33
NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Renewable Electricity Futures: An Investigation of 3090% Renewable Power Stanford Energy Forum November 2012 Renewable Electricity Futures Study (2012). Hand, M.M.; Baldwin, S.; DeMeo, E.; Reilly, J.M.; Mai, T.; Arent, D.; Porro, G.; Meshek, M.; Sandor, D., editors. Lead authors include Mai, T.; Sandor, D.; Wiser, R.; Heath, G.; Augustine, C.; Bain, R.; Chapman, J.; Denholm, P.; Drury, E.; Hall, D.; Lantz, E.; Margolis, R.; Thresher, R.; Hostick, D.; Belzer, D.; Hadley, S.; Markel, T.; Marnay, C.; Milligan, M.; Ela, E.; Hein, J.; Schneider, T. A U.S. DOEsponsored collaboration among more than 110 individuals from 35 organizations.

Renewable Electricity Futures: An 30 90% Renewable Power · NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated

  • Upload
    others

  • View
    16

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Renewable Electricity Futures: An 30 90% Renewable Power · NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Renewable Electricity Futures: An Investigation of 30‐90% Renewable Power

Stanford Energy Forum

November 2012

Renewable Electricity Futures Study (2012). Hand, M.M.; Baldwin, S.; DeMeo, E.; Reilly, J.M.; Mai, T.; Arent, D.; Porro, G.; Meshek, M.; Sandor, D., editors.  Lead authors include Mai, T.; Sandor, D.; Wiser, R.; Heath, G.; Augustine, C.; Bain, R.; Chapman, J.; Denholm, P.; Drury, E.; Hall, D.; Lantz, E.; Margolis, R.; Thresher, R.; Hostick, D.; Belzer, D.; Hadley, S.; Markel, T.; Marnay, C.; Milligan, M.; Ela, E.; Hein, J.; Schneider, T.

A U.S. DOE‐sponsored collaboration among more than 110 individuals from 35 organizations.

Page 2: Renewable Electricity Futures: An 30 90% Renewable Power · NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated

2WWW.NREL.GOV/RE_FUTURES

• To what extent  can renewable energy technologies commercially available today meet the U.S. electricity demand over the next several decades?

Renewable Electricity Futures MotivationRE Capacity Growth 2000-2010

Source: RE Data Book (DOE 2011)

Page 3: Renewable Electricity Futures: An 30 90% Renewable Power · NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated

3WWW.NREL.GOV/RE_FUTURES

• RE Futures is an analysis of the U.S. electric sector focused on 2050 that explores:1. Whether the U.S. power system can supply electricity to 

meet customer demand with high levels of renewable electricity, including variable wind and solar generation.

2. Grid integration using models with unprecedented geographic and time resolution for the contiguous U.S.

3. Synergies, constraints, and operational issues associated with a transformation of the U.S. electric sector.

Renewable Electricity Futures Introduction

Page 4: Renewable Electricity Futures: An 30 90% Renewable Power · NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated

4WWW.NREL.GOV/RE_FUTURES

Renewable Electricity Futures Report

REF is a U.S. DOE‐sponsored collaboration with more than 110 contributors from 35 organizations including national laboratories, industry, universities, and non‐governmental organizations.

Volume 1 Exploration of High-Penetration Renewable Electricity Futures

Volume 2 Renewable Electricity Generation and Storage Technologies

Volume 3 End-Use Electricity Demand

Volume 4 Bulk Electric Power Systems: Operations and Transmission Planning

Page 5: Renewable Electricity Futures: An 30 90% Renewable Power · NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated

5WWW.NREL.GOV/RE_FUTURES

Renewable Electricity Futures ScopeRE Futures does…. RE Futures does not…Identify commercially available RE generation technology combinations that meet up to 80% or more of projected 2050 electricity demand in every hour of the year. 

Consider policies, new operating procedures, evolved business models, or market rules that could facilitate high levelsof RE generation.

Identify electric sector characteristics associated with high levels of RE generation.

Fully evaluate power system reliability.

Explore  a variety of high renewable electricity generation scenarios. 

Forecast or predict the evolution of the electric sector.

Estimate the associated U.S. electric sector carbon emissions reductions.

Assess optimal pathways to achieve a low‐carbon electricity system.

Explore a select number of economic, environmental and social impacts.

Conduct a comprehensive cost‐benefit analysis.

Illustrate an RE‐specific pathway to a clean  electricity future to inform the development of integrated portfolio scenarios that consider all technology pathways and their implications.

Provide a definitive assessment of high RE generation, but does identify areas fordeeper investigation.

Page 6: Renewable Electricity Futures: An 30 90% Renewable Power · NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated

6WWW.NREL.GOV/RE_FUTURES

Modeling Framework

Technology cost & performanceResource availabilityDemand projectionDemand‐side technologiesGrid operationsTransmission costs

Black & Veatch

Technology Teams

Flexible Resources

End‐Use Electricity

System Operations

Transmission

ABB inc.GridView

(hourly production cost)

rooftop PVpenetration

2050 mixof generators

does it balancehourly?

ImplicationsGHG EmissionsWater UseLand Use

Direct Costs

Capacity & Generation 2010‐2050

Page 7: Renewable Electricity Futures: An 30 90% Renewable Power · NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated

7WWW.NREL.GOV/RE_FUTURES

Scenario Framework

Page 8: Renewable Electricity Futures: An 30 90% Renewable Power · NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated

8WWW.NREL.GOV/RE_FUTURES

General Assumptions

• Energy Efficiency: Most of the scenarios assumed significant adoption of energy efficiency (including electricity) measures in the residential, commercial, and industrial sectors.

• Transportation: Most of the scenarios assumed a shift of some transportation energy away from petroleum and toward electricity in the form of plug‐in hybrid or electric vehicles, partially offsetting the electricity efficiency advances that were considered.

• Grid Flexibility: Most scenarios assumed improvements in electric system operations to enhance flexibility in both electricity generation and end‐use demand, helping to enable more efficient integration of variable‐output renewable electricity generation.

• Transmission: Most scenarios expanded the transmission infrastructure and access to existing transmission capacity to support renewable energy deployment. Distribution‐level upgrades were not considered. 

• Siting and Permitting: Most scenarios assumed project siting and permitting regimes that allow renewable electricity development and transmission expansion with standard land‐use exclusions.

Page 9: Renewable Electricity Futures: An 30 90% Renewable Power · NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated

9WWW.NREL.GOV/RE_FUTURES

Renewable Resources and Technologies

• Only currently commercial technologies were modeled (no EGS, ocean, floating wind) with incremental and evolutionary improvements.

• RE characteristics including location, technical resource potential, and grid output characteristics were considered.

Biopower ~100 GW

Solar CSP ~37,000 GW

Geothermal ~36 GW

Hydropower ~200 GW

Solar PV ~80,000 GW(rooftop  PV ~700 GW)

Wind ~10,000 GW

•Stand‐alone•Cofired with coal 

•Trough•Tower

•Hydrothermal

•Run‐of‐river

•Residential•Commercial•Utility‐scale

•Onshore•Offshore fixed‐bottom

With thermalstorage

Page 10: Renewable Electricity Futures: An 30 90% Renewable Power · NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated

Key Results

Page 11: Renewable Electricity Futures: An 30 90% Renewable Power · NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated

11WWW.NREL.GOV/RE_FUTURES

A Transformation of the U.S. Electricity System

RE generation from technologies that are commercially available today, in combination with a more flexible electric system, is more than adequate to supply 80% of total U.S. electricity generation in 2050—while meeting electricity demand on an hourly basis in every region of the country.

Page 12: Renewable Electricity Futures: An 30 90% Renewable Power · NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated

12WWW.NREL.GOV/RE_FUTURES

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Baseline

30% R

E

40% R

E

50% R

E

60% R

E

70% R

E

80% R

E

90% R

E

% o

f Tot

al G

ener

ated

Ele

ctric

ity

Percent RE

Wind

PV

CSP

Hydropower

Geothermal

Biomass

Natural Gas

Coal

Nuclear

Variable Generation

Renewable generation resources could adequately supply 80% of total U.S. electricity generation in 2050 while balancing hourly supply and demand

Baseline scenario 80% RE‐ITI scenario

RE‐ITI scenarios

Page 13: Renewable Electricity Futures: An 30 90% Renewable Power · NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated

13WWW.NREL.GOV/RE_FUTURES

The abundance and diversity of RE resources can support multiple combinations of RE technologies to provide 80% generation by 2050

• Technology deployment depends on scenario assumptions, but in all cases examined, RE resources existed to compensate for assumed variations in access to transmission, grid flexibility, resource availability, technology costs, and electricity demand.

• Constraints to transmission result in greater PV, offshore wind, and biopower deployment.• Constraints to system flexibility result in greater dispatchable technology deployment, e.g., 

storage and CSP with thermal storage.• Constraints to resource accessibility result in greater wind and solar deployment.

Low‐Demand ranges encompass results for Technology Improvement and Constrained scenarios 

Page 14: Renewable Electricity Futures: An 30 90% Renewable Power · NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated

14WWW.NREL.GOV/RE_FUTURES

All regions of the country could contribute substantial renewable electricity supply in 2050

80% RE‐ITI scenario

Page 15: Renewable Electricity Futures: An 30 90% Renewable Power · NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated

15WWW.NREL.GOV/RE_FUTURES

Actions to Accommodate Variable RETs

Cochran et al, NREL/TP‐6A00‐53730 April 2012 

Page 16: Renewable Electricity Futures: An 30 90% Renewable Power · NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated

16WWW.NREL.GOV/RE_FUTURES

A more flexible electric power system is needed to enable electricity supply‐demand balance with high levels of RE generation

• Flexible generators (particularly natural gas)• Dispatchable renewables (e.g., biopower, geothermal, CSP with storage 

and hydropower)• Demand response (e.g., interruptible load)• Controlled charging of electric vehicles• Storage• Curtailment• Transmission• Geospatial diversity of the variable resources to smooth output• Coordinating bulk power system operations across wider areas

System flexibility can be increased using a broad portfolio of supply‐ and demand‐side options, including:

Page 17: Renewable Electricity Futures: An 30 90% Renewable Power · NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated

17WWW.NREL.GOV/RE_FUTURES

0

100

200

300

400

500

600

700

800

Jul‐16 00:00

Jul‐16 12:00

Jul‐17 00:00

Jul‐17 12:00

Jul‐18 00:00

Jul‐18 12:00

Jul‐19 00:00

Jul‐19 12:00

Power (G

W)

CurtailmentWindPVGas CTGas CCHydropowerCSPCoalBiopowerGeothermalNuclearShifted LoadLoad

0

100

200

300

400

500

600

700

800

Apr‐27 00:00

Apr‐27 12:00

Apr‐28 00:00

Apr‐28 12:00

Apr‐29 00:00

Apr‐29 12:00

Apr‐30 00:00

Apr‐30 12:00

Power (G

W)

CurtailmentWindPVGas CTGas CCHydropowerCSPCoalBiopowerGeothermalNuclearShifted LoadLoad

0

100

200

300

400

500

600

700

800

Jul‐16 00:00

Jul‐16 12:00

Jul‐17 00:00

Jul‐17 12:00

Jul‐18 00:00

Jul‐18 12:00

Jul‐19 00:00

Jul‐19 12:00

Power (G

W)

0

100

200

300

400

500

600

700

800

Apr‐27 00:00

Apr‐27 12:00

Apr‐28 00:00

Apr‐28 12:00

Apr‐29 00:00

Apr‐29 12:00

Apr‐30 00:00

Apr‐30 12:00

Power (G

W)

0

100

200

300

400

500

600

700

800

Jul‐16 00:00

Jul‐16 12:00

Jul‐17 00:00

Jul‐17 12:00

Jul‐18 00:00

Jul‐18 12:00

Jul‐19 00:00

Jul‐19 12:00

Power (G

W)

0

100

200

300

400

500

600

700

800

Apr‐27 00:00

Apr‐27 12:00

Apr‐28 00:00

Apr‐28 12:00

Apr‐29 00:00

Apr‐29 12:00

Apr‐30 00:00

Apr‐30 12:00

Power (G

W)

Electricity supply and demand can be balanced in every hour of the year in each region with 80% electricity from renewable resources*

80% RE‐ITI scenario

*Full reliability analysis not conducted in RE Futures

Baseline scenario

0

100

200

300

400

500

600

700

800

Jul‐16 00:00

Jul‐16 12:00

Jul‐17 00:00

Jul‐17 12:00

Jul‐18 00:00

Jul‐18 12:00

Jul‐19 00:00

Jul‐19 12:00

Power (G

W)

0

100

200

300

400

500

600

700

800

Apr‐27 00:00

Apr‐27 12:00

Apr‐28 00:00

Apr‐28 12:00

Apr‐29 00:00

Apr‐29 12:00

Apr‐30 00:00

Apr‐30 12:00

Power (G

W)

Peak →

Off‐Peak → 

80% RE‐ETI scenarioConstrained Transmission scenario

Page 18: Renewable Electricity Futures: An 30 90% Renewable Power · NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated

18WWW.NREL.GOV/RE_FUTURES

0

50

100

150

200

250

Apr‐27 00:00

Apr‐27 12:00

Apr‐28 00:00

Apr‐28 12:00

Apr‐29 00:00

Apr‐29 12:00

Apr‐30 00:00

Apr‐30 12:00

Power (G

W)

Coal

0102030405060708090

Apr‐27 00:00

Apr‐27 12:00

Apr‐28 00:00

Apr‐28 12:00

Apr‐29 00:00

Apr‐29 12:00

Apr‐30 00:00

Apr‐30 12:00

Power (G

W)

Gas CC

0

1

2

3

4

5

6

Apr‐27 00:00

Apr‐27 12:00

Apr‐28 00:00

Apr‐28 12:00

Apr‐29 00:00

Apr‐29 12:00

Apr‐30 00:00

Apr‐30 12:00

Power (G

W)

Gas CT

051015202530354045

Apr‐27 00:00

Apr‐27 12:00

Apr‐28 00:00

Apr‐28 12:00

Apr‐29 00:00

Apr‐29 12:00

Apr‐30 00:00

Apr‐30 12:00

Power (G

W)

Coal

024681012141618

Apr‐27 00:00

Apr‐27 12:00

Apr‐28 00:00

Apr‐28 12:00

Apr‐29 00:00

Apr‐29 12:00

Apr‐30 00:00

Apr‐30 12:00

Power (G

W)

Gas CC

0

1

2

3

4

5

6

Apr‐27 00:00

Apr‐27 12:00

Apr‐28 00:00

Apr‐28 12:00

Apr‐29 00:00

Apr‐29 12:00

Apr‐30 00:00

Apr‐30 12:00

Power (G

W)

Gas CTBa

selin

e scen

ario

80% RE‐ITI scena

rio

System flexibility provided through increased ramping and startup‐shutdown of conventional generators, particularly in low‐demand periods

Page 19: Renewable Electricity Futures: An 30 90% Renewable Power · NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated

19WWW.NREL.GOV/RE_FUTURES

Dispatchable renewable generators and storage provide system flexibility by shifting operation to periods of high net load

Dispatch of CSP with thermal storage in Western Interconnection (80% RE ITI)

Source:  Denholm, …….. (2012)

Page 20: Renewable Electricity Futures: An 30 90% Renewable Power · NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated

20WWW.NREL.GOV/RE_FUTURES

• In most 80%‐by‐2050 RE scenarios, 110‐190 million MW‐miles of new transmission lines are added.• AC‐DC‐AC interties are expanded to allow greater power transfer between asynchronous interconnects.• However, 80% RE is achievable even when transmission is severely constrained (30 million MW‐miles)—

which leads to a greater reliance on local resources (e.g. PV, offshore wind).• Annual transmission and interconnection investments in the 80%‐by‐2050 RE scenarios range from 

$5.7B‐8.4B/year, which is within the range of recent total investor‐owned utility transmission expenditures.

• High RE scenarios lead to greater transmission congestion, line usage, and transmission and distribution losses.

80% RE‐ITI scenario Constrained Transmission

80% RE is achievable with new Transmission or if new Tx is constrained.

Page 21: Renewable Electricity Futures: An 30 90% Renewable Power · NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated

21WWW.NREL.GOV/RE_FUTURES

All regions of the country could contribute substantial renewable electricity supply in 2050 – especially when transmission is constrained

Constrained Transmission scenario

Page 22: Renewable Electricity Futures: An 30 90% Renewable Power · NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated

22WWW.NREL.GOV/RE_FUTURES

80% RE Scenario Results Comparison (under RE‐ITI technology assumption)

80% RE‐ITI ConstrainedTransmission

ConstrainedFlexibility

Constrained Resources

High‐Demand

% variable generation 43% 47% 39% 47% 49%

New Transmission

119 million MW‐miles

28 million MW‐miles

132 million MW‐miles

188 million MW‐miles

182 million MW‐miles

T&D Losses 8.6% 8.3% 9.0% 9.5% 8.9%

OperatingReserve Reqt. 96 GW 114 GW 128 GW 99 GW 143 GW

Interruptible Load 38 GW 48 GW 28 GW 38 GW 64 GW

Curtailment (% of var gen) 5.6% 8.6% 7.0% 6.2% 7.1%

Storage 122 GW 129 GW 152 GW 131 GW 136 GW

~~

~~

~~

~~

~~

~~ ~~

~~

Low‐Demand

Red arrows indicate magnitude and direction of change relative to the 80% RE‐ITI scenario

Page 23: Renewable Electricity Futures: An 30 90% Renewable Power · NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated

23WWW.NREL.GOV/RE_FUTURES

0

100

200

300

400

500

Wind-onshore

Solar-PV

Wind-offshore

Hydropow

er

Solar-CSP

Biom

ass

Geotherm

al20

50 In

stal

led

Cap

acity

(GW

)80% RE-NTI80% RE-ITI80% RE-ETI

The abundance and diversity of RE resources can support multiple combinations of RE technologies to provide 80% generation by 2050

• Future (relative) RE technology cost and performance drives deployment toward different mix of technologies depending on commercial and technological maturity

Ranges encompass results for (low‐demand) Technology Improvement and Constrained scenarios 

Greater te

chno

logy 

improvem

ent

Page 24: Renewable Electricity Futures: An 30 90% Renewable Power · NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated

24WWW.NREL.GOV/RE_FUTURES

High renewable electricity futures can result in deep reductions in electric sector greenhouse gas emissions and water use

80% RE scenarios lead to: • ~80% reduction in 2050 generation from both coal‐fired and natural gas‐fired sources• ~80% reduction in 2050 GHG emissions (combustion‐only and life cycle)• ~50% reduction in electric sector water use• Gross land use totaling <3% of contiguous U.S. area; other related impacts include visual, 

landscape, noise, habitat, and ecosystem concerns.

0

5

10

15

20

25

2010 2020 2030 2040 2050

Annu

al E

lect

ric S

ecto

r Co

nsum

ptio

n (Q

uads

)

Year

80% RE (NG) 80% RE (coal)

Baseline (NG) Baseline (coal)

Gross Land Use Comparisons (000 km2)

Biomass 44‐88

All Other RE  52‐81

All Other RE  (disrupted) 4‐10

Transmission & Storage 3‐19

Total Contiguous U.S. 7,700

2009 Corn Production* 350

Major Roads** 50

Golf Courses ** 10

80% RE scen

arios

* USDA 2010, **Denholm & Margolis 2008

Page 25: Renewable Electricity Futures: An 30 90% Renewable Power · NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated

25WWW.NREL.GOV/RE_FUTURES

Incremental cost associated with high RE generation is comparable to published cost estimates of other clean energy scenarios

• Comparable to incremental cost for clean energy and low carbon scenarios evaluated by EIA and EPA

• Reflects replacement of existing generation plants with new generators and additional balancing requirements (combustion turbines, storage, and transmission) compared to baseline scenario (continued evolution of today’s conventional generation system)

• Assumptions reflect incremental or evolutionary improvements to currently commercial RE technologies; they do not reflect U.S. DOE activities to further lower these costs.

$0

$20

$40

$60

2010 2020 2030 2040 2050

Rea

l 200

9$/M

Wh

Core 80% RE (ReEDS) EIA 2009cEPA 2009a EIA 2010bEPA 2010 EIA 2011a

EIA 2011b

Increase in retail electricity price relative to reference/baseline

Source: Renewable Electricity Futures (2012)

Page 26: Renewable Electricity Futures: An 30 90% Renewable Power · NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated

26WWW.NREL.GOV/RE_FUTURES

• Cost is less sensitive to the assumed electric system constraints (transmission, flexibility, RE resource access).

• Electricity prices in high RE scenarios are largely insensitive to projections for fossil fuel prices and fossil technology improvements.

• Lower RE generation levels result in lower incremental prices (e.g., 30% RE‐ETI scenario shows no incremental cost relative to the baseline scenario).

• Cost figures do not reflect savings or investments associated with energy efficiency assumptions in the low‐demand Baseline and 80% RE scenarios.

-$20 -$10 $0 $10 $20

Fossil-HTI

Higher Fossil Fuel

Lower Fossil Fuel

High Demand

Constr. Res.

Constr. Flex.

Constr. Trans.

80% RE-NTI

Difference in 2050 Electricity Price Relative to 80% RE-ITI

[Real 2009$/MWh]

80% RE-ETI

-$20 -$10 $0 $10 $20

Higher Fossil Fuel

High Demand

Difference in 2050 Electricity Price Relative to Baseline (low-demand, ITI)

[Real 2009$/MWh]

Lower Fossil Fuel

Fossil-HTI

Improvement in cost and performance of RE technologies is the most impactful lever for reducing the incremental cost

Page 27: Renewable Electricity Futures: An 30 90% Renewable Power · NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated

27WWW.NREL.GOV/RE_FUTURES

No insurmountable long‐term constraints to RE technology manufacturing capacity, materials supply, or labor availability were identified

• 80% RE generation in 2050 requires additions of  ~20 GW/year in 2011‐2020 , ~30/GW/year in 2021‐2040, and ~40 GW/year in 2041‐2050 (higher under High‐Demand scenario).

• These installation rates are higher than U.S. capacity additions in 2010 (7 GW) and 2009 (11 GW) and would place challenges on RE industries.

• Recent U.S. and worldwide growth demonstrate the scalability of RE industries.• More informed siting  practices and regulations can reduce industry scale‐up challenges.

80% RE‐ITI scenario

Page 28: Renewable Electricity Futures: An 30 90% Renewable Power · NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated

28WWW.NREL.GOV/RE_FUTURES

Renewables can meet 80% of High Demand

• Higher demand growth generally implies an increased need for new generation and transmission capacity in both the baseline and 80% RE scenarios.

• More renewable generation capacity, particularly wind and PV, is needed; it will result in greater industry scale‐up and resource access challenges.

• Additional flexible supply‐ and demand‐side capacity (e.g., storage, natural gas combustion turbine power plants, and interruptible load) is also needed. 

• While higher demand growth shows greater increases in electricity prices, the direct incremental cost associated with high renewable generation levels decreases (the prices in baseline also increase).

• Cost‐effectiveness of energy efficiency vs. supply‐side options was not evaluated.

Page 29: Renewable Electricity Futures: An 30 90% Renewable Power · NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated

29WWW.NREL.GOV/RE_FUTURES

Summary of Key Results• Renewable electricity generation from technologies that are commercially 

available today, in combination with a more flexible electric system, is more than adequate to supply 80% of total U.S. electricity generation in 2050–while meeting electricity demand on an hourly basis in every region of the country.

• Increased electric system flexibility, needed to enable electricity supply‐demand balance with high levels of renewable generation, can come from a portfolio of supply‐ and demand‐side options, including flexible conventional generation, grid storage, new transmission, more responsive loads, and changes in power system operations.

• The abundance and diversity of U.S. renewable energy resources can support multiple combinations of renewable technologies that result in deep reductions in electric sector greenhouse gas emissions and water use.

• The direct incremental cost associated with high renewable generation is comparable to published cost estimates of other clean energy scenarios. Improvement in the cost and performance of renewable technologies is the most impactful lever for reducing this incremental cost.

Page 30: Renewable Electricity Futures: An 30 90% Renewable Power · NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated

30WWW.NREL.GOV/RE_FUTURES

Future Work Needed

• A comprehensive cost‐benefit analysis is necessary in order to better understand the economic and environmental implications of high renewable electricity futures relative to today’s electricity system.  Today’s system is largely based on conventional technologies and alternative futures in which other sources of clean energy are deployed at scale.

• Further investigation of the more complete set of issues around all aspects of power system reliability is needed because RE Futures only partially explores the implications of high penetrations of renewable energy for system reliability.

• Improved understanding of the institutional challenges associated with the integration of high levels of renewable electricity, including development of market mechanisms that enable the emergence of flexible technology solutions and mitigate market risks for a range of stakeholders, including project developers, is important.

• Analysis of the role and implications of energy research and development activities in accelerating technology advancements and in broadening the portfolio of economically viable future renewable energy supply options and supply‐ and demand‐side flexibility tools is essential. 

Page 31: Renewable Electricity Futures: An 30 90% Renewable Power · NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated

31WWW.NREL.GOV/RE_FUTURES

Future work to address reliability of high RE scenarios

• What analysis is needed to demonstrate feasibility of high renewable electricity futures?o Capacity expansion with statistical treatment of resource 

adequacy– Seasonal/diurnal time scale

o Production cost modeling of operation in future year to assess resource adequacy– Hourly time scale– Sub‐hourly time scale

o Auto Generation Control‐level modeling to assure stable reaction to contingencies– Sub‐minute time scale

o Load flow and contingency analysis to assure recovery from transient disturbances– Sub‐second time scale

Done in REF

Not done in REF

Page 32: Renewable Electricity Futures: An 30 90% Renewable Power · NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated

32WWW.NREL.GOV/RE_FUTURES

A future U.S. electricity system that is largely powered by renewable sources is possible, and further work is warranted to investigate this clean generation pathway.

www.nrel.gov/RE_Futures

Page 33: Renewable Electricity Futures: An 30 90% Renewable Power · NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated

Questions?