6
Revista Latinoamericana de Metalurgia y Materiales, Vol.23 N°1, 35 - 40. 35 RELATIONSHIP BETWEEN PARTICLE SIZE AND MANUFACTURING PROCESSING AND SINTERED CHARACTERISTICS OF IRON POWDERS F. Sánchez', A. M. Bolarín', P. Molera 2 , J. E. Mendoza' and M. Ocampo' l. Centro de Investigaciones en Materiales y Metalurgia, Universidad Autónoma del Estado de Hidalgo.Carretera Pachuca Tulancingo, Km 4.5, Ciudad Universitaria, CiP: 42000, Pachuca, Hidalgo, México. [email protected] 2.Departamento de Ingeniería Química y Metalurgia, Facultad de Química, Universidad de Barcelona, Marti i Franqués, 1, CP. 08903, Barcelona, España Abstract The effect of particle size distribution on physical properties of powder mixtures, of green compacts and of sintered samples hasbeen studied. In the case of powder mixtures, the evaluated properties were flowability, apparent density, specific surface andcompressibility. In green compacts porosity, roughness and green strength were evaluated, and in sintered samples grain sizeand transverse rupture strength were measured. In order to obtain samples with different average particle size, water atomizediron powders were sieved and separating it with sieves ranging from +44 to ~150 um Flowability and compressibility decrease as average particle size does. On the opposite side, green strength and transverse rupturestrength (TRS) increase as particle size diminishes. These effects were associated with changes in morphology and specificsurface of the studied powder mixtures. Mathematical expressions relating average particle size with green strength, roughnessand ultimate tensile strength were deduced from the experimental results. The results show that an appropriate selectionof average particle size for the preparation of the powder mixture is useful in order to obtain samples with suitable physicalproperties. Keywords: particle size distribution, iron powder, apparent density, green strength and transverse rupture strength. Resumen Eneste trabajo se ha estudiado la influencia dela distribución de tamaños de partícula de polvo de hierro sobre propiedades dela mezcla tales como: fluencia, densidad aparente, superficie específica y compresibilidad, de los compactos en verde (porosidadyresistencia en verde) y finalmente de los compactos sinterizados (tamaño de grano metalográfico y la resistencia alaruptura transversal (TRS). Para llevar a cabo el desarrollo experimental se ha cribado polvo de hierro atomizado con agua, ASe 100.29 de Hoganas Co, separándolo en tamices que oscilan entre +44¡.Lmy -150¡.Lm. Los resultados revelan que las distribucionesde tamaños de partícula más pequeños empeoran la fluencia y la compresibilidad pero mejoran la resistencia en verdey la TRS. Lo anterior se asocia a las diferencias de morfología y de superficie específica de las mezclas estudiadas. Adicionalmente,se obtuvieron diferentes expresiones matemáticas que permiten establecer el comportamiento de la rugosidad deloscompactos, la resistencia máxima y la resistencia en verde respecto al tamaño medio de partícula. Se concluye que una adecuadaselección del tamaño de partícula para preparar las mezclas de polvo, puede ayudar aobtener una pieza sinterizada con laspropiedades necesarias para su aplicación final ya que como se muestra en este estudio, ésta es una característica que afecta significativamentea cada una de las propiedades evaluadas. Palabras clave: distribución de tamaño de partícula, polvo de hierro, densidad aparente, resistencia en verde y resistencia a la ruptura transverse.

RELATIONSHIP BETWEEN PARTICLE SIZE AND … Art-03V23N1-p… · Revista Latinoamericana de Metalurgia y Materiales, Vol.23 N°1, 35 - 40. 35 RELATIONSHIP BETWEEN PARTICLE SIZE AND

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: RELATIONSHIP BETWEEN PARTICLE SIZE AND … Art-03V23N1-p… · Revista Latinoamericana de Metalurgia y Materiales, Vol.23 N°1, 35 - 40. 35 RELATIONSHIP BETWEEN PARTICLE SIZE AND

Revista Latinoamericana de Metalurgia y Materiales, Vol.23 N°1, 35 - 40. 35

RELATIONSHIP BETWEEN PARTICLE SIZE AND MANUFACTURINGPROCESSING AND SINTERED CHARACTERISTICS OF IRON POWDERS

F. Sánchez', A. M. Bolarín', P. Molera2, J. E. Mendoza' and M. Ocampo'

l. Centro de Investigaciones en Materiales y Metalurgia, Universidad Autónoma del Estado deHidalgo.Carretera Pachuca Tulancingo, Km 4.5, Ciudad Universitaria, CiP: 42000, Pachuca, Hidalgo,

México. [email protected] de Ingeniería Química y Metalurgia, Facultad de Química, Universidad de Barcelona,

Marti i Franqués, 1, CP. 08903, Barcelona, España

Abstract

The effect of particle size distribution on physical properties of powder mixtures, of green compacts and of sintered sampleshasbeen studied. In the case of powder mixtures, the evaluated properties were flowability, apparent density, specific surfaceandcompressibility. In green compacts porosity, roughness and green strength were evaluated, and in sintered samples grainsizeand transverse rupture strength were measured. In order to obtain samples with different average particle size, wateratomizediron powders were sieved and separating it with sieves ranging from +44 to ~150 um

Flowability and compressibility decrease as average particle size does. On the opposite side, green strength and transverserupturestrength (TRS) increase as particle size diminishes. These effects were associated with changes in morphology andspecificsurface of the studied powder mixtures. Mathematical expressions relating average particle size with green strength,roughnessand ultimate tensile strength were deduced from the experimental results. The results show that an appropriateselectionof average particle size for the preparation of the powder mixture is useful in order to obtain samples with suitablephysicalproperties.

Keywords: particle size distribution, iron powder, apparent density, green strength and transverse rupture strength.

Resumen

Eneste trabajo se ha estudiado la influencia dela distribución de tamaños de partícula de polvo de hierro sobre propiedadesdela mezcla tales como: fluencia, densidad aparente, superficie específica y compresibilidad, de los compactos en verde(porosidadyresistencia en verde) y finalmente de los compactos sinterizados (tamaño de grano metalográfico y la resistenciaalaruptura transversal (TRS). Para llevar a cabo el desarrollo experimental se ha cribado polvo de hierro atomizado con agua,ASe 100.29 de Hoganas Co, separándolo en tamices que oscilan entre +44¡.Lmy -150¡.Lm. Los resultados revelan que lasdistribucionesde tamaños de partícula más pequeños empeoran la fluencia y la compresibilidad pero mejoran la resistencia enverdey la TRS. Lo anterior se asocia a las diferencias de morfología y de superficie específica de las mezclas estudiadas.Adicionalmente,se obtuvieron diferentes expresiones matemáticas que permiten establecer el comportamiento de la rugosidaddeloscompactos, la resistencia máxima y la resistencia en verde respecto al tamaño medio de partícula. Se concluye que unaadecuadaselección del tamaño de partícula para preparar las mezclas de polvo, puede ayudar a obtener una pieza sinterizada conlaspropiedades necesarias para su aplicación final ya que como se muestra en este estudio, ésta es una característica que afectasignificativamentea cada una de las propiedades evaluadas.

Palabras clave: distribución de tamaño de partícula, polvo de hierro, densidad aparente, resistencia en verde y resistenciaa la ruptura transverse.

Page 2: RELATIONSHIP BETWEEN PARTICLE SIZE AND … Art-03V23N1-p… · Revista Latinoamericana de Metalurgia y Materiales, Vol.23 N°1, 35 - 40. 35 RELATIONSHIP BETWEEN PARTICLE SIZE AND

36 F. Sánche: y col. / Revista Latinoamericana de Metalurgia y Materiales.

1. Introduction

Powders cornmonly used in powder metallurgy are char-acterized by a given partic1e size distribution. This is se-lected as a function of tbe consolidation process and of thedesired properties of the sintered sample [1]. Tbe manufac-turing process of a sample by powder metallurgy is condi-tioned by the properties of tbe initial powders. One of themost relevant properties is partic1e size distribution. Proper-ties such as apparent density, flowability, specific area andcompressibility depend on partiele size distribution [2]. Ad-ditionally, in green compacts the properties such as poros-ity, roughness and green strengtb also depend on partic1esize distribution. The same is for transverse rupture strengtb(TRS) in sintered samples.

The effect of partic1e size distribution on properties ofpowder mixtures [3], of green compacts [4] and of sinteredsamples [5] has been previously reported. However, in-deptbstudies on tbis subject are still needed. It has been reported[6] tbat small partieles generate a lot of inter-partic1e friction.Tbis restricts tbe powders flow rateo AIso, apparent densityof small powders is higher tban that shown by big powdersof the same material. In the compaction process tbe use ofsmall metallic partic1es originates problems during the press-ing step. Some of tbese are: longer times to fill the matrix,damages due to wear in die and tooling elements, and as aresult, a decrease in productivity [7]. These problems are theresult of the increase in specific surface of the powders.Higher surface areas tben increase friction between powderand matrix elements and inter-partiele friction.

It has been reported that higber green strength of com-pacts is obtained with smaller partic1e size [8]. This is be-cause a higber number of plastically deformed zones is ob-tained (physical union between or among partieles). How-ever, tbe opposite conelusion has been also reported [9].According to tbese works, tbe morphology of smaller par-tieles is more spherical and tben weaker bonds are obtained.

The use of small partic1e size is based in the improve-ment of tbe mecbanicaI properties of tbe sintered sample[10]. Higber surface area increases the number of bondsamong the partic1es. Tben, a more efficient solid state diffu-sion process is obtained due to tbe proximity of the powderpartieles.

Powders of sma11average partiele diameter are used wbenhigh mecbanical properties are desired. On the other hand,powders of larger sizes, are used to enhance mixing andcompaction processes.

Tbe rrrechanical properties of the sintered samples donot depend only upon partiele size distribution. Morphol-ogy, structure and microporosity are also important. In tbisrespect, Poquillon et al [11] have reported models whicbdescribe powder bebavior during tbe compaction processof irregular and spberical powders.

Works previously publisbed in tbis field are commonlyrelated to properties of the powders mixture, of tbe green

compact or of sintered sample properties. However, eachstep in the production process is cornmonly studied inde-pendently. To our knowledge, in-deptb studies of the effectof partic1e size distribution on the properties of green com-pacts and sintered samples have not been published. So, themain purpose of tbis work is to describe how partiele sizedistribution affects some of tbe most important variables inthe powder metallurgy process.

2. Experimental Procedure

Water atomized iron powder, ASC 100.29 Hoganas Co.,was used. An originallot of tbis powder was screened intofive fractions using Tyler certified U.S. series sieves accord-ing to ASTM-B214-76 [12], as follows: 44, +44 to -74, +74 to-105, +105 to -150 and +150 urn. Sieves were standardized.Powder morphology was characterized using scanning elec-tron microscopy (JEOL-6300).

Partic1e size distribution was measured by laser diffrac-tion (Beckman Coulter LS 13320). Specific surface area wasmeasured by the BET metbod [13] (Micrometrics ASAP 2405N Automatic Nitrogen Adsorption Pore Analyzer). AIso, thespecific surface, Se (m2/g), was evaluated with tbe following

expression: Se = _6_where Dm.O.5 is the average partic1eDm'P,

diameter and ñ" is the theoretical or crystallograpbic density(g/crri') of the powder mixture. In order to evaluate the effectof adding a pressing lubricant, each powder sample wasmixed witb 0.8 wt% zinc stearate. A laboratory type "V" mixerwas used at 50 r.p.m. during 20 mino In samples with andwithout lubricant, apparent density (MPIF 04-B212) [14] andflow rate (MPIF 04-B212) [14] were measured. In sampleswith lubricant compressibility was also measured MPIF 04-B212) [14].

Specimens used in TRS and green strengtb tests wereproduced using a laboratory press; witb 60 metric tones ofmaximum capacity. A tungsten carbide matrix was used.Uniaxial load was applied on tbe sample upper face. Sampleswfth transverse rectangular section were obtained in accor-dance witb MPIF-15 (ASTM B312). Density of the greencompacts was 6.8 g/cm". Green strengtb was evaluated us-ing the three points bending test. A Shimadzu 600476-04equipment was used. Density of the green compacts wasevaluated by Archimedes method. Roughness, Ra' was mea-sured using Mitutoyo Surftest 301 equipment.

Green samples were sintered in a belt fumace at 1120 °Cduring 20 minutes, under a dissociated arnmonia atmosphere.Sintered samples were etched with 2% of nital and grain sizewas determined according to ASTM1l2-88 [12]. TRS wasmeasured in accordance with ASTM B528 using an equip-ment lnstron 8802. Green strength was determined accord-ing to MPFI 04-B212 [14]. TRS and green strength were cal

Page 3: RELATIONSHIP BETWEEN PARTICLE SIZE AND … Art-03V23N1-p… · Revista Latinoamericana de Metalurgia y Materiales, Vol.23 N°1, 35 - 40. 35 RELATIONSHIP BETWEEN PARTICLE SIZE AND

Revista Latinoamericana de Metalurgia y Materiales, Vol.23 N°1. 37

culatedwith the fo11owing expression: (J = 3PL , where-2Wt2

Pis the maximum or peak load, L distanee, W is the width,andt is the sample thiekness.

3. ResuIts and Discussion

In figure 1particle size distributions of the different pow-der fraetions are shownThe lines show a eorreet sieving ofthe original powders. Unimodal distributions with narrowbands were obtained, so the average particle size ean beconsidered as representative of eaeh fraetion.

26

24-44 ID

22 ~-+44a-74 m20 ~+74a-105 m18 ---+105a-150 m

O --+--+150Vl 16 m8-14e

W12~10

8

6

4

2

Tamaño de partícula urn

Fig. 1. Particle size distribution of sieved powder.

In table 1 average particle size and speeifie surfaee (ex-perimental and theoretieal) of the iron powder fraetions arereported. It ean be observed in this table, the speeifie sur-face,Se' diminishes as average particle size inereases; how-ever, this deerease is also affeeted by particle morphologyandmieroporosity.

Tablel. Physicál properties of sieved powder.

Fraction D.n,O.5 Se(BEI) Se.tll«un) (~) (m2/g) (nbg)-44 33,9 0.287 0.0234-

+44a-74 63,1 0.162 0.0126+74-105 95,8 0.113 0.0083

+105 a-150 140.1 0.098 0.0057+150 188,7 0.055 0.0012

When the values of theoretieal and measured speeifiesurfaees are eompared, differenees in one order of magni-tude are observed. This eould be eaused by particle mor-phology and internal mieroporosity. Sma11erdisagreementswerefound in fraetions with smaller average particle size. In

the ease of fraetion -44 im the ratio theoretieal to experimen-tal speeifie surfaee, Se.m/Se' was 12.26. It is in agreement withthe nearly spherieal shape of this fraetion; as shown in fig-ure 2 (a). On the other hand, in the fraetion +74 to -105 im theratio Se,t/Se was 13.61. This higher ratio ean be explained interms of the more irregular morphology of the iron particles;as shown in figure 2 (d). In figure 2 it ean be observed that a11the powder fraetions have irregular morphology. It eouldhave been originated by the eoaleseenee of almost spheriealparticles with several sizes.

Fig. 2. SEM image of the powder morphology (a) -44 um, (b) +44a -74 um, (e) +74 a-lOS um, (d) +105 a-ISO um (e) +150 um.

In table 2, flueney and apparent density values of thepowder fraetions without lubrieant, are reported. In a11thesamples small variations of flueney with average particlediameter were found.

Table 2. Apparent density and flow rate of the powder fractionswithout lubricant.

Fraction Flow rate±cr da ±cr

(um) (s/SOg) (g/cnr')-44 . 26,28 0.3327 2,90 0.0110

+44 a-74 24,53 0.1313 2,77 0.0015+74 -105 28,13 0.2280 2,79 0.0063

+105 a-ISO 29,00 0.0670 2,86 0.0189+150 27,29 0.1738 2.89 0.0548

Page 4: RELATIONSHIP BETWEEN PARTICLE SIZE AND … Art-03V23N1-p… · Revista Latinoamericana de Metalurgia y Materiales, Vol.23 N°1, 35 - 40. 35 RELATIONSHIP BETWEEN PARTICLE SIZE AND

38

ity are a consequence of the changes in grain size distribu-tion in each powder fraction. Porosity is partially created byair or lubricant occlusion of the compacted powder particles.Porous size increases with particle size, but porous numberdecreases.

F. Sánche: y col. / Revista Latinoamericana de Metalurgia y Materiales.

As it can be seen in table 2, the apparent density dimin-ishes when the particle size is decreases, due to internalfriction increases. Exceptionally, the -44 fraction is moredense because it have spherical particles, and the internalfriction is minor.

On the other hand, flow rate is not only affected by thenumber of contacts between particles. It also involves otherfactors such as: ordering, spatial distribution and morphol-ogy of the powder particles.

Only in the fraction -44 Im a noticeable change in flowrate was found after lubricant was added. Lubricant binderssmall powder particles and acts as a glue restricting particlesliding. In the other fractions no strong effect of lubricanton flow rate was found, once the standard deviation is con-sidered. Only a modest improvement in flow rate was foundas a consequence of the lower inter-particle friction.

Table 3. Apparent density and fluency of the powder fractionswith lubricant.

Fraction Fluency ±a d,. ±a(J.1m) (s/50g) 3

(g/cm)-44 55,51 2.3805 3,32 0.0103

+44 a-74 23,23 0.1997 3,13 0.0190+74 -105 26,99 0.1068 3,00 0.0104

+105 a-150 28,43 0.1173 3,02 0.0060+150 27,56 0.1143 2.99 0.0081

It can be onserved III tne tabíe j tnat III the tractions withlubricant, apparent density reduced slightly as average di-ameter increased. It could be caused by a better arrange-ment due to a smaller range of size distribution.

Compressibility of the powder fractions is reported intable 4. Compressibility increases with average particle di-ameter. Bigger particles have less contact surface than smallerones and then less inter-particle friction is found in the firstcase. This improves particle mobility in the first reorderingstep [17] and particles packing increases.

Table 4. Compressibility of the powder fractions with lubricant.

P d (g/cnr')(MPa) -44 44 t074 74 to 105 105 to150 +150

~m ~m ~m Ifm ~m200 5.71 5.82 5.81 5.90 5.85400 6.62 6.74 6.79 6.80 6.82600 7.05 7.13 7.16 7.18 7.19800 7.22 7.27 7.30 7.32 7.34

Samples of the different powder fractions were compactedto a density of 6.8 g/cm'. Which all have the same porosity.However, porous morphology, size and distribution changedwith average particle diameter. This can be observed in thernicrographs shown in figure 3. These differences in poros-

Fig. 3. Micrographs oftransverse sections of green compacts pressedat 6.8 g/cm' density, corresponding to fractions: (a) +150 im, (b)+74 a lOS"lm y(c) -44 lm.nital 2%. X 100.

Differences in porous morphology, size and distributionwere quantified by roughness measurements. Results of thisparameter, Ra' of each fraction are shown in figure 4. It can beobserved that Ra increases with particle size.

5.0

4.5

4.0Ol~ 3.5enen 3.0ales: 2.5en:::J& 2.0

1.5

1.0

0.5

-44 + 44 a-74 +74 a-l05 +105 a-150 +150

Powder Fraction [¡.lfll]

Fig. 4. Measured roughness in each powder fraction.

Results of green strength measurements are shown infigure 5 (a). Green strength reaches a maximum value at inter-mediate particle sizes due to the effect of particle morphol-ogy and number of bonds (contact zones during compac-tion). In fractions with small particle size a more sphericalshape causes les s interlocking between particles. In frac-tions with large particle size a fewer average number of me-chanical bonds between particles produces weaker samples.

Page 5: RELATIONSHIP BETWEEN PARTICLE SIZE AND … Art-03V23N1-p… · Revista Latinoamericana de Metalurgia y Materiales, Vol.23 N°1, 35 - 40. 35 RELATIONSHIP BETWEEN PARTICLE SIZE AND

Revista Latinoamericana de Metalurgia y Materiales, Vol.23 N°1. 39

Then, the maximum in green strength is observed at in-termediate partic1e sizes. In this case the conditions of par-tic1emorphology and number ofbonds are more favorable toobtain higher mechanical strength [18]. It can also be ob-served that the maximum in green strength was measured inthe sample formed by compaction of the powder fractionhaving the most irregular shape.

400,------------------------------------,

150

350

300

250

200

ale! 100al>~ 50~1-

-44 +44a 74 +74a 105 +105a 150 +150

Powder Fraction [urn]

14 /I~~ b)';ij' 13(L

::2: 12/. l~

5 11Ol /e

~ 10(fJe 9(])

1e(!) 8

7-44 +44 a 74 +74 a 105 +105a 150 +150

Powder Fraction [um]

Fig. 5. (a) Green strength and (b) transverse rupture strengthcorresponding to the different powder fractions.

Transverse rupture strength decreases as powder diam-eter increases; as shown in figureS (b). Two factors couldhave originated this behavior. First, larger partic1es originatelarger pores and these act as stress raisers [19]. Second,specific surface increases as partic1e diameter decreases;therefore, the number of metallurgic bonds increases whensmall partic1es are sintered.

Average grain sizes measured in sintered samples, cor-responding to each powder fraction are shown in figure 6(a).As expected, average grain size increased with partic1e size.

The plot of transverse rupture strength vs. (average grainsize):'? is shown in figure 6 (b). An almost perfect fit to alinear relationship, r2= 0.995, was found. The correspondingHall-Petch [20] relationship can be expressed as TRS (MPa)= -48.9 +1625.9 d-l12 ; where 'de diameter d is expressed in

micrometers. From figure 6 it can be conc1uded that the me-chanical properties of the sintered samples can be controlledwith a careful selection of the initial powders size.

50

Q)N'00e 40.~oo:.c 30o.~Ol-ºCü 20Q):2:

10+---,-~---,--~--,-----,-~--,-~+44 a 74 +74a 105 +105a 150 +150-44

Cil Powder Fraction [urnlCL 380

/6 360

s: 340o,e 320~(jj 300 //~ 280:::Ja. 260:::J .:a:: 240Q)

220eQ)

200 b)>C/)e 180 -:~1- 160

0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28

Metallographic Grain Size -1/2 [¡¡m-1/2]

Fig. 6. Relation between metallographic grain size (Tg) and (a)particle size (powder fraction) and (b) Transverse Rupture Strength.

4. Conclusions

Apparent density, flowability and compressibilityofpow-der mixtures are characteristics of these materials which de-pend upon of (1) partic1e morphology and (2) partic1esizedistribution. However, these properties can also be affectedby the presence of lubricant.

Porosity (percentage, distribution and size) ofP/M com-pacts depends upon of the initial powder size. Small powderparticles produce a high quantity of "small" pores distrib-uted through the entire compact. Powder particles with alarge partic1e size produces a small number of pares, hetero-geneously distributed in the sample and of "large" size.

Green strength reached a maximum value in particles ofintermediate size. This was produced by the combination ofpartic1e morphology and number of bonds effects in thepressed samples.

Transverse rupture strength decreases as grain size de-creases. The variation of transverse rupture strength with

Page 6: RELATIONSHIP BETWEEN PARTICLE SIZE AND … Art-03V23N1-p… · Revista Latinoamericana de Metalurgia y Materiales, Vol.23 N°1, 35 - 40. 35 RELATIONSHIP BETWEEN PARTICLE SIZE AND

40 F. Sánche: y col. / Revista Latinoamericana de Metalurgia y Materiales.

grain size to the -112 power, can be expressed with a Hall-Petch relationship. AIso, average grain size depends uponparticle size distribution in the starting material. Then, themechanical properties of the sintered sample can be con-trolled by a careful selection of the particles size range.

References

l. H.FFischmeister and R. Zahn, Modern Developments inPowder Metallurgy, Vol. 2, H.H.Hausner, Plenum Press,NewYork, 1966.

2. J. E. Peterson and W. M. Small "Physical behavior of wa-ter-atomized iron powders: Particle size distribution andapparent density Mechanical Behavior of Material ",The lnternational Journal of Powder Metallurgy, Vol29, No. 2, pag 131-137,1993.

3. lE. Peterson and W.M. Small "Physical Behavior ofWa-ter-Atomized Iron Powder: Particle size distribution andapparent density" The Int. Journal ofPowder Metall. Vol.29,2,pp 131-137, 1993.

4. D. Poquillón, J. Lernaitre et al. Cold Compaction of IronPowders-relations between Powder morphology andmechanical properties. Part 1: powder preparation andcompaction. Powder Technology, 126 (2002), pp. 65-74.

5. M.Y.Veids and R.Geiling Relations Between MechanicalProperties and Particle Size of Iron Powder Compacts,Int. J. ofPowder Metal 1. & PowderTechn., Vol. 12 No. 2,APMI,1981.

6. S. Shima, M.A.E. Saleh "The Effect ofParticle Characteris-tics on Compaction Behaviour ofPowders-Experiments"Proceedings of Powder Metall. World Cong, Kyoto 12-15 July 1993 (Japan Soco Powder and Powder Metall.),Part l,pp. 331-334.1993.

7. F Sánchez, A. Bolarín, J. Coreño, A. Martínez and lA. BasEffect of the Compaction Process sequence on the AxialDensity Distribution of Green Compacts. Powder Metal-lurgy, Institute ofMaterials, 10M Communications, Vol.44, no.4, pp. 1-5,2001.

8. L-H. Moon, K.H. Kim Relationship between compactingpressure, green density and green strength of copperpowder compacts, Powder Metallurgy, 27 (2) (1984) 80-84.

9. Nichiporenko, O.S. and Naida, YU.I. "Heat Exchange be-tween Metal Particles and Gas in the Atomization Pro-cess". SOY.Powder Metall. Met. Ceram. Vol. 67,7, pp 509-512,1968.

10. J.A Lund, Origins of Green Strength in Iron PIM Com-pacts, International Journal ofPower Metallurgy 18 (2),pp. 1l7-127, 1982.

11. D. Poquillón, J. Lemaitre et al. Cold Compaction ofIronPowders-relations between Powder morphology andmechanical properties. Part II: Bending Test: results andanalysis. Powder Technology, 126 (2002), pp. 75-84.

12. Normas ASTM. Annual Book of ASTM Standards, Phila-delphia, PA, 1992.

13. S. Brunauer, P.H. Emmet and E. Teller, The adsorption ofgases in Multimolecular Layer, Joumal of American Chemi-cal Society 60 (1938), 39.

14. Normas MPIF. Standard Test Methods for Metal Pow-ders and Powder Metallurgy Products, Metal Powder In-dustries Federation MPIF, 1999 Edition.

15. Kamal E. Amin "Friction in Metal Powders" The lnt. Jour-mil of Powder Metall. Vol. 23 2, pp 83-93, 1987.

16. J .E. Peterson and W.M. Small "Physical Behavior of Wa-ter-Atomized Iron Powder: Effects ofRelative Humidityand particle size" The lnt. Journal ofPowder Metall. Vol.29,2, pp 121-130, 1993.

17. M.C.Kostelnik, FH.KJudt, lK.Beddow "The initial Stageof Compaction of Metal Powders in a Die" The lnterna-tional Journal of Powder Metallurgy Vol 4 n° 4, 1968.

18. F Sánchez et al. "Determinación De Las PropiedadesMecánicas De Compactos Pulvimetalúrgicos en Verde ysu Dependencia con la Densidad". LatinAmerican Jour-nal of Metalurgy and Materials, Vol 21, no. 2, pp. 1-5.Venezuela. Diciembre 2001.

19. G.FBocchini "The Influence ofPorosity on the Charac-teristics of Sintered Materials" The lnternational Jour-nal of Powder Metallurgy, Vol. 22, No. 3,1986.

20. T. Christman. Grain Boundary Strengthening Exponent inConventional and Ultrafine Microstructure. ScriptaMetallurgica. Vol. 28, pp. 1495-1500, USA. 1993.