Mathematics 1491, Berlin Heidelberg New York, 125-138 (1991).

[169] Kress, R., and Zinn, A.: Three dimensional reconstructions from near-field data in obstacle scattering. In: Inverse Problems in Engineering Sciences (Yamaguti et aI, eds). ICM-90 Satellite Conference Proceedings, Springer-Verlag, Tokyo Berlin Heidelberg, 43-51 (1991).

[170] Kress, R, and Zinn, A.: On the numerical solution of the three dimensional inverse obstacle scattering problem. J. Compo Appl. Math. 42, 49-61 (1992).

[171] Kristensson, G., and Vogel, C.R: Inverse problems for acoustic waves using the penalised likelihood method. Inverse Problems 2, 461-479 (1986).

[172] Kussmaul, R: Ein numerisches Verfahren zur Losung des Neumannschen Aussenraumproblems fUr die Helmholtzsche Schwingungsgleichung. Computing 4, 246-273 (1969).

[173] Langenberg, K.J.: Applied inverse problems for acoustic, electromagnetic and elastic wave scattering. In: Basic Methods of Tomography and Inverse Problems (Sabatier, ed). Adam Hilger, Bristol and Philadelphia, 127-467 (1987).

[174] Lax, P.D.: Symmetrizable linear transformations. Comm. Pure Appl. Math. 1, 633-647 (1954).

[175] Lax, P.D., and Phillips, R.S.: Scattering Theory. Academic Press, New York 1967.

[176) Lebedev, N.N.: Special Functions and Their Applications. Prentice-Hall, Engle­wood Cliffs 1965.

[177] Leis, R: Zur Dirichletschen Randwertaufgabe des Aussenraums der Schwin­gungsgleichung. Math. Z. 90, 205-211 (1965)

[178) Leis, R: Initial Boundary Value Problems in Mathematical Physics. John Wiley, New York 1986.

[179) Levine, L.M.: A uniqueness theorem for the reduced wave equation. Comm. Pure Appl. Math. 11, 147-176 (1964).

[180) Lin, T.C.: The numerical solution of Helmholtz's equation for the exterior Dirichlet problem in three dimensions. SIAM J. Numer. Anal. 22, 670-686 (1985).

Page 10: References - Springer978-3-662-03537-5/1.pdf · References 321 [58] Colton, D., and Monk, P.: A modified dual space method for solving the electro magnetic inverse scattering problem

References 327

(181) Louis, A.K.: Inverse und schlecht gestellte Probleme. Teubner, Stuttgart 1989. (182) Magnus, W.: Fragen der Eindeutigkeit und des Verhaltens im Unendlichen fiir

Losungen von 6.u + k 2u = O. Abh. Math. Sem. Hamburg 16, 77-94 (1949). [183) Maponi, P., Misici, L., and Zirilli, F.: An inverse problem for the three dimen­

sional vector Helmholtz equation for a perfectly conducting obstacle. Computers Math. Applic. 22, 137-146 (1991).

[184) Maponi, P., Recchioni, M.C., and Zirilli, F.: Three-dimensional time-harmonic electromagnetic inverse scattering: the reconstruction of the shape and the impedance of an obstacle. Computers Math. Appl. 31, 3, 1-7 (1996).

[185) Martensen, E.: Uber eine Methode zum raumlichen Neumannschen Problem mit einer Anwendung fiir torusartige Berandungen. Acta Math. 109, 75-135 (1963).

[186) Martensen, E.: Potentialtheorie. Teubner-Verlag, Stuttgart 1968. [187) Mautz, J.R., and Harrington, R.F.: A combinded-source solution for radiating

and scattering from a perfectly conducting body. IEEE Trans. Ant. and Prop. AP-27, 445-454 (1979).

[188) McLaughlin, J., and Polyakov, P.: On the uniqueness of a spherically symmetric speed of sound from transmission eigenvalues. J. Difr. Equations 107, 351-382 (1994).

[189) Mikhlin, S.G.: Mathematical Physics, an Advanced Course. North-Holland, Am­sterdam 1970.

[190) Misici, L. and Zirilli, F.: An inverse problem for the three dimensional Helmholtz equation with Neumann or mixed boundary conditions. In: Mathematical and Numerical Aspects of Wave Propagation Phenomena (Cohen et aI, eds). SIAM, Philadelphia, 497-508 (1991).

[191) Monch, L.: A Newton method for solving the inverse scattering problem for a sound-hard obstacle. Inverse Problems 12, 309-323 (1996).

(192) Monch, L.: On the inverse acoustic scattering problem from an open arc: the sound-hard case. Inverse Problems 13, 1379-1392 (1997).

[193) More, J.J.: The Levenberg-Marquardt algorithm, implementatiion and theory. In: Numerical analysis (Watson, ed). Springer-Verlag Lecture Notes in Mathe­matics 630, Berlin Heidelberg New York, 105-116 (1977).

(194) Morozov, V.A.: On the solution of functional equations by the method of reg­ularization. Soviet Math. Doklady 7, 414-417 (1966) (English translation).

[195) Morozov, V.A.: Choice of parameter for the solution of functional equations by the regularization method. Soviet Math. Doklady 8, 1000-1003 (1967) (English translation) .

[196) Morozov, V.A.: Methods for Solving Incorrectly Posed Problems. Springer­Verlag, Berlin Heidelberg New York 1984.

[197) Morse, P.M., and Ingard, K.U.: Linear acoustic theory. In: Encyclopedia of Physics (Fliigge, ed). Springer-Verlag, Berlin Heidelberg New York, 1-128 (1961).

(198) Miiller, C.: Zur mathematischen Theorie elektromagnetischer Schwingungen. Abh. deutsch. Akad. Wiss. Berlin 3, 5-56 (1945/46).

[199) Miiller, C.: Uber die Beugung elektromagnetischer Schwingungen an endlichen homogenen Korpern. Math. Ann. 123, 345-378 (1951)

[200) Miiller, C.: Uber die ganzen Losungen der Wellengleichung. Math. Annalen 124, 235-264 (1952).

Page 11: References - Springer978-3-662-03537-5/1.pdf · References 321 [58] Colton, D., and Monk, P.: A modified dual space method for solving the electro magnetic inverse scattering problem

328 References

[201J Muller, C.: Zur Methode der Strahlungskapazitiit von H. Weyl. Math. Z. 56, 80-83 (1952).

[202J Muller, C.: Randwertprobleme der Theorie elektromagnetischer Schwingungen. Math. Z. 56, 261-270 (1952).

[203J Muller, C: On the behavior of solutions of the differential equation..1u = F(x, u) in the neighborhood of a point. Comm. Pure Appl. Math. 7,505-515 (1954).

[204J MUller, C.: Foundations of the Mathematical Theory of Electromagnetic Waves. Springer-Verlag, Berlin Heidelberg New York 1969.

[205J Murch, R.D., Tan, D.G.H., and Wall, D.J.N.: Newton-Kantorovich method ap­plied to two-dimensional inverse scattering for an exterior Helmholtz problem. Inverse Problems 4,1117-1128 (1988).

[206J Nachman, A.: Reconstructions from boundary measurements. Annals of Math. 128, 531-576 (1988).

[207J Natterer, F.: The Mathematics of Computerized Tomography. Teubner, Stutt­gart and Wiley, New York 1986.

[208J Natterer, F., and Wubbeling, F.: A propagation-backpropagation method for ultrasound tomography. Inverse Problems 11, 1225-1232 (1995).

[209J Nestel, F.S.: Zur numerischen Losung einiger Integralgleichungen auf der Sphiire. Dissertation, Erlangen 1996.

[21OJ Newton, R.G.: Scattering Theory of Waves and Particles. Springer-Verlag, Berlin Heidelberg New York 1982.

[211J Newton, R.G.: Inverse Schrodinger Scattering in Three Dimensions. Springer­Verlag, Berlin Heidelberg New York 1989.

[212J Novikov, R.: Multidimensional inverse spectral problems for the equation - t::. 'I/J + (v (x) - Eu(x»'I/J = O. Translations in Func. Anal. and its Appl. 22, 263-272 (1988).

[213J Ochs, R.L.: The limited aperture problem of inverse acoustic scattering: Dirich­let boundary conditions. SIAM J. Appl. Math. 47, 1320-1341 (1987).

[214J Ola, P .. , Piiiviirinta, L., and Somersalo, E.: An inverse boundary value problem in electrodynamics. Duke Math. Jour. 70, 617-653 (1993).

[215J Olver, F.W.J: Asymptotics and Special Functions. Academic Press, New York 1974.

[216J Onishi, K., Ohura, Y., and Kobayashi, K.: Inverse scattering in 2D for shape identification by BEM. In: Boundary elements XII, Vol 2. Applications in Fluid Mechanics and Field Problems (Tanaka et aI, eds). Springer-Verlag, Berlin Hei­delberg New York, 435-446 (1990).

[217] Panich, 0.1.: On the question of the solvability of the exterior boundary-value problems for the wave equation and Maxwell's equations. Usp. Mat. Nauk 20A, 221-226 (1965) (in Russian).

[218] Pironneau, 0.: Optimal Shape Design for Elliptic Systems. Springer-Verlag, Berlin Heidelberg New York 1984.

[219] Potthast, R.: Frechet differentiability of boundary integral operators in inverse acoustic scattering. Inverse Problems 10, 431-447 (1994).

[220] Potthast, R.: Fhkhet Differenzierbarkeit von Randintegraloperatoren und Randwertproblemen zur Helmholtzgleichung und den zeitharmonischen Max­wellgleichungen. Dissertation, Gottingen 1994.

Page 12: References - Springer978-3-662-03537-5/1.pdf · References 321 [58] Colton, D., and Monk, P.: A modified dual space method for solving the electro magnetic inverse scattering problem

References 329

[221] Potthast, R.: Fnkhet differentiability of the solution to the acoustic Neumann scattering problem with respect to the domain. Jour. on Inverse and Ill-posed Problems 4, 67-84 (1996) .

[222] Potthast, R.: Domain derivatives in electromagnetic scattering. Math. Meth. in the Appl. Sci. (to appear).

[223] Potthast, R.: A fast new method to solve inverse scattering problems. Inverse Problems 12, 731-742 (1996).

[224] Potthast, R.: A fast new method in inverse scattering. In: Proceedings of Con­ference on Inverse Problems in Engineering: Theory and Practice. Le Croisic, France, (to appear).

[225] Potthast, R.: On a concept of uniqueness in inverse scattering for a finite number of incident waves. SIAM J. Appl. Math. (to appear).

[226] Protter, M.H.: Unique continuation for elliptic equations. Trans. Amer. Math. Soc. 95, 81-90, (1960).

[227] Protter, M.H., and Weinberger, H.F.: Maximum Principles in Differential Equa­tions. Prentice-Hall, Englewood Cliffs 1967.

(228) Ramm, A.G.: Scattering by Obstacles. D. Reidel Publishing Company, Dor­drecht 1986.

[229] Ramm, A.G.: On completeness of the products of harmonic functions. Proc. Amer. Math. Soc. 98, 253-256 (1986).

[230] Ramm, A.G.: Recovery of the potential from fixed energy scattering data. In­verse Problems 4, 877-886 (1988).

[231] Ramm, A.G.: Symmetry properties of scattering amplitudes and applications to inverse problems. J. Math. Anal. Appl. 156, 333-340 (1991).

[232] Ramm, A.G.: Multidimensional Inverse Scattering Problems. Longman-Wiley, New York 1992.

(233) Ramm, A.G.: Scattering amplitude as a function of the obstacle. Appl. Math. Lett. 5, 85-87 (1993).

[234] Reed, M., and Simon, B.: Scattering Theory. Academic Press, New York 1979. [235] Rellich, F.: Uber das asymptotische Verhalten der Losungen von 6u + Au == 0

in unendlichen Gebieten. Jber. Deutsch. Math. Verein. 53, 57-65 (1943). [236] Ringrose, J.R.: Compact Non-Self Adjoint Operators. Van Nostrand Reinhold,

London 1971. [237] Roger, A.: Newton Kantorovich algorithm applied to an electromagnetic inverse

problem. IEEE Trans. Ant. Prop. AP-29, 232-238 (1981). [238] Ruland, C.: Ein Verfahren zur Losung von (6 + k 2 )u = 0 in Aussengebieten

mit Ecken. Applicable Analysis 7, 69-79 (1978). [239) Rynne, B.P., and Sleeman, B.D.: The interior transmission problem and inverse

scattering from inhomogeneous media. SIAM J. Math. Anal. 22, 1755-1762 (1991).

[240] Schatz, A.H.: An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math. Compo 28, 959-962 (1974).

[241] Schechter, M.: Principles of Functional Analysis. Academic Press, New York 1971.

[242] Seidman, T.L, and Vogel, C.R.: Well-posedness and convergence of some regu­larization methods for nonlinear ill-posed problems. Inverse Problems 5, 277-238 (1989).

Page 13: References - Springer978-3-662-03537-5/1.pdf · References 321 [58] Colton, D., and Monk, P.: A modified dual space method for solving the electro magnetic inverse scattering problem

330 References

[243] Silver, S.: Microwave Antenna Theory and Design. M.I.T. Radiation Laboratory Series Vol. 12, McGraw-Hill, New York 1949.

[244] Sommerfeld, A.: Die Greensche Funktion der Schwingungsgleichung. Jber. Deutsch. Math. Verein. 21, 309-353 (1912).

[245] Stratton, J .A., and Chu, L.J.: Diffraction theory of electromagnetic waves. Phys. Rev. 56, 99-107 (1939).

[246] Sun, Z., and Uhlmann, G.: An inverse boundary value problem for Maxwell's equations. Arch. Rational. Mech. Anal. 119, 71-93 (1992).

[247] Sun, Z., and Uhlmann, G.: Recovery of singularities for formally determined inverse problems. Commun. Math. Phys. 153, 431-445 (1993).

[248] Sylvester, J. and Uhlmann, G.: A global uniqueness theorem for an inverse boundary value problem. Ann. of Math. 125, 153-169 (1987}).

[249] Tabbara, W., Duchene, B., Pichot, Ch., Lesselier, D., Chommeloux, L., and Joachimowicz, N.: Diffraction tomography: contribution to the analysis of some applications in microwaves and ultrasonics. Inverse Problems 4,305-331 (1988).

[250] Tikhonov, A.N.: On the solution of incorrectly formulated problems and the regularization method. Soviet Math. Doklady 4, 1035-1038 (1963) (English translation) .

[251] Tikhonov, A.N.: Regularization of incorrectly posed problems. Soviet Math. Doklady 4, 1624-1627 (1963) (English translation).

[252] Tikhonov, A.N., and Arsenin, V.Y.: Solutions of fll-posed Problems. Winston and Sons, Washington 1977.

[253] Tobocman, W.: Inverse acoustic wave scattering in two dimensions from im­penetrable targets. Inverse Problems 5, 1131-1144 (1989).

[254] Tracy, M.L., and Johnson, S.A.: Inverse scattering solutions by a sinc basis, multiple source, moment method - part II: numerical evaluations. Ultrasonic Imaging 5, 376-392 {1983}.

[255] Treves, F.: Basic Linear Partial Differential Equations. Academic Press, New York 1975.

[256] van Bladel, J.: Electromagnetic Fields. Hemisphere Publishing Company, Wash­ington 1985.

[257] Vekua, LN.: Metaharmonic functions. Trudy Tbilisskogo matematichesgo Insti­tuta 12,105-174 (1943).

[258] Wang, S.L., and Chen, Y.M.: An efficient numerical method for exterior and interior inverse problems of Helmholtz equation. Wave Motion 13, 387-399 (1991).

[259] Wang, Y.M., and Chew, W.C.: An iterative solution of two dimensional electro­magnetic inverse scattering problems. Inter. Jour. Imaging Systems and Tech­nology 1, 100-108 (1989).

[260] Week, N.: Klassische Losungen sind auch schwache Losungen. Arch. Math. 20, 628-637 {1969}.

[261] Werner, P.: Zur mathematischen Theorie akustischer Wellenfelder. Arch. Ra­tional Mech. Anal. 6, 231-260 (1961).

[262] Werner, P.: Randwertprobleme der mathematischen Akustik. Arch. Rational Mech. Anal. 10, 29-66 (1962).

[263] Werner, P. : On the exterior boundary value problem of perfect reflection for stationary electromagnetic wave fields. J. Math. Anal. Appl. 7, 348-396 (1963).

Page 14: References - Springer978-3-662-03537-5/1.pdf · References 321 [58] Colton, D., and Monk, P.: A modified dual space method for solving the electro magnetic inverse scattering problem

References 331

[264] Werner, P.: Low frequency asymptotics for the reduced wave equation in two­dimensional exterior spaces. Math. Meth. in the Appl. Sc. 8, 134-156 (1986).

[265] Weston, V.H.: Multifrequency inverse problem for the reduced wave equation with sparse data. J. Math. Physics 25, 1382-1390 (1984).

[266] Weston, V.H.: Multifrequency inverse problem for the reduced wave equation: resolution cell and stability. J. Math. Physics 25, 3483-3488 (1984).

[267] Weston, V.H., and Boerner, W.M.: An inverse scattering technique for electro­magnetic bistatic scattering. Canadian J. Physics 47, 1177-1184 (1969).

[268] Weyl, H.: Kapazitat von Strahlungsfeldern. Math. Z. 55, 187-198 (1952). [269] Weyl, H.: Die naturlichen Randwertaufgaben im Aussenraum fUr Strahlungs­

felder beliebiger Dimensionen und beliebigen Ranges. Math. Z. 56, 105-119 (1952).

[270] Wienert, L.: Die numerische Approximation von Randintegraloperatoren fUr die Helmholtzgleichung im rn.3. Dissertation, Gottingen 1990.

[271] Wilcox, C.H.: A generalization of theorems of Rellich and Atkinson. Proc. Amer. Math. Soc. 7, 271-276 (1956).

[272] Wilcox, C.H.: An expansion theorem for electromagnetic fields. Comm. Pure Appl. Math. 9, 115-134 (1956).

[273] Wilcox, C.H.: Scattering Theory for the d'Alembert Equation in Exterior Do­mains. Springer-Verlag Lecture Notes in Mathematics 442, Berlin Heidelberg New York, 1975.

[274] Wloka, J.: Partial Differential Equations. University Press, Cambridge 1987. [275] Zinn, A.: On an optimisation method for the full- and limited-aperture problem

in inverse acoustic scattering for a sound-soft obstacle. Inverse Problems 5, 239-253 (1989).

[276] Zinn, A.: Ein Rekonstruktionsverfahren fur ein inverses Streuproblem bei der zeitharmonischen Wellengleichung. Dissertation, Gottingen 1990.

[277] Zinn, A.: The numerical solution of an inverse scattering problem for time­harmonic acoustic waves. In: Inverse Problems and Imaging (Roach, ed). Pit­man Research Notes in Mathematics Series 245. Longman, London, 242-263 (1991).

Page 15: References - Springer978-3-662-03537-5/1.pdf · References 321 [58] Colton, D., and Monk, P.: A modified dual space method for solving the electro magnetic inverse scattering problem

Index

absorbing medium 214 acoustic obstacle scattering 46 acoustic waves 13 addition theorem 27, 30, 67

vector 185 adiabatic hypothesis 14 analytic 235 analytic Riesz-F'redholm theory 236 approximation of scattered field 134, 203 associated Legendre equation 24 associated Legendre functions 24 asymptotics of Hankel functions 30, 66

Bessel differential equation 64 spherical 28

Bessel functions 64 spherical 28

Bojarski identity 114 Born approximation 223, 273 boundary element method 78

combined double- and single-layer po-tential48

compact imbedding 40 complete set 55 completely continuous operator 86 completeness of far fields 56, 188, 191,

226,258 conductor 251 coupled finite element and boundary el­

ement 246

dielectric 251 Dirichlet eigenvalue 56 Dirichlet problem

exterior 46 interior 109

Dirichlet to Neumann map 49

discrepancy principle 89, 95, 99 domain of class C k 16 double-layer potential 39 dual space method 146, 206, 280, 290

modified 285, 296

eigenvalue Dirichlet 56 Maxwell 175 transmission 226

electric dipole 163 electric far field pattern 164 electric to magnetic boundary map 175 electromagnetic Herglotz pair 187 electromagnetic obstacle scattering 172 entire solutions 20, 163 equation of continuity 13 Euler's equation 13 exterior Dirichlet Problem 46 exterior impedance problem 285

electromagnetic 265 exterior Maxwell Problem 172 exterior Neumann problem 50

far field equation 315 far field operator

acoustic 57, 229 electric 190

far field pattern 20, 223 electric 164 magnetic 164

function spaces Ck(D) 16 Ck(tJ) 17 Co,Q(G) 40 C1,Q(G) 40 Ck,Q(G) 214 T2(fl) 177

Page 16: References - Springer978-3-662-03537-5/1.pdf · References 321 [58] Colton, D., and Monk, P.: A modified dual space method for solving the electro magnetic inverse scattering problem

Td(aD) 169 T~,a(aD) 169 T~,a(aD) 170

fundamental solution 16, 66 Funk-Heeke formula 32

graded mesh 72 Green's formula 17 Green's theorem 17

vector 155

Hankel function 65 spherical 28

Helmholtz equation 15 vector 160

Helmholtz representation 18 Herglotz pair 187 Herglotz wave function 55 Holder continuous 40 Holder space 20, 214 holomorphic

strongly 233 weakly 233

Huygen's principle 53, 176

ill-posed problem 86 mildly 92 severely 92 nonlinear 102

impedance boundary condition 15, 155 impedance problem

exterior 265, 285 interior 287, 296

improperly posed problem 86 integral operators

F 57, 135, 145, 190, 204, 207, 229 H 147, 209 K 41 K'42 M 167 M'171 M 204 N 170 S 41, 135 T 42 Te 256 Tm 218, 312 TO" 292

interior Dirichlet problem 109

Index 333

interior impedance problem 287 electromagnetic 296

interior transmission problem 225 electromagnetic 257 weak solution 292, 312

interior Maxwell problem 208 inverse crimes 133, 304 inverse medium problem 272

electromagnetic 290

Jacobi-Anger expansion 32, 67 jump relations 39

in L2 45,172 vector 165

Karp's theorem 112, 197 Kirchhoff approximation 53

Lax's theorem 43 Legendre differential equation 23

associated 23 Legendre polynomials 23 Lidski's theorem 229 limited-aperture problem 141 Lippmann-Schwinger equation 216 Lyapunov boundaries 52

magnetic dipole 163 magnetic far field pattern 164 mapping properties in Holder spaces 42 mapping properties in Sobolev spaces 44 Maxwell eigenvalue 175 Maxwell equations 154 Maxwell problem

exterior 172 interior 208

monotonicity of eigenvalues 108

near field 140 Neumann function 65

spherical 28 Neumann problem 50 Newton's method 131 Nystrom method 69

in lR3 79 on a graded mesh 76

penalty method 98 perfect conductor 155 physical optics approximation 53, 113

Page 17: References - Springer978-3-662-03537-5/1.pdf · References 321 [58] Colton, D., and Monk, P.: A modified dual space method for solving the electro magnetic inverse scattering problem

334 Index

Picard's theorem 92 potential

double-layer 39 single-layer 39 vector 165 volume 214

projection theorem 311 properly posed problem 86

quasi-solution 100 nonlinear 104

radiating solutions 19, 160 radiation condition

Silver-Miiller 160 Sommerfeld 16, 19, 66

reciprocity relation acoustic 54, 223, 285 electromagnetic 186, 257, 269

refractive index 214, 251 regularization methods 87 regularization parameter 87 regularization scheme 87 regularization strategy 89

regular 89 Rellich's lemma 32 resonance region 105 resonance states 4

scattering amplitude 20 scattering operator 233 Silver-Miiller radiation condition 160 single-layer potential 39 singular system 91 singular values 90

decomposition 91 Sommerfeld radiation condition 16, 19,

66 sound-hard obstacle 15 sound-soft obstacle 15 spectral cut-off 94 spectral decomposition 90 speed of sound 14 spherical Bessel differential equation 28

spherical Bessel functions 28 spherical Hankel functions 28 spherical harmonics 21 spherical Neumann functions 28 spherical vector wave functions 180 spherical wave functions 30, 67 spherically stratified medium 226, 259 starlike surface 115 state equation 14 Stratton-Chu formula 156, 158, 160 strongly holomorphic 233 superposition of incident fields 146, 206 surface divergence theorem 168 surface divergence 168 surface gradient 167 surface of class C k 16

Tikhonov functional, 98 Tikhonov regularization 97

nonlinear 103 trace class operator 229 transmission conditions 15 transmission eigenvalue 226 transmission problem 15, 155

interior 225, 312 interior electromagnetic 257

trial and error 89

unique continuation principle 219, 255

vector addition theorem 185 vector Green's theorem 155 vector Helmholtz equation 160 vector jump relations 165 vector potential 165 vector spherical harmonics 177 volume potential 214

wave equation 14 wave number 15, 154 weakly holomorphic 233 well-posed problem 86 Wronskian 29,65