154
STATENS GEOTEKNISKA INSTITUT SWEDISH GEOTECHNICAL INSTITUTE RAPPORT REPORT No26

REPORT No26 RAPPORT SWEDISH GEOTECHNICAL INSTITUTE

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

STATENS GEOTEKNISKA INSTITUT SWEDISH GEOTECHNICAL INSTITUTE

RAPPORT REPORT No26

STATENS GEOTEKNISKA INSTITUT SWEDISH GEOTECHNICAL INSTITUTE

RAPPORT REPORT No26

Large diameter bored piles in non-cohesive soils Determination of the bearing capacity and settlement from results of static penetration tests (CPT) and standard penetration test (SPT)

KAZIMIERZ GWIZDALA

LINKOPING 1984

ISSN 0348-0755

AS OSTGOTATRYCK UltPG 19amp4

3

P R E F A C E

The work was carried out at the Swedish Geotechnical

Institute in Linkoping during my stay in Sweden as a

scholar of the Swedish Institute

I wish to express my thanks to the Swedish Institute

for the possibility to stay and to research in Sweden

In my work and during the whole stay I have received

every possible support help and encouragement from

the Head of the Swedish Geotechnical Institute Dr Jan

Hartlen For this and for the possibility of studying

at the Swedish Geotechnical Institute I am extremely

grateful and wish to express my very best thanks

Special thanks are due to Dr Bo Berggren and Civing

Per-Evert Bengtsson for the constant and great help

given to me in the daily work at the Institute

I would like to thank all members of the staff at the

Swedish Geotechnical Institute who have helped me

during my stay in Sweden

AcKnowledgement is extended to Mrs Eva Dyrenas who typed

the manuscript a nd to Mrs Rutgerd Abrink and Mrs Irene

Aberg who made the drawings

Linkoping January 1983

Kazimierz Gwizdala

Institute of Hydro-tngineering

of the Gdansk Technical University

Poland

5

CONTENTS

Page

7SUMMARY

NOTATIONS AND SYMBOLS 9

1 LARGE DIAMETER BORED PILES IN NON-COHESIVE SOILS 11

11 Determination of bearing capacity of bored piles from results of Cone Penetration Test (CPT) 11

12 Determination of bearing capacity of the large diameter bored piles from results of the Standard Penetration Tests (SPT) 18

13 Allowable load of large diameter bored piles 22

14 Determination of settlement of large diameter bored piles based on static cone penetration tests CPT 27

15 Initial slope of pile point resistance shysettlement

REFERENCES

FIGURES

TABLES

APPENDIXES

curve 37

43

51

105

7

16 Summary

The work contains a study of the behaviour of l arge diameter

bored piles in non- cohesive soil The mai n attention was

paid to the determination of the bearin g capacity a nd

sett lement from results of Cone Penetration Test (CPT)

and Standard Penetration Test (SPT)

A new met hod to calculate bearing capacity on large bored

piles based on the in situ measurement is proposect taking

into account investigations made during the last years in

all the world The values based on the proposed method

are compar ed to field test results

The analysis of bearing capacity safety factors and loadshy

settlement curve allows to assume values individual safety

factors for resistance of pile point and shaft respectively

Based on a detailed investigation the pile point pressure

settlement curve and shaft resistance dependance during

loading a new method to predict the pile point pressure shy

displacement and load- settlement relationship is proposed

The initial slope of the point pressure- displacement curve

can be determined from in situ tests or laboratory test

based on the hyperbolic stress- strain parameters

9

Notations and symbols

Roman letters

a 1 Initial slope of the pile point resistance shysettlement curve

Ap Cross-sectional area of a pile

As Area of the pile shaft

CPT Static Penetration Test

D Diameter of pile shaft

Op Diameter of pile point

E Youngs modulus

fp Point resistance factor

fs Shaft resistance factor

F Universal safety factor

Fp Individual safety factor for ultimate resistance of pile point

Fs individual safety factor for ultimate resistance of pile shaft

K Dimensionless compression modulus

K At rest soil lateral stress coefficient0

Koc Lateral stress coefficient for fluid fresh concrete

Mo Constrained (oedometric) modulus

N30 Numbe r of blows for 030 m penetration in SPT

p Unit point resistance (contact pressure)

p (s) Unit point resistance versus settlement

Unit point resistance at failurePsf

Allowable unit point resistancePa

Sounding resistance

Average static cone penetrometer resistance close to tne pile point

qs Average static cone penetrometer resistance C along the pile

10

Ultimate point resistance of large diameter piles based on static sounding results

Ultimate skin friction resistance of large diameter piles based on static sounding results

Qa Allowable pile load

Qcp Point load of the static cone penetrometer

Qct Total load of the static cone penetrometer

Qpa Allowable point resistance of the pile

Qpu Ultimate point resistance of a pile

0 sa Allowable skin resistance of the pile

0su Ultimate bearing resistance of a pile

Qu Ultimate bearing resistance of a pile

s Settlement

sd Standard deviation

ss u Ultimate settlement for pile shaft

sv Standard variation

SPT Standard Penetration Test

t Unit shaft resistance

Ultimate unit shaft resistance

Circumference of the pile shaft

Circumference of the static penetrometer shaft

Greek letters

a Constant

B Constant

A Coefficient

microd Depth factor

v Poissonbulls ratio

v 1 Correction factor for hyperbola point resistance shysettlemen~ relationship

n Correlation coefficient

ahc Radial (horizontal stress in the concrete

ohs Radial (horizontal) stress in the soil

Ovc Vertical stress in the concrete

Ovs Vertical stress in the soil

11

1 LARGE DIAMETER BORED PILES IN NON-COHESIVE SOILS

11 peterminati on of bearing capacity of bored piles

from results of Cone Penetration Test (CPTl

The methods published in available literature up to 1976

were compiled by D Rollberg (1976 1977) It contains

totally 25 methods

- 22 use the results of static soundings (CPT)

3 use the results of standard soundings (SPT)

The failure load Qu of the pile is evaluated as the sum

of the pile point resistance Q and the pile skin reshypu sistance Qsu

(111)

Pile point resistance Q based on static soundina reshypu shysults can be expressed as

1- bull qP A ( 1 1 2)f C p

p

where

fp = point resistance factor

qP mean sounding resistance of static cone C

penetrometer in the area of the pile point

A cross-sectional area of the pilep

The pile skin resistance is expressed as

1 s -- bullq bullU middot Lih (113) fS C p

where

fs = shaft friction factor

sqc mean sounding resistance along the depth h

and skin surface area U middotLih p

1 2

The methods differ in

- the calculation of qPC

(074 to 40) Db below the pile base (Fig 11 1)

(10 to 80) Db above the pile base (Fig 1 11)

- the evaluation of the point resistance factor usually

values off gt 10 are used p

- the calculation of qsC

- the evaluation of the shaft friction factor

fs = 50-300 is applied

In Table 111 methods for determination of the bearing

capacity of bored piles are listed Rollberg 1977 The

point load the skin friction load and the ultimate total

load are evaluated for bored piles (shaft diameter D ~

03-090 m) from static sounding results in non-cohesive

soil

Calculation results based on static sounding measurements

are shown in Table 112 for pile point pile shaft and

total pile load respectively

The table shows that

- a ll methods overestimate the ultimate point resistance

- the best correlation for ultimate point resistance is

obtained with the Soviet method Trofimenkov 1974

n1 = 114

- there a re only five methods for evaluation of the ultimate

skin resistance

- all methods with exception of the Soviet norm Trofimenkov

1969 method overestimate the ultimate shaft resistance

- the Norwegian method Senneset 1974 gives the best

correlation for the ultimate shaft resistance =119n 2

- with exception of the Soviet methods the total ultimate

load is on the average overestimated by all methods

1 3

Taking into account the above results the Soviet and

the Norwegi an methods are presented below

The Soviet method JG TrofimenkgtV 1974

1 qP bullA + qsbullA (114a)Qu = Qpu+Qsu fp C p f C s s

where

11 40 DP 12 1 0 D p h+l1 qp r dhqcC l1+l2 h-12

0ct-0ceqs C u middoth s

f(qp) -+ see Fig 1 bull 1 2 fp C

f f ( qcs) -+ see Fig 1 1 3 s

The Norwegian methon K Senneset 1974

1 p A 1 s bullA ( 1 bull 1 bull 4b)-f-middotqcmiddot p + -f-q s p S C

where

11 30 D p

12 50 D p h+l11 f dhqP l1+l 2 qc

C h-12 h s 1

= f dhqc qch 0

f 20 p

f = f (q~ ) + see Fig 114 s

Note a ) The total skin friction -f-middotq~ is assumed to be

no less than 10 kPa even~ith a very little

cone penetrometer resistance

b) The poin t resistance -f-middotq~ is assumed to be

maximum 10 MPa even iJl case of very dense sand

14

It must be underlined that the best correlation for

the pile point is obtained with the Soviet method

101 for 94 driven piles in non-cohesive soil

- 172 114 for 46 bored piles in non-cohesive soil

Trofimenkov 19731974 showed the results of comparison

of the ultimate loads determined by formula (114a)

Q~ and by pile load tests Q~ for 153 driven friction

piles at the 57 various sites see Fig 115

In Germany a lot of investigations were made before

establishing the DIN 4014 part 2 (1977) on large diameter

piles

In Table 113 and 114 the results from these investigashy

tions are generalized

The data in the tables were obtained from 35 test loadings

(4 of which were published by Franke 1973 The diameter

of the piles was from 08 to 25 m the length from 5 m

to 34 m and the cone penetrometer resistance varied from

10 MPa to 15 MPa

Bustamente and Gianeselli 1982 proposed a prediction

of the pile bearing capacity by means of the static

penetrometer Their proposal was based on the intershy

pretation of a series of 197 full scale static loading

tests In this paper the results from tests of 55 bored

piles are chosen The diameter of the piles varies from

042 m to 150 m and the length from 6 m to 44 m The

equivalent cone resistance was determined as showed in

Fig 116 The authors have noticed that the point

resistance factor f depends on the nature of the soil p and its compactness but also on the different pile placeshy

ment techniques (see Tab 115)

Piles of category group I

- Plain bored piles - Cased bored piles

- Mud bored piles - Hollow auger bored piles

- Type I micropiles - Piers (grouted under low - Barrettespressure)

15

In Tab 116 values of the shaft resistance factor

fs are given

Category IA

- Plain bored piles - Mud bored piles

- Hollow auger bored piles - Cast screwed piles

- Type I micropiles - Piers

- Barrettes

Category IB

- Cased bored piles - Driven cast piles (concrete or metal shaft)

Category IIA

- Driven precast piles - Prestressed tubular piles

- Jacked concrete piles

Category IIB

- Driven metal piles - Jacked metal piles

It can be noted that the values in Tab 116 are in

genera l of the same range for the driven and the

bored piles

According to the Polish Specification 1979 the point

and shaft resistance factor are given by

1-f- = kmiddota

p p

where

ap 035 for sand

k coefficent of unhomogeneity k qcp min

qcp

= 0065 for sandfrac12

1

16

Similar results can be observed in Fig 116a and

Fig 116b It was showed by Kerisel (1965) and Franke

(1973) that the harder soil the more loosening at

excavation and thus relatively smaller bearing capacity

Taking into account the Franke diagrams we will have

for D = 125mand settlements= 2 cm p

Cone resistance qc (MPa) 1 5 50 1 0 15 22

qc p for s=2 cm 3 6 8 12 14

(see Fia 1 1 6b )

taking safety factor for pile base F = 3 the point resis~ance

33-10 ~-05

380375 lo 212 bull lo 2114 bull

factors- shy are p

The above anal ysis shows that it is possible to determine

ultimate point and shaft resistance of bored piles from

static cone sounding But it is very important and must

be taken into account type of pile kind of soil and

degree of compaction

Bel ow calculation method for large diameter bored piles

based on the static cone penetrometer resistance (CPT)

is proposed Equation (117) can be used directly for

the base diameter D lt 15 m For larger diameters p shyD gt 15 m the values should be multiplied by the

p ff t ITscoe icen Y~ as pi

( 1 1 5 )

where

qcp = according to equation (117)

D = diameter of the pile base D gt 15 mpi pi

17

This value q~p should be put into equation 116

The value qc s in equation 118 is independent on the

pile diameter

Proposed calculation method

(116)

where)

1 1 40 ~ 11 3 for piles wit h a nd enlarged bases12 10 12 = ~

h+h

q (h) dh (117)qcp l1+l2 f -f- Ch-li p

h 1 f 1

qcs = o -f- qc (h) dh (118)h s

1 -f- = f(q kind of soil ) -+- see Fig 11 7 and Tab 1 1 7

C p

f (q kind of soil ) -+- see Fig 1 1 8 and Tab 1 1 8 fs C

Note

a) the point resistance q for qc gt 20 MPa is assumed cp to be maximum as

- Gravel 70 MPa - Coarse sand medium sand 55 MPa - Fine sand s il ty sand 40 MPa

b ) The shaft resistance qcs for qc gt 20 MPa is assumed to

be maximum as

- Gravel 110 kPa - Coarse sand medium sand 90 kPa - Fine sand s ilty sand 70 kPa

These proposed values are compared with results by

Bustamente (1 982) and the Polish Specification (1978)

Fig 11 9 and F i g 1110 A similar comparison for DIN

4014 1 977 is shown in Fig 1111 and Fig 1112

) In this paper was used the above values 1 1 and l z But it can be used in practice 11 =30 D and h =2Dp respectively The results shall be very simi l ar to the above onPs

18

The proposed method has been examined with field test

results This is shown in Fig 1113 to Fig 1128

and Appendix 1 11 to 1110 and Tab 119

The comparison shows that the value of q in equationcp (117) corresponds to the settlement -10 of the base

diameter (s=010 DP) see Fig 1113 and Tab 119

(average sDp=88 and standard deviation sd=3)

Later in this paper the allowable load and dependence of

the load versus settlement will be determined

12 Determination of bearing capacity of the large

diameter bored piles from results of the Standard

Penetration Tests (SPT)

There are little published on pile tests coupled with

results from Standard Penetration Test (SPT) Among the

authors who have published material in the subject are

- Meyerhof 1956 1976

- Senneset 1974 (Norwegian method)

- Rodin Corbett Sherwood Thorburn 1974 (English method)

- Polish Specification 1975

- Weltman Healy 197 8

- Reese 1978

- Japanese Society 1981

- Decourt 1978 1982

The Norwegian method is valid o nly for concrete andor

wooden piles the English method only for gravel It is

very important to underline that the Norwegian a nd the

English methods use of the SPT resul ts intermediate by

the static cone penetrometer resistance (q ) as well C

Below methods are presented that are using the results of

SPT directly Meyerhof s method in total can also be used

on driven piles in non-cohesive soil Although we could

have found some proposes for bored piles Eqs (121 and

122) see Fig 121 and Fig 1 22 as well

19

Ultimate point resistance (psf)

12 N 3 omiddotH lt 120 N 30

(kPa) (1 2 1)Psf D

where

N30 the average standard penetration resistance

in blows per 03 m

H depth in bearing stratum

Ultimate skin friction tu

for bored piles tu N~ o (kPa) (1 22a)

for driven pil estu 2N30 (kPa) (1 2 2b)

where

N30 the average standard penetration resistance

in blows per 03 m within embedded length

of pile

Weltman and Healy (1978) taking into account Meherhofs

proposition for driven piles have introduced two coefshy

ficents for bored piles in gravels (glacial soil) Equ

123 and Fig 1 23

t = a 2 N30 (kPa ) (1 2 3)U 1

where

ai a 1 for impermeable gravels see Fig 123a

ai a 2 for permeable gravels see Fig 123b

The Polish Specification ( Specification for Design and

Construction of Large Diameter Bored Piles in Bridges

1975 Ministry of Transport) gives the ultimat e point

resistance in dependence of N30 base diameter and depth

see Tab 12 1 The Tab 121 contains values for coarse

and medium sand For other non-cohesive soils the following

coefficients are proposed

p f = S bull p f (medium sand) ( 1 2 4)S 1 S

20

where

S1 1 20 for grave lSi

f 132 080 for fine sand

13 3 070 for silty sand13i

In Fig 124 values of psf are shown for h = 10 m DP

06 m DP= 15 m and h = 20 m DP= 06 m DP 1 5 m

respectively

A few of the instrumented piles were tested and analyzed

by Wright and Reese (1979) The ultimate point and shaft

resistance in the fine and silty sand as a function of

blow count from SPT is shown in Fig 125 Results from

two additional tests reported by Koizumi (1971) are also

introduced in the figure The ultimate point resistance

is assumed to exist at a settlement equal to 5 of the

base diameter

Methods of prediction of the bearing capacity of piles

based exclusively on N30 values were presented by Decourt

1982 Below a proposition for high capacity piles excavated

and cast under bentoni te is presented

The ultimate skin friction is determined by the expression

(see Fig 126)

t = 33 N30 + 1 0 (kPa) ( 1 bull 2 5 ) u

where

N30 average value of N30 along the shaft

- for N30 lt 3 must be taken as = 3N30 - for N3o gt 5 0 must be taken as NJo= 50

The allowable point resistance can be obtained in a n

expedite way as

Psa = 33 N30 (kPa) (1 2 6)

where

N30 = average of Nat point level one metre above

and one metre below

Psa allowable point resistance

21

Decourt proposed a safety factor for the point of F = p

40 Therefore the ultimate point resistance can be

determined by the expression

(kPa) (1 2 7)

In Fig 12 7 and Fig 1 28 the above values for base

and skin friction resistance are compared respectively

Taking into account the type of soil thereis a good

correlation for ultimate point resistance The result for

ultimate skin friction is scattered but only apparently

The values for large diameter bored piles are between

the line 1a and 1b in Fig 128 Large diameter piles

have a high ultimate skin friction in relation to driven

piles (see points for bored piles in Fig 122 and DIN

4014 Part 2 1977 as well) The high values for piles

excavated and cast under bentonite have had a strong base

on the load tests (Decourt 1978 1982 and Wright and

Reese 1979)

Below the proposals are given for determination of the

values of the ultimate point resistance and the ultimate

skin friction Eqs 128 to 1214 and Fig129 1210

The ultimate point resistance

- gravel psf = 140 N30 (kPa) ( 1 bull 2 8)

for N~ 0 gt 50 blows3O cm Psf 7 MPa

- coarse sand and medium sand

(kPa) ( 1 2 9)

for N30 gt 50 blows3O cm Psf 55 MPa

- fine sand and silty sand

psf = 80 Nio (kPa ) (1210)

for N30 gt 50 blows3O cm p f = 40 MPa 5

where N3 o the average of N value near the point level as

22

h+l1

f N3o(h)dh ( 1 2 11 ) h-12

3DP see Fig 1 1 1 D

p

The ultimate skin friction for coarse sand and medium sand

tu = 1 8 N 3 o (kPa) (1212)

t (kPa) (excavated and cast (1213)u under bentonite)

where

N30= the average value of N along the shaft as h

N -

3 o = h1 f N 3 o ( h) dh ( 1 bull 2 bull 1 4 ) 0

The ultimate skin friction for N30 gt 50 blows30 cm is

assumed to be maximum as tu = 90 kPa and t = 150 kPa u

13 Allowable load of large diameter bored piles

The allowable load Qa of large diameter piles has been

expressed as

OuQa ( 1 3 1)Ft

Qa Q(s)=Qb(s) + Os(s) ( 1 3 2)

Opu + Osu (1 3 3)Qa Fp Fs

Qr lt mmiddotQf ( 1 bull 3 4)-

= universal safety factor

individual safety factor for ultimate resistance of the pile point

individual safety factor for ultimate resistance of the pile shaft

= load according to the allowable settlement

calculated load

m coefficient

calculated ultimate bearing load of the pile

23

The equations from (131) to (134) are used as

1) equation (131)

a) DIN 4014 - 1977 Ft= 2 175 15 (depending on the kind of load)

b) Polish Specification 1975 Ft = 18 16 ( -- )

1c) Trofimenkov 1974 Ft = 14307

2) equation (132)

a) DIN 4014-1977 i Q(s) = Qb(s) + Q (s) = A middotp(s) + E tAsmiddott(s)

s p 0

where Qbs) and Qs(s) are described in Fig 1423

3) equation (133)

a) Polish Specification 1974

F 25 22 depending on the kind of load p

F 1 bull 0 s

b) Wright SJ Reese LC 1979

The ultimate capacity or resistance is considered as a

random value and represented by a frequency distribution

The distribution can be described by a mean value and a

variance The distribution of the load applied to the

foundation can be described similarly The coefshy

ficients used to factor resistance and loads are called

partial safety factors Some recommended partial safety

factors for resistance under normal conditions of design

and construction are given in Tab 131 Normal control

is defined as a condition where the coefficient of variation

is less than about 035

Typical values for partial safety factors for loads are

in the range 1 to 2 depending on the type of load and

how it is applied The overall factor of safety Ft can

then be calculated from the equation

Ft = y RbullY S

24

where

YR the par tial sa f ety fac t or for resistance and

Ys the partial safety factor fo r load

The probability of fa i lur e of the foundation can be r eshy

lat ed to the factor of safety for a parti cular degree of

uncert ainty (see Tab 13 2)

c ) Tejchman Gwizdala 1979

The authors discuss adequate safety factors based on fie l d

test s by Spang (1 972) Franke (1976) Touma and Reese (1974)

Colombo (1971) Kerisel and Simons (1962) Appendirno (1973)

see Tab 1 33 Taking into account the universal safety

factor Ft= 2 0 for the tota l load settlement curves it

was estimated

i) F in the range of 111 to 237 with the average value s F = 166 and standard deviation sd = 034 s (see column 16 Tab 133)

ii) Fb in the range of 161 to 945 with the average

value Fb = 387 and standard deviation sd = 2 15

For model core d piles in laboratory conditions values of

Fs = 108 to 154 (average Fs = 132 s~ = 019) and

values of F = 280 to 5 94 (average F = 3 55 sd = 1 07)p p

see Tab 1 3 4

As a conclusion it was assumed that Fb = 40 and F 1 5 s

for l arge diameter bored piles

The investi gation has shown that for the above safety

factors settlements of piles under permissibl e loads are

10 to 20 mm There was assumed a maximum load on large

diameter piles corresponding to a settlement of 010

diameter of the piles

25

d) Bustamente Gianeselli 1 982

e) 0ecourt 1982

The safety factor is given by

F = FgmiddotFfmiddotFamiddotFw where

F 11 - skin friction g F 135 - point bearing capacity

g

Ff safety factor related to the formulation adapted

Ff= 10 for Decourts method

Fd safety factor related to excessive deformation

Fd = 10 for skin friction

As for the point Fa= 2 to 3 depending on the

pile diameter For usual cases 25 is suggested

Fw safety factor related to working load

Decourt recommends 12

Thus we will have

- for skin friction

Fs = 11bull10middot10middot12 132 - 13

- for the point

F = 135bull10bull25middot 1 2 = 405 = 40 p

4) equation (134)

a ) Polish Code 1983

Q lt mbullN r shy

where

total load coefficient (depending on the kind of load For foundation we can assume Yf = 12 )= code load

correction coeffic i ent

09 for pile foundations

m 08 for two piles

m 07 for single pile

26

N ymmiddotQu

ym material (soil) coefficient

ym 08 to 09 (Polish Code 1981)

Thus we will have

QnmiddotYf lt mmiddotym middotQu-

Yf9uFt = On m bull Ym

1 2 max = 2 14Ft 0 7 bull 0 8

1 2min = 1 48Ft 0909

The above analysis has shown different ways to determine

the allowable load The analysis is in direct connection

with mobilization of the load (versus settlement) The

dependence of total load point resistance and shaft reshy

sistance will be discussed in detail in Chapter 14

In the authors opinion taking into account the above

analysis the allowable load should be determined based

on the equation 133 ie based on individual safety

factors for ultimate point and shaft resistance Proposed

values of F and F in literature are shown in Tab 135 s p The average values are Fs = 145 and Fp = 3 38 respectively

Taking into account that the bearing capacity is determined

based on the results from sounding measurements direct from

a place near the piling without a ny indirect correlation

the allowable load of large diameter bored piles is given

by the equation (133a)

( 1 3 3a)

where F = 30 and F 13 are proposedp s

27

14 Determination of settlement of larqe diameter bored

piles based on static cone penetration tests CPT

Determination of ultimate point and skin friction resistance

based on static cone penetration tests has been discussed

in Chapter 11 above Based on the results of this calcushy

lation and on Chapter 13 we can establish an approximate

relation between point resistance shaft resistance and

total load on one hand and settlement on the other However

the approximation gives a wide scatter especially for base

resistance as can be observed in Fig 141 to Fig 144

Only the first part of the point resistance - settlement

curves are in good agreement with measured values It can

be observed in Fig 145 that the average correlation

coefficient n = 098 and standard deviation sd= 029

This way of calculation can be used only for rough calcushy

lation (see Chapter 13)

In Chapter 11 also measured point resistance - settlement

curves were shown The base resistance increases gradually

with increasing pressure and settlement Below the cur7

vature of the point resistance - settl ement curve will be

examined It is assumed that this curve can be described

as a part of the hyperbola curve Thus if the ratio of

the measured settlement (s ) to the point resistance (p)

is plotted against the measured settlement the result

will fall closely to a straight line with the equation

( 1 4 1)

where a 1 and b 1 are constants (see Fig 1 46a and Fig

14 6b)

Then the point resistance - settlement realtionship can be

expressed as a hyperbola

s p = ( 1 bull 4 2)

The constant is the initial s lope of the point resistanceshya 1

settlement curve ie a 1 = t~a The inverse of the constant

28

b 1 is the vertical tangent (asymptote) to the curve 1ie for s = 00

bf= ~ If the ultimate point reshy1

sistance psf is equal to bf (psf=bf) the whole point

resistance settlement curve will be a hyperbola type

Now the Eq 1 4 2 can be written as

s s ( 1 4 3)a) p s or b) p = a+__sect_a1 + 1 Psfbf

If the ultimate point resistance is smaller than bf only

a part of the hyperbola curve ought to be considered

Further the Eq 14 3 will be written as

p ( 1 4 4)

where

poundf_ correction factor for hyperbola point Psf resistance-settlement relationship

Taking into account the discussion in Chapter 11 the

ultimate point resistance psf = qcp based on the CPT measurements

Therefore the relationship between the point resistance

the sett l ement and the CPT result can be expressed as

s p (1 4 5)s

The correction coefficient v 1 will cause a change of the

position of the vertical asymptote bf in r elation to the

ultimate point resistance q bull This means that we take cp into account a different part of the hyperbola curve for

the description of the point resistance-settlement relationshy

ship

Now if we want to use the equation (145) in practice

we must determine the constant and the coefficienta 1 v 1 (assumed that q is determined ear l ier Chapter 11)cp

29

The constant a 1 and t h e coefficient Vi have been detershy

mined based on fi e ld tests according to pi l es No 1 - 20

see Tab 14 1 and Tab 1 1 9 as wel l The values of

a 1 versus the point diameter D and the ul timate pointp

resistance respectively are shown in F i g 147 and Fig

148 Fig 1 47 shows that a 1 is independent of the

point diameter D Based on Fig 148 it can be assumed p

that

28-4bullq (1 4 6)cp

This correlation has been examined with data of the

literature see Fig 1 49 and Appendix 141 to 1 45

(Note there were no static penetration tests and qcp was determined based on a correlation made by Bergdahl

(1982))

A good correlation with equation 146 can be seen taking

into account the safety factor in the DIN 4014 Part 2

(1977) bull

The correction factor v 1 versus the poi nt diameter is shown

in Fig 1410 I t is assumed that the correlation is

V1 = 3 0 - D ( 1 4 7)p

where D is in m p

The above equations ie 146 and 147 were assumed for

a later analyses see Fig 14 11 and Fig 1412 The

piles No 1 to 20 were examined taking into account Eqs

14 5 14 6 and 1 4 7 The result of this cal cul ation is

presented in Fig 1 413 to Fig 1 4 18 and in Tab 1 4 2

respectively In Fig 1413 the calculation way for pile

No 2 is shown as an example

In Fig 1414 to Fig 1 417 measured and calculated

values of the point resistance versus settl ement can be

compared In tota l good correlation exists for all the

30

pressure-settlement curves Values of q from static cp

cone penetration tests and generalized values of anda 1

v 1 were considered Only for piles No 17-20 qcp was

assumed as the point resistance for s = 010 D because p

the static penetration test results were inaccessible

The similar comparison is shown in Fig 1417a for piles

in sand based on experimental results (Tuoma Reese 1972

and Wright Reese 1979) where the ultimate case resistance

was assumed as the resistance at a base settlement of 005

D The relative base resistance is the mobilized base p resistance divided by the ultinate base resistance The

curvature of the proposed point resistance settlement shy

curve to mean value proposed by Wright and Reese is excellent

However the constant a 1 and the coefficient v 1 were

determined for sand only In the future they should be

examined especially for gravel and silty sand based on

field tests Until then in the authors opinion the

values of v 1 can be chosen from Eq 147 for all nonshy

cohesive soils But for a 1 there is proposed

at = gt bulla (1 4 8)1

where

gt- 1 = 080 for gravel

gt 2 120 for silty sand

This proposal is shown in Fig 14 11 as dashed lines

A good correlation can be seen with the investigation by I

Kiosimiddotnski for sandy gravel and on the safety side with

the investigation by Tuoma and Reese for silty sand (see

Fig 149)

In Fig 1418 all calcul ations for pile No 1 to 20 are

summarize d The correlation coefficient n is defined as

the calculated point resistance p(s) divided by measured

point resistance p(s) For totally 126 points from 20

curves an average of n = 098 with standard deviation

31

al= 023 was obtained see Fig 1418 A similar result

can be observed for the range usually assumed of the

allowable settlement for sinqle large diameter bored

piles as

for

- for

- for

s

s

s =

10

20

30

mm a

mm

mm

verage n10 II

II

mm 089

095

099

and sd =

and sd

and sd

031

027

026

It can be questioned whether the sonstant a 1 can be deshy

termined in different ways The constant a 1 is the initial

slope of the point resistance-settlement curve as menshy

tioned above Then we can use all methods for determination

of settlement of a pile point The range of validity of

these methods then must be determined This will be shown

later

In order to be able to design the total load settlement

curve the skin friction resistance-settlement relationshy

ship must be determined The ultimate skin resistance of

large diameter bored piles was determined in Chapter 11

(based on static penetration tests) and in Chapter 12

(based on standard penetration tests)

In the past a lot of field tests have been done on the

mobilization of the shaft resistance versus pile settleshy

ment In this subject there is a rather good agreement

in the whole investigation for cohesive and non-cohesive

soil

Some results and opinions on thispresented in the literashy

ture during the last few years are shown below

Ultimate shaft resistance versus settlement

1) BurlandJB Butler FG Duncan P (1969)

-The shaft l oadsettlement curve is derived using a=0 3

with 90 ultimate load being mobilized at 025 in

settlement(~65 mm)

- soil London clay

- see Fig 1 419

32

2) Touma FT Reese LC (1974)

- The failure of the sides of the shaft takes place

at a downward movement of about 04 in (10 mm)

- soil sand

- see Fig 1420

3) Tomlinson HJ (1977)

- The maximum shaft resistance is mobilized at a

settlement of only 10 mm (or j in)

- soil stiff clay

- see Fig 1421

4) Klosinski B ( 1977)

- It was assumed that skin friction increased proshy

portionally to pile settlement up to the limit value

s bull This value depends on soil conditions and pile0 diameter and is usually from 3 to 8 mm For soft

compressible soil it may be grater than 10 mm

- soil cohesive soils

- see Fig 1422

5) Franke E Garbrecht D (1977)

- At settlement of 2 to 3 cm which are normally

allowed in Germany under working loads for buildings

not very sensitive to differential settlementsthe

skin friction is almost always fully mobilized

- soil sand

6) DIN 4014 part 2 (1977) and Franke E (1981)

- The skin friction Tm is approximated as diameter

independent having failure settlements of smf = 2 cm

in sand and 1 cm in clay

- soil sand and clay

- see Fig 1423

33

7) Reese By L (1978) Reese By L Wright SJ (1979)

(1978) The maximum skin friction being developed at

an average downward movement ranging from about 05shy

2 of the shaft diameter The average of six load tests

reported by Whitaker and Cooke (1966) are a lso plotted

for comparison

- soil stiff clays

- see Fig 1424 and Fig 1425a

(1979) The relative settlement is the average settleshy

ment of the butt and base devided by the shaft diameter

The mean curve maximises at a relative settlement of

about 002 D

- soil sand and clay

- see Fig 1425b

8) Tejchman A Gwizda3a K (1979)

- A clear differentiation of the distribution of shaft

and base resistances is observed for changing settleshy

ment For fairly small settlements the shaft resist shy

ance increases quite fast and the ultimate values

are reached soon while the base resistance increases

gradually with increasing loads and settlements withshy

out clearout ultimate values it can be assumed that

complete mobilization of shaft resistance corresponds

to settlements equal to 001 or 002 diameter of pile

- soil cohesive and non-cohesive soils

- see Tab 131 and Fig 1 426

9) Promboon S Brenner R P (1981)

- Load distribution and load transfer curves disclose

that most of the load is carried by shaft friction

which is developed at small displacements in the order

of 10 mm

- soil Bangkok clay

- see Fig 1427

34

10) Prodinger w Veder Ch (1981)

- The maximum value of skin friction resistance

occurred for a total settlement of 12 mm

- soil silty clay and sand

- see Fig 1428

11) Farr JS Aurora RP (1981)

- Ultimate load transfer was recehed (or nearly reached)

at a relative settlement of about 04 in (10 mm)

- soil gravelly sand

- see Fig 1429

12) Decourt (1982)

The skin friction resistance is totally mobilized

with deformations of about 10 mm or at the most 15

mm regardless of shaft dimensions This observation

of ours seems to clash with the opinions of other

authors who seek to relate the deformation necessary

for full skin friction mobilization with the shaft

diameter

- soil cohesive and non-cohesive soil

In Tab 143 all these results are shown Depending on

the kind of soil the following v a lue s of ultimate settleshy

ment for shaft can be assumed

- averages 142 mm (sd 5 3 mm) for sand

- averages 100 mm (sd = 21 mm) for cohesive soil

averages 726 mm (sd 67 mm) for claysand

It can be observed (see Fig 1419 to 1428) that the

shaft friction resistance increases proportionally to

the pile settlement up to the above limit value and

thereafter becomes constant

35

Taking into account what was mentioned earlier on point

resistance settlement relationship and the above results

a relationship between total load point resistance and

shaft resistance on one hand and settlement on the other

can be made see Fig 1430

It is assumed on the safety side that the following

ultimate settlement (S~) exists for the shaft resistance

of large diameter bored piles

SS1 ) 200 mm for non-cohesive soil u SS2) = 100 mm for cohesive soil u SS3) 15 0 mm for claysandu

In Fig 1 430 the curve Q (s) is calculated based on p

the equation 14 5 or 144

The values of psf in equation 144 can be calculated

based on other methods as well

The total load-settlement relationship is obtained by

summing up point and s haft resistance as

Q (s) = Q (s) + Q (s) (149)s p

for each point

Now the allowable load can be determined from equation

133a and versus the allowabl e settlement as

Q (s) = Q (s) + Q (s) (1410)s p

where s lt Sa

Sa= the allowable settlement of the pile

The analysis allows determination of the approximative

load settlement dependence without calculating the settleshy

ment for non-cohesive soil In Fig 1431 it is shown

36

In Tab 144 the settlement for allowable point reshy

sistance q5P according to equation 133a is shown

as well The average settlements= 198 mm (sd=78 mm)

is obtained This value is similar to the assumed ultimate

settlement of shaft for non-cohesive soil The ultimate

settlement for point resistance is assumed s = 010 Dp as mentioned earlier

37

15 Initial slope of pile point resistance shy

settlement curve

Settlement of piles and pile foundations can be cal culated

based on

- empirical correlations

load-transfer methods using measured relationships

between pile resistance and pile movement at various

points along the pile

- theory of elasticity that employs the equations of

Mindlin for subsurface loading within a semi-infinite

mass

- numerical methods and in particular the finite element

method

- use of in-situ tests (Cone Penetration Test Standard

Penetration Test Pressuremeter Test)

The critical slope of the pile point resistance-settlement

curve is important for calculation in chapter 14 The

constant a1 can be determined from all the above mentioned

methods

Comparison is made to Berggrens and Schmertmanns methods

below (see Berggren 1981 as well)

6sIn Tab 151 (No 1 2 3) the values of a 1 =~p for s =

10 mm and s = 20 mm (measured for large diameter bored

piles No 1 to 24) are compared to the calculated values

according to the modified hyperbola method (see Fig 14 6)

It can be seen that these calculated values are between

s = 1U-2u mm but rather closer the measured values for

the settlements= 10 mm see correlation coefficient n 6

and n 7 in Tab 151 respectively The average correlat i on

coefficent for the settlements= 10 mm is n9 = 108 and

the standard deviation is sct = 014 The comparison to

Berggrens and Schmertmanns methods for s = 20 mm ( see

Berggren 1~81 and Tab 151 as well) shows that the

results based om these methods give too high values of a 1 bull

38

The average values are ne= 143 sd = OJ3 and ng= 137

sd = 037 for Berggrens and Schmertmanns methods

respectively A bit better agreement can be observed

for Schmertmanns method

Taking into account the results in Tab 151 ana Tab

15l it must be assumed that for the determination of

a 1 the pile point contact pressure p(a1) should be

assumed as the ultimate point bearing capacity devided

by about 4

p(ai) - ( 1 bull 5 1 )

Most of the methods for determination of settlement are

based on the theory of elasticity The settlement ot the

pile point can be expressed as the average settlement of

a rigid circular foundation from the equation

11-Dp 1-v 2

s = p -4- -E-bull microd (1 ~ 2 J

where

p pile point contact pressure

E Youngs modulus

D diameter ot pile pointp ) = Poissons ratio

microd = depth factor

The range of validity of the pile point contact pressure

was determined in equation 151 Youngs modulus has an

important meaning lt can be determined from triaxial

tests or oedometer tests The relationship between the

constrained (oedometric) modulus Mo and Young s modulus

Eis dependent on Poissons ratio v as expressed by the

equation

E = l 1 + V ) ( 1 - 2 V ) Mo ( 1 bull 1 bull 1)- 1-v

39

TaKing into account the analyses made ny Chaplin (19b1a

1 961bJ Janbu (1 963 1970 1973J Andreassen (1973)

Duncan and Cheng (1970) Tejchman anct Gwizdala (1979)

Gwizdala (1978) Franke (1981) Berggren (1981) Withiam

and Kulhawy (7981) and the present investigation the

calculation of settlement is proposed to be

s = 24 bull p bull ~ D bull 1-v 2 bull micro d (154)Do o E

where s (r1)

p (kPa)

Dp (m)

E (kPa)

D0 =10 m

micro = 05 + 01 vfrac34E (1 5 5)d vs

but 05 lt microd lt 10-tip= p - (J (ovs see Fig 151)vs

E =Et= Kbullpat (Oo )n [1- Rf(1-sinltj) 101 - 03 ) 12 (1 5 6)2 c cosltP + 2o 3 sinltP 1Pat

in which K n and Rf= hyperbolic stress-strain parameters

Pa= atmosferic pressure ando 1 o 3 and o0 are determined by

averaging the concrete and soil vertical and radial stresses

near the pile point according to Fig 151 Then the

stresses at the pile point level are h

(J vs = L

0 Yi h

l vertical stress in the soil

0 hs Ko h

0 vs radial (horizontal) stress in the soil

0 vc L ye h -l

vertical stress in the concrete 0

0 hc K oc a vc radial (horizontal)

concrete stress in the

40

K at rest soil lateral stress coefficient 0

K c lateral stress coefficient for fluid fresh concrete0

K 1 0 oc

and average values

a 05(a +a)V vc vs

1 1 - shy~ = -(a +a+a I = -3 (av+2ahJ the applied mean normal stress0 j Z X y

Assuming this model calculation results for piles No 1-24

(see Tab 11~ as well) are shown in Tab 153

The piles are embedded mainly in medium sand to fine sand

For this kind of soil it can be assumed (soil parameters

from field or laboratory tests were inaccessible)

~ = 35deg c = 0 R~ = 09 n 05 v = 025 K c 10l 0

K = 04 Pat= 1UO kPa ye 24 kNrn 3 y = 14 kNm 3 bull0 C

Moreover in Tab 153 the following symbols are used

p(a1 ) - pile point contact pressure according to equation

1 bull 5 1

s(a1) - settl ement of pi l e point according to equation

143 and Tab 141

pound TT ( 2E = s bull Dp bull i 1-v ) according to equa~ion 152t

E~ Et bull microltl

EI

K = ro~ - according to equation 1 bull 5 6 p bullO middotA2

a~ o

E = E voD middot D middot ~4 ( 1 - v 2 ) according to equationt S p O 0

1 5 4

Et= E microd

K = according to equation 156 V PatmiddotaomiddotA2

41

The calculation results of Youngs modulus E = Et and

dimensionless canpressionrro1ulus for piles to 1-24 are shown

in Fig 152 to 155 using equation 152 and 15b

or equation 1~4 and 156 respectively lt can be obshy

served that the scatter in Fig 153 and Fig 155

where the influence of tne pile diameter is reduced

compare equation 154 is less than in the other figures

The reduced influence was made after observations from

field and laboratory tests while the equation 152 is

taken direct from theory of elasticity These values of

E and K are in good correlation with published values in

literature The values of Youngs modulus versus the

relative density of soil are compared to literature values

see Fig 15b Based on the analysis in this chapter it

can be assumed that

E = 9-ql 3 ( 1 bull 5 7)cp

where qcp is in accordance with equation 117

The calculation results based on this proposal are incluced

in Tab 1 5 3

The c a lculate d s e ttlements based on e q ua tion 154 and

157 are shown in column 23 and the values of the

correlation coef f icie nt (n= Seal ) in column 24 respectshyimeas

ively

The dimensionless canpression modulus can be d e termined as

K = 15Ubullq (qcp in MPa) (1 5 8)cp

see column 25 Tab 153

The calculation results based on the K compression modulus

according to equation 158 156 and 1 5 4 are shown in

columns 25 26 2 7 28 and 29 in Tab 153

42

For comparison and for determination of the range of

validity of this method the caLculation results of

pile point pressure for settlements s = 10 mm s = 20 mm

s = 30 mm (see Tab 141) according to equation 157

and 154 are shown in columns 30 to 35

The results obtained in Tab 153 confirm the possibility

to use the proposed method to calculate the initial part

of the pile point resistance settlement curve of large

diameter bored piles in non-cohesive soil and the initial

slope of this curve as well

A simple model has been proposed based on the theory of

elasticity ana the tangent modulus defined by Janbu (1963)

and Duncan amp Chang (1970)

A new approach according to the pile diameter depth factor

and principal stress is proposed

The settlement of the pile point can be made up to a point

pressure according to equation 151 on up to a settlement

of about s ~ 20 mm (30 mm)

-- The application of v Op in equation 1 5 4 a llows us ing

Youngs modulus as independent of the pile diameter

opposed to Bazants a nd Mosopusts (1981) proposal where

Youngs modulus wa s determined versus the pile diameter

The equation 1 5 6 takes into account the dependence of

Youngs modulus on depth (or overburden pressure) as

well

In the method field test (Cone Penetration Test) or

laboratory tests (hyperbolic stress-strain parameters

can be used

Comparison of the method to 24 availa ble load test r e sults

or large diameter bored piles in sand shows good a greement

to calculated and measured values

43

REFERE~CES

Adamczyk J (1978) Okreslanie udzwigu pali wierconych

za pomoca sondy statycznej (Bearing capacity of bored

piles based on the static sounding) Inz i Bud No 7

pp 253-257

Andreasson L (1973) The compressibility of cohesionless

soils Thesis Chalmers University of Technology

G6teborg (in Swedish)

Appendino M (1973) Comportamento di un palo di grande

diametro strumentato Rivista Italiano di Geotechnica

No 3 pp 115-118

Butterfield R Banerjee P (1971) A rigid disc embedded

in an elastic half space Geotechnical Engineering

Vol 2 pp 35-49

Bozant z Mosopust J (1981) Drilled pier design based

on load settlement curve X ICSMFE Stockholm Vol 2

pp 615-619

Begemann HK (1982) Cone penetration tests pile bearing

capacity and the thesis of Rollberg Proc of the Second

European Symposium on Penetration Testing Amsterdam

pp 433-438

Berggren B (1981) Bored piles on non-cohesive soils shy

settlement and bearing capacity (in Sweden) Thesis

Department of Geotechnical Engineering Chalmers

University of Technology G6teborg

Bergdahl UB (1979 1982) Sonderingen und in situ Messungen

Wien 18-19 Juni 1979 - Private information 19821983

Bustamante M Giane selli L(1982) Pile bearing capacity

prediction by means of static penetrometer CPT Proc

of the Second Europ Symp on PenTest Amsterdam

Vol 2 pp 493-500

Chaplin TK (1961a) An experimental study of the settleshy

ment of footings in sand PhD Thesis Univ of

Birmingham

44

Chaplin TK (1961b) Compressibility of sands and settleshy

ments of model footings and piles in sand 5th Int

Conf on Soil Mech a Found Engng Vol 2 p 33 Paris

Colombo P (1971) Observazoni sul comportamento ltli pali

a grande diametro Rivista Italiana di Geotechnika

No 3 pp 163-172

Dahlberg R (1975) Settlement characteristics of preconshy

solidated natural sands Swedish Council for Building

Research D11975

De Beer EE (1964) Some considerations concerning the

point bearing capacity of piles Proc Syrop Bearing

Capacity of Piles Boorkee I pp 178-204

Decourt L Quaresma AR (1978) Capacidade de Carga de

Carga de Estacas a partir de Valores de SPT VI Conshy

gresso Brasilerio de Mecanica dos Solos e Engenharia

de Fundacoes - Rio de Janerio - ABNS

Decourt L (1982) Prediction of the bearing capacity of

piles based exclusively on N values of the SPT Proc

of the Second Europ Syrop on Penetration Testing

Amsterdam Vol 1 pp 29-34

Duncan MJ Chang CV (1970) Non-linear analysis of stress

and strain in soils Journal Soil Mech Found Div Vol

96 SM5 pp 1629-1651

Durgunoglu HT (1979) Effect of foundation embedment on

stress and deformation distributions Third Int Conf

on Num Meth in Geomechanics Aachen pp 925-928

Farr JS Aurora RP (1981) Behaviour of an instrumented

pier in gravelly sand Proc of a session Drived Piers

and Caissons sponsored by the Geotech Eng Div of the

ASCE Nat Convention St Louis Missouri pp 53-65

Franke E (1981) Point pressure versus length and diameter

of piles X ICSMFE Stockholm Vol 2 pp 717-722

45

Gregersen os Aas G and Dibiagio E (1973) Load tests

on friction piles in loose sand Proc of the Eigth

International Conference on Soil Mech Moscow USSR

Vol 21 pp 109-117

Gwizda1a K (1978) Behaviour of large diameter bored piles

in non-cohesive soil (in Polish) Archiwum Hydrotechniki

Vol XXV No 2 pp 183-217 (English summary)

Huizinga TK (1951) Application of Results of Deep

Penetration Tests to Foundation Piles Building Research

Congress Vol 1 p 173

Janbu N (1963) Soil compressibility as determined by

oedometer and triaxial tests Proc Europ Conf Soil

Mech and Found Eng Vol 1 p 19 Vol 2 (Discussion)

p 17 Wiesbaden

Janbu N (1970) Grunlung i geoteknikk Tapir Forlag NTH

Trondheim

Janbu N Bjerrum L Kjaernsli B (1973) Soil Mechanics

applied to some engineering problems Norw Inst Publ

No 16 Oslo

Japanese Society SMFE (1981) Present state and future trend

of penetration testing in Japan Separate report at

X ICSMFE Stockholm

Kjekstad O Lunne T (1979) Soil parameters used for design

of gravity platforms in the north sea Second Int Conf

on Behaviour of Off-shore structures London Vol 1

pp 175-192

Klosinski B (1977) Bearing capacity of large diameter bored

piles IX ICSMFE Tokyo Vol 1 pp 609-612

Laboratory for soil mechanics Delft (1936) The predetershy

mination of the required and the prediction of the

resistance of piles Proc 1 Int Conf on Soil Mech

and Found Engng Cambridge (Mass) I p 181

46

Matich M and Stermac A (1971) Settlement performance of

the Burlington Bay Skyway Canadian Geotechnical Journal

Val 8 pp 252-271

Mccammon NR and Golder HQ (1970) Some loading tests

on long pipe piles Geotechnique London England

Val 20 pp 171-184

Meigh AC (1971) Some driving and loading tests on piles

in gravel and chalk Proc of the conference on beshy

haviour of piles London England pp 9-16

Mitchell JK Gardner WS (1976) In situ measurement

of volume change characteristics American Society of

Civil Engineers Specialty Conference on In-situ

Measurements of Soil Properties Raleigh 1975 Proc

Val II pp 279-345

Mezenbach E (1961) The determination of the permissible

pointload of piles by means of static penetration tests

Proc 5 Int Conf on Soil Mech and Found Engng

Paris II pp 99-104

Meyerhof CG (1956) Penetration tests and bearing capacity

of cohesionless soils Proc Amer Society of Civ Engng

SM 1 Pap 866 pp 1-19

Meyherhof GG (1 976) Bearing capacity and settlement of

pile foundations Proc Amer Society of Civ Engng

Journal Geotechnical Engineering Division Val 102

No GT3 pp 197-227

Mohan D Jain GS and Kumar V (196 3 ) Load bearing capacity

of piles Geotechn Val XIII pp 76-86

Nixon I (1982) Standard penetration test State of the

art report Proc of the Second Europ Symp on Pen

Test Amsterdam Val 1 pp 3-20

47

Nunes A Vargas M (1953) Computed bearing capacity of

piles in residual soil compared with laboratory and

load tests Proc of the Third International Conference

on Soil Mechanics Zlirich Switzerland Vol 2 pp 75-79

Nordal S Grande L Janbu N (1982) Prediction of offshy

shore pile behaviour The Norwegian Institute of

Technology Trondheim

Ohde J (1939) Zur Theorie der Druckverteilung im Baugrund

Der Bauingenieur Vol 20 No 3334 p 451

Parroth E (1972) Einfache Formel zur Vorausbestimmung der

Tragfahigkeit von Standpfahlen mit Hilfe der Sande

Bautechn 9 pp 312-314

Poulos HG Davis EH (1980) Pile foundation analysis

and design New York - J Wiley and sons

Prodinger W Veder Ch (1981) Bearing capacity of floating

groups of diaphragm walls Proc X ICSMFE Stockholm

Vol 2 pp 809-814

Promboon S Brenner R (1981) Large diameter bored piles

in Bangkok Clay Proc X ICSMFE Stockholm Vol 2 pp

815-818

Reese L (1978) Design and construction of drilled shafts

ASCE JSMFD Vol 104 No OT1 pp 95-116

Rodin s Corbett BO et al (1974) Penetration testing in

United Kingdom state-of-the-art-report Proc Europ

Symp on Penetration Testing 1 Stockholm pp 139-146

Rollberg D (1976) Bestimmung des verhaltens von Pfahlen

aus sandier und rammengebnissen Heft 4 FBG Technische

Hochschule Aachen

Rollberg D (1977) Determination of the bearing capacity

and pile driving resistance of piles using soundings

Publications of the Institute for Found Eng Soil Mech

Rock Mech and Water Ways Construction Aachen Vol 3

48

Schmertmann J (1970) Static cone to compute static

settlement over sand Journal of the Soil Mech and

Found Division ASCE SM3 pp 1011-1043

Schmertmann J Hartman JP Brown PR (1978) Improved

strain influence factor diagrams Journal of the Soil

Mech and Found Division ASCE GT8 pp 1131-1135

Shibata T Hijikuro K and Fominerga M (1973) Settlement

of a blast furnace foundation Proc of the Eighth Int

Conf on Soil Mech Moscow USSR Vol 13 pp 239-242

Spang J (1972) Die Bestimmung der Tragfahigkeit von Grossshy

borhpfahlen (I) Strassen und Tiefbau No 2 pp 339-355

Senneset K (1974) Penetration testing in Norway State-ofshy

the-art-report Proc Europ Symp on Penetration Testing

Stockholm I pp 85-95

Tejchman A Gwizdala K (1979) Analysis of safety factors

of bearing capacity for large diameter piles Proc VII

ECSMFE Brighton Vol 1 pp 293-296

Thorburn s and Mac Vicar R (1971) Pile load tests to

f a ilure in the clyde alluvium Proc of the conference

on behaviour of pile s London England pp 1-7

Trof imenkov JG (1969) Accuracy of determining the bearing

capacity of piles based on results of static penetration

sounding of soils Osnovaniya Fundamenty i Mekhanika

Gruntov 4 (Translation Soil Mechanics and Foundation

Engineering 4 p 248)

Trofimenkov JG (1974) Penetration testing in USSR Stateshy

of-the-art report Proc Europ Symp on Penetration

Testing Stockholm I pp 147-154

Tuoma F and Reese L (1974) Behaviour of bored piles in

sand JSMFD ASCE Vol 100 No GT 7 Proc Paper 10651

July pp 749-761

49

Van der Veen C (1953) The bearing capacity of a pile

Proc 3 Int Conf on Soil Mech and Found Engng

Zlirich II pp 84-90

Van der Veen C and Boersma L (1957) The bearing capacity

of a pile predetermined by a cone penetration test

Proc 4 Int Conf on Soil Mech and Found Engng

London II pp 72-75

Weltrnan AJ Healy PR (1978) Piling in boulder clay

and other glacial tills Construction Industry Research

and Information Association UK-Report PG 5

Withiam J Kulhawy F (1981) Analysis prodecure for

drilled shaft uplift capacity Proc of a session

Drilled piers and caissons ASCE St Louis Missouri

pp 82-97

Woodward R Lundgren R Boitano J (1961) Pile loading

tests in stiff clays Proc of the Fifth International

Conference on Soil Mechanics Paris France Vol 2

pp 177-184

Wright SJ Reese LC (1979) Design of large diameter

bored piles Ground Engineering Vol 12 No 8 pp

17-22

DIN 4014 Cods Teil 2 (1977) Bohrpfahle Grossbohrpfahle

Herstellung Bemessung und zulassige Belastung

Polish Specification (1975) Specification for design and

construction of large diameter bored piles in bridges

Ministry of Transport Warsaw (in Polish)

Polish Specification (1979) Specification for prevision

bearing capacity of the piles on the presiometer test

and static sounding ENERGOPOL Warsaw (In Polish)

Polish Code (1983) Foundations Bearing capacity of piles

and pile foundations

5 1

FIGURES

bull bull

53

Ou

+ sect raquo iir 1

4 + D

h + +Osu

bull + t2 =n- Dp

LDpl r f 1

Opu

Fig 1 1 1 Bearing pi le in the soil

J_

fp

080

070

060

050

0 40

030

020

010

q~ [MPa ]000 -+--~-~-~-~------------------------=-shy

00 20 4fJ 60 80 10 0 120 14fJ 160 180 200

Fig 1 1 2 The point resistance factor fp

(Trofimenkov 1974)

54

ts

160

140

120

100

080

060

040

020

q~5 [ kPa)

0Q0--1------~-~-~-~-~-~ - - ---=- -- shy000 10 20 30 40 50 60 70 80 90 100

Fig 1 1 3 The shaft resistance factor fs middot (TYofimenkov 1974)

f s

200

180

160

140

120

100 2 3 4 5 6 7 8 9

Fig 1 1 4 Shaft friction factor f depenshys

ding of the soil density (Senneset 1974)

55

Q~ [kN]

1500

1000

500

0-r-----------r----~- Q~ [kN] 0 500 1000 1500

Fig 1 1 5 Comparison of the pile resisshytance determined by the results of static sounding and load tests (TYofimenkov 1974)

D f f

0

Fig 1 16 Equivalent cone resisshytance (Bustamante 1982)

56

E u shy0 ~

QI I ltII ltII

~ a C QI

O C

D

w gt

0

Cone res istance Point resistance

80 160 240 320

05

10

15

e d

20

ver y dense Cone resistance 300 kgcm2

Dpcm

a =45 b = 30 C 60 d = 100 e = 150

Fig 1 16a

Cone resistance _ qc

80 160 80 160 qc [ k g cm2 ]p

05

10 10

15 15 e d a

e d20

Dense Medium2 2200 kgcm 100 kgcm

Cone resistance and point resistance of piles versus overburden pressure (Kerisel 1965)

Point resi stance - p(for s=2cm) of the pi le for

15 sett Iement s = 2 cm

10

5

E u

uJ1 o-~----shya er O 804 2500

32 56

I 1

L oose50 -I =25 Very loose L

----~--shy5000 7500 80 98

~-----lmiddotI1--------2 10000 12500 31400 =Flcn)

112 123 200 =Dplcm)

Fig 1 1 6b Point resistance versus cone resistance and pile diameter (Franke 193)

57

1

fp

080 (D Gravel

0 Coarse sand Medium sand 070

reg Fine sond Silty sand

060

050

040

030

020

010

qc [MPa]000-+----r--~-~-~--------r----r----r-~-~-- -shy

oo 20 40 60 80 100 120 140 160 180 200

Fig 1 1 7 Point resistance factor f (proposal) p

58

300

250

200

150

100

qc [MPa I50-+---------------r---r---r---r----r------------- shy

oo 20 40 60 80 100 120 140 160 180 200

Fig 1 1 8 Shaft resistance factor fs (pr oposal)

59

Bustamante (seetab 115 I

l fp

G)

0 Gravel

Coarse sand Medium sand

cl

b)

t-----l

1----1

080 reg Fine sand Silty sand a) D

070 Polish

060 Specification

( 1979) 050

040

030 CD 020 0

reg 010

qc [MPa]0 00 -+-------------------------------------=--shy

oo 20 4o 5o 80 100 120 14o 15o 180 200

Fig 1 19 Point resistance factor f comparisonp

Bustamente ( see tab 116 I 300

a) ~

250 b)~

cl~

200 Polish Specification ( 1979 l

150

100

q [ MPa]504---~--~--~----- ---___

00 20 40 60 80 100 120 140 150 180 200

Fig 1 1 10 Shaft resistance factor fs comparison

60

1 fp

~

080 CD CD Gravel

070 0 reg Coarse sand Medium sand

060 0 Q) Fine sand Silty sand

05

040 Franke (1973)___

030 DIN 4014

020 Part 2 1977

( see tab113 l 0shy

--shy --a - 010 C---0 Piles without enlarged bases

D---0 Piles with enlarged bases qc [MPa ] 000

00 20 4JJ 60 80 90 100 120 140 160 200

Fig 11 11 Point resistance factor f comparison p

fs

DIN 4014 Part 2 1977 ( see tab 114 l

300

~ 5 lt qc lt 10 MPa 50

~ 10 lt qclt 15 MPa

~qcgt15MPa

200

150

CD

100 0 0

qc [ 1Pa] 50-t-----T-~----T-r-~----------------shy

OO 20 40 6JJ 80 100 120 14JJ 160 180 200

Fig 1 1 12 Shaft resistance factor fs comparison

61

Measured p [ MPa]

( s=010 Dp) 10

9

8

7

6

5 0

4 0 61

3

I 2

Calculated qcp [MPa]

0 0 2 3 4 5 6 7 8 9 10

Fig 1 1 13 Comparison of experimental and aomputed values of the pile point resistanae

62

Contact pressure ( MPa ]

2 I 6

50

100

E E 150 Ill

c QI

E Sett lement for QI

calculated qcpai V) 200

Fig 1114 Results from load tests on piles No 1 and 5

Contact pressure [ MPa I 0 2 I 6

01---------------------1

50

E E 100 Ill

Settlement forc QI calculated qcp E ~ ai

I V) 150

Fig 1 1 15 Results from load test on piles No 7 and 5

63

Contact pressure p [ MPa] 0 2 3 4 6

0-t=-----~-~-----

E E

100 1)

c CU E 2 QI V) 150

Fig 1 1 16 Results from load test on piles No 9 10 and 11

Contact pressured p [MPa] 0 1 2 3 4 5

o~~~=------------___-~-shy

50

100

E E

i 150

CU E CU

-a V) 200 2

Fig 1 1 17 Results from load test on piles No 12 and 13

c

-------------- -

64

Contact pressured

0 1 2 3 4 p [ MPo] ~o __L____1_____J_____L___

50

100

150

E

E

IJ) 200

c a

E a

~ 250

Fig 1 1 18 Results f Pom load tests on piles No 2 4 6 and 8

p [MPa]

60

50

tO

30

~

Pile Pile Pile Pile

Pile No18

------+ Pile No17 + ~_ ---0 Pile No 19

bullbull - --bull Pile No 20

- ~middot -shy-shy -(y I Settlement for

20 tO 60

No17 +-middotmiddot- V 70 No 18 bull--- V 9o No19-middot- V 120 No20bull---- V150

qcp 3

80 100 120 140 160 s (mm)

Bose resistance

Fig 1 1 lBa Point Pesistance vePsus settlement (Spang 1972J

65 Cone resistance qc [ MPa]

0 10 20 30

mud

5 ~ lll

0 c 0

c CD

peat

10 sand

Ill N

10=10

D=lOOOmm

1540=40

20__________________

[ml

Fig 1 119 Pile No 1 and results from static cone penetration test

Cone resistance qc [MPa l 0 10 20 30

7N V degW = 0+--------------------i

mud

5

lll

~ C 0

c peat~

10

sand lll N 1D15

15l lD=1500mm

40=60

20l---------=-------__J

[ml

Fig 1 1 20 Pile No 3 and results from static cone penetration test

66 Cone resistance qc [MPa]

10 20 II 3 igt pound ~

mud+peat

fine sand+ silt

50=11

l lo-11oomm

40= 44

10

15l____________c

[ml

Fig 1 1 21 Pile No 5 and results from static cone penetration test

Section Cone resistance Pile

0 0

5 10 15 20 25 30 qc [MPa] -----~-~shy~

Silt

[7r_ ___~ Medium Sand_~-----l

0 ltD

+shy4

0=11

9=

Fine sand + Silt t

30p=

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot1~11+-----E-----

[ml

Fig 1 1 22 Pile No 6 and results from static cone penetration test

Cone resistance qcmiddot 1MPuJ

0 10 20 30 67 01-+-------l--------------i

mud+ peat

fine sand

l1)

N

40=60

15L_____________

[ml Fig 1 1 23 PiZe No 7 and resuZts from static

cone penetr ation test

Section Cone resistance Pi le

0 5 10 15 20 25 30 qc [MPa 1 --~----Y-~-----~

Silt

Fine sand

Medium Sand Bentonite2----1~i

t 3

4

0

0=15

Fine iii ~~= 5

sand t ltD

6 +

Silt 7

3Dp=

63 g

10

11

12

13+------=~---l

[ml

Fig 1 1 24 PiZe No 8 and resuZts f rom static cone penetration test

68

I =3

Cone resistance qc [MPa]

0 10 20 30

C 0 C Cl

(I)

Said

Peat

Sand

l 0=110

D = 11

4 D = 44

Fig 1 125 Pile No 9 and results form static cone penetration test

69

Cone resistance qc[MPa)

0 10 20 30 I ~ II JE Ill= II=E IS

Fine sand QI

U) I

[- I C 0 + C Peat QI

CD

Fine sand 0

Ci D = 1 1

L l D= 110

4D= 4 4

Fig 1 1 25 Pile No 10 and results f rom static cone penetr ation test

70

Cone resistance 9c[MPa]

0 10 20 30

Sand

C 0 Mud peat

+shyc 5 ltII

co

Sand Op= 11

u 10 D= 110 4Dp=44

Fig 1 1 26 Pile No 11 and results foIm static cone penetration test

71

00 a_ N ~

middotu rr QI 0 u ~ C 0

QI ui C iij 0 QI U - 0

0 EN

d 2

Sll 1lOl

C

u (rr

C 0 u~

0

QI - C middot 0 C

U - O 0 EN

~ 0 2

E

ltD a---==-lr---___--~---6-l_-0_012 ~ Lr- - --1---------J J

S9l ls= apound QI -0 gtcc _gmiddot- 0 1) ui I

Fi g 1 1 2 Piles No 14 and 15 and results f r om stat i c cone penetr ation tests

72

Contact pressure p [ MPa] 2 4 6

01lt---------------~

50

E E

111 100 ~ (qcp=30 MPa for No16

~ iqcp =49 MPa for No14

~ 1so~--~~- _ _ __

I _ _

11 I lf--q = 32 MPa for No15

cp

Fig 1 1 28 Results f r om load tests on piles No 14 15 and 16

73

0300--------------~---~--~--shyE

Driven piles in ~ 0 bull Gravel

amp250 bull Sand L QJ X Silt a 1l o Bored piles in

sand -sect 200 0=-- shyC ~ ~ 10 unless ~~ middot D shown 1

ii O

~ ~ o 3 a 1501-----+-------I- --+---laquo-+-- -+------lt

~ sect 5 - 6 6middot 100t----+----+-----_-1---4--__co_--J~__j

-_

~ 0 t7

C

a 50 2 shyg ~ gt

0 20 30 40 50 60

Standard penetration resistanceN in blows per foot

(N 30

Fig 12 1 Emperical relation between ultimate point resistance of piles and standard penetrashytion test in cohesionless soil (Meyerhof 1976)

14 r-------------------r-------b-----q

References and symbols given in Fig121

121-----+---+----+----+------ll------j

- _sect ~ 10t----+----+-_--1-----+---lt~--~H---- 0 lt-~5- _-)0 I() l- I Q---+-----I[08 ~

H -(l () ltj-~C X bulls pound 061------lt----+-----i~- --+-- shy

- bull

-gt Q1pound--I---L---L---L---L--~ 0 10 20 30 40 50 60

Mean standard penetration resistance N in blows per foot ( N30 l

Fig 122 Empirical relation between ultimate skin friction of piles and standard penetration resistance in cohesionless soil (Meyerhof 1976)

74

a) b)0(1 0lt2

10 10

05 05

1 N30OD-+---------__ OD--t-----r-----r----------------ll--Nbull30~ 10 20 30 10 20 30 40 50

Fig 1 2 3 Reduction coefficient a) for impermeable gravels b) form permeablr gravels (Weltman and Healy 1978)

psf [MPo)

Fig 1 2 4 Relation between ultimate point resistance and SPT in cohesionless soil (Polish specification 1975)

75

30 35 40 45 Loo Med Dense Ver dense

50

40

~ E

l)

g 8 1)

middotu

1 ~

QI- bull Touma ~ bull Koizumi

(183)-depth base middotameter5

20 40 60 00 100 N30

30 35 40 45

OG2(294) bull G1 (183)

300 bull us 59 ( 102) bull 88(180)

bull 075 a GT (467)

150

~ 200-+--------+-- t--- --t-----i 130i 0 094 081

014 _- --- -- shy~ E 066bull bull 063 Note -~ ~m~r~s~ ~ 1001---1-r--t---1point is xh QI Ratio ~ Number in ( ) middotn key is h c Ratio s ~

0 20 40 60 00 100

~ig 1 2 5 Ultimate point and shaft resistance versus N30

(Wr ight and Reese 1979)

-----

76

tu Psa

[kPa] [MPa]

200 tu

------ shy150 Psa

1 1

1100 10 1 1

1 50

0+----------T----~---~-N-3J~shy0 20 40 60 80

Relation between ultimate skin friction and SPT (Decourt 1982)

Fig 1 2 6

Psa

[MPa]

8

0----Meyerhof 1976) 0 7

--- - --~ - copy Polish Specifcoti on 1975)6 ~-

~

reg- middot - Reese (1978) middot 5

f41- -- Decourt (1982) -I bull 4 2

----==---______z__ h25m Dp=12m

3 ---shybull

2 7

--shy ----shy~----shy0-t----i----------r-- ----------------------N3l~shy

0 10 20 30 40 so 60 70

Fig 1 2 7 Relation between ultimate point re~istance of large diameter piles and standard peneshytration test (SPT) in cohesionless soil

------

77

tu [kPa)

200 17 Cast under -J bentonite

~----Meyerhof (1976) ~copy -=middotmiddotmiddotmiddot== middotmiddot150 ~------- Wei tman (1978 ) middot Healy middotmiddot ___ Japanese ) 119810 Society

(0 -middotmiddot- Decourt (1982)middot Wright

100

- -middotmiddot -- 11979]reg Reesemiddot Bored piles

~shy50 1 -- shy

-- shy middotmiddot s-shy - --~ ------reg~~ ---~E_==---- ------- shy

N_ ---shy0-+--C--------------r---- ---------~---~-~shyo 10 20 30 40 50 60 70

Fig 12 8 Relation between ultimate skin friction of piles and standard penetration test (SPT)

78

Pst [MPa]

8

7 ---------ist=7MPa

6

5

4

3

2

I N30o~------------------------------+---------__=-shyo 10 20 30 40 50 60 70

Fig 12 9 Relation between ultimate point resistance of large diamter piles and standard peneshytration test (SPT) in cohesionless soil (proposal)

tu [MPa ]

( excavanted and cast

150 under bentonite ) tu=150 kPa

100 tu=90 kPa

I I

50 I I I I I N30

10 20 30 40 50 60 70

Fig 1 2 10 Relation between ultimate skin friction of large diameter piles and standard penetrashytion test (SPT) in sand (proposal)

79

2 3 4 5 p[MPa] 0 2 3 4 5 p[MPa]0

40 40 Cl

80 c 80

c 120 120

Pile No 1 PileNo216 160

200 2

s s c [mm] (mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MPa]

40 40

00 80

120 120

16 160 Pile No 3 Pile No 4

200 200

s s [mm] (mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MAJ]

tgt11 tgt- measured40 40

80 80

120 120

Pile No 5 Pile No 6 160 160

20 200 s s

[mm) [mm)

Fig 1 4 1 Base resistance vs settlement appoximative method piZe No 1- 6

80

0 2 3 6 5 p[MPa) 0 2 3 4 5 p[MPa]

40 40

80 80 6

120 120 6

6160 160

Pi le No 7 Pile No 8 6

200 3J s s

[mm] (mm]

0 2 3 4 5 4 p [ MPo)

6 6 40

6 6

6 80

6 6

6

Pi le No 9 Pile No 10

XJO s s

[mm] [mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MPa)

6 6

40 40 6 6

6

00 80 6

6

12 1Xl 6

160 Pile No 11 160 Pile No 12

200 200 s s

[mm ] [mm]

Fig 1 4 2 Base resistance vs settlement approximative method pile No - 12

81

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MPa]

6 6

40 6 40 6

6

80 6 80 6

120 6 120

Pile No 13 Pile No 141fO 160

200 200 s s

[mm] [mm]

0 2 3 4 5 p [MPa) 0 2 3 4 5 p [MPa)

40 40

80 80

120 120

HiO 160

200 200Pile No 15 Pile No 16

s s (mm) [rrrn 1

0 2 3 4 5 p[MPa] 0 2 3 4 5 p[MPa)

40 40 A A A-measured

680 80 t t

120 c 120 c

1fil Pi le No 17 160 Pile No 18

200 200 s s

[mm] [mm]

Fig 1 4 3 Base r esistance vs settlement approximative method pile No 13- 18

82

0 2 3 4 5 p[MPal 0 2 3 4 5 p (MPa]

D D40 40 c c

80 c 80 c

120 120

160 160

Pile No 19 Pile No 20 200 200

~ml (mm]

Fig 1 4 4 Base resistance vs settlement approximative method pile No 19- 20

LlJ QI

0 average lJ = 098 E sd = 029 C

6 SY = 030

4

2

lJ calculated ________________________ _______ measu red

06 08 10 12 14 16

Fig 1 4 5 Calculated pressure divided by the measured pressure at 20 mn settlement for aZZowabZe

q Zoad Pa= ~p approximative method pile

No 1- 20

8 3

Point resistance p [ MPaJ

a)

p(s) = s a +--sshy1 y qcp

1

SQ100p -- --- ---shy

~ s

[mml

I- 01 s rmm]-l p LMPa b)

f~]

c Cll E ~ i s

[mm)

Fig 146 Definition of the point resistance - settlement curve according to the modified hyperbolic method

84

01 ~ 0

20 0 0

0

16 0

medium 0 value a1 = 905-+ 256 Op 0 0

12 (r=039)

0 0

----0 0

8 0

0 0

0 0

4 0

05 06 07 08 09 10 11 12 f3 14 15 16 17 18 19 20 2 1 Op (ml

Fig 1 4 Initial slope of the base resistance curve vs pile diameter

a1 [p] 0

0020

16 assumed a 1= 28 - 4 qcp

12 0

0 Ct) 0 a = 2659 - 369 qcp8 1

0 0 (r = 0188)0

4

2 3 4 5 (MPa]qcp

Fig 1 4 8 Initial slope of the point resistance curve vs ultimate point resistance on the static cone resistance for pile tests No 1 20

85

a [~ 28

24

20

16

12

8

4

0 2 3 4 5 6 Qcp [MPa]

~ Kiosinski (1977) sand and sandy gravel of mediwn density

~ Klosinski (1977) loose sand ID= 0 3 0 4

o US59 ] t HH Touma p and Reese L (1974) fine sand and silty sand OGl (US59 HH BB - very dense Cl - mediwn dense) 1 BB

DIN 4014 Part 2 (1977)

Fig 1 4 9 Initial s lope of the point res istance curve vs ultimate point resis tance

86

assumed [il =30 -10 Op but )1~ 10 )1 [1 I

u 311-10 Op ( r =0 368)4 1 0

3 0 0

02 0

0 0co 0 8 0 0

0

0

05 06 07 08 09 10 11 12 13 14 15 16 17 19 20 21 Dp [ ml

Fig 14 10 Correction factor for hyperbolic base resistance shysettlement relationship

87

a [~] 28

24

20

16

12

8

4

2 3 4 5 qcp [ MPa]

Fig 14 11 Initial slope of the base resistance curve vs ultimate base resistance (proposal)

v [ 1 ]

3

2 -----G- DP J l 1J I Op lm] J

for Dp ~ 2 0 m ~ u = 1 01

0 --------r----r---r----r-----------------r-------------------------r------r-~-~--shy

05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 Dp[m)

Fig 1 4 12 Correction facto r for hyperbolic base resisshytance - settlement relationship (proposal)

s P ( s)

s +

u qcp

88

a) b)1

bt=o212= 47 MPa a1=1~32 tMWJ s 2 3 4 5 O 1 10 20 30 40 50 60 p [~a]0

0p [ MPa] 40 40

80 80

120 ~

160 b1 = ~ajtg ~= 0 212

~=1132 + 0212middot s

mJ 240 r=0994t t t measured s __ according to Jl s

o o o according to p (bull ll l[mm] [mm]

Pile No 2

slmm) 10 20 30 40 50 60 80 100 125 150 175 2)0 225 Note

p [ MPa] 09 14 17 20 22 24 27 30 32 34 36 38 39

measured

pibull) [ MPa] 074 128 169 202 228 249 282 307 330 347 360 371 380calculated

plbullbull1[MPal 070 125 168 203 233 257 297 327 356 378 396 410 422calculated

1) (bull) ij l099082 091 099 101 104 104 104 102 103 102 100 098 097 sd = 006

ij (HJ1041) (bull10) 078 089 099 102 106 107 110 109 111 111 110 10B 10B sd = 010

plbulll-according to a =1132 [ Jp(s) = s s for pile No21 0 1132 12 39

plbullbulll-according toa =1241 lmiddotGcp=39MPa1 0

~=14 see fig 1411 and fig 14 12 sp(S)=

124+ _ s_ 14middot39

11lbulll11l-J - correlation coefficient calculat~d P5 for

measure p s p(bull) and p(bull) respectively

Fig 1 41 3 Modified hyperboZic point resistance - settZement reZationship for piZe No 2

89

0 2 3 4 5 p(MA1] 0 2 3 4 5 p[MPa)

40 40

80 A 80 A

120 120

160 16 Pile No 1 Pile No 2

20 200 s s

[mm] rnm

0 2 3 4 5 0 2 3 4 5p [MPa] p [MPo]

40 40

80 80

120 1ZJ

lfpound) Pi le No 3 Pile No 4 A

200 A

s s A

[mm) [mm

0 2 3 4 5 p [MPa] 0 2 3 4 5 p [MPa]

40 40 A A A measured ~ calculated

80 80

12

160 160 Pi le No 5 Pile No 6

200 Z)Q

Fig 1 4 14 l3ase resmiddotistance vs settlement pr oposed method pile No 1- 6

90

2 3 4 5 p [MPa] 2 3 4 5 p [ MPa]

40 6

6 40

1 80 80

6

120 120 6

6 160 160

Pile No 7 6

200 200 s

[mm ] s

[mm]

0 2 3 4 5 6 p [MR] 0 2 3 4 5 p [MPa] 0 0

40 40 6

6

80 80

6

120 120

160 160 Pile No9 Pile No 10

200 200

s [mm] [msml I

0 2 3 4 5 6p[MR] 0 2 3 4 5 p [MPa]04--___ ____ ___ ___ ____

0+-=---------------~-~- shy

40 40 c 6 c - measured

0--0-0 shy calculated

80 80

120 120

160 160 Pile No11 Pi le No12

200 200

s [mm]

s [mm]

Fig 1415 Base resistance vs settlement proposed method pile No 7-12

91

0 2 3 4 5 p [MPal 0 2 3 4 5 p [MPa)

40 40

80 80

120

16 Pile No 13 Pile No 14

200 s

tnml [mm]

0 2 3 4 5 p [ MPa] 0 2 3 4 5 p [MPa)

40 40

80 80

120 120

160 1fD

Pi le No 15200 axJ s s

[mm] [mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 6 plMPa ]

A A A measured40 0---0-0 calculated

80

120 120

160 1ED Pile No 17 Pi le No 18

200 200

s s [mm] [mm]

Fig 1 4 16 Base resistance vs settlement proposed method pile No 13- 18

92

0 2 3 4 5 p [MFb] 0 2 3 4 5 p[MPa]

0 6 o -measured40 40 0 0 o -calculated

80 80

120 120

160 160 Pile No 19 Pile No 20

200 200 s s

[mm] [mnil

Fig 1 4 17 Base resistance vs settlement proposed method pile No 19-20

p(s~Psf

15 20

ean

-C 5 w u L Lower ~ confidence

linea 0

a IJl 10

o---o proposed

method I I I

15

Fig 1 4 17a Design curves for estimating developed base resistance in sand (Wr ight and Reese 1979)

93

n (number)

30

28

26

24

22

20

18

16

14

12

10

8

6

4

2

0 02 04

Fig 1 4 18

I= 126

Between 1] = 0 7 - 1 3--- I= 106 ( 84 frac34)

Average ~ = 098 Standard sd =023 deviation

Standard sv =023 veriation

1] (Coefficient Calculated Measured

06 08 10 12 14 16 18

Calculated pressur e divided by the measured pr essure for all pressure - settlement curves pr oposed method pile No 1- 20

94

a) b) Total load

Total load curve

---- _____-- shy- -- -Base load ~- Base load

-0-0 ~

00 00 J

ldeoli zed shaft load J

Shaft sesistanc1---------- 0=0middot30 a= 0 middot 30

025 Settlement IN 025 Settlement IN

Fig 1 419 Proposed method of synthesizing design loadsettlement curve (a) conservative design prodiction b) design prediction- peak in shaft loadsettlement curve (Burland et al 1966)

Cf

-0 0 0

J

0

~-----~--~-~ amp- 2 3 4 5 6 (cm)

a~middotltii -0 lt) cco2 41 -~ -0 1)

vi ~ llloli=----------- ---c~0 1 2 3 4 5 6 7 ( of diameter)1 1 1 1

05 10 15 20 ( in) for 30 in Pile Movemen~ ( 75cm pile)

Fig 1 4 20 Approximate load settlement curves for 30 in bored piles (AB and C represent failure load at 1 in settlement A B and C represent ultimate failure load) (Touma and Reese 194)

95

Load in MN 0 2 3 4 5

25

50E E C

-C 75

-~ ~

-Z 100 lJ

Shaft resistshy

125 once

15 Fig 1 4 21 Load-settlement relationships for largeshydiameter bored piles in stiff clay (Tomlinson 1977)

SettlementSo

Fig 1 4 22 Diagrams of s1iaft and base resistances versus settleshyment assumed in analysis (Kiosinski 1977)

96

0 0 1 ~ r- 025g ~~ 2

1- -shy3 03Sg 14 5 2

Qls =Qpls+Q5 (sQpls) Qs(s-3E

0

degsis __ -- Qpls) a~ C

4

t Sg l

5 Qu Is)

Q(s)in MN-l T

Ouls Q Is) in MN ---

Fig 1 4 23 Construction of load - settlement curves a) for sand b) for cohesive soil (DIN 4014 Part 2 1977 and Franke 1981)

-

s C 5C

Cl

3 0 00 05 10 15 20 Mean settlement I in)

Fig 1 4 24 Load- settlement curves for test shaft S4 (1 in = 25 4 mm 1 ton= 8 90 kN) (Reese 1978)

97

Relative side resistance

0 05 10 15 20 0E=--t----+---+--~

c QI lt) ~ 2 C

I itaker c

QI amp Cooke3E QI-j

c-en 4

C QI

E us 59o

5 QI gt

SA0 w 0 6

Fig 1425a Relative side resistance for clay vesus relative midlength settlement (Reese 1978)

degs (Osl u l t 0 05 10 15 2 0

Mean

2 Lower ~ C QI u

confidence line

~ 3 a

0

~4 E

()

5

6 __ _ ______ ________ __1

Fig 1 4 25b Design curves for esti mating developed side resistance (~Jy1nht ReertP- 1987 J

98 Load Q

8 - 15 mm

1- 2 of p ile diameter

100-200 10-15 of pile Os Ot diameter Shaft Total

Settlement S Resistshy Resist- Load ance once

Fig 1426 Dependence of total load base resistance and shaft resistance on settlement of lar-ge diameter pile (Tejchman Gwizdala 1979)

6

5 Shaft load

4

3

2

z ~

-0

g Pile EF- 56 J 0

0 0 20 30 Butt settlement (mm)

Fig 1 4 27 Deveiopment of shaft and base resistance with settiement (Promboon Brenner 1981)

99

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 0 r-=-1---J__-----------------------~----_shy

Load [ k N l5

10

20

( I

Skin friction ----1 I I

~ 40 QI E

fQI

50 I

Q) I () ICOntinuos fost deolading

Fig 1428 Load-Settlement-Diagram Testelement III (Diaphragm-Wall 0515 m 244 m deep) Portion of Skin Friction and Base Resistance (Prodinger Veder 1981)

Qs (QJ max

0 05 10

Upper Limit of Data

Farr and Aurora (1981J C

~ 2 - shy -+shy - Mean of Data

I QI

Lower Limit of Data a

0 - 3 E

Vl

4

Smid = Approximate shaft buff movement ignoring the elastic compression of upper halt of the shaft

D = Shaft diameter

Q Mobi Ii zed shaft resistance

Qs1max = Maximum shaft resistance

Fig 1 4 29 Relative shaft resistance vs relative movement (Farr and Aurora 1981)

100 Load Q (s) [ MN]

Su5 s s 20 mm for non- cohesive soil u

s s 10 mm f or cohesive soil u

s s 15 mm for claysand u

Q (s) + Q (s)s p

Qs(s)

-C ltII E s ~- [mm]-ltII IJ)

Fig 1 430 Dependence of total load Q(s) point res i stance Q (s) and shaft resistance Q (s) versus settlement p s

~ 3 Usu Qpu Qu Q(s) [ MN]

Sus= 20

1J

60

80

100

120

degs (s ) 140

5 P=Ol Op

1EO

C -ltII E 180 ~ ] 200

s [mm]

Approximative dependence of total load point resistance and shaft resistance versus settlement fny non-cohesive soil

Fig 1 4 31

101

113 3 ~fic0P Ye hY

1 Ground water

D

I y

yh C

Fig 1 5 1 Determination of 01 and 03 for settlement analysis of lar ge diameter bored piles

102

I

E=Et [MPa]

160 0

140

120 0

100

80

6

40

--- --shy 0

0

8 0

0

0

20

2 3 4

I 0 15

Fig 1 5 2

E = Et [MPa]

120

100

80

60

40

I I 0 35 065 085

0

Et= 17 81 qcp0844

( r = 0 128)

5

100

6 qcplMPo]

Calculated values of Young s modulus for piles No 1shy24 according to equation 1 5 2 and 1 56

0

0 0

E =898qcp127 (r= 0314)

E = 9 middot qcp 13 0

20 shy 0

0 0

0 1 2

loJ

I 0 35

3 I

065

4

I 085

5

100

6 qcp [MPo]

Fig 1 5 3 Calculated valueBof Young s modulus for piles No 1shy24 according to equation 1 5 4 and 1 5 6

I K 10 3

( 1 ] 1832

1400 0

1200 0

0

1000 0

800 0

m=2821 qcp0621

600 0

(r=0057)

400 0 0 0 0 0

200

2 3 4 5 6 qcp (MPa]

I 035

I 065

I 085 100 Io

Fig 15 4 Calculated valuesof the dimensionless compress ion modulus K for piles No 1- 24 according to equation 1 5 2 and 1 56

K ( 1 ]

0

1400

1200 0 0

1000

800

600

0

0 0

0

0 0

0 K= 1422 qcpl05

(r=0181)

0 K= 150 qcp

400 0

3)0 0 0

2 3 4 5 6 qcp(MPa)

I I -J 035 065 085 100 Io

Fig 1 5 5 Calculated values of the dimensionless compression modulus K for pile~ No 1-24 according to equation 1 5 2 and 1 5 6

104

120

100

2 3 4 5

I I I rv 0 15 035 065 085 100 lo

Bergdahl (1982) for shallow foundation

o----o Bozant Masopust (1981) D= 1 0 rn h=10 rn large diameter bored piles in noncohesive so il

0----0 Proposal according to current anal ysis

Klosinski (1977) D=090 to 125 rn large diameter bored piles in sand and sandy grave l

Mitchell Gardner (1976) very dense sand E=(35)q (it depends on sand density and stress history) c

Fig 1 5 6 Composision of Young s moduius

105

TABLES

0 Tab 1 11 Methods for detemination of the bearing capacity of bored piles (Ro llberg 1977)

Cl

Nol -- I Soil Areas of Q) Q) Editor Determination of Coefficients 5 type influenceqP qs p ~ C C 11 12 fP I fs

1 all Lab f Soil Mech (1936) l qp at the elevashy 1 0

2 all Huizinga (1951) ~ t~on of the pile 14 point

3 all Van der Veen (1953) ) 18 1 h+l14 all Van der Veen 1 0 Dpl375 D~ 15-- J qcmiddotdhBoersma (1957)

~ 11 +12 h - 12

5 12 all Menzenbach ( 1961) qc at the elevashy~ tion of pile point

6 18 all Mohan Jain Kuman (1963)1 average of qc over 1 h Q) h ~qcmiddotdhl 10 Dpj 3 75 Dj 15 50_micro

and 1 2C 11

7 I amp all de Beer ( 1964) graphically from 10 Q) qc 0 1 h+l18 u C

sand Soviet norm SNIP II 9ct9cp I4 bull O Dp I10 DP l66-1 083shyu clay B5- 67 Trofimenkov (1969) 2 50 1 251 +l J qc middotdh micro middot h middot-l l 2h-~ _micro

9 _micro u all Paproth (1972) at the elevation 3 5 I shy

) of pile point (Dpgt0 5 m 7 D8DpE

E-lt p 1 h+l1 1 h Dplt 5 m u l+l J qcmiddotdh h f qcmiddotd~ 30 Dpl 50 Dp 2 0 100shy10 sand Norwegian method

0l 2 h-12 200Senneseth (1974)

11 lall Soviet method h+l (20-0lqgl - 101 1 q middotdhTrofimenkov (1974) -- f C UpUsmiddotQct

l1+l2 h - 1212 Qct-Qcp 40 D~ 10 Dp 1 33- 0 67shyUsbullh 4 00 2 50

13 English method 10 DFJ 375Dp 10 I

Rodin Corbett Shershywood Thorburn (1974)

3 7 5 Dcl 8 0 DP 10h+l1 _1_ J qcmiddotdh 1 h

qcmiddotdh 20011 +12 h - 12 hb

1 h qcmiddotdh 150hf

0

Observations

fp I f (qp)fs C

Dp E = 1 cm Qbu = 2 Qpa (approx )

s fs=f (qc)

q=~g Us 0 h

fp=f(q~)

fs=f(qgl

bull fine grained non- cohesive soil loosely packed

bull fine grained non- cohesive soil medium dense comp

fine grained non- cohesive soil

Tab 111 (cont)

h+h bE 14 non-cohe- Meyerhof ( 1956 poundti J N 3o middot dh CtME fN3 o dh 1 0 DP 4 0 DP 10 100 etM= l 2

sive soil 1976) lJ +12 h - li hE o hgp taken into consi der ~ Ul (I)

E-lt

C 0

~E = 1 kgbull 30 cm

(statistical limit depth of the pile) hE - clamping length of

pile micro rrJ l-l micro (I)

15 C (I) p

sand Norwegian method

- irm - - - 10 IT

m = diagram O l-l Senneset (1 974) rrJO C

16 rrJ micro gravel English meth it 3 middot N30 - - - 10 - Jf 3 + diagram U) ~

E-lt p U)

iiouiu Coruett Sherwood Thorshyburn (1974 )

(NJQat the elevashytion of pile point1

0 -i

108

Tab 11 2

Results of calculati o n of p i le point load pile shaft load and total pile load from static con e penetration test (Rol l berg 1977)

~ gt

~ gt Ultima te Ultimate Ult imate

No Method micro micro poi nt skin bearing 080lt17nlt1 50 Q) -l

-l middot-i resistanceuro resistance r esistancE

middot-i p 0

(J n1 n n2 n n3 n n1 n2 n3

1

2

Lab fSoil Mech

Hu izinga (1951)

(1936 ) 430

307 i 3 Van der Veen (1953) 239

49

4

5

Van der VeenBoersma

Menzenbach (1961)

(1957) -l middot-i 0

2 4 7

1 57 1-CJ)

6

7

8

Mohan Jain Kumen

de Beer (1964)

Sovi et Norm (1969)

(1963) CJ) Q)

-l middot-i 0

lJ Q)

Q)

gt- CJ) Q)

c 0

2 44

1 37

183

47

t I

49

487

0 18

47

16

3 02

0 85 1

47

16

137

08

9

10

Paproth ( 1972)

Norw Method (1974)

~ 0

0

u I

C 0 C

1 8 1

180 l 46

1- - -_L~ 46 167 46 1 19

1 1 Soviet Method ( 1974) [1 1 41 46 1 62 13 083 13 1 14 0 8

12 Engl Method (1974) 2 66 35 128 35 2 30 35 1 28

Note

cal Q a) n = --- mean value of the rat i o between calculat ed pile loads and those n Q determined f r om loading test

b) n = number of piles

109

Tab 113

Point resistance of large diameter piles (DIN 4014 Part 2 1977)

Settlement Point pressure 1 Factor -fshy

(cm) (MPa) cf=lOMPa I i=15 MPa C C

Piles without enlarged base

1 05 005 003 2 08 008 005 3 11 0 11 007

15 34 034 023

Piles with enlarged base

1 035 0 04 002 2 065 0 07 004 3 0 90 009 006

15 2 40 0 24 0 16

Note 10 lt qp lt 15 (MPa)C

Tab 114

Skin friction resistance of large diameter piles (DIN 4014 1977)

Strength Static cone pen- Depth below Skin frict ion Factor of sand etration resist surface

(MPa) (m) (MPa) fs

Very small lt 5 - 0

Small 5 to 10 0 to 2 0 2 to 5 003 ln6 to 333

gt 5 005 100 to 200

Medium I I 10 to 15 0 to 2 0 I

I 2 to 7 5

gt 75 I 0045 0075

222 to 133 to

333 200

High I I

i

l

gt 15 0 2

to 2 to 10 gt 10

I I I

I

i

0 006 0 10

gt gt

250 150

Note Skin friction is assumpted as linear until s =2 cm and constant for s gt 2 cm

11 0

Tab 115

Values of the inverse of the point resistance factor (Bustamante 1982) fp

Soil type qPC I 1

Factor - shyfp(MPa)

for piles group

a) Silt and loose sand lt 5 0 40 -b) Moderately compact

5 - 12 040sand and gravel

c) Compact to very gt 12 i 030compact sand and gravel I

Tab 116

Values of the shaft resistance factor fs (Bustamante 1982)

Factor fs

Soil type qs

C Category I(MPa) I A I B I II A III BI

I a) Silt and loose lt 5 60

i 150 I 60 I 120-

sand

b) Moderately corn- I pact sand and 5 - 12 100 200 100 200 gravel i

Icl Compact to very

compact sand gt 12 150 i I 300 150 I 200I

I I and gravel i

I

111

Tab 117

Point resistance factor (proposal)

-

1-fp

qc (MPa)

Gravel

Coarse sand Medium sand

Fine sand Silty sand

25

080

0 70

060

5 0

0 65

055

047

75

054

045

039

10 0

045

036

031

150

035

027

022

200

030

0 23

018

Tab 118

Shaf t r e sistance factor (proposal)

fs

qc (MPa)

Gravel

Coarse sand Medium sand

Fine sand Silty sand

25

80

100

130

10 0

120

150

190

I 200

180

230

300

11 2

Tab 119

Calculated values qcp

for large diameter piles

Pile Literature Length Diameter (m) Measured p Cr1 lcul Settlement Note Authcr(year) No (ml D Dp (MPa)

(s=0 10Dp) (MPa)p ~~JL__

s s ()(mm) Dp

1 Franke (1977) 1 13 11 36 38 117 106 Garbrecht

2

3

2

3

13

14

11

15

1 58 36

37

38

40

215

185

136

123

) qg accord to Franke

4 4 13 15 204 3 2 33 220 108 and Garshy

5 5 6 11 33 35 127 11 5 brecht (1977)

6 6 6 11 153 36 35 146 9 5

7 7 6 1 5 34 35 158 105

8 -shy 8 6 15 2 1 41 3 0 109 52

9 10 9 11 39 52 47

10 11 95 11 43 35 77 70

11 12 9 11 49 66 60

12 13 10 11 15 5 1 4 0 77 5 1

13 14 9 11 1 5 4 8 46 115 77--shy14 Pranke ( 1973) 15 115 18 4 9

) ) average 88

15 13$ 13 5 1 3 19 -2 5 3 2 sd=3 0

16 - - 165 16 5 13 19 30 sv=0 34

17

18

Spang (1972)

llXJ

V90

6 6

6 75

0 7

09

3 2

4 2

32X

42X

x) s =0 10 D p

19 VlaJ 720 1 2 39 3 9X

20 - - VlsJ 6 5 1 5 3 0 3 ox

21 Touma and US59 9 9 o 76 8 0 Reese ( 1977)

22 HH 75 0 61 8 0

23 Gl 180 091 - 2 5

24 BB 137 o 76

sd = standard deviation

sv = standard variation

Tab 1 2 1

Ultimate point resistance coarse and medium sand psf (MPal (Pol ish Specification 1975)

Depth h

Medium sand r = 0 40 N = 200 30 Base diam (Op) and depthbase diam (hDp)

Dense sand r 0 Base diam (Op)

= 0 80 = 50N30 and dpethbase diam (hDp)

(ml Dp = 0 6 m Dp = 1 0 m Dp =12 m Dp = 1 5 m Dp = 0 6 m DP = 10 m DP = 12 m DP = 15 m

Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp

5 10 83 0 85 5 0 075 42 07 33 20 8 3 16 50 14 42 13 3 3

7 14 11 7 1 2 70 11 5 8 10 4 7 2 8 11 7 22 70 2 0 5 8 1 8 47

10 18 16 7 15 10 0 14 8 3 1 3 67 35 167 28 100 2 5 83 2 2 67

15 18 250 18 15 0 16 12 5 15 100 4 2 25 0 3 4 15 0 30 125 27 100

20 2 4 333 2 0 200 185 167 1 7 133 4 7 333 3 8 200 33 167 30 13 3

25 26 41 7 2 2 25 0 20 208 19 167 5 0 41 7 4 0 250 3 5 20 8 3 2 167

w

11 4

Tab 131

Partial safety factors for resistance to axial load for bored piles (Wright Reese 1979)

Partial safety Normal Poor factor for control control

Unit skin resistance 1 70 185

(no load test)

Unit skin resistance 160 1 70

(from load test)

End bearing 165 180

Tab 1 3 2

Probability of failure of bored piles under normal design conditions (Wright Reese 1979)

Probability of Factor of Structure failure safety classification

5 10-3 25 monumental

210shy 22 permanent- 2

5 middot 10 2 0 110shy 1 85

temporary 5 bull 10-l 165

11 5

Tab 133 Results of field tests (Tejchman Gwizdara 1979)

L

II C C C 0 0 0

micro micro

micro micro micro For universal safe~y F2u u CUNo micro C C ~ ~g~ middot- C

~ Permisible micro micro i ~c -i micro

cmiddot-~ micro~ L

micro oo ~ load ~t~ ~~ omicro micro ~ ~ 3Z~ ~ ~ micro

-~~

~ e ~ --middot--

middot- ~ obull 0

~ g ~~ ~~ ~

~ L

o Jl i5 sect~ =gt L Q~ = yen t p Qp Qp

D h Q~ Srrx s tm p s E~ iQ~lQ~cm ~~ KN X ll1l kPa kPa kN kN kN Jl ~e ~ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 70 6 60 4081 1550 2531 38 0 1182 10 4040 175 2041 245 1796 632 141 120

2 90 6 75 5082 3041 2041 598 1785 10 4782 107 2541 1079 1462 282 140 42 5

3 120 720 7259 4041 3218 557 1035 10 3576 119 3630 2158 1472 187 2 19 594

4 150 650 8643 4454 4189 51 5 928 20 2521 136 4326 2158 2168 3 10 166 253

5 130190 195 7750 3011 4709 392 805 10 1075 - 3875 981 2894 3 10 166 253

6 130190 165 9516 5101 4415 536 522 20 1800 - 4758 1962 2796 260 158 412

7 130190 135 8044 5199 2845 646 114 4 15 1834 - 4022 2109 1913 2 47 149 524

8 180 115 11380 4415 6965 388 792 15 1735 - 5690 2747 2943 161 2 37 483

9 76 980 6867 4316 2551 628 110 13 9529 109 3534 1128 2306 383 111 32 8

10 61 7 60 7161 2747 44 14 383 67 15 9404 303 3581 392 3188 700 169 109

11 92 180 4807 883 3924 184 20 8 1329 76 2404 196 2207 450 178 82

12 76 24 5 6769 736 6033 109 20 8 1623 103 3385 147 3238 500 186 43

13 76 137 5396 2060 3336 38 2 63 8 4535 102 2698 589 1109 350 t 58 218

14 120 23 5297 1854 3443 35 0 960 10 1640 39 2649 196 2453 945 130 7 4

15 135 16 7 13489 7554 5935 560 181 10 5260 83 6749 2060 4689 367 127 305

16 170 46 0 8829 2943 5886 333 17 10 3466 39 4415 1373 3042 2 14 1 94 31 1

Average Fi 387 166 Standard deviation Sd 2 1 5 034 Standard variation sv= 0 56 0 20

1234 Spang1972 567 8 Franke 1976 9 10 111 2 1 3 Touma Reese 1974

14 Colombo 1971 15 Kerisel Simons 1962 16 Appendino 1973

11 6

Tab 134

Results of model

SafetyScheme factor

medium F ssand

F p

loose F s

samd Fp

F 3 55 sd _P F 1 32 sd

s

tests (Tejchman Gwizdara 1979)

Diameter D (mm)

30 60 90 133

145 129 108 112

280 3 08 307 294

140 154 153 112

594 3 04 324 426

107 sv 030

0 19 sv 0 14

117

Tab 135

Individual safety factors according to literature

Literature proposal ofLiterature individual safety factor

Fs Fb

Polish Specification (1974) 100 250

Tejchman Gwizdala (1979) 150 400

Bustamante Gianeselli 200 300 (1982)

Decourt ( 1982) 130 400

average 145 3 38

TAB 141 0)

Load settlement curves - measured

Pile No

Settlement 1 c 3 4 5 6 7 8 9 10 11 12

s p s p p s

p p s P

p s P

p s p p s

P p s

P p s

p p s p p S

p I i p s

p p s p

mm MPa rrrn lifl5a MPa mm

lifl5a MPa

mm lifl5a MPa mm

RPa mmMPa nwa MPa mm

RPa MPa mm RPa MPa mm

RPa MPa mm RPa MPa mm

RPa MPa mm RPa MPa mm

RPa 10 045 222 09 1 1 05 20 07 143 06 167 08 125 0 5 20 08 125 10 100 08 12 5 15 67 16 63 20 092 21 7 14 43 08 25 10 20 0 1 1 182 12 167 0 9 22 2 12 167 18 111 14 143 24 83 22 9 1 30 125 240 1 7 I 7 6 1 1 273 1 2 250 14 214 15 200 1 2 250 15 200 25 12 0 19 15 8 30 100 26 11 5 40 1ti 250 20 10 0 14 28 6 14 286 1 7 235 18 222 1 4 286 18 22 2 3 2 12 5 23 174 36 111 3 0 133 50 20 250 22 ~27 1 7 294 1 5 333 20 250 2 1 ~38 1 7 294 1 9 263 37 135 27 18 5 4 2 11 9 33 152 60 2 2 273 24 ~5o 20 300 1 7 353 23 61 22 ~73 18 333 21 286 43 140 30 20 0 46 13 0 36 16 7 80 271 295 27 796 24 333 20 400 27 ~96 25 1320 22 364 25 32 0 53 15 1 36 222 41 195

100 322 31 1 30 333 28 357 22 454 31 1323 29 345 26 385 28 357 60 16 7 40 25 0 45 22 2 125 38 329 32 391 32 391 25 500 32 139 1 30 41 7 32 39 1 4 6 272 48 ~6 0 150 14 2 357 34 1441 36 41 7 27 555 36 ~1 7 34 44 1 36 41 7 175 36 486 39 449 30 583 38 ~61 38 461 200 38 526 42 476 32 625 225 39 577 33 682

(mmMPa) ( 1 MPa)

1

1=2074

t 1=O ~01 =0 98S

a1=1132

b1 =0 212 V =0994

a1=2217

b1=O 131

V =Q 978

a1=1860 b1=0233

V =Q966

a1=1562

b1=0174 V =Q983

a1=1382

b1=O195

V =0975

a1 =20 37

b1 =C 174

V =0957

a1=1443

b1=(l 193 v =O 961

a1=965

b1= 0071 V =0 990

a1=1 91

b1 =o 128

V =0 993

a1=5 83

b1=C124

v =O 981

a1=6 1 4

b1=01 64 v =U 985

li(MPa) ~9 4 7 76 43 57 middot5 1 57 5 2 141 78 81 61 cp (MPa) B8 39 40 33 35 35 35 3 0 39 3 5 49 40 __Ef ~-6 1 2 1 9 1 3 16 15 16 1 7 36 22 16 15 qcp

TAB 141 (continue) Load settlement curves - measured

Pi le No 3ettlement 13 14 15 1 17 18 19 20 21 22 23 24

s p s T5

p s T5

p s T5

p s P

p s P

p s P

p s P

p s P

p s T5

p s T5

p s p p s

p mm MPa lll1l

HPa MPa mm HPa MPa mm

fWa MPa mm fWa MPa lll1l

HPa MPa mm HPa MPa mm

MPa MPa lll1l NT5a MPa HPa MPa 111111

HPa MPa 111111

HPa MPa 1)1111

mra 10 1 7 59 075 133 06 167 075 133 ~95 105 09 11 1 07 143 3 76 1 7 59 08 133 10 100 20 2 4 83 130 154 095 21 1 1 15 17 4 1 75 114 16 125 12 167 ~7 74 33 6 2 1 3 15 3 1 9 103 30 29 103 1 7 176 1 2 250 15 200 r55 118 22 136 16 18 8 38 79 46 66 1 7 182 27 110 40 33 12 1 20 200 1 35 29 6 1 75 229 ~O 133 26 154 175 229 49 82 58 6 9 1 9 21 1 35 115 50 36 139 235 21 3 145 34 5 1 95 256 24 208 ~-4 147 28 17 9 20 250 gt8 86 6 9 72 2 2 233 4 2 11 8 60 39 154 265 22 6 1 55 387 2 15 279 28 214 ~6 16 7 30 120 0 2 2 27 3 o 8 89 80 7 5 2 3 262 80 43 186 31 258 1 7 47 1 36 222 14 05 198 33 124 2 25 320 B 1 98 25 327

100 45 222 18 556 39~ 253 ~-5 222 36 1278 27 370 ~8 113 125 47 26 6 20 625 42 29 8 149 255 28 1446 t50 22 682 3 0 500 175 200 225

(mmMPa) a1=479 a1=1206 a1=14 51 a1=1113 a1=1406 ~=836 a1=843 a1=1176 ~=64 a =561 a1=10 0 a1=9 5 (1MPa) b1=0175 b1=0 178 b1=0 382 b=0287 b1=O 119 p 1=0 137 h1 =o 193 b=0258 p1=0 049 b1=0032 b1=0 276 b1 =0 048

hf (MPa)

v =0998 57

v =0-987 5 6

v =0989 26

v =0992 35

v =0933 Iv =0991 84 73

v =0993 5 2

v =0998 tJ

3 9 =0944 v =0998 v =0996 v =0981

qcp (MPa) 46 39 32 30 32 14 2 39 30

lL 12 1 1 08 12 26 1 7 1 3 13 qcp

lD

N 0

TAB 142

Calculated point resistance curves

Setlement (mm) p(s)

1

n p(s)

Calculated value of the p(s) for pile No

2 3 4 5

n p(s) n p(s) n p(s) n p(s) 6

(MPa)

n p(s)

7

n p(s) 8

n p(s) 9

n p(s)

10 20 30 50 80

100

150 200 225

070 128 177 253 335

375 446 493

157 140 141

127

123

1 16 106

070 1 25 168 232

297

327 378 410

422

078 089 099 1 06

1 10

109 1 11 108

108

073 1 30 176 246

315 349

405 441

146 163

160 145

1 32 125

113 105

056 096

1 26

167 205 222

249 265

271

0 80 096

105

1 11 100 101

092 0 83

082

065

118 162 233

308 345

412 456

108 108

1 16 116 114 111

064

1 12 151 2 10 2 69

298

346 3 76

078 P63 093 tt 13 101 tt 53 100 I 13

108 ~75

103 ~04 096 ~ 55

~ 87

1 26 125 127 126

125

1 17 1 04

052 088

1 15 153

188 2 03 227 242

065 0 74

o 77 0 81 0 75

0 73

063

072 122

1 83 262 347 388

463 5 11

073

0 74

073 0 71 0 65 065

064 1 18

162 233 309

3 46

41 3 4 57

Dp (m) 1 1 Qcp (MPa) 38 (mmMPa) h2 8 1 1 9 Qcpbullv1(MPa) 72

158

39

124 14 55

15

40

n20 15 60

204

33 148 10 33

1 1

35

tt 4o 1 9 67

1 53 3 5

tt 4 0 1 5 51

15

13 5

114 0 15 i-gt 3

2 1

30

tt 6 0 10 3 0

1 1

3 9

12 4 1 9 74

1 1

3 5 h40

1 9 67

Note n = condition coefficient calculated p(s) measured p(s)

10

n

081

084 0 85 0 86 0 85

087

TAB 142 (continue)

Calculated point resistance curves

Calculated value of the p(s) for pile No (MPa) Setlement 11 12 13 14 15 16 17 18 19 20

(mm) p(s) ll p(s) n p(s) ll p(s) n p(s) n p(s) n p(s) n p(s) n p(s n p(s) n

10 106 070 0 71 045 091 054 099 1 32 055 092 053 070 060 081 085 0 72 080 055 078

20 1 90 079 130 059 160 067 1 70 1 30 096 101 091 079 1 12 148 085 1 31 082 098 082

30 258 086 1 76 068 2 15 074 222 1 31 1 26 105 120 080 156 205 081 180 082 132 083

50 363 086 246 075 297 082 296 1 26 1 70 117 161 082 228 095 295 087 256 0 91 184 092

80 471 316 o 77 3 77 088 364 1 18 2 1 o 1 24 199 308 085 393 097 336 1 02 237 095

100 522 349 078 415 092 394 228 1 27 2 16 348 088 442 098 375 104 262 097

150 611 405 479 443 258 117 244 423 529 443 304 101

200 669 441 518 473 276 261 474 587 488 331

Dp (MPa) 1 1 1 5 1 5 18 1 9 19 070 090 12 15

qcp (MPa) 49 4 0 46 49 32 30 32 42 39 30 12 a1 mmMPa) 84 h20 96 84 152 160 152 124 160

IV1 1 9 1 5 15 12 11 1 1 23 21 18 15

qcpmiddotv1 (MPa) 93 60 69 59 35 33 74 88 70 45

- 12287 average = ~ = 098

standard deviation sd = 023 standard variation sv = 023

N

122

TAB 143 Ultimate settlement for shaft resistance - summing up

Ultimate settlements (mm)Literature sand cohesive claysand

soil

Burland Butler Dunican (1966) 7

Touma Reese (1974) 10 Tomlinson (1977) 10 Klosinski (1977) 8

Francke Gerbrecht (1977) 20-30 DIN 4014 part 2 (1977) 20 10 Francke (1981) Reese (1978) (1979) 05-2 of 05-2 of Farr Aurora (1981) shaft dia~ shaft diam

5-20 mm 5-20 mm Tejchman Gwizdala (1979) - Spang (1972) 10

10 10 20

- Francke (1976) 10 20 15 15

- Touma Reese (1974) 13 8 15 8

8 - Colombo (1971) 10

- Kerisel Simons (1962) 20 - Appendino (1973) 10 Promboon Brenner (1981) 10 Prodinger Veder (1981) 12 Decourt (1982) 10-15 10-15

-average s = 14 1 10 126

standard deviation sd = 53 2 1 47

standard variation sv = 038 021 037

123

TABLE 14 4 Al l owab l e base resistance versus sett lement

Pile Li terature ength Diameter (m) Calculated qcp=qcp Settl ement Fp-3- sa (mm)No Aut hor No (m) D DP qcp (MPa) for qcp3(MPa)

1 Francke ( 1977) 1 13 11 38 127 25 Garbrecht

II2 2 13 11 158 39 130 19

II3 3 14 15 40 133 33

II4 4 13 15 204 33 110 23

II5 5 6 11 35 117 22

II6 6 6 11 153 35 117 19

II

8

7 7 6 15 35 1 17 25

II 8 6 15 21 30 100 21

II9 10 9 11 39 130 13

II10 11 95 11 35 117 15

II11 12 9 11 39 163 11

II12 13 10 11 15 40 133 7

II13 14 9 11 15 46 153 9

14 Francke ( 1973) 115 11 5 18 30 100 15

II15 135 135 13 19 32 107 29

II16 165 165 13 19 49 163 35

17 Spang (1972) V70 660 070 32 107 28

18 II V90 675 0 90 42 140 16

II19 V120 720 1 20 3 9 130 16

II20 V15C 650 150 30 100 16 average for pi les 198

standard dev sd = 78

standard var sv = 039

)assumed qc = p for s = 010 Op sonding meRsurement were not availab le

IV

TA~LE 15 1

Comparison of the initial sl ope of the pile point resistance - settlement curve

Accardi ng to 1 2 3 4

In i t i ~l 5

slope a1 for the pile No

6 7 8 9

(mmMPa)

10 11 12 13 14 15 Note

a 1 for s=10 mm 222 11 1 a1 for s=20 mm 21 7 14 3 calculated 207 113see Tab 14 1 Bo Berggren (198 )230s=20 mm

Schmertmann s method (see 202B Berggren 1981)s=20 mm

No 1 _ llNo - 6 1 97 098

202 250

22 2

400

30 8

090

14 3

200

186

076

167

182 156

286

18 2

107

125

167 138

091

20 0

222

204

426

263

098

125

167

144

087

100

11 1 9 7

182

23 5

1 03

12 5

14 3

11 9

174

164

105

67 83

58

14 6

125

1 16

63

9 1

61

103

59

8 3 48

123

13 3

15 4 12 1

1 10

167 21 1

aceto hypershy14 5 bola type curve

1 15

No 2 NQj = n1

No 4Noz ~ na No 5Naz= T]g

105 1 27

106

093

1 13

160

1 23

108 1 17

157

100

121 109

1 92

118

1 16 1 14

164

2 12

120

122

1 15

143

1 76

151

149 1 73 1 27 146

TAllLE 151 (continue)

Compa ri son of the initial slope of the pile point resistance - settl ement curve

Initial slope a1 for the pile No (mmMPa)According Note to 16 17 18 19 20 21 22 23 24 -a1 for s=10 mm 133 - 105 11 1 143 76 59 133 100 a1 for s=20 mm 174 - 114 125 167 74 62 153 10 3 calculated see 11 1 146 84 84 118 64 56 100 95Tab 141

Bo Berggren 198 67 78 25 0 114s=20 mm Schmertmann s method (see B 136 67 250 146 Berggren 1981) s = 20 mm

nG = 108 No 1NoJ = n 1 20 125 1 32 121 1 19 105 1 33 105 sd = 0 14

SY= 013 No 2 i) = 1 29ro1 = n1 157 136 149 142 1 16 1 11 1 53 108 sd = 019

SY= 015 No 4 iis = 143 INo2 = ns 091 126 1 63 111 sd = 033

SY= 0 23 No 5 ii9 = 1 37183 108 163 142INoz = n9 sd = 0 37

SY = 027

N Vl

126

TABLE 152

Measured and calculated pile point resistance

Pile Calculated Measured Measured No qcp P for

s=10 mm P for s=20 mm

~ 10 mm ~ 20 mm

- (MPa) (MPa) (MPa) - -

1 38 045 092 84 41 2 39 09 14 43 28

3 40 05 08 80 50 4 33 07 10 47 33 5 35 06 11 58 30 6 35 08 12 44 29 7 35 05 09 70 39 8 30 08 12 38 25 9 39 10 18 39 22

10 35 08 14 44 25 11 49 15 24 33 20 12 40 16 22 25 18 13 46 1 7 2 4 27 19 14 30 075 13 40 23 15 32 06 095 53 34 16 49 075 115 65 43 17 32 - - - -18 42 095 1 75 44 24 19 39 09 160 4 3 23 20 3 0 07 12 43 25

average= 484 291

sd 163 088 sv 034 030

Tab 153 Results of calculation for piles No 1-24

Pile No

Length (m)

Overburden pressure 0 vs

0hs (kPa)

0ve (kPa)

0 nc (kPa)

- -ov=o1 (kPa)

- -OV=03 ( kPa)

00 (kPa)

p(a il ( kPa)

s (a 1) (mm)

A2 ( 1 )

E t

(kPa)

Md ( 1 )

K (1)

E I

t (kPa)

( kPa) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

l 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

13 12 14 13 6 6 6 6 9 95 9

10 95

11 5 135 165 66 675 72 65 99 75

180 137

l 33 133 123 116

70 70 70 70

104 102 95

102 95 94

106 139 95

101 106 97

180 137 221 215

53 53 49 46 28 28 28 28 42 41 38 41 38 38 42 56 38 40 42 39 72 55 88 86

202 202 216 202 1114 104 104 104 146 153 146 160 153 181 209 251 120 128 134 123 238 180 305 277

202 202 216 202 104 104 104 104 146 153 146 160 153 181 209 251 120 128 134 123 238 180 305 277

168 Hi8 170 159 87 87 87 87

125 128 121 131 124 138 158 195 108 115 120 110 209 159 263 246

128 128 133 124 66 66 66 66 94 97 92

101 96

110 126 154 79 84 88 81

155 118 197 182

141 141 145 136

73 73 73 73

104 107 104 111 105 119 137 117 89 94 99 91

173 132 219 203

950 975

1000 825 875 875 875 750 975 875

1225 1000 1150 750 800

1225 800

1050 975 750

2000 2000 625

1500

218 139 255 190 16 1 146 210 12 7 10 1 11 7 84 73 69

104 167 210 124 103 10 1 109 142 120 76

153

0802 0802 0822 0820 0798 0798 0798 0798 0791 0798 0800 0811 0814 0837 0837 0830 0769 0 768 0771 0 775 0 780 0 781 0 788 o 779

35296 81603 43312 65222 44019 67515 4609 91313 78186 60572

118115 15129 5 184075 95577 67017 81607 33252 67554 85294 75994 78816 74857 55101 54862

075 075 0 77 075 084 084 084 081 079 078 084 080 083 076 076 078 0 77 081 079 076 082 087 064 0 74

278 643 337 512 542 832 567

1085 766 572

1216 1417 1832

796 520 709 353 735 878 781 630 726 302 366

26472 61202 33350 48917 36976 56713 38656 73964 61767 47246 99217

121036 152782

72639 51932 63653 25604 54719 67382 57755 64629 65126 35265 40598

a=282l a =l781 y=axs S=0621 B=0 844

V=0 057 V=0 128 _ Iv -J

~

N co

Tab l53 Results of calculation for piles No 7-24

Pile No

17

1 2 3 4 5 6 7 8 9

70 11 72 13 74 75 16 17 78 79 20 27 22 23 24

Ground water

18

-20 m b s

-28 m -335 m -330 m -3 15 m dry dry -53 m -85 m

E t (kPa)

19

33653 64979 35364 45664 47969 54583 37574 63072 74548 57753

71 2618 123531 150297

71239 48619 59204 39744 77208 77863 62049 90407 95844 57762 62937

vxEt=E Md (kPa)

20

25240 48689 27230 34248 35254 45849 31562 51040 58893 45047 94599 98825

724747 54142 36950 46179 30603 57678 61572 47157 47734 83384 36968 46569

a=898 S=l 27 =0314

K (l )

21

265 511 275 358 517 672 463 749 730 546

1160 1157 7496

593 377 514 422 775 802 638 723 929 377 420

a=l422 S=l 05 =0187

E=E = t1 3

g-gcp (kPa)

22

51046 52799 54566 42492 45870 45870 45870 37547 52799 45870 77039 54566 65438 52799 40826 71039 40926 58739 52799 37541 82549 82549 40826 59945

Calculated s

(mm)

23

708 128 72 7 15 3 724 146 144 17 3 71 3 11 5 11 2 732 13 2 707 1 5 1 13 7 93

102 118 137 728 12 l 69

11 9

s__caL n=smeos

() 24

050 092 050 087 0 77 7 00 069 l36 l 12 098 133 l81 l97 103 090 065 0 75 099 117 126 090 101 097 078

ri=l00 sd=035 sv=035

K = l50gcp

25

570 585 600 495 525 525 525 450 585 525 735 600 690 450 480 735 480 630 585 450 825 825 1180 645

E l

(kPa)

26

67684 69465 72250 57726 44856 44856 44856 38448 59659 54306 74956 63214 70704 49089 56783 79502 45283 61081 58207 42927

708572 94785 71033 91898

E = t E middotA2

l

(kPa)

27

54283 5571 l 59389 47336 35795 35795 35795 30682 47790 43336 59964 51266 57553 47088 47024 65987 34823 46970 44877 33269 84639 74027 55974 71589

Calculated s

(mm)

28

l O l 12 l 11 7 737 15 9 18 7 185 21 1 12 6 12 2 133 14 l 150 13 7 13 l 14 7 709 12 7 738 755 12 4 735 50

100

- -

Tab l53 Results of calculation for piles No l-24

Pile

29

l 2 3 4 5 6 7 8 9

10 ll 12 13 14 15 76 17 78 19 20 21 22 23 24

sea l n= middotshy

smeas

28 TT

30

0 46 087 046 0 72 099 l 28 088 l 66 l 25 l 04 l 58 l 93 2 17 l 32 078 0 70 088 l 23 l 37 l42 087 l l 3 066 065

n=l 10 sd=0 44 sv=040

s seal for p n=s=lOrnn ac cording to s = 70mm

(mm)

37 32

5 l 0 51 ll 8 l18 64 064

13 0 l30 85 0 85

13 3 l 33 83 0 83

184 l84 ll6 l l 6 105 l05 137 l 37 21 3 2 12 19 4 l94 107 l06 l l 3 l l 3 84 084

92 092 l 0 9 l09 128 l28 83 083

l 0 3 l03 88 088 79 0 79

n=1 73 sd=025 sv=027

s for p according to s = 20mm

(mm)

33

10 4 184 102 18 6 15 6 200 14 9 276 209 18 4 219 292 274 185 17 9 12 9 -

169 194 219 172 200 143 15 0

seal n=s=20rnn

34

052 092 051 093 078 l00 075 l 38 l 05 092 l l 0 l46 l 37 093 090 065

-085 097 l1 0 086 l00 072 075

n=093 sd=025 sv=0 27

s for p according to s = 30rnn

(mm)

35

142 223 14 l 22 3 198 249 142 34 5 290 249 274 345 33 l 243 22 6 168 -

24 7 26 6 293 24 3 279 187 213

seal n=s=30rnn

36

047 0 74 047 0 74 066 083 047 l 15 0 97 083 091 l 15 l10 0 81 075 056 -

082 089 098 081 093 062 0 71

n=o80 sd=020 _ sv=0 25 N

IO

APPENDIXES

APPENDIX 1 1 1

Pi le No 1 Length 13 m D 10 m

Areas of influence

-

qe

(MPa)

1 fp

___9c_ f

(MPR) zyen

(MPf) qcp (MPa)

Soil type

22 20 18 16 14 1 2

l 2 (m)

10

1 0 08 06

16 15 16

026 027 026

42 41 42 Sand

04 14 U28 39 02 14 028 39 41

02 16 0 26 42 04 16 026 42 06 16 026 42 08 14 028 39 Sand 1 0 13 030 39 12 15 027 4 1 38 14 13 030 39 16 12 032 38 18 12 032 38

40 20 10 036 36 22 10 036 36 24 9 U39 35 2 6 8 043 34 28 10 036 36 30 10 036 36 3 2 10 036 36 34 10 0 36 36 36 11 0 34 37 38 11 034 37

l 1 (m)

40

42 44

11 0 34 37 15 1

46 48 50 52 54 56 58 60 62 64 66 68 70 7 2 74 76 78 8 0

APPENDIX 112

Pile No 2

to little depth of sounding

q~ = middle values for 11 = 2 Op

q~ = 145 MAa (Francke Garbrecht 1977 Tab 2 p 50) (Fi g No 2)

for sand

qcp = 0275middot145 = 40 MPa q~p =V ~~s) middot 40 = 097middot40 = 39 MPa

Pile No 4

q~ = 120 MPa sand (Fig No 4)

q = 0 315middot12 = 3 8 MPa q bull 38 = 086middot38 = 33 MPa=V Jmiddot54

1

cp middot bull cp

Pile No 12

qg = 155 MPa sand (Fig No 13)

qcp = 026middot155 = 4 03 MPa

Pile No 13

q~ = 200 MPa sand (Fig No 14)

q = 0 23middot20 = 46 MPacp

APPENDIX 113

PileNo3 Length 14 m D 15 m

Areas of influence

-

qe

(MPa)

1 Tp

----9cf

(t-1Pf) r~

(MPf) qcp (MPa)

Soil type

22 2D 18 16 17 025 43 14 17 II II

L 2 17 II II

12 (m)

16 10 08 06

17 17 17

o

II

II

II

II

Sand 04 17 II II

02 19 024 46 b9

02 19 024 46 04 17 025 43 06 15 027 41 08 13 030 48 1 0 12 032 38 12 11 033 36 14 13 0 30 39 16 14 028 39 18 12 032 38 40 20 16 026 42 2 2 16 026 42 24 11 033 36 26 11 033 36

60 28 30

10 10

036 036

36 36

Sand

32 10 036 36 34 12 032 3 8 3 6 12 032 38 38 12 032 38

1 1 (m)

40

4 2 4 4

13

14 16

030

028 026

39

39 42

46 13 030 39 48 12 032 38 50 14 028 39 52 10 036 36 54 13 030 39 56 14 028 39 58 15 027 41 60 15 027 ~-1 236 62 64 66 68 70 72 74 76 7 8 80

APPENDIX 114

Pi l e No 5 Length 6 0m D 11 m Dp 11 m

Area s of i nfluence

-

qc

(MPa)

1 Tp

-3Lf

( MPf) l ~

(MP~) qcp (MPa)

Soil type

2 2 2 0 18 1 6 14 1 2 155 U i1 33

l 2 (m)

1 2 10 08 06

15 14 12

022 023 0 27

3 3 32 32

Fine sand

+ silt

04 125 026 33 02 16 0 21 34 39

02 16 021 34 04 13 025 33 06 08 10

15 5 17 20

022 0 20 018

34 34 36

35 Fi ne sand

1 2 20 0 18 36 14 20 018 36 + s ilt 16 20 0 18 36 18 165 020 32 20 165 0 20 32 22 17 0 20 34 24 26 2 8 30 32 3 36 38 4 0

19 21 5 21 5 21 5 20 19 5 19 5 20 215

01 9 ---

018 018 0 18 0 18 -

3 6 40 40 40 36 35 3 5 36 4 0

l 1 (m) 4 2

44 20 19

018 01 9

36 3 6 157

46 48 50 5 2 54 56 58 6 0 62 64 66 68 70 7 2 74 76 7 8 8 0

APPENDIX 1 15

Pi le No 6 Lengt h6 0 m D 11 m

Areas of qc 1 __9_c_ qcp Soil typei nfluence fp f 1 yen (MPa) (MPf ) (MPf) (MPa)

-2 2 20 18 16 t 4---0 14 75 038 29 L2 20 018 36 Fi ne sand

1ti 10 30 40 + s i lt12 08 19 0 19 36(m) 06 17 020 34 04 14 023 32 02 9 034 31 56

02 6 043 26 04 12 026 3 1 06 17 020 34 08 11 028 3 1 1 0 14 023 32 35 1 2 17 020 34 Fi ne sand14 19 019 35 16 20 018 36 + silt18 18 0 19 34 20 14 023 32

46 22 12 026 31 24 12 026 31 26 15 022 33 28 18 019 34 30 20 018 36 3 20 0 18 36 34 20 018 36 3G 20 018 36 38 20 018 36 4 0 20 018 36

l 1 42 22 40

(m) 44 22 40 46 L2 4 0 158 48 50 52 54 56 q =V ~ - 3 b =0 99middot35 = 35 MPp cp 53 58 6 0 62 64 66 68 70 72 74 76 78 80

APPENDIX 116

Pi leNo7 Length 60 m 0 15 m

Areas of influence

-

qe

(MPa)

1 Tp ~

(MPg) r~

(MPf) qcp (MPa)

Soil type

22 20 18 16 9 U33 30 14 10 031 31 12 135 024 32

l 2 (m)

16 10 08 06 04 02

13 12 6

10 175

025 026 043 0 31 020

33 31 26 3 1 35 50

Fine sand

+ silt

02 04 06

17 10 115

0 20 0 31 027

34 31 3 1

08 10

145 185

023 019

33 35 3 5

1 2 14

20 19

018 0 19

36 36 Fine sand

l 1 (m)

60

16 18 20 22 24 26 28 30 3 2 34 36 38 40

42 44 46 48 50 52 54 56 58 6 0

185 125 125 165 17 19 21 215 205 20 21 20 20

24 22 20 215 22 22 21 19 18 22

0 19 026 0 26 020 020 019 --

018 018 -

018 01 8 --

018 ----

0 19 0 19

35 33 33 33 34 36 40 40 37 36 40 36 36

40 40 36 40 40 40 40 36 34 40 219

+ silt

62 64 66 68 70 72 74 76 78 80

APPENDIX 117

Pile No 8 Length60 m D 15 m Dp 2 1 m

Areas of influence

-

qe

(MPa)

1 r +

(MPg) r~

(MPf) qcp (MPa)

Soil type

22 18 019 34 20 16 021 34 18 125 026 3 3 16 115 027 31 14 11 028 3 1 12 11 028 3 1

l 2 (m)

10 08 06

105 11 145

D29 028 023

30 31 33

Fine sand

+ silt

04 18 0 19 34 02 18 019 34 71

02 15 022 33 04 11 0 28 31 06 13 0 25 33 08 20 0 18 36 10 15 022 33 12 13 025 33 14 175 020 35 16 18 20 22

20 21 20 15

018 -

018 0 22

36 40 36 33

35 Fine sand

+ s i lt

24 26 28 30 3 =

13 16 175 19 20 20

025 021 020 0 18 018 018

33 34 3 5 34 36 36

36 38 4 0

20 20 21

018 0 18 -

36 36 40

11 (m)

4 2 4 4 4 6 48 50 5 2 5 4 56 5 8 60 6 2 6 4

20 20 21 22 21 20 19 175 19 20 25 28

018 0 18 ---

01 8 01 9 0 20 0 19 018

36 36 40 40 40 36 36 35 36 36 40 4 0 23 0

6 6 68 70 72 74 76 78

qcp 1f5=v 2T middot35 = b85 middot35 = 30 MPa

80

APPENDIX 118

Pi le No 9 Le ngth 90 m D 11 m m

Areas of 1Qe -9c qcp Soil typeinfluence Tp f ryen (MPa) (MPg) (MPf) (MPa)

-

2 2 2 0 18 16 14 lc 11 034 37

12 10 10 036 36 12 08 9 039 35 Medium(m) 06 10 036 36 sand04 10 036 36

02 11 034 37 43

02 12 032 38 04 12 0 32 38 06 12 0 32 38 08 13 030 39 10 13 030 39 12 13 030 39 14 14 028 39 16 14 028 39

44 18 14 028 39 20 14 028 39 39 Med ium 22 15 027 4 1 sand 24 16 026 4 2 26 17 025 43 28 13 0 30 39 3 0 9 039 35 32 13 030 39 34 16 026 42 36 17 025 43 38 17 025 43 40 19 024 4 6

11 42 17 025 43

(m) 44 15 027 41 17 7 46 48 50 52 54 56 58 60 6 2 64 66 68 7 0 7 2 74 76 78 80

APPENDIX 119

Pi 1 e No 10 Length 95m D 11 m m

Areas of influence

-

qe

(MPa)

1 fp

-9c f

(t-1Pf) [~

(MPf)

qcp

(MPa)

Soil type

22 20 1 8 16 14 L 2 13 Uti 3J

l 2 (m) 12

10 08 06 04

18 18 28 19

0 19 019 0 19 019

34 34 34 34

Fine

sand

02 21 40 42

02 20 4 0 04 17 020 34 06 21 40 0 8 10

23 22

40 40 Fine

1 2 14 16 18

21 20 16 15

0 21 022

4 0 4 0 34 33

sand

44

20 2 2 24 26 28 30 32 34 36 38 40

14 14 13 11 11 14 17 14 12 13 12

023 023 025 0 28 028 023 020 023 027 025 027

32 32 33 31 31 32 34 3 2 32 3 3 32

l 1 (m) 42

44 12 13

0 27 025

32 33 15 2

46 48 50 5 2 5 4 56 5 8 6 0 6 2 6 4 66 6 8 70 72 74 76 78 80

APPENDIX 11 10

Pi 1 e No 11 Lengt h 9 0m D 11 m m

Area s of influence

-

Qe

(MPa)

1 fp

__k_ f

(MP~) ryen

(MPf) qcp (MPa)

Soi l type

22 20 18 16 14 12 lb 55

12 (m)

1 0 08 06 04

23 19 20 21

024 023

55 46 46 55

Medium

sand

02 22 55 62

0 2 04

24 25

55 55

06 08

27 28

55 55

10 12 14

28 28 28

55 55 55 49

16 26 55

44

18 20 22 24 26 28 30 3 34 36 38 40

24 19 18 17 22 21 17 11 13 12 11 9

024 024 025

025 0 34 030 032 034 039

55 46 43 43 55 55 4 3 37 39 38 3 7 35

1 1 (m) 42

Ll Ll

12 16

032 0 26

38 4 2 209

46 48 50 5 2 54 56 58 60 62 64 66 68 70 72 74 76 78 80

APPENDIX 141

0 2 3 4 p [MPa)

PILES WITH 40 ENLARGED BASES

80

120

160 C----0

200 IN4014 s (1977)

[mm]

P s calculateds P p(s)(mm) (MPa)(mmMPa)(MPa) ()

10 035 286 046 20 065 308 080 30 090 333 104

150 24 625 214 200 229

ai = 2605 (mmMPa) b1 = 0243 1MPa V 1000 bi = 1b = 411 MPa

_ 411 MP Vi - 24 a

() assumed

average Dp = 18 m

qcp = 24 MPa ai = 184 (mmMPa) (28-4middot24)

Vi = 1 2 (3-18)

qcpmiddotvi = 29 MPa

40

80

120

160

200 s

[mm]

DIN 4014 Part 2 ( 1977)

0 1 2 3 4 5 p [MPal

PILES WITHOUT ENLARGED BASES

C----0

DIN 4014 ( 1977

s calculated s p -p- p(s)

(mm) (MPa)mmMPa)(MPa) ()

10 05 20 062 20 08 25 113 30 11 27 3 155

150 34 441 385 200 424

ai = 2085 (mmMPa) bi= 0 157 1MPa V = 0970

bi= 1s = 637 MPa

Vi 187=3f =

() assumed

average Dp = 12 m

qcp = 34 MPa a1 = 144 (mmMPa)

Vi = 18

qcpmiddotvi = 61 MPa

Range qc = 10-15 MPa

(28-4bull34)

(3-12)

1 1 q = r -r- = 036 for qc = 10 MPaCp p Ip+= 027 for qc = 15 MPa

qcp = 36-405 MPa P

APPENDIX 142

Touma F and Reese L (1974)

Soil parameters pile parameters and base resistance see fig bullbullbullbull

TAB

Measured load settlement curves

Settlement s

mm

10 20 30 40 50 60 80

100 120

a 1 (mmMPa) bi(MPa) V

N3u

q =04 -N30 (cMPa) ()

1 qCp=--rpbullqC

Pile No 21 (US 59) 22 (HH) 23 (G1) 24 (BB) Notep Sp p S p p S p f Sp MPa mmMPa MPa mmMPa MPa mmMPa Mla mmMPa

131 76 169 59 075 133 100 100 269 74 325 62 131 153 1 94 103 381 79 456 66 165 182 273 11 0 488 82 581 69 1 90 21 1 349 115 581 86 694 72 2 15 233 424 118 675 89 800 75 229 262 813 98 245 327 884 113 925 130

64 56 100 95 U049 0032 0276 0048 0944 0998 0996 0981

80 gt100 30 60 32 gt 40 12 24 ()

Bergdahl (1982)

gt5 5 gt55 32 4 3

(0 18middot32) (018middot40) (0265middot12) (018middot24)

CONTACT PRESSURE p [ MPa]

0 2 4 6 8 100 N-------r---------------(us 59) ( HH) ( BBi

E E SQ-------lt+-----+--------------lt

VI

1shyz UJ

~ 100 1---------i----+----+----+------l------I -J I shyI shyUJ V)

so~----~--~-- ~--~

APPENDIX 143

us 59 fYJo 0 50 00

ff-t r-=-~c~=~-r~c_---_---l-~e-J-C~ 0 ------

CLAY

FINE SANO

J lD- 760 mm

f5m~--~--~

Pile US 59 and results from penetration test

HH IV_l() so 100 r=-=-==-==-r-~--=-=- 0 0 II 15- flf ~ II~ Ibull If t f

CLAY SAND

Sm

)

= -middotl lo - GtOmm

~ JI

SILTY SANO tOm

Pile HH and results from penetration t est

APPENDIX 14 4

61 NJO 50 --------00

11 1 =f J - 1 -- 0

CLAYSILT

E ~ Sm ltrj

SILTY SAND

q I lDmiddot 910 mrn tom

I) t bull

Pile G1 and results from penetration test

88

0 50 too ~1-e I q 111bull - Q

CLAY

SIL TY SAND 5m

]

l lDmiddot760mrn

Om

Pile BB and results from penetration test

APPENDIX 145

Klosinski B (1977)

Loading tests 50 bored piles 09-125 m diameter average Op= 11 m On t he sett l ement of rigid pla te the settlement of t he pi le base is given by

PmiddotOSp = T-K b

where Mb - equivalent deformability modu lus

1) Sand and sandy gravel of medium density

Mb = 25-50 MPa

According to Bergdahl (1979) medium sand is between

q(l) 5 MPa (Io=035)c2)

ql = 10 MPa (Io=065)C

from fig 117 rp1 = 055 for qc = 5 MPa 1Tp = 036 for qc = 10 MPa

q(l)= 0 55middot5 = 2 75 MPacp bull

q(2= 0 36middot10 = 360 MPacp

allowable p~ 1)= ~p = yen = 092 MPa and p~2) = ~ = 120 MPa

settlement of the pi l e base

5(1)= o 92 middot 1bull1 = O 0135 m = 13 5 mm p 325 middot middot

5( 2)= 1bull2bull1middot 1 = O 0088 m = 8 8 m p 350 bull bull

1) _ s _ 135 _ 14 7 (mm) a(2) _ 88 _ a 1 - p - o---92 - bull NPa bull 1 - T-7 - 733 (Wa)

2) Loose sand lo= 030-040

Mb = 12- 25 MPa

q~l) = 44 MPa q~2)= 58 MPa

1Tp = 058 and 052

q(3) = 0 58middot4 4 = 2 55 MPa middot q( 4) = 0 52middot5 8 = 3 02 MPa cp bull middot bull cp bull middot middot

allowable p~ 3)= 4i = 085 MPa p~4)= yenl = 101 MPa

s(3)_ 085-11 = 26 mmmiddot s(4)_ 101middot11 = 148 mm p - 312 p - 3 25

STATENS GEOTEKNISKA INSTITUT Swedish Geotechnical Institute S-581 01 Linkoping Tel 01311 51 00

Serien Rapport ersatter vara tidigare serier Proceedings (27 nr) Sartryck och Preliminara rapporter (60 nr) samt Meddelanden (10 nr)

The series Report supersedes the previous series Proceedings (27 Nos) Reprints and Preliminary Reports (60 Nos) and Meddelanden (10 Nos)

RAPPORT REPORT Pris kr

No Ar (Swcrs)

1 Grundvattensankning till foljd av 1977 50shytunnelsprangning P Ahlberg T Lundgren

2 Pahangskrafter pa langa betongpalar 1977 50shyL Bjerin

3 Methods for reducing undrained 1977 30shyshear strength of soft clay K V Helenelund

4 Basic behaviour of Scandinavian soft 1977 40shyclays R Larsson

5 Snabba odometerforsok 1978 25 shyR Karlsson L Viberg

6 Skredriskbedomningar med hjalp av 1978 40shyelektromagnetisk faltstyrkematning - provning av ny metod J Ingands

7 Forebyggande av sattningar i 1979 40shyledningsgravar - en forstudie U Bergdahl R Fogelstrom K - G Larsson P Liljekvist

8 Grundlaggningskostnadernas fordelning 1979 25 shyB Carlsson

9 Horisontalarmerade fyllningar pa los 1981 50 shyjord J Belfrage

RAPPORTREPORT

No

10 Tuveskredet 1977-11-30 Inlagg om skredets orsaker

11a Tuveskredet geoteknik

l1b Tuveskredet geologi

11 c Tuveskredet hydrogeologi

12 Drained behaviour of Swedish clays

R Larsson

13 Long term consolidation beneath the test fills at Vasby Sweden YCE Chang

14 Bentonittatning mot lakvatten T Lundgren L Karlqvist U Qvarfort

15 Kartering och klassificering av leromradens stabilitetsforutshysattningar L Viberg

16 Geotekniska faltundersokningar Metoder - Erfarenheter - FoU-behov E Ottosson (red)

17 Symposium on Slopes on Soft Clays

18 The Landslide at Tuve November 30 1 977 R Larsson M Jansson

19 Slantstabilitetsberakningar i lera Skall man anvanda total spanningsanalys effektivspanningsanalys eller kombinerad analys R Larsson

20 Portrycksvariationer i leror i Gateshyborgsregionen J Berntson

21 Tekniska egenskaper hos restproshydukter fran kolforbranning shyen laboratoriestudie B Moller G Nilson

Ar

1981

1981

1981

1981

1981

1982

1982

1982

1983

1982

1983

1983

1983

Pris kr (Swcrs)

50shy

50shy

40shy

50shy

100shy

60shy

80shy

60shy

190shy

75shy

60shy

150shy

65shy

RAPPORTREPORT

No Ar Pri s kr (Sw crs)

22 Bestamning av jordegenskaper med sondering - en litteraturstudie U Bergdahl U Eriksson

1983 75 shy

23 Geobildtolkn ing L Vi berg

av grova moraner 1984 70 -

24 Radon i jord -Exhal ation- vatten kvot -Arstidsvariationer - Permeabilitet A Lindmar k B Rosen

1984 75 shy

25 Geoteknisk terrangklassificering for fysisk planering L Viber g

1984 120shy

26 Large diameter bored piles in nonshycohesive soils Determination of the bearing capacity and settlement from results of static penetration tests (CPT) and standard penetration test (SPT) K Gwizdala

1984 85shy

STATENS GEOTEKNISKA INSTITUT SWEDISH GEOTECHNICAL INSTITUTE

RAPPORT REPORT No26

Large diameter bored piles in non-cohesive soils Determination of the bearing capacity and settlement from results of static penetration tests (CPT) and standard penetration test (SPT)

KAZIMIERZ GWIZDALA

LINKOPING 1984

ISSN 0348-0755

AS OSTGOTATRYCK UltPG 19amp4

3

P R E F A C E

The work was carried out at the Swedish Geotechnical

Institute in Linkoping during my stay in Sweden as a

scholar of the Swedish Institute

I wish to express my thanks to the Swedish Institute

for the possibility to stay and to research in Sweden

In my work and during the whole stay I have received

every possible support help and encouragement from

the Head of the Swedish Geotechnical Institute Dr Jan

Hartlen For this and for the possibility of studying

at the Swedish Geotechnical Institute I am extremely

grateful and wish to express my very best thanks

Special thanks are due to Dr Bo Berggren and Civing

Per-Evert Bengtsson for the constant and great help

given to me in the daily work at the Institute

I would like to thank all members of the staff at the

Swedish Geotechnical Institute who have helped me

during my stay in Sweden

AcKnowledgement is extended to Mrs Eva Dyrenas who typed

the manuscript a nd to Mrs Rutgerd Abrink and Mrs Irene

Aberg who made the drawings

Linkoping January 1983

Kazimierz Gwizdala

Institute of Hydro-tngineering

of the Gdansk Technical University

Poland

5

CONTENTS

Page

7SUMMARY

NOTATIONS AND SYMBOLS 9

1 LARGE DIAMETER BORED PILES IN NON-COHESIVE SOILS 11

11 Determination of bearing capacity of bored piles from results of Cone Penetration Test (CPT) 11

12 Determination of bearing capacity of the large diameter bored piles from results of the Standard Penetration Tests (SPT) 18

13 Allowable load of large diameter bored piles 22

14 Determination of settlement of large diameter bored piles based on static cone penetration tests CPT 27

15 Initial slope of pile point resistance shysettlement

REFERENCES

FIGURES

TABLES

APPENDIXES

curve 37

43

51

105

7

16 Summary

The work contains a study of the behaviour of l arge diameter

bored piles in non- cohesive soil The mai n attention was

paid to the determination of the bearin g capacity a nd

sett lement from results of Cone Penetration Test (CPT)

and Standard Penetration Test (SPT)

A new met hod to calculate bearing capacity on large bored

piles based on the in situ measurement is proposect taking

into account investigations made during the last years in

all the world The values based on the proposed method

are compar ed to field test results

The analysis of bearing capacity safety factors and loadshy

settlement curve allows to assume values individual safety

factors for resistance of pile point and shaft respectively

Based on a detailed investigation the pile point pressure

settlement curve and shaft resistance dependance during

loading a new method to predict the pile point pressure shy

displacement and load- settlement relationship is proposed

The initial slope of the point pressure- displacement curve

can be determined from in situ tests or laboratory test

based on the hyperbolic stress- strain parameters

9

Notations and symbols

Roman letters

a 1 Initial slope of the pile point resistance shysettlement curve

Ap Cross-sectional area of a pile

As Area of the pile shaft

CPT Static Penetration Test

D Diameter of pile shaft

Op Diameter of pile point

E Youngs modulus

fp Point resistance factor

fs Shaft resistance factor

F Universal safety factor

Fp Individual safety factor for ultimate resistance of pile point

Fs individual safety factor for ultimate resistance of pile shaft

K Dimensionless compression modulus

K At rest soil lateral stress coefficient0

Koc Lateral stress coefficient for fluid fresh concrete

Mo Constrained (oedometric) modulus

N30 Numbe r of blows for 030 m penetration in SPT

p Unit point resistance (contact pressure)

p (s) Unit point resistance versus settlement

Unit point resistance at failurePsf

Allowable unit point resistancePa

Sounding resistance

Average static cone penetrometer resistance close to tne pile point

qs Average static cone penetrometer resistance C along the pile

10

Ultimate point resistance of large diameter piles based on static sounding results

Ultimate skin friction resistance of large diameter piles based on static sounding results

Qa Allowable pile load

Qcp Point load of the static cone penetrometer

Qct Total load of the static cone penetrometer

Qpa Allowable point resistance of the pile

Qpu Ultimate point resistance of a pile

0 sa Allowable skin resistance of the pile

0su Ultimate bearing resistance of a pile

Qu Ultimate bearing resistance of a pile

s Settlement

sd Standard deviation

ss u Ultimate settlement for pile shaft

sv Standard variation

SPT Standard Penetration Test

t Unit shaft resistance

Ultimate unit shaft resistance

Circumference of the pile shaft

Circumference of the static penetrometer shaft

Greek letters

a Constant

B Constant

A Coefficient

microd Depth factor

v Poissonbulls ratio

v 1 Correction factor for hyperbola point resistance shysettlemen~ relationship

n Correlation coefficient

ahc Radial (horizontal stress in the concrete

ohs Radial (horizontal) stress in the soil

Ovc Vertical stress in the concrete

Ovs Vertical stress in the soil

11

1 LARGE DIAMETER BORED PILES IN NON-COHESIVE SOILS

11 peterminati on of bearing capacity of bored piles

from results of Cone Penetration Test (CPTl

The methods published in available literature up to 1976

were compiled by D Rollberg (1976 1977) It contains

totally 25 methods

- 22 use the results of static soundings (CPT)

3 use the results of standard soundings (SPT)

The failure load Qu of the pile is evaluated as the sum

of the pile point resistance Q and the pile skin reshypu sistance Qsu

(111)

Pile point resistance Q based on static soundina reshypu shysults can be expressed as

1- bull qP A ( 1 1 2)f C p

p

where

fp = point resistance factor

qP mean sounding resistance of static cone C

penetrometer in the area of the pile point

A cross-sectional area of the pilep

The pile skin resistance is expressed as

1 s -- bullq bullU middot Lih (113) fS C p

where

fs = shaft friction factor

sqc mean sounding resistance along the depth h

and skin surface area U middotLih p

1 2

The methods differ in

- the calculation of qPC

(074 to 40) Db below the pile base (Fig 11 1)

(10 to 80) Db above the pile base (Fig 1 11)

- the evaluation of the point resistance factor usually

values off gt 10 are used p

- the calculation of qsC

- the evaluation of the shaft friction factor

fs = 50-300 is applied

In Table 111 methods for determination of the bearing

capacity of bored piles are listed Rollberg 1977 The

point load the skin friction load and the ultimate total

load are evaluated for bored piles (shaft diameter D ~

03-090 m) from static sounding results in non-cohesive

soil

Calculation results based on static sounding measurements

are shown in Table 112 for pile point pile shaft and

total pile load respectively

The table shows that

- a ll methods overestimate the ultimate point resistance

- the best correlation for ultimate point resistance is

obtained with the Soviet method Trofimenkov 1974

n1 = 114

- there a re only five methods for evaluation of the ultimate

skin resistance

- all methods with exception of the Soviet norm Trofimenkov

1969 method overestimate the ultimate shaft resistance

- the Norwegian method Senneset 1974 gives the best

correlation for the ultimate shaft resistance =119n 2

- with exception of the Soviet methods the total ultimate

load is on the average overestimated by all methods

1 3

Taking into account the above results the Soviet and

the Norwegi an methods are presented below

The Soviet method JG TrofimenkgtV 1974

1 qP bullA + qsbullA (114a)Qu = Qpu+Qsu fp C p f C s s

where

11 40 DP 12 1 0 D p h+l1 qp r dhqcC l1+l2 h-12

0ct-0ceqs C u middoth s

f(qp) -+ see Fig 1 bull 1 2 fp C

f f ( qcs) -+ see Fig 1 1 3 s

The Norwegian methon K Senneset 1974

1 p A 1 s bullA ( 1 bull 1 bull 4b)-f-middotqcmiddot p + -f-q s p S C

where

11 30 D p

12 50 D p h+l11 f dhqP l1+l 2 qc

C h-12 h s 1

= f dhqc qch 0

f 20 p

f = f (q~ ) + see Fig 114 s

Note a ) The total skin friction -f-middotq~ is assumed to be

no less than 10 kPa even~ith a very little

cone penetrometer resistance

b) The poin t resistance -f-middotq~ is assumed to be

maximum 10 MPa even iJl case of very dense sand

14

It must be underlined that the best correlation for

the pile point is obtained with the Soviet method

101 for 94 driven piles in non-cohesive soil

- 172 114 for 46 bored piles in non-cohesive soil

Trofimenkov 19731974 showed the results of comparison

of the ultimate loads determined by formula (114a)

Q~ and by pile load tests Q~ for 153 driven friction

piles at the 57 various sites see Fig 115

In Germany a lot of investigations were made before

establishing the DIN 4014 part 2 (1977) on large diameter

piles

In Table 113 and 114 the results from these investigashy

tions are generalized

The data in the tables were obtained from 35 test loadings

(4 of which were published by Franke 1973 The diameter

of the piles was from 08 to 25 m the length from 5 m

to 34 m and the cone penetrometer resistance varied from

10 MPa to 15 MPa

Bustamente and Gianeselli 1982 proposed a prediction

of the pile bearing capacity by means of the static

penetrometer Their proposal was based on the intershy

pretation of a series of 197 full scale static loading

tests In this paper the results from tests of 55 bored

piles are chosen The diameter of the piles varies from

042 m to 150 m and the length from 6 m to 44 m The

equivalent cone resistance was determined as showed in

Fig 116 The authors have noticed that the point

resistance factor f depends on the nature of the soil p and its compactness but also on the different pile placeshy

ment techniques (see Tab 115)

Piles of category group I

- Plain bored piles - Cased bored piles

- Mud bored piles - Hollow auger bored piles

- Type I micropiles - Piers (grouted under low - Barrettespressure)

15

In Tab 116 values of the shaft resistance factor

fs are given

Category IA

- Plain bored piles - Mud bored piles

- Hollow auger bored piles - Cast screwed piles

- Type I micropiles - Piers

- Barrettes

Category IB

- Cased bored piles - Driven cast piles (concrete or metal shaft)

Category IIA

- Driven precast piles - Prestressed tubular piles

- Jacked concrete piles

Category IIB

- Driven metal piles - Jacked metal piles

It can be noted that the values in Tab 116 are in

genera l of the same range for the driven and the

bored piles

According to the Polish Specification 1979 the point

and shaft resistance factor are given by

1-f- = kmiddota

p p

where

ap 035 for sand

k coefficent of unhomogeneity k qcp min

qcp

= 0065 for sandfrac12

1

16

Similar results can be observed in Fig 116a and

Fig 116b It was showed by Kerisel (1965) and Franke

(1973) that the harder soil the more loosening at

excavation and thus relatively smaller bearing capacity

Taking into account the Franke diagrams we will have

for D = 125mand settlements= 2 cm p

Cone resistance qc (MPa) 1 5 50 1 0 15 22

qc p for s=2 cm 3 6 8 12 14

(see Fia 1 1 6b )

taking safety factor for pile base F = 3 the point resis~ance

33-10 ~-05

380375 lo 212 bull lo 2114 bull

factors- shy are p

The above anal ysis shows that it is possible to determine

ultimate point and shaft resistance of bored piles from

static cone sounding But it is very important and must

be taken into account type of pile kind of soil and

degree of compaction

Bel ow calculation method for large diameter bored piles

based on the static cone penetrometer resistance (CPT)

is proposed Equation (117) can be used directly for

the base diameter D lt 15 m For larger diameters p shyD gt 15 m the values should be multiplied by the

p ff t ITscoe icen Y~ as pi

( 1 1 5 )

where

qcp = according to equation (117)

D = diameter of the pile base D gt 15 mpi pi

17

This value q~p should be put into equation 116

The value qc s in equation 118 is independent on the

pile diameter

Proposed calculation method

(116)

where)

1 1 40 ~ 11 3 for piles wit h a nd enlarged bases12 10 12 = ~

h+h

q (h) dh (117)qcp l1+l2 f -f- Ch-li p

h 1 f 1

qcs = o -f- qc (h) dh (118)h s

1 -f- = f(q kind of soil ) -+- see Fig 11 7 and Tab 1 1 7

C p

f (q kind of soil ) -+- see Fig 1 1 8 and Tab 1 1 8 fs C

Note

a) the point resistance q for qc gt 20 MPa is assumed cp to be maximum as

- Gravel 70 MPa - Coarse sand medium sand 55 MPa - Fine sand s il ty sand 40 MPa

b ) The shaft resistance qcs for qc gt 20 MPa is assumed to

be maximum as

- Gravel 110 kPa - Coarse sand medium sand 90 kPa - Fine sand s ilty sand 70 kPa

These proposed values are compared with results by

Bustamente (1 982) and the Polish Specification (1978)

Fig 11 9 and F i g 1110 A similar comparison for DIN

4014 1 977 is shown in Fig 1111 and Fig 1112

) In this paper was used the above values 1 1 and l z But it can be used in practice 11 =30 D and h =2Dp respectively The results shall be very simi l ar to the above onPs

18

The proposed method has been examined with field test

results This is shown in Fig 1113 to Fig 1128

and Appendix 1 11 to 1110 and Tab 119

The comparison shows that the value of q in equationcp (117) corresponds to the settlement -10 of the base

diameter (s=010 DP) see Fig 1113 and Tab 119

(average sDp=88 and standard deviation sd=3)

Later in this paper the allowable load and dependence of

the load versus settlement will be determined

12 Determination of bearing capacity of the large

diameter bored piles from results of the Standard

Penetration Tests (SPT)

There are little published on pile tests coupled with

results from Standard Penetration Test (SPT) Among the

authors who have published material in the subject are

- Meyerhof 1956 1976

- Senneset 1974 (Norwegian method)

- Rodin Corbett Sherwood Thorburn 1974 (English method)

- Polish Specification 1975

- Weltman Healy 197 8

- Reese 1978

- Japanese Society 1981

- Decourt 1978 1982

The Norwegian method is valid o nly for concrete andor

wooden piles the English method only for gravel It is

very important to underline that the Norwegian a nd the

English methods use of the SPT resul ts intermediate by

the static cone penetrometer resistance (q ) as well C

Below methods are presented that are using the results of

SPT directly Meyerhof s method in total can also be used

on driven piles in non-cohesive soil Although we could

have found some proposes for bored piles Eqs (121 and

122) see Fig 121 and Fig 1 22 as well

19

Ultimate point resistance (psf)

12 N 3 omiddotH lt 120 N 30

(kPa) (1 2 1)Psf D

where

N30 the average standard penetration resistance

in blows per 03 m

H depth in bearing stratum

Ultimate skin friction tu

for bored piles tu N~ o (kPa) (1 22a)

for driven pil estu 2N30 (kPa) (1 2 2b)

where

N30 the average standard penetration resistance

in blows per 03 m within embedded length

of pile

Weltman and Healy (1978) taking into account Meherhofs

proposition for driven piles have introduced two coefshy

ficents for bored piles in gravels (glacial soil) Equ

123 and Fig 1 23

t = a 2 N30 (kPa ) (1 2 3)U 1

where

ai a 1 for impermeable gravels see Fig 123a

ai a 2 for permeable gravels see Fig 123b

The Polish Specification ( Specification for Design and

Construction of Large Diameter Bored Piles in Bridges

1975 Ministry of Transport) gives the ultimat e point

resistance in dependence of N30 base diameter and depth

see Tab 12 1 The Tab 121 contains values for coarse

and medium sand For other non-cohesive soils the following

coefficients are proposed

p f = S bull p f (medium sand) ( 1 2 4)S 1 S

20

where

S1 1 20 for grave lSi

f 132 080 for fine sand

13 3 070 for silty sand13i

In Fig 124 values of psf are shown for h = 10 m DP

06 m DP= 15 m and h = 20 m DP= 06 m DP 1 5 m

respectively

A few of the instrumented piles were tested and analyzed

by Wright and Reese (1979) The ultimate point and shaft

resistance in the fine and silty sand as a function of

blow count from SPT is shown in Fig 125 Results from

two additional tests reported by Koizumi (1971) are also

introduced in the figure The ultimate point resistance

is assumed to exist at a settlement equal to 5 of the

base diameter

Methods of prediction of the bearing capacity of piles

based exclusively on N30 values were presented by Decourt

1982 Below a proposition for high capacity piles excavated

and cast under bentoni te is presented

The ultimate skin friction is determined by the expression

(see Fig 126)

t = 33 N30 + 1 0 (kPa) ( 1 bull 2 5 ) u

where

N30 average value of N30 along the shaft

- for N30 lt 3 must be taken as = 3N30 - for N3o gt 5 0 must be taken as NJo= 50

The allowable point resistance can be obtained in a n

expedite way as

Psa = 33 N30 (kPa) (1 2 6)

where

N30 = average of Nat point level one metre above

and one metre below

Psa allowable point resistance

21

Decourt proposed a safety factor for the point of F = p

40 Therefore the ultimate point resistance can be

determined by the expression

(kPa) (1 2 7)

In Fig 12 7 and Fig 1 28 the above values for base

and skin friction resistance are compared respectively

Taking into account the type of soil thereis a good

correlation for ultimate point resistance The result for

ultimate skin friction is scattered but only apparently

The values for large diameter bored piles are between

the line 1a and 1b in Fig 128 Large diameter piles

have a high ultimate skin friction in relation to driven

piles (see points for bored piles in Fig 122 and DIN

4014 Part 2 1977 as well) The high values for piles

excavated and cast under bentonite have had a strong base

on the load tests (Decourt 1978 1982 and Wright and

Reese 1979)

Below the proposals are given for determination of the

values of the ultimate point resistance and the ultimate

skin friction Eqs 128 to 1214 and Fig129 1210

The ultimate point resistance

- gravel psf = 140 N30 (kPa) ( 1 bull 2 8)

for N~ 0 gt 50 blows3O cm Psf 7 MPa

- coarse sand and medium sand

(kPa) ( 1 2 9)

for N30 gt 50 blows3O cm Psf 55 MPa

- fine sand and silty sand

psf = 80 Nio (kPa ) (1210)

for N30 gt 50 blows3O cm p f = 40 MPa 5

where N3 o the average of N value near the point level as

22

h+l1

f N3o(h)dh ( 1 2 11 ) h-12

3DP see Fig 1 1 1 D

p

The ultimate skin friction for coarse sand and medium sand

tu = 1 8 N 3 o (kPa) (1212)

t (kPa) (excavated and cast (1213)u under bentonite)

where

N30= the average value of N along the shaft as h

N -

3 o = h1 f N 3 o ( h) dh ( 1 bull 2 bull 1 4 ) 0

The ultimate skin friction for N30 gt 50 blows30 cm is

assumed to be maximum as tu = 90 kPa and t = 150 kPa u

13 Allowable load of large diameter bored piles

The allowable load Qa of large diameter piles has been

expressed as

OuQa ( 1 3 1)Ft

Qa Q(s)=Qb(s) + Os(s) ( 1 3 2)

Opu + Osu (1 3 3)Qa Fp Fs

Qr lt mmiddotQf ( 1 bull 3 4)-

= universal safety factor

individual safety factor for ultimate resistance of the pile point

individual safety factor for ultimate resistance of the pile shaft

= load according to the allowable settlement

calculated load

m coefficient

calculated ultimate bearing load of the pile

23

The equations from (131) to (134) are used as

1) equation (131)

a) DIN 4014 - 1977 Ft= 2 175 15 (depending on the kind of load)

b) Polish Specification 1975 Ft = 18 16 ( -- )

1c) Trofimenkov 1974 Ft = 14307

2) equation (132)

a) DIN 4014-1977 i Q(s) = Qb(s) + Q (s) = A middotp(s) + E tAsmiddott(s)

s p 0

where Qbs) and Qs(s) are described in Fig 1423

3) equation (133)

a) Polish Specification 1974

F 25 22 depending on the kind of load p

F 1 bull 0 s

b) Wright SJ Reese LC 1979

The ultimate capacity or resistance is considered as a

random value and represented by a frequency distribution

The distribution can be described by a mean value and a

variance The distribution of the load applied to the

foundation can be described similarly The coefshy

ficients used to factor resistance and loads are called

partial safety factors Some recommended partial safety

factors for resistance under normal conditions of design

and construction are given in Tab 131 Normal control

is defined as a condition where the coefficient of variation

is less than about 035

Typical values for partial safety factors for loads are

in the range 1 to 2 depending on the type of load and

how it is applied The overall factor of safety Ft can

then be calculated from the equation

Ft = y RbullY S

24

where

YR the par tial sa f ety fac t or for resistance and

Ys the partial safety factor fo r load

The probability of fa i lur e of the foundation can be r eshy

lat ed to the factor of safety for a parti cular degree of

uncert ainty (see Tab 13 2)

c ) Tejchman Gwizdala 1979

The authors discuss adequate safety factors based on fie l d

test s by Spang (1 972) Franke (1976) Touma and Reese (1974)

Colombo (1971) Kerisel and Simons (1962) Appendirno (1973)

see Tab 1 33 Taking into account the universal safety

factor Ft= 2 0 for the tota l load settlement curves it

was estimated

i) F in the range of 111 to 237 with the average value s F = 166 and standard deviation sd = 034 s (see column 16 Tab 133)

ii) Fb in the range of 161 to 945 with the average

value Fb = 387 and standard deviation sd = 2 15

For model core d piles in laboratory conditions values of

Fs = 108 to 154 (average Fs = 132 s~ = 019) and

values of F = 280 to 5 94 (average F = 3 55 sd = 1 07)p p

see Tab 1 3 4

As a conclusion it was assumed that Fb = 40 and F 1 5 s

for l arge diameter bored piles

The investi gation has shown that for the above safety

factors settlements of piles under permissibl e loads are

10 to 20 mm There was assumed a maximum load on large

diameter piles corresponding to a settlement of 010

diameter of the piles

25

d) Bustamente Gianeselli 1 982

e) 0ecourt 1982

The safety factor is given by

F = FgmiddotFfmiddotFamiddotFw where

F 11 - skin friction g F 135 - point bearing capacity

g

Ff safety factor related to the formulation adapted

Ff= 10 for Decourts method

Fd safety factor related to excessive deformation

Fd = 10 for skin friction

As for the point Fa= 2 to 3 depending on the

pile diameter For usual cases 25 is suggested

Fw safety factor related to working load

Decourt recommends 12

Thus we will have

- for skin friction

Fs = 11bull10middot10middot12 132 - 13

- for the point

F = 135bull10bull25middot 1 2 = 405 = 40 p

4) equation (134)

a ) Polish Code 1983

Q lt mbullN r shy

where

total load coefficient (depending on the kind of load For foundation we can assume Yf = 12 )= code load

correction coeffic i ent

09 for pile foundations

m 08 for two piles

m 07 for single pile

26

N ymmiddotQu

ym material (soil) coefficient

ym 08 to 09 (Polish Code 1981)

Thus we will have

QnmiddotYf lt mmiddotym middotQu-

Yf9uFt = On m bull Ym

1 2 max = 2 14Ft 0 7 bull 0 8

1 2min = 1 48Ft 0909

The above analysis has shown different ways to determine

the allowable load The analysis is in direct connection

with mobilization of the load (versus settlement) The

dependence of total load point resistance and shaft reshy

sistance will be discussed in detail in Chapter 14

In the authors opinion taking into account the above

analysis the allowable load should be determined based

on the equation 133 ie based on individual safety

factors for ultimate point and shaft resistance Proposed

values of F and F in literature are shown in Tab 135 s p The average values are Fs = 145 and Fp = 3 38 respectively

Taking into account that the bearing capacity is determined

based on the results from sounding measurements direct from

a place near the piling without a ny indirect correlation

the allowable load of large diameter bored piles is given

by the equation (133a)

( 1 3 3a)

where F = 30 and F 13 are proposedp s

27

14 Determination of settlement of larqe diameter bored

piles based on static cone penetration tests CPT

Determination of ultimate point and skin friction resistance

based on static cone penetration tests has been discussed

in Chapter 11 above Based on the results of this calcushy

lation and on Chapter 13 we can establish an approximate

relation between point resistance shaft resistance and

total load on one hand and settlement on the other However

the approximation gives a wide scatter especially for base

resistance as can be observed in Fig 141 to Fig 144

Only the first part of the point resistance - settlement

curves are in good agreement with measured values It can

be observed in Fig 145 that the average correlation

coefficient n = 098 and standard deviation sd= 029

This way of calculation can be used only for rough calcushy

lation (see Chapter 13)

In Chapter 11 also measured point resistance - settlement

curves were shown The base resistance increases gradually

with increasing pressure and settlement Below the cur7

vature of the point resistance - settl ement curve will be

examined It is assumed that this curve can be described

as a part of the hyperbola curve Thus if the ratio of

the measured settlement (s ) to the point resistance (p)

is plotted against the measured settlement the result

will fall closely to a straight line with the equation

( 1 4 1)

where a 1 and b 1 are constants (see Fig 1 46a and Fig

14 6b)

Then the point resistance - settlement realtionship can be

expressed as a hyperbola

s p = ( 1 bull 4 2)

The constant is the initial s lope of the point resistanceshya 1

settlement curve ie a 1 = t~a The inverse of the constant

28

b 1 is the vertical tangent (asymptote) to the curve 1ie for s = 00

bf= ~ If the ultimate point reshy1

sistance psf is equal to bf (psf=bf) the whole point

resistance settlement curve will be a hyperbola type

Now the Eq 1 4 2 can be written as

s s ( 1 4 3)a) p s or b) p = a+__sect_a1 + 1 Psfbf

If the ultimate point resistance is smaller than bf only

a part of the hyperbola curve ought to be considered

Further the Eq 14 3 will be written as

p ( 1 4 4)

where

poundf_ correction factor for hyperbola point Psf resistance-settlement relationship

Taking into account the discussion in Chapter 11 the

ultimate point resistance psf = qcp based on the CPT measurements

Therefore the relationship between the point resistance

the sett l ement and the CPT result can be expressed as

s p (1 4 5)s

The correction coefficient v 1 will cause a change of the

position of the vertical asymptote bf in r elation to the

ultimate point resistance q bull This means that we take cp into account a different part of the hyperbola curve for

the description of the point resistance-settlement relationshy

ship

Now if we want to use the equation (145) in practice

we must determine the constant and the coefficienta 1 v 1 (assumed that q is determined ear l ier Chapter 11)cp

29

The constant a 1 and t h e coefficient Vi have been detershy

mined based on fi e ld tests according to pi l es No 1 - 20

see Tab 14 1 and Tab 1 1 9 as wel l The values of

a 1 versus the point diameter D and the ul timate pointp

resistance respectively are shown in F i g 147 and Fig

148 Fig 1 47 shows that a 1 is independent of the

point diameter D Based on Fig 148 it can be assumed p

that

28-4bullq (1 4 6)cp

This correlation has been examined with data of the

literature see Fig 1 49 and Appendix 141 to 1 45

(Note there were no static penetration tests and qcp was determined based on a correlation made by Bergdahl

(1982))

A good correlation with equation 146 can be seen taking

into account the safety factor in the DIN 4014 Part 2

(1977) bull

The correction factor v 1 versus the poi nt diameter is shown

in Fig 1410 I t is assumed that the correlation is

V1 = 3 0 - D ( 1 4 7)p

where D is in m p

The above equations ie 146 and 147 were assumed for

a later analyses see Fig 14 11 and Fig 1412 The

piles No 1 to 20 were examined taking into account Eqs

14 5 14 6 and 1 4 7 The result of this cal cul ation is

presented in Fig 1 413 to Fig 1 4 18 and in Tab 1 4 2

respectively In Fig 1413 the calculation way for pile

No 2 is shown as an example

In Fig 1414 to Fig 1 417 measured and calculated

values of the point resistance versus settl ement can be

compared In tota l good correlation exists for all the

30

pressure-settlement curves Values of q from static cp

cone penetration tests and generalized values of anda 1

v 1 were considered Only for piles No 17-20 qcp was

assumed as the point resistance for s = 010 D because p

the static penetration test results were inaccessible

The similar comparison is shown in Fig 1417a for piles

in sand based on experimental results (Tuoma Reese 1972

and Wright Reese 1979) where the ultimate case resistance

was assumed as the resistance at a base settlement of 005

D The relative base resistance is the mobilized base p resistance divided by the ultinate base resistance The

curvature of the proposed point resistance settlement shy

curve to mean value proposed by Wright and Reese is excellent

However the constant a 1 and the coefficient v 1 were

determined for sand only In the future they should be

examined especially for gravel and silty sand based on

field tests Until then in the authors opinion the

values of v 1 can be chosen from Eq 147 for all nonshy

cohesive soils But for a 1 there is proposed

at = gt bulla (1 4 8)1

where

gt- 1 = 080 for gravel

gt 2 120 for silty sand

This proposal is shown in Fig 14 11 as dashed lines

A good correlation can be seen with the investigation by I

Kiosimiddotnski for sandy gravel and on the safety side with

the investigation by Tuoma and Reese for silty sand (see

Fig 149)

In Fig 1418 all calcul ations for pile No 1 to 20 are

summarize d The correlation coefficient n is defined as

the calculated point resistance p(s) divided by measured

point resistance p(s) For totally 126 points from 20

curves an average of n = 098 with standard deviation

31

al= 023 was obtained see Fig 1418 A similar result

can be observed for the range usually assumed of the

allowable settlement for sinqle large diameter bored

piles as

for

- for

- for

s

s

s =

10

20

30

mm a

mm

mm

verage n10 II

II

mm 089

095

099

and sd =

and sd

and sd

031

027

026

It can be questioned whether the sonstant a 1 can be deshy

termined in different ways The constant a 1 is the initial

slope of the point resistance-settlement curve as menshy

tioned above Then we can use all methods for determination

of settlement of a pile point The range of validity of

these methods then must be determined This will be shown

later

In order to be able to design the total load settlement

curve the skin friction resistance-settlement relationshy

ship must be determined The ultimate skin resistance of

large diameter bored piles was determined in Chapter 11

(based on static penetration tests) and in Chapter 12

(based on standard penetration tests)

In the past a lot of field tests have been done on the

mobilization of the shaft resistance versus pile settleshy

ment In this subject there is a rather good agreement

in the whole investigation for cohesive and non-cohesive

soil

Some results and opinions on thispresented in the literashy

ture during the last few years are shown below

Ultimate shaft resistance versus settlement

1) BurlandJB Butler FG Duncan P (1969)

-The shaft l oadsettlement curve is derived using a=0 3

with 90 ultimate load being mobilized at 025 in

settlement(~65 mm)

- soil London clay

- see Fig 1 419

32

2) Touma FT Reese LC (1974)

- The failure of the sides of the shaft takes place

at a downward movement of about 04 in (10 mm)

- soil sand

- see Fig 1420

3) Tomlinson HJ (1977)

- The maximum shaft resistance is mobilized at a

settlement of only 10 mm (or j in)

- soil stiff clay

- see Fig 1421

4) Klosinski B ( 1977)

- It was assumed that skin friction increased proshy

portionally to pile settlement up to the limit value

s bull This value depends on soil conditions and pile0 diameter and is usually from 3 to 8 mm For soft

compressible soil it may be grater than 10 mm

- soil cohesive soils

- see Fig 1422

5) Franke E Garbrecht D (1977)

- At settlement of 2 to 3 cm which are normally

allowed in Germany under working loads for buildings

not very sensitive to differential settlementsthe

skin friction is almost always fully mobilized

- soil sand

6) DIN 4014 part 2 (1977) and Franke E (1981)

- The skin friction Tm is approximated as diameter

independent having failure settlements of smf = 2 cm

in sand and 1 cm in clay

- soil sand and clay

- see Fig 1423

33

7) Reese By L (1978) Reese By L Wright SJ (1979)

(1978) The maximum skin friction being developed at

an average downward movement ranging from about 05shy

2 of the shaft diameter The average of six load tests

reported by Whitaker and Cooke (1966) are a lso plotted

for comparison

- soil stiff clays

- see Fig 1424 and Fig 1425a

(1979) The relative settlement is the average settleshy

ment of the butt and base devided by the shaft diameter

The mean curve maximises at a relative settlement of

about 002 D

- soil sand and clay

- see Fig 1425b

8) Tejchman A Gwizda3a K (1979)

- A clear differentiation of the distribution of shaft

and base resistances is observed for changing settleshy

ment For fairly small settlements the shaft resist shy

ance increases quite fast and the ultimate values

are reached soon while the base resistance increases

gradually with increasing loads and settlements withshy

out clearout ultimate values it can be assumed that

complete mobilization of shaft resistance corresponds

to settlements equal to 001 or 002 diameter of pile

- soil cohesive and non-cohesive soils

- see Tab 131 and Fig 1 426

9) Promboon S Brenner R P (1981)

- Load distribution and load transfer curves disclose

that most of the load is carried by shaft friction

which is developed at small displacements in the order

of 10 mm

- soil Bangkok clay

- see Fig 1427

34

10) Prodinger w Veder Ch (1981)

- The maximum value of skin friction resistance

occurred for a total settlement of 12 mm

- soil silty clay and sand

- see Fig 1428

11) Farr JS Aurora RP (1981)

- Ultimate load transfer was recehed (or nearly reached)

at a relative settlement of about 04 in (10 mm)

- soil gravelly sand

- see Fig 1429

12) Decourt (1982)

The skin friction resistance is totally mobilized

with deformations of about 10 mm or at the most 15

mm regardless of shaft dimensions This observation

of ours seems to clash with the opinions of other

authors who seek to relate the deformation necessary

for full skin friction mobilization with the shaft

diameter

- soil cohesive and non-cohesive soil

In Tab 143 all these results are shown Depending on

the kind of soil the following v a lue s of ultimate settleshy

ment for shaft can be assumed

- averages 142 mm (sd 5 3 mm) for sand

- averages 100 mm (sd = 21 mm) for cohesive soil

averages 726 mm (sd 67 mm) for claysand

It can be observed (see Fig 1419 to 1428) that the

shaft friction resistance increases proportionally to

the pile settlement up to the above limit value and

thereafter becomes constant

35

Taking into account what was mentioned earlier on point

resistance settlement relationship and the above results

a relationship between total load point resistance and

shaft resistance on one hand and settlement on the other

can be made see Fig 1430

It is assumed on the safety side that the following

ultimate settlement (S~) exists for the shaft resistance

of large diameter bored piles

SS1 ) 200 mm for non-cohesive soil u SS2) = 100 mm for cohesive soil u SS3) 15 0 mm for claysandu

In Fig 1 430 the curve Q (s) is calculated based on p

the equation 14 5 or 144

The values of psf in equation 144 can be calculated

based on other methods as well

The total load-settlement relationship is obtained by

summing up point and s haft resistance as

Q (s) = Q (s) + Q (s) (149)s p

for each point

Now the allowable load can be determined from equation

133a and versus the allowabl e settlement as

Q (s) = Q (s) + Q (s) (1410)s p

where s lt Sa

Sa= the allowable settlement of the pile

The analysis allows determination of the approximative

load settlement dependence without calculating the settleshy

ment for non-cohesive soil In Fig 1431 it is shown

36

In Tab 144 the settlement for allowable point reshy

sistance q5P according to equation 133a is shown

as well The average settlements= 198 mm (sd=78 mm)

is obtained This value is similar to the assumed ultimate

settlement of shaft for non-cohesive soil The ultimate

settlement for point resistance is assumed s = 010 Dp as mentioned earlier

37

15 Initial slope of pile point resistance shy

settlement curve

Settlement of piles and pile foundations can be cal culated

based on

- empirical correlations

load-transfer methods using measured relationships

between pile resistance and pile movement at various

points along the pile

- theory of elasticity that employs the equations of

Mindlin for subsurface loading within a semi-infinite

mass

- numerical methods and in particular the finite element

method

- use of in-situ tests (Cone Penetration Test Standard

Penetration Test Pressuremeter Test)

The critical slope of the pile point resistance-settlement

curve is important for calculation in chapter 14 The

constant a1 can be determined from all the above mentioned

methods

Comparison is made to Berggrens and Schmertmanns methods

below (see Berggren 1981 as well)

6sIn Tab 151 (No 1 2 3) the values of a 1 =~p for s =

10 mm and s = 20 mm (measured for large diameter bored

piles No 1 to 24) are compared to the calculated values

according to the modified hyperbola method (see Fig 14 6)

It can be seen that these calculated values are between

s = 1U-2u mm but rather closer the measured values for

the settlements= 10 mm see correlation coefficient n 6

and n 7 in Tab 151 respectively The average correlat i on

coefficent for the settlements= 10 mm is n9 = 108 and

the standard deviation is sct = 014 The comparison to

Berggrens and Schmertmanns methods for s = 20 mm ( see

Berggren 1~81 and Tab 151 as well) shows that the

results based om these methods give too high values of a 1 bull

38

The average values are ne= 143 sd = OJ3 and ng= 137

sd = 037 for Berggrens and Schmertmanns methods

respectively A bit better agreement can be observed

for Schmertmanns method

Taking into account the results in Tab 151 ana Tab

15l it must be assumed that for the determination of

a 1 the pile point contact pressure p(a1) should be

assumed as the ultimate point bearing capacity devided

by about 4

p(ai) - ( 1 bull 5 1 )

Most of the methods for determination of settlement are

based on the theory of elasticity The settlement ot the

pile point can be expressed as the average settlement of

a rigid circular foundation from the equation

11-Dp 1-v 2

s = p -4- -E-bull microd (1 ~ 2 J

where

p pile point contact pressure

E Youngs modulus

D diameter ot pile pointp ) = Poissons ratio

microd = depth factor

The range of validity of the pile point contact pressure

was determined in equation 151 Youngs modulus has an

important meaning lt can be determined from triaxial

tests or oedometer tests The relationship between the

constrained (oedometric) modulus Mo and Young s modulus

Eis dependent on Poissons ratio v as expressed by the

equation

E = l 1 + V ) ( 1 - 2 V ) Mo ( 1 bull 1 bull 1)- 1-v

39

TaKing into account the analyses made ny Chaplin (19b1a

1 961bJ Janbu (1 963 1970 1973J Andreassen (1973)

Duncan and Cheng (1970) Tejchman anct Gwizdala (1979)

Gwizdala (1978) Franke (1981) Berggren (1981) Withiam

and Kulhawy (7981) and the present investigation the

calculation of settlement is proposed to be

s = 24 bull p bull ~ D bull 1-v 2 bull micro d (154)Do o E

where s (r1)

p (kPa)

Dp (m)

E (kPa)

D0 =10 m

micro = 05 + 01 vfrac34E (1 5 5)d vs

but 05 lt microd lt 10-tip= p - (J (ovs see Fig 151)vs

E =Et= Kbullpat (Oo )n [1- Rf(1-sinltj) 101 - 03 ) 12 (1 5 6)2 c cosltP + 2o 3 sinltP 1Pat

in which K n and Rf= hyperbolic stress-strain parameters

Pa= atmosferic pressure ando 1 o 3 and o0 are determined by

averaging the concrete and soil vertical and radial stresses

near the pile point according to Fig 151 Then the

stresses at the pile point level are h

(J vs = L

0 Yi h

l vertical stress in the soil

0 hs Ko h

0 vs radial (horizontal) stress in the soil

0 vc L ye h -l

vertical stress in the concrete 0

0 hc K oc a vc radial (horizontal)

concrete stress in the

40

K at rest soil lateral stress coefficient 0

K c lateral stress coefficient for fluid fresh concrete0

K 1 0 oc

and average values

a 05(a +a)V vc vs

1 1 - shy~ = -(a +a+a I = -3 (av+2ahJ the applied mean normal stress0 j Z X y

Assuming this model calculation results for piles No 1-24

(see Tab 11~ as well) are shown in Tab 153

The piles are embedded mainly in medium sand to fine sand

For this kind of soil it can be assumed (soil parameters

from field or laboratory tests were inaccessible)

~ = 35deg c = 0 R~ = 09 n 05 v = 025 K c 10l 0

K = 04 Pat= 1UO kPa ye 24 kNrn 3 y = 14 kNm 3 bull0 C

Moreover in Tab 153 the following symbols are used

p(a1 ) - pile point contact pressure according to equation

1 bull 5 1

s(a1) - settl ement of pi l e point according to equation

143 and Tab 141

pound TT ( 2E = s bull Dp bull i 1-v ) according to equa~ion 152t

E~ Et bull microltl

EI

K = ro~ - according to equation 1 bull 5 6 p bullO middotA2

a~ o

E = E voD middot D middot ~4 ( 1 - v 2 ) according to equationt S p O 0

1 5 4

Et= E microd

K = according to equation 156 V PatmiddotaomiddotA2

41

The calculation results of Youngs modulus E = Et and

dimensionless canpressionrro1ulus for piles to 1-24 are shown

in Fig 152 to 155 using equation 152 and 15b

or equation 1~4 and 156 respectively lt can be obshy

served that the scatter in Fig 153 and Fig 155

where the influence of tne pile diameter is reduced

compare equation 154 is less than in the other figures

The reduced influence was made after observations from

field and laboratory tests while the equation 152 is

taken direct from theory of elasticity These values of

E and K are in good correlation with published values in

literature The values of Youngs modulus versus the

relative density of soil are compared to literature values

see Fig 15b Based on the analysis in this chapter it

can be assumed that

E = 9-ql 3 ( 1 bull 5 7)cp

where qcp is in accordance with equation 117

The calculation results based on this proposal are incluced

in Tab 1 5 3

The c a lculate d s e ttlements based on e q ua tion 154 and

157 are shown in column 23 and the values of the

correlation coef f icie nt (n= Seal ) in column 24 respectshyimeas

ively

The dimensionless canpression modulus can be d e termined as

K = 15Ubullq (qcp in MPa) (1 5 8)cp

see column 25 Tab 153

The calculation results based on the K compression modulus

according to equation 158 156 and 1 5 4 are shown in

columns 25 26 2 7 28 and 29 in Tab 153

42

For comparison and for determination of the range of

validity of this method the caLculation results of

pile point pressure for settlements s = 10 mm s = 20 mm

s = 30 mm (see Tab 141) according to equation 157

and 154 are shown in columns 30 to 35

The results obtained in Tab 153 confirm the possibility

to use the proposed method to calculate the initial part

of the pile point resistance settlement curve of large

diameter bored piles in non-cohesive soil and the initial

slope of this curve as well

A simple model has been proposed based on the theory of

elasticity ana the tangent modulus defined by Janbu (1963)

and Duncan amp Chang (1970)

A new approach according to the pile diameter depth factor

and principal stress is proposed

The settlement of the pile point can be made up to a point

pressure according to equation 151 on up to a settlement

of about s ~ 20 mm (30 mm)

-- The application of v Op in equation 1 5 4 a llows us ing

Youngs modulus as independent of the pile diameter

opposed to Bazants a nd Mosopusts (1981) proposal where

Youngs modulus wa s determined versus the pile diameter

The equation 1 5 6 takes into account the dependence of

Youngs modulus on depth (or overburden pressure) as

well

In the method field test (Cone Penetration Test) or

laboratory tests (hyperbolic stress-strain parameters

can be used

Comparison of the method to 24 availa ble load test r e sults

or large diameter bored piles in sand shows good a greement

to calculated and measured values

43

REFERE~CES

Adamczyk J (1978) Okreslanie udzwigu pali wierconych

za pomoca sondy statycznej (Bearing capacity of bored

piles based on the static sounding) Inz i Bud No 7

pp 253-257

Andreasson L (1973) The compressibility of cohesionless

soils Thesis Chalmers University of Technology

G6teborg (in Swedish)

Appendino M (1973) Comportamento di un palo di grande

diametro strumentato Rivista Italiano di Geotechnica

No 3 pp 115-118

Butterfield R Banerjee P (1971) A rigid disc embedded

in an elastic half space Geotechnical Engineering

Vol 2 pp 35-49

Bozant z Mosopust J (1981) Drilled pier design based

on load settlement curve X ICSMFE Stockholm Vol 2

pp 615-619

Begemann HK (1982) Cone penetration tests pile bearing

capacity and the thesis of Rollberg Proc of the Second

European Symposium on Penetration Testing Amsterdam

pp 433-438

Berggren B (1981) Bored piles on non-cohesive soils shy

settlement and bearing capacity (in Sweden) Thesis

Department of Geotechnical Engineering Chalmers

University of Technology G6teborg

Bergdahl UB (1979 1982) Sonderingen und in situ Messungen

Wien 18-19 Juni 1979 - Private information 19821983

Bustamante M Giane selli L(1982) Pile bearing capacity

prediction by means of static penetrometer CPT Proc

of the Second Europ Symp on PenTest Amsterdam

Vol 2 pp 493-500

Chaplin TK (1961a) An experimental study of the settleshy

ment of footings in sand PhD Thesis Univ of

Birmingham

44

Chaplin TK (1961b) Compressibility of sands and settleshy

ments of model footings and piles in sand 5th Int

Conf on Soil Mech a Found Engng Vol 2 p 33 Paris

Colombo P (1971) Observazoni sul comportamento ltli pali

a grande diametro Rivista Italiana di Geotechnika

No 3 pp 163-172

Dahlberg R (1975) Settlement characteristics of preconshy

solidated natural sands Swedish Council for Building

Research D11975

De Beer EE (1964) Some considerations concerning the

point bearing capacity of piles Proc Syrop Bearing

Capacity of Piles Boorkee I pp 178-204

Decourt L Quaresma AR (1978) Capacidade de Carga de

Carga de Estacas a partir de Valores de SPT VI Conshy

gresso Brasilerio de Mecanica dos Solos e Engenharia

de Fundacoes - Rio de Janerio - ABNS

Decourt L (1982) Prediction of the bearing capacity of

piles based exclusively on N values of the SPT Proc

of the Second Europ Syrop on Penetration Testing

Amsterdam Vol 1 pp 29-34

Duncan MJ Chang CV (1970) Non-linear analysis of stress

and strain in soils Journal Soil Mech Found Div Vol

96 SM5 pp 1629-1651

Durgunoglu HT (1979) Effect of foundation embedment on

stress and deformation distributions Third Int Conf

on Num Meth in Geomechanics Aachen pp 925-928

Farr JS Aurora RP (1981) Behaviour of an instrumented

pier in gravelly sand Proc of a session Drived Piers

and Caissons sponsored by the Geotech Eng Div of the

ASCE Nat Convention St Louis Missouri pp 53-65

Franke E (1981) Point pressure versus length and diameter

of piles X ICSMFE Stockholm Vol 2 pp 717-722

45

Gregersen os Aas G and Dibiagio E (1973) Load tests

on friction piles in loose sand Proc of the Eigth

International Conference on Soil Mech Moscow USSR

Vol 21 pp 109-117

Gwizda1a K (1978) Behaviour of large diameter bored piles

in non-cohesive soil (in Polish) Archiwum Hydrotechniki

Vol XXV No 2 pp 183-217 (English summary)

Huizinga TK (1951) Application of Results of Deep

Penetration Tests to Foundation Piles Building Research

Congress Vol 1 p 173

Janbu N (1963) Soil compressibility as determined by

oedometer and triaxial tests Proc Europ Conf Soil

Mech and Found Eng Vol 1 p 19 Vol 2 (Discussion)

p 17 Wiesbaden

Janbu N (1970) Grunlung i geoteknikk Tapir Forlag NTH

Trondheim

Janbu N Bjerrum L Kjaernsli B (1973) Soil Mechanics

applied to some engineering problems Norw Inst Publ

No 16 Oslo

Japanese Society SMFE (1981) Present state and future trend

of penetration testing in Japan Separate report at

X ICSMFE Stockholm

Kjekstad O Lunne T (1979) Soil parameters used for design

of gravity platforms in the north sea Second Int Conf

on Behaviour of Off-shore structures London Vol 1

pp 175-192

Klosinski B (1977) Bearing capacity of large diameter bored

piles IX ICSMFE Tokyo Vol 1 pp 609-612

Laboratory for soil mechanics Delft (1936) The predetershy

mination of the required and the prediction of the

resistance of piles Proc 1 Int Conf on Soil Mech

and Found Engng Cambridge (Mass) I p 181

46

Matich M and Stermac A (1971) Settlement performance of

the Burlington Bay Skyway Canadian Geotechnical Journal

Val 8 pp 252-271

Mccammon NR and Golder HQ (1970) Some loading tests

on long pipe piles Geotechnique London England

Val 20 pp 171-184

Meigh AC (1971) Some driving and loading tests on piles

in gravel and chalk Proc of the conference on beshy

haviour of piles London England pp 9-16

Mitchell JK Gardner WS (1976) In situ measurement

of volume change characteristics American Society of

Civil Engineers Specialty Conference on In-situ

Measurements of Soil Properties Raleigh 1975 Proc

Val II pp 279-345

Mezenbach E (1961) The determination of the permissible

pointload of piles by means of static penetration tests

Proc 5 Int Conf on Soil Mech and Found Engng

Paris II pp 99-104

Meyerhof CG (1956) Penetration tests and bearing capacity

of cohesionless soils Proc Amer Society of Civ Engng

SM 1 Pap 866 pp 1-19

Meyherhof GG (1 976) Bearing capacity and settlement of

pile foundations Proc Amer Society of Civ Engng

Journal Geotechnical Engineering Division Val 102

No GT3 pp 197-227

Mohan D Jain GS and Kumar V (196 3 ) Load bearing capacity

of piles Geotechn Val XIII pp 76-86

Nixon I (1982) Standard penetration test State of the

art report Proc of the Second Europ Symp on Pen

Test Amsterdam Val 1 pp 3-20

47

Nunes A Vargas M (1953) Computed bearing capacity of

piles in residual soil compared with laboratory and

load tests Proc of the Third International Conference

on Soil Mechanics Zlirich Switzerland Vol 2 pp 75-79

Nordal S Grande L Janbu N (1982) Prediction of offshy

shore pile behaviour The Norwegian Institute of

Technology Trondheim

Ohde J (1939) Zur Theorie der Druckverteilung im Baugrund

Der Bauingenieur Vol 20 No 3334 p 451

Parroth E (1972) Einfache Formel zur Vorausbestimmung der

Tragfahigkeit von Standpfahlen mit Hilfe der Sande

Bautechn 9 pp 312-314

Poulos HG Davis EH (1980) Pile foundation analysis

and design New York - J Wiley and sons

Prodinger W Veder Ch (1981) Bearing capacity of floating

groups of diaphragm walls Proc X ICSMFE Stockholm

Vol 2 pp 809-814

Promboon S Brenner R (1981) Large diameter bored piles

in Bangkok Clay Proc X ICSMFE Stockholm Vol 2 pp

815-818

Reese L (1978) Design and construction of drilled shafts

ASCE JSMFD Vol 104 No OT1 pp 95-116

Rodin s Corbett BO et al (1974) Penetration testing in

United Kingdom state-of-the-art-report Proc Europ

Symp on Penetration Testing 1 Stockholm pp 139-146

Rollberg D (1976) Bestimmung des verhaltens von Pfahlen

aus sandier und rammengebnissen Heft 4 FBG Technische

Hochschule Aachen

Rollberg D (1977) Determination of the bearing capacity

and pile driving resistance of piles using soundings

Publications of the Institute for Found Eng Soil Mech

Rock Mech and Water Ways Construction Aachen Vol 3

48

Schmertmann J (1970) Static cone to compute static

settlement over sand Journal of the Soil Mech and

Found Division ASCE SM3 pp 1011-1043

Schmertmann J Hartman JP Brown PR (1978) Improved

strain influence factor diagrams Journal of the Soil

Mech and Found Division ASCE GT8 pp 1131-1135

Shibata T Hijikuro K and Fominerga M (1973) Settlement

of a blast furnace foundation Proc of the Eighth Int

Conf on Soil Mech Moscow USSR Vol 13 pp 239-242

Spang J (1972) Die Bestimmung der Tragfahigkeit von Grossshy

borhpfahlen (I) Strassen und Tiefbau No 2 pp 339-355

Senneset K (1974) Penetration testing in Norway State-ofshy

the-art-report Proc Europ Symp on Penetration Testing

Stockholm I pp 85-95

Tejchman A Gwizdala K (1979) Analysis of safety factors

of bearing capacity for large diameter piles Proc VII

ECSMFE Brighton Vol 1 pp 293-296

Thorburn s and Mac Vicar R (1971) Pile load tests to

f a ilure in the clyde alluvium Proc of the conference

on behaviour of pile s London England pp 1-7

Trof imenkov JG (1969) Accuracy of determining the bearing

capacity of piles based on results of static penetration

sounding of soils Osnovaniya Fundamenty i Mekhanika

Gruntov 4 (Translation Soil Mechanics and Foundation

Engineering 4 p 248)

Trofimenkov JG (1974) Penetration testing in USSR Stateshy

of-the-art report Proc Europ Symp on Penetration

Testing Stockholm I pp 147-154

Tuoma F and Reese L (1974) Behaviour of bored piles in

sand JSMFD ASCE Vol 100 No GT 7 Proc Paper 10651

July pp 749-761

49

Van der Veen C (1953) The bearing capacity of a pile

Proc 3 Int Conf on Soil Mech and Found Engng

Zlirich II pp 84-90

Van der Veen C and Boersma L (1957) The bearing capacity

of a pile predetermined by a cone penetration test

Proc 4 Int Conf on Soil Mech and Found Engng

London II pp 72-75

Weltrnan AJ Healy PR (1978) Piling in boulder clay

and other glacial tills Construction Industry Research

and Information Association UK-Report PG 5

Withiam J Kulhawy F (1981) Analysis prodecure for

drilled shaft uplift capacity Proc of a session

Drilled piers and caissons ASCE St Louis Missouri

pp 82-97

Woodward R Lundgren R Boitano J (1961) Pile loading

tests in stiff clays Proc of the Fifth International

Conference on Soil Mechanics Paris France Vol 2

pp 177-184

Wright SJ Reese LC (1979) Design of large diameter

bored piles Ground Engineering Vol 12 No 8 pp

17-22

DIN 4014 Cods Teil 2 (1977) Bohrpfahle Grossbohrpfahle

Herstellung Bemessung und zulassige Belastung

Polish Specification (1975) Specification for design and

construction of large diameter bored piles in bridges

Ministry of Transport Warsaw (in Polish)

Polish Specification (1979) Specification for prevision

bearing capacity of the piles on the presiometer test

and static sounding ENERGOPOL Warsaw (In Polish)

Polish Code (1983) Foundations Bearing capacity of piles

and pile foundations

5 1

FIGURES

bull bull

53

Ou

+ sect raquo iir 1

4 + D

h + +Osu

bull + t2 =n- Dp

LDpl r f 1

Opu

Fig 1 1 1 Bearing pi le in the soil

J_

fp

080

070

060

050

0 40

030

020

010

q~ [MPa ]000 -+--~-~-~-~------------------------=-shy

00 20 4fJ 60 80 10 0 120 14fJ 160 180 200

Fig 1 1 2 The point resistance factor fp

(Trofimenkov 1974)

54

ts

160

140

120

100

080

060

040

020

q~5 [ kPa)

0Q0--1------~-~-~-~-~-~ - - ---=- -- shy000 10 20 30 40 50 60 70 80 90 100

Fig 1 1 3 The shaft resistance factor fs middot (TYofimenkov 1974)

f s

200

180

160

140

120

100 2 3 4 5 6 7 8 9

Fig 1 1 4 Shaft friction factor f depenshys

ding of the soil density (Senneset 1974)

55

Q~ [kN]

1500

1000

500

0-r-----------r----~- Q~ [kN] 0 500 1000 1500

Fig 1 1 5 Comparison of the pile resisshytance determined by the results of static sounding and load tests (TYofimenkov 1974)

D f f

0

Fig 1 16 Equivalent cone resisshytance (Bustamante 1982)

56

E u shy0 ~

QI I ltII ltII

~ a C QI

O C

D

w gt

0

Cone res istance Point resistance

80 160 240 320

05

10

15

e d

20

ver y dense Cone resistance 300 kgcm2

Dpcm

a =45 b = 30 C 60 d = 100 e = 150

Fig 1 16a

Cone resistance _ qc

80 160 80 160 qc [ k g cm2 ]p

05

10 10

15 15 e d a

e d20

Dense Medium2 2200 kgcm 100 kgcm

Cone resistance and point resistance of piles versus overburden pressure (Kerisel 1965)

Point resi stance - p(for s=2cm) of the pi le for

15 sett Iement s = 2 cm

10

5

E u

uJ1 o-~----shya er O 804 2500

32 56

I 1

L oose50 -I =25 Very loose L

----~--shy5000 7500 80 98

~-----lmiddotI1--------2 10000 12500 31400 =Flcn)

112 123 200 =Dplcm)

Fig 1 1 6b Point resistance versus cone resistance and pile diameter (Franke 193)

57

1

fp

080 (D Gravel

0 Coarse sand Medium sand 070

reg Fine sond Silty sand

060

050

040

030

020

010

qc [MPa]000-+----r--~-~-~--------r----r----r-~-~-- -shy

oo 20 40 60 80 100 120 140 160 180 200

Fig 1 1 7 Point resistance factor f (proposal) p

58

300

250

200

150

100

qc [MPa I50-+---------------r---r---r---r----r------------- shy

oo 20 40 60 80 100 120 140 160 180 200

Fig 1 1 8 Shaft resistance factor fs (pr oposal)

59

Bustamante (seetab 115 I

l fp

G)

0 Gravel

Coarse sand Medium sand

cl

b)

t-----l

1----1

080 reg Fine sand Silty sand a) D

070 Polish

060 Specification

( 1979) 050

040

030 CD 020 0

reg 010

qc [MPa]0 00 -+-------------------------------------=--shy

oo 20 4o 5o 80 100 120 14o 15o 180 200

Fig 1 19 Point resistance factor f comparisonp

Bustamente ( see tab 116 I 300

a) ~

250 b)~

cl~

200 Polish Specification ( 1979 l

150

100

q [ MPa]504---~--~--~----- ---___

00 20 40 60 80 100 120 140 150 180 200

Fig 1 1 10 Shaft resistance factor fs comparison

60

1 fp

~

080 CD CD Gravel

070 0 reg Coarse sand Medium sand

060 0 Q) Fine sand Silty sand

05

040 Franke (1973)___

030 DIN 4014

020 Part 2 1977

( see tab113 l 0shy

--shy --a - 010 C---0 Piles without enlarged bases

D---0 Piles with enlarged bases qc [MPa ] 000

00 20 4JJ 60 80 90 100 120 140 160 200

Fig 11 11 Point resistance factor f comparison p

fs

DIN 4014 Part 2 1977 ( see tab 114 l

300

~ 5 lt qc lt 10 MPa 50

~ 10 lt qclt 15 MPa

~qcgt15MPa

200

150

CD

100 0 0

qc [ 1Pa] 50-t-----T-~----T-r-~----------------shy

OO 20 40 6JJ 80 100 120 14JJ 160 180 200

Fig 1 1 12 Shaft resistance factor fs comparison

61

Measured p [ MPa]

( s=010 Dp) 10

9

8

7

6

5 0

4 0 61

3

I 2

Calculated qcp [MPa]

0 0 2 3 4 5 6 7 8 9 10

Fig 1 1 13 Comparison of experimental and aomputed values of the pile point resistanae

62

Contact pressure ( MPa ]

2 I 6

50

100

E E 150 Ill

c QI

E Sett lement for QI

calculated qcpai V) 200

Fig 1114 Results from load tests on piles No 1 and 5

Contact pressure [ MPa I 0 2 I 6

01---------------------1

50

E E 100 Ill

Settlement forc QI calculated qcp E ~ ai

I V) 150

Fig 1 1 15 Results from load test on piles No 7 and 5

63

Contact pressure p [ MPa] 0 2 3 4 6

0-t=-----~-~-----

E E

100 1)

c CU E 2 QI V) 150

Fig 1 1 16 Results from load test on piles No 9 10 and 11

Contact pressured p [MPa] 0 1 2 3 4 5

o~~~=------------___-~-shy

50

100

E E

i 150

CU E CU

-a V) 200 2

Fig 1 1 17 Results from load test on piles No 12 and 13

c

-------------- -

64

Contact pressured

0 1 2 3 4 p [ MPo] ~o __L____1_____J_____L___

50

100

150

E

E

IJ) 200

c a

E a

~ 250

Fig 1 1 18 Results f Pom load tests on piles No 2 4 6 and 8

p [MPa]

60

50

tO

30

~

Pile Pile Pile Pile

Pile No18

------+ Pile No17 + ~_ ---0 Pile No 19

bullbull - --bull Pile No 20

- ~middot -shy-shy -(y I Settlement for

20 tO 60

No17 +-middotmiddot- V 70 No 18 bull--- V 9o No19-middot- V 120 No20bull---- V150

qcp 3

80 100 120 140 160 s (mm)

Bose resistance

Fig 1 1 lBa Point Pesistance vePsus settlement (Spang 1972J

65 Cone resistance qc [ MPa]

0 10 20 30

mud

5 ~ lll

0 c 0

c CD

peat

10 sand

Ill N

10=10

D=lOOOmm

1540=40

20__________________

[ml

Fig 1 119 Pile No 1 and results from static cone penetration test

Cone resistance qc [MPa l 0 10 20 30

7N V degW = 0+--------------------i

mud

5

lll

~ C 0

c peat~

10

sand lll N 1D15

15l lD=1500mm

40=60

20l---------=-------__J

[ml

Fig 1 1 20 Pile No 3 and results from static cone penetration test

66 Cone resistance qc [MPa]

10 20 II 3 igt pound ~

mud+peat

fine sand+ silt

50=11

l lo-11oomm

40= 44

10

15l____________c

[ml

Fig 1 1 21 Pile No 5 and results from static cone penetration test

Section Cone resistance Pile

0 0

5 10 15 20 25 30 qc [MPa] -----~-~shy~

Silt

[7r_ ___~ Medium Sand_~-----l

0 ltD

+shy4

0=11

9=

Fine sand + Silt t

30p=

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot1~11+-----E-----

[ml

Fig 1 1 22 Pile No 6 and results from static cone penetration test

Cone resistance qcmiddot 1MPuJ

0 10 20 30 67 01-+-------l--------------i

mud+ peat

fine sand

l1)

N

40=60

15L_____________

[ml Fig 1 1 23 PiZe No 7 and resuZts from static

cone penetr ation test

Section Cone resistance Pi le

0 5 10 15 20 25 30 qc [MPa 1 --~----Y-~-----~

Silt

Fine sand

Medium Sand Bentonite2----1~i

t 3

4

0

0=15

Fine iii ~~= 5

sand t ltD

6 +

Silt 7

3Dp=

63 g

10

11

12

13+------=~---l

[ml

Fig 1 1 24 PiZe No 8 and resuZts f rom static cone penetration test

68

I =3

Cone resistance qc [MPa]

0 10 20 30

C 0 C Cl

(I)

Said

Peat

Sand

l 0=110

D = 11

4 D = 44

Fig 1 125 Pile No 9 and results form static cone penetration test

69

Cone resistance qc[MPa)

0 10 20 30 I ~ II JE Ill= II=E IS

Fine sand QI

U) I

[- I C 0 + C Peat QI

CD

Fine sand 0

Ci D = 1 1

L l D= 110

4D= 4 4

Fig 1 1 25 Pile No 10 and results f rom static cone penetr ation test

70

Cone resistance 9c[MPa]

0 10 20 30

Sand

C 0 Mud peat

+shyc 5 ltII

co

Sand Op= 11

u 10 D= 110 4Dp=44

Fig 1 1 26 Pile No 11 and results foIm static cone penetration test

71

00 a_ N ~

middotu rr QI 0 u ~ C 0

QI ui C iij 0 QI U - 0

0 EN

d 2

Sll 1lOl

C

u (rr

C 0 u~

0

QI - C middot 0 C

U - O 0 EN

~ 0 2

E

ltD a---==-lr---___--~---6-l_-0_012 ~ Lr- - --1---------J J

S9l ls= apound QI -0 gtcc _gmiddot- 0 1) ui I

Fi g 1 1 2 Piles No 14 and 15 and results f r om stat i c cone penetr ation tests

72

Contact pressure p [ MPa] 2 4 6

01lt---------------~

50

E E

111 100 ~ (qcp=30 MPa for No16

~ iqcp =49 MPa for No14

~ 1so~--~~- _ _ __

I _ _

11 I lf--q = 32 MPa for No15

cp

Fig 1 1 28 Results f r om load tests on piles No 14 15 and 16

73

0300--------------~---~--~--shyE

Driven piles in ~ 0 bull Gravel

amp250 bull Sand L QJ X Silt a 1l o Bored piles in

sand -sect 200 0=-- shyC ~ ~ 10 unless ~~ middot D shown 1

ii O

~ ~ o 3 a 1501-----+-------I- --+---laquo-+-- -+------lt

~ sect 5 - 6 6middot 100t----+----+-----_-1---4--__co_--J~__j

-_

~ 0 t7

C

a 50 2 shyg ~ gt

0 20 30 40 50 60

Standard penetration resistanceN in blows per foot

(N 30

Fig 12 1 Emperical relation between ultimate point resistance of piles and standard penetrashytion test in cohesionless soil (Meyerhof 1976)

14 r-------------------r-------b-----q

References and symbols given in Fig121

121-----+---+----+----+------ll------j

- _sect ~ 10t----+----+-_--1-----+---lt~--~H---- 0 lt-~5- _-)0 I() l- I Q---+-----I[08 ~

H -(l () ltj-~C X bulls pound 061------lt----+-----i~- --+-- shy

- bull

-gt Q1pound--I---L---L---L---L--~ 0 10 20 30 40 50 60

Mean standard penetration resistance N in blows per foot ( N30 l

Fig 122 Empirical relation between ultimate skin friction of piles and standard penetration resistance in cohesionless soil (Meyerhof 1976)

74

a) b)0(1 0lt2

10 10

05 05

1 N30OD-+---------__ OD--t-----r-----r----------------ll--Nbull30~ 10 20 30 10 20 30 40 50

Fig 1 2 3 Reduction coefficient a) for impermeable gravels b) form permeablr gravels (Weltman and Healy 1978)

psf [MPo)

Fig 1 2 4 Relation between ultimate point resistance and SPT in cohesionless soil (Polish specification 1975)

75

30 35 40 45 Loo Med Dense Ver dense

50

40

~ E

l)

g 8 1)

middotu

1 ~

QI- bull Touma ~ bull Koizumi

(183)-depth base middotameter5

20 40 60 00 100 N30

30 35 40 45

OG2(294) bull G1 (183)

300 bull us 59 ( 102) bull 88(180)

bull 075 a GT (467)

150

~ 200-+--------+-- t--- --t-----i 130i 0 094 081

014 _- --- -- shy~ E 066bull bull 063 Note -~ ~m~r~s~ ~ 1001---1-r--t---1point is xh QI Ratio ~ Number in ( ) middotn key is h c Ratio s ~

0 20 40 60 00 100

~ig 1 2 5 Ultimate point and shaft resistance versus N30

(Wr ight and Reese 1979)

-----

76

tu Psa

[kPa] [MPa]

200 tu

------ shy150 Psa

1 1

1100 10 1 1

1 50

0+----------T----~---~-N-3J~shy0 20 40 60 80

Relation between ultimate skin friction and SPT (Decourt 1982)

Fig 1 2 6

Psa

[MPa]

8

0----Meyerhof 1976) 0 7

--- - --~ - copy Polish Specifcoti on 1975)6 ~-

~

reg- middot - Reese (1978) middot 5

f41- -- Decourt (1982) -I bull 4 2

----==---______z__ h25m Dp=12m

3 ---shybull

2 7

--shy ----shy~----shy0-t----i----------r-- ----------------------N3l~shy

0 10 20 30 40 so 60 70

Fig 1 2 7 Relation between ultimate point re~istance of large diameter piles and standard peneshytration test (SPT) in cohesionless soil

------

77

tu [kPa)

200 17 Cast under -J bentonite

~----Meyerhof (1976) ~copy -=middotmiddotmiddotmiddot== middotmiddot150 ~------- Wei tman (1978 ) middot Healy middotmiddot ___ Japanese ) 119810 Society

(0 -middotmiddot- Decourt (1982)middot Wright

100

- -middotmiddot -- 11979]reg Reesemiddot Bored piles

~shy50 1 -- shy

-- shy middotmiddot s-shy - --~ ------reg~~ ---~E_==---- ------- shy

N_ ---shy0-+--C--------------r---- ---------~---~-~shyo 10 20 30 40 50 60 70

Fig 12 8 Relation between ultimate skin friction of piles and standard penetration test (SPT)

78

Pst [MPa]

8

7 ---------ist=7MPa

6

5

4

3

2

I N30o~------------------------------+---------__=-shyo 10 20 30 40 50 60 70

Fig 12 9 Relation between ultimate point resistance of large diamter piles and standard peneshytration test (SPT) in cohesionless soil (proposal)

tu [MPa ]

( excavanted and cast

150 under bentonite ) tu=150 kPa

100 tu=90 kPa

I I

50 I I I I I N30

10 20 30 40 50 60 70

Fig 1 2 10 Relation between ultimate skin friction of large diameter piles and standard penetrashytion test (SPT) in sand (proposal)

79

2 3 4 5 p[MPa] 0 2 3 4 5 p[MPa]0

40 40 Cl

80 c 80

c 120 120

Pile No 1 PileNo216 160

200 2

s s c [mm] (mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MPa]

40 40

00 80

120 120

16 160 Pile No 3 Pile No 4

200 200

s s [mm] (mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MAJ]

tgt11 tgt- measured40 40

80 80

120 120

Pile No 5 Pile No 6 160 160

20 200 s s

[mm) [mm)

Fig 1 4 1 Base resistance vs settlement appoximative method piZe No 1- 6

80

0 2 3 6 5 p[MPa) 0 2 3 4 5 p[MPa]

40 40

80 80 6

120 120 6

6160 160

Pi le No 7 Pile No 8 6

200 3J s s

[mm] (mm]

0 2 3 4 5 4 p [ MPo)

6 6 40

6 6

6 80

6 6

6

Pi le No 9 Pile No 10

XJO s s

[mm] [mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MPa)

6 6

40 40 6 6

6

00 80 6

6

12 1Xl 6

160 Pile No 11 160 Pile No 12

200 200 s s

[mm ] [mm]

Fig 1 4 2 Base resistance vs settlement approximative method pile No - 12

81

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MPa]

6 6

40 6 40 6

6

80 6 80 6

120 6 120

Pile No 13 Pile No 141fO 160

200 200 s s

[mm] [mm]

0 2 3 4 5 p [MPa) 0 2 3 4 5 p [MPa)

40 40

80 80

120 120

HiO 160

200 200Pile No 15 Pile No 16

s s (mm) [rrrn 1

0 2 3 4 5 p[MPa] 0 2 3 4 5 p[MPa)

40 40 A A A-measured

680 80 t t

120 c 120 c

1fil Pi le No 17 160 Pile No 18

200 200 s s

[mm] [mm]

Fig 1 4 3 Base r esistance vs settlement approximative method pile No 13- 18

82

0 2 3 4 5 p[MPal 0 2 3 4 5 p (MPa]

D D40 40 c c

80 c 80 c

120 120

160 160

Pile No 19 Pile No 20 200 200

~ml (mm]

Fig 1 4 4 Base resistance vs settlement approximative method pile No 19- 20

LlJ QI

0 average lJ = 098 E sd = 029 C

6 SY = 030

4

2

lJ calculated ________________________ _______ measu red

06 08 10 12 14 16

Fig 1 4 5 Calculated pressure divided by the measured pressure at 20 mn settlement for aZZowabZe

q Zoad Pa= ~p approximative method pile

No 1- 20

8 3

Point resistance p [ MPaJ

a)

p(s) = s a +--sshy1 y qcp

1

SQ100p -- --- ---shy

~ s

[mml

I- 01 s rmm]-l p LMPa b)

f~]

c Cll E ~ i s

[mm)

Fig 146 Definition of the point resistance - settlement curve according to the modified hyperbolic method

84

01 ~ 0

20 0 0

0

16 0

medium 0 value a1 = 905-+ 256 Op 0 0

12 (r=039)

0 0

----0 0

8 0

0 0

0 0

4 0

05 06 07 08 09 10 11 12 f3 14 15 16 17 18 19 20 2 1 Op (ml

Fig 1 4 Initial slope of the base resistance curve vs pile diameter

a1 [p] 0

0020

16 assumed a 1= 28 - 4 qcp

12 0

0 Ct) 0 a = 2659 - 369 qcp8 1

0 0 (r = 0188)0

4

2 3 4 5 (MPa]qcp

Fig 1 4 8 Initial slope of the point resistance curve vs ultimate point resistance on the static cone resistance for pile tests No 1 20

85

a [~ 28

24

20

16

12

8

4

0 2 3 4 5 6 Qcp [MPa]

~ Kiosinski (1977) sand and sandy gravel of mediwn density

~ Klosinski (1977) loose sand ID= 0 3 0 4

o US59 ] t HH Touma p and Reese L (1974) fine sand and silty sand OGl (US59 HH BB - very dense Cl - mediwn dense) 1 BB

DIN 4014 Part 2 (1977)

Fig 1 4 9 Initial s lope of the point res istance curve vs ultimate point resis tance

86

assumed [il =30 -10 Op but )1~ 10 )1 [1 I

u 311-10 Op ( r =0 368)4 1 0

3 0 0

02 0

0 0co 0 8 0 0

0

0

05 06 07 08 09 10 11 12 13 14 15 16 17 19 20 21 Dp [ ml

Fig 14 10 Correction factor for hyperbolic base resistance shysettlement relationship

87

a [~] 28

24

20

16

12

8

4

2 3 4 5 qcp [ MPa]

Fig 14 11 Initial slope of the base resistance curve vs ultimate base resistance (proposal)

v [ 1 ]

3

2 -----G- DP J l 1J I Op lm] J

for Dp ~ 2 0 m ~ u = 1 01

0 --------r----r---r----r-----------------r-------------------------r------r-~-~--shy

05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 Dp[m)

Fig 1 4 12 Correction facto r for hyperbolic base resisshytance - settlement relationship (proposal)

s P ( s)

s +

u qcp

88

a) b)1

bt=o212= 47 MPa a1=1~32 tMWJ s 2 3 4 5 O 1 10 20 30 40 50 60 p [~a]0

0p [ MPa] 40 40

80 80

120 ~

160 b1 = ~ajtg ~= 0 212

~=1132 + 0212middot s

mJ 240 r=0994t t t measured s __ according to Jl s

o o o according to p (bull ll l[mm] [mm]

Pile No 2

slmm) 10 20 30 40 50 60 80 100 125 150 175 2)0 225 Note

p [ MPa] 09 14 17 20 22 24 27 30 32 34 36 38 39

measured

pibull) [ MPa] 074 128 169 202 228 249 282 307 330 347 360 371 380calculated

plbullbull1[MPal 070 125 168 203 233 257 297 327 356 378 396 410 422calculated

1) (bull) ij l099082 091 099 101 104 104 104 102 103 102 100 098 097 sd = 006

ij (HJ1041) (bull10) 078 089 099 102 106 107 110 109 111 111 110 10B 10B sd = 010

plbulll-according to a =1132 [ Jp(s) = s s for pile No21 0 1132 12 39

plbullbulll-according toa =1241 lmiddotGcp=39MPa1 0

~=14 see fig 1411 and fig 14 12 sp(S)=

124+ _ s_ 14middot39

11lbulll11l-J - correlation coefficient calculat~d P5 for

measure p s p(bull) and p(bull) respectively

Fig 1 41 3 Modified hyperboZic point resistance - settZement reZationship for piZe No 2

89

0 2 3 4 5 p(MA1] 0 2 3 4 5 p[MPa)

40 40

80 A 80 A

120 120

160 16 Pile No 1 Pile No 2

20 200 s s

[mm] rnm

0 2 3 4 5 0 2 3 4 5p [MPa] p [MPo]

40 40

80 80

120 1ZJ

lfpound) Pi le No 3 Pile No 4 A

200 A

s s A

[mm) [mm

0 2 3 4 5 p [MPa] 0 2 3 4 5 p [MPa]

40 40 A A A measured ~ calculated

80 80

12

160 160 Pi le No 5 Pile No 6

200 Z)Q

Fig 1 4 14 l3ase resmiddotistance vs settlement pr oposed method pile No 1- 6

90

2 3 4 5 p [MPa] 2 3 4 5 p [ MPa]

40 6

6 40

1 80 80

6

120 120 6

6 160 160

Pile No 7 6

200 200 s

[mm ] s

[mm]

0 2 3 4 5 6 p [MR] 0 2 3 4 5 p [MPa] 0 0

40 40 6

6

80 80

6

120 120

160 160 Pile No9 Pile No 10

200 200

s [mm] [msml I

0 2 3 4 5 6p[MR] 0 2 3 4 5 p [MPa]04--___ ____ ___ ___ ____

0+-=---------------~-~- shy

40 40 c 6 c - measured

0--0-0 shy calculated

80 80

120 120

160 160 Pile No11 Pi le No12

200 200

s [mm]

s [mm]

Fig 1415 Base resistance vs settlement proposed method pile No 7-12

91

0 2 3 4 5 p [MPal 0 2 3 4 5 p [MPa)

40 40

80 80

120

16 Pile No 13 Pile No 14

200 s

tnml [mm]

0 2 3 4 5 p [ MPa] 0 2 3 4 5 p [MPa)

40 40

80 80

120 120

160 1fD

Pi le No 15200 axJ s s

[mm] [mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 6 plMPa ]

A A A measured40 0---0-0 calculated

80

120 120

160 1ED Pile No 17 Pi le No 18

200 200

s s [mm] [mm]

Fig 1 4 16 Base resistance vs settlement proposed method pile No 13- 18

92

0 2 3 4 5 p [MFb] 0 2 3 4 5 p[MPa]

0 6 o -measured40 40 0 0 o -calculated

80 80

120 120

160 160 Pile No 19 Pile No 20

200 200 s s

[mm] [mnil

Fig 1 4 17 Base resistance vs settlement proposed method pile No 19-20

p(s~Psf

15 20

ean

-C 5 w u L Lower ~ confidence

linea 0

a IJl 10

o---o proposed

method I I I

15

Fig 1 4 17a Design curves for estimating developed base resistance in sand (Wr ight and Reese 1979)

93

n (number)

30

28

26

24

22

20

18

16

14

12

10

8

6

4

2

0 02 04

Fig 1 4 18

I= 126

Between 1] = 0 7 - 1 3--- I= 106 ( 84 frac34)

Average ~ = 098 Standard sd =023 deviation

Standard sv =023 veriation

1] (Coefficient Calculated Measured

06 08 10 12 14 16 18

Calculated pressur e divided by the measured pr essure for all pressure - settlement curves pr oposed method pile No 1- 20

94

a) b) Total load

Total load curve

---- _____-- shy- -- -Base load ~- Base load

-0-0 ~

00 00 J

ldeoli zed shaft load J

Shaft sesistanc1---------- 0=0middot30 a= 0 middot 30

025 Settlement IN 025 Settlement IN

Fig 1 419 Proposed method of synthesizing design loadsettlement curve (a) conservative design prodiction b) design prediction- peak in shaft loadsettlement curve (Burland et al 1966)

Cf

-0 0 0

J

0

~-----~--~-~ amp- 2 3 4 5 6 (cm)

a~middotltii -0 lt) cco2 41 -~ -0 1)

vi ~ llloli=----------- ---c~0 1 2 3 4 5 6 7 ( of diameter)1 1 1 1

05 10 15 20 ( in) for 30 in Pile Movemen~ ( 75cm pile)

Fig 1 4 20 Approximate load settlement curves for 30 in bored piles (AB and C represent failure load at 1 in settlement A B and C represent ultimate failure load) (Touma and Reese 194)

95

Load in MN 0 2 3 4 5

25

50E E C

-C 75

-~ ~

-Z 100 lJ

Shaft resistshy

125 once

15 Fig 1 4 21 Load-settlement relationships for largeshydiameter bored piles in stiff clay (Tomlinson 1977)

SettlementSo

Fig 1 4 22 Diagrams of s1iaft and base resistances versus settleshyment assumed in analysis (Kiosinski 1977)

96

0 0 1 ~ r- 025g ~~ 2

1- -shy3 03Sg 14 5 2

Qls =Qpls+Q5 (sQpls) Qs(s-3E

0

degsis __ -- Qpls) a~ C

4

t Sg l

5 Qu Is)

Q(s)in MN-l T

Ouls Q Is) in MN ---

Fig 1 4 23 Construction of load - settlement curves a) for sand b) for cohesive soil (DIN 4014 Part 2 1977 and Franke 1981)

-

s C 5C

Cl

3 0 00 05 10 15 20 Mean settlement I in)

Fig 1 4 24 Load- settlement curves for test shaft S4 (1 in = 25 4 mm 1 ton= 8 90 kN) (Reese 1978)

97

Relative side resistance

0 05 10 15 20 0E=--t----+---+--~

c QI lt) ~ 2 C

I itaker c

QI amp Cooke3E QI-j

c-en 4

C QI

E us 59o

5 QI gt

SA0 w 0 6

Fig 1425a Relative side resistance for clay vesus relative midlength settlement (Reese 1978)

degs (Osl u l t 0 05 10 15 2 0

Mean

2 Lower ~ C QI u

confidence line

~ 3 a

0

~4 E

()

5

6 __ _ ______ ________ __1

Fig 1 4 25b Design curves for esti mating developed side resistance (~Jy1nht ReertP- 1987 J

98 Load Q

8 - 15 mm

1- 2 of p ile diameter

100-200 10-15 of pile Os Ot diameter Shaft Total

Settlement S Resistshy Resist- Load ance once

Fig 1426 Dependence of total load base resistance and shaft resistance on settlement of lar-ge diameter pile (Tejchman Gwizdala 1979)

6

5 Shaft load

4

3

2

z ~

-0

g Pile EF- 56 J 0

0 0 20 30 Butt settlement (mm)

Fig 1 4 27 Deveiopment of shaft and base resistance with settiement (Promboon Brenner 1981)

99

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 0 r-=-1---J__-----------------------~----_shy

Load [ k N l5

10

20

( I

Skin friction ----1 I I

~ 40 QI E

fQI

50 I

Q) I () ICOntinuos fost deolading

Fig 1428 Load-Settlement-Diagram Testelement III (Diaphragm-Wall 0515 m 244 m deep) Portion of Skin Friction and Base Resistance (Prodinger Veder 1981)

Qs (QJ max

0 05 10

Upper Limit of Data

Farr and Aurora (1981J C

~ 2 - shy -+shy - Mean of Data

I QI

Lower Limit of Data a

0 - 3 E

Vl

4

Smid = Approximate shaft buff movement ignoring the elastic compression of upper halt of the shaft

D = Shaft diameter

Q Mobi Ii zed shaft resistance

Qs1max = Maximum shaft resistance

Fig 1 4 29 Relative shaft resistance vs relative movement (Farr and Aurora 1981)

100 Load Q (s) [ MN]

Su5 s s 20 mm for non- cohesive soil u

s s 10 mm f or cohesive soil u

s s 15 mm for claysand u

Q (s) + Q (s)s p

Qs(s)

-C ltII E s ~- [mm]-ltII IJ)

Fig 1 430 Dependence of total load Q(s) point res i stance Q (s) and shaft resistance Q (s) versus settlement p s

~ 3 Usu Qpu Qu Q(s) [ MN]

Sus= 20

1J

60

80

100

120

degs (s ) 140

5 P=Ol Op

1EO

C -ltII E 180 ~ ] 200

s [mm]

Approximative dependence of total load point resistance and shaft resistance versus settlement fny non-cohesive soil

Fig 1 4 31

101

113 3 ~fic0P Ye hY

1 Ground water

D

I y

yh C

Fig 1 5 1 Determination of 01 and 03 for settlement analysis of lar ge diameter bored piles

102

I

E=Et [MPa]

160 0

140

120 0

100

80

6

40

--- --shy 0

0

8 0

0

0

20

2 3 4

I 0 15

Fig 1 5 2

E = Et [MPa]

120

100

80

60

40

I I 0 35 065 085

0

Et= 17 81 qcp0844

( r = 0 128)

5

100

6 qcplMPo]

Calculated values of Young s modulus for piles No 1shy24 according to equation 1 5 2 and 1 56

0

0 0

E =898qcp127 (r= 0314)

E = 9 middot qcp 13 0

20 shy 0

0 0

0 1 2

loJ

I 0 35

3 I

065

4

I 085

5

100

6 qcp [MPo]

Fig 1 5 3 Calculated valueBof Young s modulus for piles No 1shy24 according to equation 1 5 4 and 1 5 6

I K 10 3

( 1 ] 1832

1400 0

1200 0

0

1000 0

800 0

m=2821 qcp0621

600 0

(r=0057)

400 0 0 0 0 0

200

2 3 4 5 6 qcp (MPa]

I 035

I 065

I 085 100 Io

Fig 15 4 Calculated valuesof the dimensionless compress ion modulus K for piles No 1- 24 according to equation 1 5 2 and 1 56

K ( 1 ]

0

1400

1200 0 0

1000

800

600

0

0 0

0

0 0

0 K= 1422 qcpl05

(r=0181)

0 K= 150 qcp

400 0

3)0 0 0

2 3 4 5 6 qcp(MPa)

I I -J 035 065 085 100 Io

Fig 1 5 5 Calculated values of the dimensionless compression modulus K for pile~ No 1-24 according to equation 1 5 2 and 1 5 6

104

120

100

2 3 4 5

I I I rv 0 15 035 065 085 100 lo

Bergdahl (1982) for shallow foundation

o----o Bozant Masopust (1981) D= 1 0 rn h=10 rn large diameter bored piles in noncohesive so il

0----0 Proposal according to current anal ysis

Klosinski (1977) D=090 to 125 rn large diameter bored piles in sand and sandy grave l

Mitchell Gardner (1976) very dense sand E=(35)q (it depends on sand density and stress history) c

Fig 1 5 6 Composision of Young s moduius

105

TABLES

0 Tab 1 11 Methods for detemination of the bearing capacity of bored piles (Ro llberg 1977)

Cl

Nol -- I Soil Areas of Q) Q) Editor Determination of Coefficients 5 type influenceqP qs p ~ C C 11 12 fP I fs

1 all Lab f Soil Mech (1936) l qp at the elevashy 1 0

2 all Huizinga (1951) ~ t~on of the pile 14 point

3 all Van der Veen (1953) ) 18 1 h+l14 all Van der Veen 1 0 Dpl375 D~ 15-- J qcmiddotdhBoersma (1957)

~ 11 +12 h - 12

5 12 all Menzenbach ( 1961) qc at the elevashy~ tion of pile point

6 18 all Mohan Jain Kuman (1963)1 average of qc over 1 h Q) h ~qcmiddotdhl 10 Dpj 3 75 Dj 15 50_micro

and 1 2C 11

7 I amp all de Beer ( 1964) graphically from 10 Q) qc 0 1 h+l18 u C

sand Soviet norm SNIP II 9ct9cp I4 bull O Dp I10 DP l66-1 083shyu clay B5- 67 Trofimenkov (1969) 2 50 1 251 +l J qc middotdh micro middot h middot-l l 2h-~ _micro

9 _micro u all Paproth (1972) at the elevation 3 5 I shy

) of pile point (Dpgt0 5 m 7 D8DpE

E-lt p 1 h+l1 1 h Dplt 5 m u l+l J qcmiddotdh h f qcmiddotd~ 30 Dpl 50 Dp 2 0 100shy10 sand Norwegian method

0l 2 h-12 200Senneseth (1974)

11 lall Soviet method h+l (20-0lqgl - 101 1 q middotdhTrofimenkov (1974) -- f C UpUsmiddotQct

l1+l2 h - 1212 Qct-Qcp 40 D~ 10 Dp 1 33- 0 67shyUsbullh 4 00 2 50

13 English method 10 DFJ 375Dp 10 I

Rodin Corbett Shershywood Thorburn (1974)

3 7 5 Dcl 8 0 DP 10h+l1 _1_ J qcmiddotdh 1 h

qcmiddotdh 20011 +12 h - 12 hb

1 h qcmiddotdh 150hf

0

Observations

fp I f (qp)fs C

Dp E = 1 cm Qbu = 2 Qpa (approx )

s fs=f (qc)

q=~g Us 0 h

fp=f(q~)

fs=f(qgl

bull fine grained non- cohesive soil loosely packed

bull fine grained non- cohesive soil medium dense comp

fine grained non- cohesive soil

Tab 111 (cont)

h+h bE 14 non-cohe- Meyerhof ( 1956 poundti J N 3o middot dh CtME fN3 o dh 1 0 DP 4 0 DP 10 100 etM= l 2

sive soil 1976) lJ +12 h - li hE o hgp taken into consi der ~ Ul (I)

E-lt

C 0

~E = 1 kgbull 30 cm

(statistical limit depth of the pile) hE - clamping length of

pile micro rrJ l-l micro (I)

15 C (I) p

sand Norwegian method

- irm - - - 10 IT

m = diagram O l-l Senneset (1 974) rrJO C

16 rrJ micro gravel English meth it 3 middot N30 - - - 10 - Jf 3 + diagram U) ~

E-lt p U)

iiouiu Coruett Sherwood Thorshyburn (1974 )

(NJQat the elevashytion of pile point1

0 -i

108

Tab 11 2

Results of calculati o n of p i le point load pile shaft load and total pile load from static con e penetration test (Rol l berg 1977)

~ gt

~ gt Ultima te Ultimate Ult imate

No Method micro micro poi nt skin bearing 080lt17nlt1 50 Q) -l

-l middot-i resistanceuro resistance r esistancE

middot-i p 0

(J n1 n n2 n n3 n n1 n2 n3

1

2

Lab fSoil Mech

Hu izinga (1951)

(1936 ) 430

307 i 3 Van der Veen (1953) 239

49

4

5

Van der VeenBoersma

Menzenbach (1961)

(1957) -l middot-i 0

2 4 7

1 57 1-CJ)

6

7

8

Mohan Jain Kumen

de Beer (1964)

Sovi et Norm (1969)

(1963) CJ) Q)

-l middot-i 0

lJ Q)

Q)

gt- CJ) Q)

c 0

2 44

1 37

183

47

t I

49

487

0 18

47

16

3 02

0 85 1

47

16

137

08

9

10

Paproth ( 1972)

Norw Method (1974)

~ 0

0

u I

C 0 C

1 8 1

180 l 46

1- - -_L~ 46 167 46 1 19

1 1 Soviet Method ( 1974) [1 1 41 46 1 62 13 083 13 1 14 0 8

12 Engl Method (1974) 2 66 35 128 35 2 30 35 1 28

Note

cal Q a) n = --- mean value of the rat i o between calculat ed pile loads and those n Q determined f r om loading test

b) n = number of piles

109

Tab 113

Point resistance of large diameter piles (DIN 4014 Part 2 1977)

Settlement Point pressure 1 Factor -fshy

(cm) (MPa) cf=lOMPa I i=15 MPa C C

Piles without enlarged base

1 05 005 003 2 08 008 005 3 11 0 11 007

15 34 034 023

Piles with enlarged base

1 035 0 04 002 2 065 0 07 004 3 0 90 009 006

15 2 40 0 24 0 16

Note 10 lt qp lt 15 (MPa)C

Tab 114

Skin friction resistance of large diameter piles (DIN 4014 1977)

Strength Static cone pen- Depth below Skin frict ion Factor of sand etration resist surface

(MPa) (m) (MPa) fs

Very small lt 5 - 0

Small 5 to 10 0 to 2 0 2 to 5 003 ln6 to 333

gt 5 005 100 to 200

Medium I I 10 to 15 0 to 2 0 I

I 2 to 7 5

gt 75 I 0045 0075

222 to 133 to

333 200

High I I

i

l

gt 15 0 2

to 2 to 10 gt 10

I I I

I

i

0 006 0 10

gt gt

250 150

Note Skin friction is assumpted as linear until s =2 cm and constant for s gt 2 cm

11 0

Tab 115

Values of the inverse of the point resistance factor (Bustamante 1982) fp

Soil type qPC I 1

Factor - shyfp(MPa)

for piles group

a) Silt and loose sand lt 5 0 40 -b) Moderately compact

5 - 12 040sand and gravel

c) Compact to very gt 12 i 030compact sand and gravel I

Tab 116

Values of the shaft resistance factor fs (Bustamante 1982)

Factor fs

Soil type qs

C Category I(MPa) I A I B I II A III BI

I a) Silt and loose lt 5 60

i 150 I 60 I 120-

sand

b) Moderately corn- I pact sand and 5 - 12 100 200 100 200 gravel i

Icl Compact to very

compact sand gt 12 150 i I 300 150 I 200I

I I and gravel i

I

111

Tab 117

Point resistance factor (proposal)

-

1-fp

qc (MPa)

Gravel

Coarse sand Medium sand

Fine sand Silty sand

25

080

0 70

060

5 0

0 65

055

047

75

054

045

039

10 0

045

036

031

150

035

027

022

200

030

0 23

018

Tab 118

Shaf t r e sistance factor (proposal)

fs

qc (MPa)

Gravel

Coarse sand Medium sand

Fine sand Silty sand

25

80

100

130

10 0

120

150

190

I 200

180

230

300

11 2

Tab 119

Calculated values qcp

for large diameter piles

Pile Literature Length Diameter (m) Measured p Cr1 lcul Settlement Note Authcr(year) No (ml D Dp (MPa)

(s=0 10Dp) (MPa)p ~~JL__

s s ()(mm) Dp

1 Franke (1977) 1 13 11 36 38 117 106 Garbrecht

2

3

2

3

13

14

11

15

1 58 36

37

38

40

215

185

136

123

) qg accord to Franke

4 4 13 15 204 3 2 33 220 108 and Garshy

5 5 6 11 33 35 127 11 5 brecht (1977)

6 6 6 11 153 36 35 146 9 5

7 7 6 1 5 34 35 158 105

8 -shy 8 6 15 2 1 41 3 0 109 52

9 10 9 11 39 52 47

10 11 95 11 43 35 77 70

11 12 9 11 49 66 60

12 13 10 11 15 5 1 4 0 77 5 1

13 14 9 11 1 5 4 8 46 115 77--shy14 Pranke ( 1973) 15 115 18 4 9

) ) average 88

15 13$ 13 5 1 3 19 -2 5 3 2 sd=3 0

16 - - 165 16 5 13 19 30 sv=0 34

17

18

Spang (1972)

llXJ

V90

6 6

6 75

0 7

09

3 2

4 2

32X

42X

x) s =0 10 D p

19 VlaJ 720 1 2 39 3 9X

20 - - VlsJ 6 5 1 5 3 0 3 ox

21 Touma and US59 9 9 o 76 8 0 Reese ( 1977)

22 HH 75 0 61 8 0

23 Gl 180 091 - 2 5

24 BB 137 o 76

sd = standard deviation

sv = standard variation

Tab 1 2 1

Ultimate point resistance coarse and medium sand psf (MPal (Pol ish Specification 1975)

Depth h

Medium sand r = 0 40 N = 200 30 Base diam (Op) and depthbase diam (hDp)

Dense sand r 0 Base diam (Op)

= 0 80 = 50N30 and dpethbase diam (hDp)

(ml Dp = 0 6 m Dp = 1 0 m Dp =12 m Dp = 1 5 m Dp = 0 6 m DP = 10 m DP = 12 m DP = 15 m

Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp

5 10 83 0 85 5 0 075 42 07 33 20 8 3 16 50 14 42 13 3 3

7 14 11 7 1 2 70 11 5 8 10 4 7 2 8 11 7 22 70 2 0 5 8 1 8 47

10 18 16 7 15 10 0 14 8 3 1 3 67 35 167 28 100 2 5 83 2 2 67

15 18 250 18 15 0 16 12 5 15 100 4 2 25 0 3 4 15 0 30 125 27 100

20 2 4 333 2 0 200 185 167 1 7 133 4 7 333 3 8 200 33 167 30 13 3

25 26 41 7 2 2 25 0 20 208 19 167 5 0 41 7 4 0 250 3 5 20 8 3 2 167

w

11 4

Tab 131

Partial safety factors for resistance to axial load for bored piles (Wright Reese 1979)

Partial safety Normal Poor factor for control control

Unit skin resistance 1 70 185

(no load test)

Unit skin resistance 160 1 70

(from load test)

End bearing 165 180

Tab 1 3 2

Probability of failure of bored piles under normal design conditions (Wright Reese 1979)

Probability of Factor of Structure failure safety classification

5 10-3 25 monumental

210shy 22 permanent- 2

5 middot 10 2 0 110shy 1 85

temporary 5 bull 10-l 165

11 5

Tab 133 Results of field tests (Tejchman Gwizdara 1979)

L

II C C C 0 0 0

micro micro

micro micro micro For universal safe~y F2u u CUNo micro C C ~ ~g~ middot- C

~ Permisible micro micro i ~c -i micro

cmiddot-~ micro~ L

micro oo ~ load ~t~ ~~ omicro micro ~ ~ 3Z~ ~ ~ micro

-~~

~ e ~ --middot--

middot- ~ obull 0

~ g ~~ ~~ ~

~ L

o Jl i5 sect~ =gt L Q~ = yen t p Qp Qp

D h Q~ Srrx s tm p s E~ iQ~lQ~cm ~~ KN X ll1l kPa kPa kN kN kN Jl ~e ~ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 70 6 60 4081 1550 2531 38 0 1182 10 4040 175 2041 245 1796 632 141 120

2 90 6 75 5082 3041 2041 598 1785 10 4782 107 2541 1079 1462 282 140 42 5

3 120 720 7259 4041 3218 557 1035 10 3576 119 3630 2158 1472 187 2 19 594

4 150 650 8643 4454 4189 51 5 928 20 2521 136 4326 2158 2168 3 10 166 253

5 130190 195 7750 3011 4709 392 805 10 1075 - 3875 981 2894 3 10 166 253

6 130190 165 9516 5101 4415 536 522 20 1800 - 4758 1962 2796 260 158 412

7 130190 135 8044 5199 2845 646 114 4 15 1834 - 4022 2109 1913 2 47 149 524

8 180 115 11380 4415 6965 388 792 15 1735 - 5690 2747 2943 161 2 37 483

9 76 980 6867 4316 2551 628 110 13 9529 109 3534 1128 2306 383 111 32 8

10 61 7 60 7161 2747 44 14 383 67 15 9404 303 3581 392 3188 700 169 109

11 92 180 4807 883 3924 184 20 8 1329 76 2404 196 2207 450 178 82

12 76 24 5 6769 736 6033 109 20 8 1623 103 3385 147 3238 500 186 43

13 76 137 5396 2060 3336 38 2 63 8 4535 102 2698 589 1109 350 t 58 218

14 120 23 5297 1854 3443 35 0 960 10 1640 39 2649 196 2453 945 130 7 4

15 135 16 7 13489 7554 5935 560 181 10 5260 83 6749 2060 4689 367 127 305

16 170 46 0 8829 2943 5886 333 17 10 3466 39 4415 1373 3042 2 14 1 94 31 1

Average Fi 387 166 Standard deviation Sd 2 1 5 034 Standard variation sv= 0 56 0 20

1234 Spang1972 567 8 Franke 1976 9 10 111 2 1 3 Touma Reese 1974

14 Colombo 1971 15 Kerisel Simons 1962 16 Appendino 1973

11 6

Tab 134

Results of model

SafetyScheme factor

medium F ssand

F p

loose F s

samd Fp

F 3 55 sd _P F 1 32 sd

s

tests (Tejchman Gwizdara 1979)

Diameter D (mm)

30 60 90 133

145 129 108 112

280 3 08 307 294

140 154 153 112

594 3 04 324 426

107 sv 030

0 19 sv 0 14

117

Tab 135

Individual safety factors according to literature

Literature proposal ofLiterature individual safety factor

Fs Fb

Polish Specification (1974) 100 250

Tejchman Gwizdala (1979) 150 400

Bustamante Gianeselli 200 300 (1982)

Decourt ( 1982) 130 400

average 145 3 38

TAB 141 0)

Load settlement curves - measured

Pile No

Settlement 1 c 3 4 5 6 7 8 9 10 11 12

s p s p p s

p p s P

p s P

p s p p s

P p s

P p s

p p s p p S

p I i p s

p p s p

mm MPa rrrn lifl5a MPa mm

lifl5a MPa

mm lifl5a MPa mm

RPa mmMPa nwa MPa mm

RPa MPa mm RPa MPa mm

RPa MPa mm RPa MPa mm

RPa MPa mm RPa MPa mm

RPa 10 045 222 09 1 1 05 20 07 143 06 167 08 125 0 5 20 08 125 10 100 08 12 5 15 67 16 63 20 092 21 7 14 43 08 25 10 20 0 1 1 182 12 167 0 9 22 2 12 167 18 111 14 143 24 83 22 9 1 30 125 240 1 7 I 7 6 1 1 273 1 2 250 14 214 15 200 1 2 250 15 200 25 12 0 19 15 8 30 100 26 11 5 40 1ti 250 20 10 0 14 28 6 14 286 1 7 235 18 222 1 4 286 18 22 2 3 2 12 5 23 174 36 111 3 0 133 50 20 250 22 ~27 1 7 294 1 5 333 20 250 2 1 ~38 1 7 294 1 9 263 37 135 27 18 5 4 2 11 9 33 152 60 2 2 273 24 ~5o 20 300 1 7 353 23 61 22 ~73 18 333 21 286 43 140 30 20 0 46 13 0 36 16 7 80 271 295 27 796 24 333 20 400 27 ~96 25 1320 22 364 25 32 0 53 15 1 36 222 41 195

100 322 31 1 30 333 28 357 22 454 31 1323 29 345 26 385 28 357 60 16 7 40 25 0 45 22 2 125 38 329 32 391 32 391 25 500 32 139 1 30 41 7 32 39 1 4 6 272 48 ~6 0 150 14 2 357 34 1441 36 41 7 27 555 36 ~1 7 34 44 1 36 41 7 175 36 486 39 449 30 583 38 ~61 38 461 200 38 526 42 476 32 625 225 39 577 33 682

(mmMPa) ( 1 MPa)

1

1=2074

t 1=O ~01 =0 98S

a1=1132

b1 =0 212 V =0994

a1=2217

b1=O 131

V =Q 978

a1=1860 b1=0233

V =Q966

a1=1562

b1=0174 V =Q983

a1=1382

b1=O195

V =0975

a1 =20 37

b1 =C 174

V =0957

a1=1443

b1=(l 193 v =O 961

a1=965

b1= 0071 V =0 990

a1=1 91

b1 =o 128

V =0 993

a1=5 83

b1=C124

v =O 981

a1=6 1 4

b1=01 64 v =U 985

li(MPa) ~9 4 7 76 43 57 middot5 1 57 5 2 141 78 81 61 cp (MPa) B8 39 40 33 35 35 35 3 0 39 3 5 49 40 __Ef ~-6 1 2 1 9 1 3 16 15 16 1 7 36 22 16 15 qcp

TAB 141 (continue) Load settlement curves - measured

Pi le No 3ettlement 13 14 15 1 17 18 19 20 21 22 23 24

s p s T5

p s T5

p s T5

p s P

p s P

p s P

p s P

p s P

p s T5

p s T5

p s p p s

p mm MPa lll1l

HPa MPa mm HPa MPa mm

fWa MPa mm fWa MPa lll1l

HPa MPa mm HPa MPa mm

MPa MPa lll1l NT5a MPa HPa MPa 111111

HPa MPa 111111

HPa MPa 1)1111

mra 10 1 7 59 075 133 06 167 075 133 ~95 105 09 11 1 07 143 3 76 1 7 59 08 133 10 100 20 2 4 83 130 154 095 21 1 1 15 17 4 1 75 114 16 125 12 167 ~7 74 33 6 2 1 3 15 3 1 9 103 30 29 103 1 7 176 1 2 250 15 200 r55 118 22 136 16 18 8 38 79 46 66 1 7 182 27 110 40 33 12 1 20 200 1 35 29 6 1 75 229 ~O 133 26 154 175 229 49 82 58 6 9 1 9 21 1 35 115 50 36 139 235 21 3 145 34 5 1 95 256 24 208 ~-4 147 28 17 9 20 250 gt8 86 6 9 72 2 2 233 4 2 11 8 60 39 154 265 22 6 1 55 387 2 15 279 28 214 ~6 16 7 30 120 0 2 2 27 3 o 8 89 80 7 5 2 3 262 80 43 186 31 258 1 7 47 1 36 222 14 05 198 33 124 2 25 320 B 1 98 25 327

100 45 222 18 556 39~ 253 ~-5 222 36 1278 27 370 ~8 113 125 47 26 6 20 625 42 29 8 149 255 28 1446 t50 22 682 3 0 500 175 200 225

(mmMPa) a1=479 a1=1206 a1=14 51 a1=1113 a1=1406 ~=836 a1=843 a1=1176 ~=64 a =561 a1=10 0 a1=9 5 (1MPa) b1=0175 b1=0 178 b1=0 382 b=0287 b1=O 119 p 1=0 137 h1 =o 193 b=0258 p1=0 049 b1=0032 b1=0 276 b1 =0 048

hf (MPa)

v =0998 57

v =0-987 5 6

v =0989 26

v =0992 35

v =0933 Iv =0991 84 73

v =0993 5 2

v =0998 tJ

3 9 =0944 v =0998 v =0996 v =0981

qcp (MPa) 46 39 32 30 32 14 2 39 30

lL 12 1 1 08 12 26 1 7 1 3 13 qcp

lD

N 0

TAB 142

Calculated point resistance curves

Setlement (mm) p(s)

1

n p(s)

Calculated value of the p(s) for pile No

2 3 4 5

n p(s) n p(s) n p(s) n p(s) 6

(MPa)

n p(s)

7

n p(s) 8

n p(s) 9

n p(s)

10 20 30 50 80

100

150 200 225

070 128 177 253 335

375 446 493

157 140 141

127

123

1 16 106

070 1 25 168 232

297

327 378 410

422

078 089 099 1 06

1 10

109 1 11 108

108

073 1 30 176 246

315 349

405 441

146 163

160 145

1 32 125

113 105

056 096

1 26

167 205 222

249 265

271

0 80 096

105

1 11 100 101

092 0 83

082

065

118 162 233

308 345

412 456

108 108

1 16 116 114 111

064

1 12 151 2 10 2 69

298

346 3 76

078 P63 093 tt 13 101 tt 53 100 I 13

108 ~75

103 ~04 096 ~ 55

~ 87

1 26 125 127 126

125

1 17 1 04

052 088

1 15 153

188 2 03 227 242

065 0 74

o 77 0 81 0 75

0 73

063

072 122

1 83 262 347 388

463 5 11

073

0 74

073 0 71 0 65 065

064 1 18

162 233 309

3 46

41 3 4 57

Dp (m) 1 1 Qcp (MPa) 38 (mmMPa) h2 8 1 1 9 Qcpbullv1(MPa) 72

158

39

124 14 55

15

40

n20 15 60

204

33 148 10 33

1 1

35

tt 4o 1 9 67

1 53 3 5

tt 4 0 1 5 51

15

13 5

114 0 15 i-gt 3

2 1

30

tt 6 0 10 3 0

1 1

3 9

12 4 1 9 74

1 1

3 5 h40

1 9 67

Note n = condition coefficient calculated p(s) measured p(s)

10

n

081

084 0 85 0 86 0 85

087

TAB 142 (continue)

Calculated point resistance curves

Calculated value of the p(s) for pile No (MPa) Setlement 11 12 13 14 15 16 17 18 19 20

(mm) p(s) ll p(s) n p(s) ll p(s) n p(s) n p(s) n p(s) n p(s) n p(s n p(s) n

10 106 070 0 71 045 091 054 099 1 32 055 092 053 070 060 081 085 0 72 080 055 078

20 1 90 079 130 059 160 067 1 70 1 30 096 101 091 079 1 12 148 085 1 31 082 098 082

30 258 086 1 76 068 2 15 074 222 1 31 1 26 105 120 080 156 205 081 180 082 132 083

50 363 086 246 075 297 082 296 1 26 1 70 117 161 082 228 095 295 087 256 0 91 184 092

80 471 316 o 77 3 77 088 364 1 18 2 1 o 1 24 199 308 085 393 097 336 1 02 237 095

100 522 349 078 415 092 394 228 1 27 2 16 348 088 442 098 375 104 262 097

150 611 405 479 443 258 117 244 423 529 443 304 101

200 669 441 518 473 276 261 474 587 488 331

Dp (MPa) 1 1 1 5 1 5 18 1 9 19 070 090 12 15

qcp (MPa) 49 4 0 46 49 32 30 32 42 39 30 12 a1 mmMPa) 84 h20 96 84 152 160 152 124 160

IV1 1 9 1 5 15 12 11 1 1 23 21 18 15

qcpmiddotv1 (MPa) 93 60 69 59 35 33 74 88 70 45

- 12287 average = ~ = 098

standard deviation sd = 023 standard variation sv = 023

N

122

TAB 143 Ultimate settlement for shaft resistance - summing up

Ultimate settlements (mm)Literature sand cohesive claysand

soil

Burland Butler Dunican (1966) 7

Touma Reese (1974) 10 Tomlinson (1977) 10 Klosinski (1977) 8

Francke Gerbrecht (1977) 20-30 DIN 4014 part 2 (1977) 20 10 Francke (1981) Reese (1978) (1979) 05-2 of 05-2 of Farr Aurora (1981) shaft dia~ shaft diam

5-20 mm 5-20 mm Tejchman Gwizdala (1979) - Spang (1972) 10

10 10 20

- Francke (1976) 10 20 15 15

- Touma Reese (1974) 13 8 15 8

8 - Colombo (1971) 10

- Kerisel Simons (1962) 20 - Appendino (1973) 10 Promboon Brenner (1981) 10 Prodinger Veder (1981) 12 Decourt (1982) 10-15 10-15

-average s = 14 1 10 126

standard deviation sd = 53 2 1 47

standard variation sv = 038 021 037

123

TABLE 14 4 Al l owab l e base resistance versus sett lement

Pile Li terature ength Diameter (m) Calculated qcp=qcp Settl ement Fp-3- sa (mm)No Aut hor No (m) D DP qcp (MPa) for qcp3(MPa)

1 Francke ( 1977) 1 13 11 38 127 25 Garbrecht

II2 2 13 11 158 39 130 19

II3 3 14 15 40 133 33

II4 4 13 15 204 33 110 23

II5 5 6 11 35 117 22

II6 6 6 11 153 35 117 19

II

8

7 7 6 15 35 1 17 25

II 8 6 15 21 30 100 21

II9 10 9 11 39 130 13

II10 11 95 11 35 117 15

II11 12 9 11 39 163 11

II12 13 10 11 15 40 133 7

II13 14 9 11 15 46 153 9

14 Francke ( 1973) 115 11 5 18 30 100 15

II15 135 135 13 19 32 107 29

II16 165 165 13 19 49 163 35

17 Spang (1972) V70 660 070 32 107 28

18 II V90 675 0 90 42 140 16

II19 V120 720 1 20 3 9 130 16

II20 V15C 650 150 30 100 16 average for pi les 198

standard dev sd = 78

standard var sv = 039

)assumed qc = p for s = 010 Op sonding meRsurement were not availab le

IV

TA~LE 15 1

Comparison of the initial sl ope of the pile point resistance - settlement curve

Accardi ng to 1 2 3 4

In i t i ~l 5

slope a1 for the pile No

6 7 8 9

(mmMPa)

10 11 12 13 14 15 Note

a 1 for s=10 mm 222 11 1 a1 for s=20 mm 21 7 14 3 calculated 207 113see Tab 14 1 Bo Berggren (198 )230s=20 mm

Schmertmann s method (see 202B Berggren 1981)s=20 mm

No 1 _ llNo - 6 1 97 098

202 250

22 2

400

30 8

090

14 3

200

186

076

167

182 156

286

18 2

107

125

167 138

091

20 0

222

204

426

263

098

125

167

144

087

100

11 1 9 7

182

23 5

1 03

12 5

14 3

11 9

174

164

105

67 83

58

14 6

125

1 16

63

9 1

61

103

59

8 3 48

123

13 3

15 4 12 1

1 10

167 21 1

aceto hypershy14 5 bola type curve

1 15

No 2 NQj = n1

No 4Noz ~ na No 5Naz= T]g

105 1 27

106

093

1 13

160

1 23

108 1 17

157

100

121 109

1 92

118

1 16 1 14

164

2 12

120

122

1 15

143

1 76

151

149 1 73 1 27 146

TAllLE 151 (continue)

Compa ri son of the initial slope of the pile point resistance - settl ement curve

Initial slope a1 for the pile No (mmMPa)According Note to 16 17 18 19 20 21 22 23 24 -a1 for s=10 mm 133 - 105 11 1 143 76 59 133 100 a1 for s=20 mm 174 - 114 125 167 74 62 153 10 3 calculated see 11 1 146 84 84 118 64 56 100 95Tab 141

Bo Berggren 198 67 78 25 0 114s=20 mm Schmertmann s method (see B 136 67 250 146 Berggren 1981) s = 20 mm

nG = 108 No 1NoJ = n 1 20 125 1 32 121 1 19 105 1 33 105 sd = 0 14

SY= 013 No 2 i) = 1 29ro1 = n1 157 136 149 142 1 16 1 11 1 53 108 sd = 019

SY= 015 No 4 iis = 143 INo2 = ns 091 126 1 63 111 sd = 033

SY= 0 23 No 5 ii9 = 1 37183 108 163 142INoz = n9 sd = 0 37

SY = 027

N Vl

126

TABLE 152

Measured and calculated pile point resistance

Pile Calculated Measured Measured No qcp P for

s=10 mm P for s=20 mm

~ 10 mm ~ 20 mm

- (MPa) (MPa) (MPa) - -

1 38 045 092 84 41 2 39 09 14 43 28

3 40 05 08 80 50 4 33 07 10 47 33 5 35 06 11 58 30 6 35 08 12 44 29 7 35 05 09 70 39 8 30 08 12 38 25 9 39 10 18 39 22

10 35 08 14 44 25 11 49 15 24 33 20 12 40 16 22 25 18 13 46 1 7 2 4 27 19 14 30 075 13 40 23 15 32 06 095 53 34 16 49 075 115 65 43 17 32 - - - -18 42 095 1 75 44 24 19 39 09 160 4 3 23 20 3 0 07 12 43 25

average= 484 291

sd 163 088 sv 034 030

Tab 153 Results of calculation for piles No 1-24

Pile No

Length (m)

Overburden pressure 0 vs

0hs (kPa)

0ve (kPa)

0 nc (kPa)

- -ov=o1 (kPa)

- -OV=03 ( kPa)

00 (kPa)

p(a il ( kPa)

s (a 1) (mm)

A2 ( 1 )

E t

(kPa)

Md ( 1 )

K (1)

E I

t (kPa)

( kPa) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

l 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

13 12 14 13 6 6 6 6 9 95 9

10 95

11 5 135 165 66 675 72 65 99 75

180 137

l 33 133 123 116

70 70 70 70

104 102 95

102 95 94

106 139 95

101 106 97

180 137 221 215

53 53 49 46 28 28 28 28 42 41 38 41 38 38 42 56 38 40 42 39 72 55 88 86

202 202 216 202 1114 104 104 104 146 153 146 160 153 181 209 251 120 128 134 123 238 180 305 277

202 202 216 202 104 104 104 104 146 153 146 160 153 181 209 251 120 128 134 123 238 180 305 277

168 Hi8 170 159 87 87 87 87

125 128 121 131 124 138 158 195 108 115 120 110 209 159 263 246

128 128 133 124 66 66 66 66 94 97 92

101 96

110 126 154 79 84 88 81

155 118 197 182

141 141 145 136

73 73 73 73

104 107 104 111 105 119 137 117 89 94 99 91

173 132 219 203

950 975

1000 825 875 875 875 750 975 875

1225 1000 1150 750 800

1225 800

1050 975 750

2000 2000 625

1500

218 139 255 190 16 1 146 210 12 7 10 1 11 7 84 73 69

104 167 210 124 103 10 1 109 142 120 76

153

0802 0802 0822 0820 0798 0798 0798 0798 0791 0798 0800 0811 0814 0837 0837 0830 0769 0 768 0771 0 775 0 780 0 781 0 788 o 779

35296 81603 43312 65222 44019 67515 4609 91313 78186 60572

118115 15129 5 184075 95577 67017 81607 33252 67554 85294 75994 78816 74857 55101 54862

075 075 0 77 075 084 084 084 081 079 078 084 080 083 076 076 078 0 77 081 079 076 082 087 064 0 74

278 643 337 512 542 832 567

1085 766 572

1216 1417 1832

796 520 709 353 735 878 781 630 726 302 366

26472 61202 33350 48917 36976 56713 38656 73964 61767 47246 99217

121036 152782

72639 51932 63653 25604 54719 67382 57755 64629 65126 35265 40598

a=282l a =l781 y=axs S=0621 B=0 844

V=0 057 V=0 128 _ Iv -J

~

N co

Tab l53 Results of calculation for piles No 7-24

Pile No

17

1 2 3 4 5 6 7 8 9

70 11 72 13 74 75 16 17 78 79 20 27 22 23 24

Ground water

18

-20 m b s

-28 m -335 m -330 m -3 15 m dry dry -53 m -85 m

E t (kPa)

19

33653 64979 35364 45664 47969 54583 37574 63072 74548 57753

71 2618 123531 150297

71239 48619 59204 39744 77208 77863 62049 90407 95844 57762 62937

vxEt=E Md (kPa)

20

25240 48689 27230 34248 35254 45849 31562 51040 58893 45047 94599 98825

724747 54142 36950 46179 30603 57678 61572 47157 47734 83384 36968 46569

a=898 S=l 27 =0314

K (l )

21

265 511 275 358 517 672 463 749 730 546

1160 1157 7496

593 377 514 422 775 802 638 723 929 377 420

a=l422 S=l 05 =0187

E=E = t1 3

g-gcp (kPa)

22

51046 52799 54566 42492 45870 45870 45870 37547 52799 45870 77039 54566 65438 52799 40826 71039 40926 58739 52799 37541 82549 82549 40826 59945

Calculated s

(mm)

23

708 128 72 7 15 3 724 146 144 17 3 71 3 11 5 11 2 732 13 2 707 1 5 1 13 7 93

102 118 137 728 12 l 69

11 9

s__caL n=smeos

() 24

050 092 050 087 0 77 7 00 069 l36 l 12 098 133 l81 l97 103 090 065 0 75 099 117 126 090 101 097 078

ri=l00 sd=035 sv=035

K = l50gcp

25

570 585 600 495 525 525 525 450 585 525 735 600 690 450 480 735 480 630 585 450 825 825 1180 645

E l

(kPa)

26

67684 69465 72250 57726 44856 44856 44856 38448 59659 54306 74956 63214 70704 49089 56783 79502 45283 61081 58207 42927

708572 94785 71033 91898

E = t E middotA2

l

(kPa)

27

54283 5571 l 59389 47336 35795 35795 35795 30682 47790 43336 59964 51266 57553 47088 47024 65987 34823 46970 44877 33269 84639 74027 55974 71589

Calculated s

(mm)

28

l O l 12 l 11 7 737 15 9 18 7 185 21 1 12 6 12 2 133 14 l 150 13 7 13 l 14 7 709 12 7 738 755 12 4 735 50

100

- -

Tab l53 Results of calculation for piles No l-24

Pile

29

l 2 3 4 5 6 7 8 9

10 ll 12 13 14 15 76 17 78 19 20 21 22 23 24

sea l n= middotshy

smeas

28 TT

30

0 46 087 046 0 72 099 l 28 088 l 66 l 25 l 04 l 58 l 93 2 17 l 32 078 0 70 088 l 23 l 37 l42 087 l l 3 066 065

n=l 10 sd=0 44 sv=040

s seal for p n=s=lOrnn ac cording to s = 70mm

(mm)

37 32

5 l 0 51 ll 8 l18 64 064

13 0 l30 85 0 85

13 3 l 33 83 0 83

184 l84 ll6 l l 6 105 l05 137 l 37 21 3 2 12 19 4 l94 107 l06 l l 3 l l 3 84 084

92 092 l 0 9 l09 128 l28 83 083

l 0 3 l03 88 088 79 0 79

n=1 73 sd=025 sv=027

s for p according to s = 20mm

(mm)

33

10 4 184 102 18 6 15 6 200 14 9 276 209 18 4 219 292 274 185 17 9 12 9 -

169 194 219 172 200 143 15 0

seal n=s=20rnn

34

052 092 051 093 078 l00 075 l 38 l 05 092 l l 0 l46 l 37 093 090 065

-085 097 l1 0 086 l00 072 075

n=093 sd=025 sv=0 27

s for p according to s = 30rnn

(mm)

35

142 223 14 l 22 3 198 249 142 34 5 290 249 274 345 33 l 243 22 6 168 -

24 7 26 6 293 24 3 279 187 213

seal n=s=30rnn

36

047 0 74 047 0 74 066 083 047 l 15 0 97 083 091 l 15 l10 0 81 075 056 -

082 089 098 081 093 062 0 71

n=o80 sd=020 _ sv=0 25 N

IO

APPENDIXES

APPENDIX 1 1 1

Pi le No 1 Length 13 m D 10 m

Areas of influence

-

qe

(MPa)

1 fp

___9c_ f

(MPR) zyen

(MPf) qcp (MPa)

Soil type

22 20 18 16 14 1 2

l 2 (m)

10

1 0 08 06

16 15 16

026 027 026

42 41 42 Sand

04 14 U28 39 02 14 028 39 41

02 16 0 26 42 04 16 026 42 06 16 026 42 08 14 028 39 Sand 1 0 13 030 39 12 15 027 4 1 38 14 13 030 39 16 12 032 38 18 12 032 38

40 20 10 036 36 22 10 036 36 24 9 U39 35 2 6 8 043 34 28 10 036 36 30 10 036 36 3 2 10 036 36 34 10 0 36 36 36 11 0 34 37 38 11 034 37

l 1 (m)

40

42 44

11 0 34 37 15 1

46 48 50 52 54 56 58 60 62 64 66 68 70 7 2 74 76 78 8 0

APPENDIX 112

Pile No 2

to little depth of sounding

q~ = middle values for 11 = 2 Op

q~ = 145 MAa (Francke Garbrecht 1977 Tab 2 p 50) (Fi g No 2)

for sand

qcp = 0275middot145 = 40 MPa q~p =V ~~s) middot 40 = 097middot40 = 39 MPa

Pile No 4

q~ = 120 MPa sand (Fig No 4)

q = 0 315middot12 = 3 8 MPa q bull 38 = 086middot38 = 33 MPa=V Jmiddot54

1

cp middot bull cp

Pile No 12

qg = 155 MPa sand (Fig No 13)

qcp = 026middot155 = 4 03 MPa

Pile No 13

q~ = 200 MPa sand (Fig No 14)

q = 0 23middot20 = 46 MPacp

APPENDIX 113

PileNo3 Length 14 m D 15 m

Areas of influence

-

qe

(MPa)

1 Tp

----9cf

(t-1Pf) r~

(MPf) qcp (MPa)

Soil type

22 2D 18 16 17 025 43 14 17 II II

L 2 17 II II

12 (m)

16 10 08 06

17 17 17

o

II

II

II

II

Sand 04 17 II II

02 19 024 46 b9

02 19 024 46 04 17 025 43 06 15 027 41 08 13 030 48 1 0 12 032 38 12 11 033 36 14 13 0 30 39 16 14 028 39 18 12 032 38 40 20 16 026 42 2 2 16 026 42 24 11 033 36 26 11 033 36

60 28 30

10 10

036 036

36 36

Sand

32 10 036 36 34 12 032 3 8 3 6 12 032 38 38 12 032 38

1 1 (m)

40

4 2 4 4

13

14 16

030

028 026

39

39 42

46 13 030 39 48 12 032 38 50 14 028 39 52 10 036 36 54 13 030 39 56 14 028 39 58 15 027 41 60 15 027 ~-1 236 62 64 66 68 70 72 74 76 7 8 80

APPENDIX 114

Pi l e No 5 Length 6 0m D 11 m Dp 11 m

Area s of i nfluence

-

qc

(MPa)

1 Tp

-3Lf

( MPf) l ~

(MP~) qcp (MPa)

Soil type

2 2 2 0 18 1 6 14 1 2 155 U i1 33

l 2 (m)

1 2 10 08 06

15 14 12

022 023 0 27

3 3 32 32

Fine sand

+ silt

04 125 026 33 02 16 0 21 34 39

02 16 021 34 04 13 025 33 06 08 10

15 5 17 20

022 0 20 018

34 34 36

35 Fi ne sand

1 2 20 0 18 36 14 20 018 36 + s ilt 16 20 0 18 36 18 165 020 32 20 165 0 20 32 22 17 0 20 34 24 26 2 8 30 32 3 36 38 4 0

19 21 5 21 5 21 5 20 19 5 19 5 20 215

01 9 ---

018 018 0 18 0 18 -

3 6 40 40 40 36 35 3 5 36 4 0

l 1 (m) 4 2

44 20 19

018 01 9

36 3 6 157

46 48 50 5 2 54 56 58 6 0 62 64 66 68 70 7 2 74 76 7 8 8 0

APPENDIX 1 15

Pi le No 6 Lengt h6 0 m D 11 m

Areas of qc 1 __9_c_ qcp Soil typei nfluence fp f 1 yen (MPa) (MPf ) (MPf) (MPa)

-2 2 20 18 16 t 4---0 14 75 038 29 L2 20 018 36 Fi ne sand

1ti 10 30 40 + s i lt12 08 19 0 19 36(m) 06 17 020 34 04 14 023 32 02 9 034 31 56

02 6 043 26 04 12 026 3 1 06 17 020 34 08 11 028 3 1 1 0 14 023 32 35 1 2 17 020 34 Fi ne sand14 19 019 35 16 20 018 36 + silt18 18 0 19 34 20 14 023 32

46 22 12 026 31 24 12 026 31 26 15 022 33 28 18 019 34 30 20 018 36 3 20 0 18 36 34 20 018 36 3G 20 018 36 38 20 018 36 4 0 20 018 36

l 1 42 22 40

(m) 44 22 40 46 L2 4 0 158 48 50 52 54 56 q =V ~ - 3 b =0 99middot35 = 35 MPp cp 53 58 6 0 62 64 66 68 70 72 74 76 78 80

APPENDIX 116

Pi leNo7 Length 60 m 0 15 m

Areas of influence

-

qe

(MPa)

1 Tp ~

(MPg) r~

(MPf) qcp (MPa)

Soil type

22 20 18 16 9 U33 30 14 10 031 31 12 135 024 32

l 2 (m)

16 10 08 06 04 02

13 12 6

10 175

025 026 043 0 31 020

33 31 26 3 1 35 50

Fine sand

+ silt

02 04 06

17 10 115

0 20 0 31 027

34 31 3 1

08 10

145 185

023 019

33 35 3 5

1 2 14

20 19

018 0 19

36 36 Fine sand

l 1 (m)

60

16 18 20 22 24 26 28 30 3 2 34 36 38 40

42 44 46 48 50 52 54 56 58 6 0

185 125 125 165 17 19 21 215 205 20 21 20 20

24 22 20 215 22 22 21 19 18 22

0 19 026 0 26 020 020 019 --

018 018 -

018 01 8 --

018 ----

0 19 0 19

35 33 33 33 34 36 40 40 37 36 40 36 36

40 40 36 40 40 40 40 36 34 40 219

+ silt

62 64 66 68 70 72 74 76 78 80

APPENDIX 117

Pile No 8 Length60 m D 15 m Dp 2 1 m

Areas of influence

-

qe

(MPa)

1 r +

(MPg) r~

(MPf) qcp (MPa)

Soil type

22 18 019 34 20 16 021 34 18 125 026 3 3 16 115 027 31 14 11 028 3 1 12 11 028 3 1

l 2 (m)

10 08 06

105 11 145

D29 028 023

30 31 33

Fine sand

+ silt

04 18 0 19 34 02 18 019 34 71

02 15 022 33 04 11 0 28 31 06 13 0 25 33 08 20 0 18 36 10 15 022 33 12 13 025 33 14 175 020 35 16 18 20 22

20 21 20 15

018 -

018 0 22

36 40 36 33

35 Fine sand

+ s i lt

24 26 28 30 3 =

13 16 175 19 20 20

025 021 020 0 18 018 018

33 34 3 5 34 36 36

36 38 4 0

20 20 21

018 0 18 -

36 36 40

11 (m)

4 2 4 4 4 6 48 50 5 2 5 4 56 5 8 60 6 2 6 4

20 20 21 22 21 20 19 175 19 20 25 28

018 0 18 ---

01 8 01 9 0 20 0 19 018

36 36 40 40 40 36 36 35 36 36 40 4 0 23 0

6 6 68 70 72 74 76 78

qcp 1f5=v 2T middot35 = b85 middot35 = 30 MPa

80

APPENDIX 118

Pi le No 9 Le ngth 90 m D 11 m m

Areas of 1Qe -9c qcp Soil typeinfluence Tp f ryen (MPa) (MPg) (MPf) (MPa)

-

2 2 2 0 18 16 14 lc 11 034 37

12 10 10 036 36 12 08 9 039 35 Medium(m) 06 10 036 36 sand04 10 036 36

02 11 034 37 43

02 12 032 38 04 12 0 32 38 06 12 0 32 38 08 13 030 39 10 13 030 39 12 13 030 39 14 14 028 39 16 14 028 39

44 18 14 028 39 20 14 028 39 39 Med ium 22 15 027 4 1 sand 24 16 026 4 2 26 17 025 43 28 13 0 30 39 3 0 9 039 35 32 13 030 39 34 16 026 42 36 17 025 43 38 17 025 43 40 19 024 4 6

11 42 17 025 43

(m) 44 15 027 41 17 7 46 48 50 52 54 56 58 60 6 2 64 66 68 7 0 7 2 74 76 78 80

APPENDIX 119

Pi 1 e No 10 Length 95m D 11 m m

Areas of influence

-

qe

(MPa)

1 fp

-9c f

(t-1Pf) [~

(MPf)

qcp

(MPa)

Soil type

22 20 1 8 16 14 L 2 13 Uti 3J

l 2 (m) 12

10 08 06 04

18 18 28 19

0 19 019 0 19 019

34 34 34 34

Fine

sand

02 21 40 42

02 20 4 0 04 17 020 34 06 21 40 0 8 10

23 22

40 40 Fine

1 2 14 16 18

21 20 16 15

0 21 022

4 0 4 0 34 33

sand

44

20 2 2 24 26 28 30 32 34 36 38 40

14 14 13 11 11 14 17 14 12 13 12

023 023 025 0 28 028 023 020 023 027 025 027

32 32 33 31 31 32 34 3 2 32 3 3 32

l 1 (m) 42

44 12 13

0 27 025

32 33 15 2

46 48 50 5 2 5 4 56 5 8 6 0 6 2 6 4 66 6 8 70 72 74 76 78 80

APPENDIX 11 10

Pi 1 e No 11 Lengt h 9 0m D 11 m m

Area s of influence

-

Qe

(MPa)

1 fp

__k_ f

(MP~) ryen

(MPf) qcp (MPa)

Soi l type

22 20 18 16 14 12 lb 55

12 (m)

1 0 08 06 04

23 19 20 21

024 023

55 46 46 55

Medium

sand

02 22 55 62

0 2 04

24 25

55 55

06 08

27 28

55 55

10 12 14

28 28 28

55 55 55 49

16 26 55

44

18 20 22 24 26 28 30 3 34 36 38 40

24 19 18 17 22 21 17 11 13 12 11 9

024 024 025

025 0 34 030 032 034 039

55 46 43 43 55 55 4 3 37 39 38 3 7 35

1 1 (m) 42

Ll Ll

12 16

032 0 26

38 4 2 209

46 48 50 5 2 54 56 58 60 62 64 66 68 70 72 74 76 78 80

APPENDIX 141

0 2 3 4 p [MPa)

PILES WITH 40 ENLARGED BASES

80

120

160 C----0

200 IN4014 s (1977)

[mm]

P s calculateds P p(s)(mm) (MPa)(mmMPa)(MPa) ()

10 035 286 046 20 065 308 080 30 090 333 104

150 24 625 214 200 229

ai = 2605 (mmMPa) b1 = 0243 1MPa V 1000 bi = 1b = 411 MPa

_ 411 MP Vi - 24 a

() assumed

average Dp = 18 m

qcp = 24 MPa ai = 184 (mmMPa) (28-4middot24)

Vi = 1 2 (3-18)

qcpmiddotvi = 29 MPa

40

80

120

160

200 s

[mm]

DIN 4014 Part 2 ( 1977)

0 1 2 3 4 5 p [MPal

PILES WITHOUT ENLARGED BASES

C----0

DIN 4014 ( 1977

s calculated s p -p- p(s)

(mm) (MPa)mmMPa)(MPa) ()

10 05 20 062 20 08 25 113 30 11 27 3 155

150 34 441 385 200 424

ai = 2085 (mmMPa) bi= 0 157 1MPa V = 0970

bi= 1s = 637 MPa

Vi 187=3f =

() assumed

average Dp = 12 m

qcp = 34 MPa a1 = 144 (mmMPa)

Vi = 18

qcpmiddotvi = 61 MPa

Range qc = 10-15 MPa

(28-4bull34)

(3-12)

1 1 q = r -r- = 036 for qc = 10 MPaCp p Ip+= 027 for qc = 15 MPa

qcp = 36-405 MPa P

APPENDIX 142

Touma F and Reese L (1974)

Soil parameters pile parameters and base resistance see fig bullbullbullbull

TAB

Measured load settlement curves

Settlement s

mm

10 20 30 40 50 60 80

100 120

a 1 (mmMPa) bi(MPa) V

N3u

q =04 -N30 (cMPa) ()

1 qCp=--rpbullqC

Pile No 21 (US 59) 22 (HH) 23 (G1) 24 (BB) Notep Sp p S p p S p f Sp MPa mmMPa MPa mmMPa MPa mmMPa Mla mmMPa

131 76 169 59 075 133 100 100 269 74 325 62 131 153 1 94 103 381 79 456 66 165 182 273 11 0 488 82 581 69 1 90 21 1 349 115 581 86 694 72 2 15 233 424 118 675 89 800 75 229 262 813 98 245 327 884 113 925 130

64 56 100 95 U049 0032 0276 0048 0944 0998 0996 0981

80 gt100 30 60 32 gt 40 12 24 ()

Bergdahl (1982)

gt5 5 gt55 32 4 3

(0 18middot32) (018middot40) (0265middot12) (018middot24)

CONTACT PRESSURE p [ MPa]

0 2 4 6 8 100 N-------r---------------(us 59) ( HH) ( BBi

E E SQ-------lt+-----+--------------lt

VI

1shyz UJ

~ 100 1---------i----+----+----+------l------I -J I shyI shyUJ V)

so~----~--~-- ~--~

APPENDIX 143

us 59 fYJo 0 50 00

ff-t r-=-~c~=~-r~c_---_---l-~e-J-C~ 0 ------

CLAY

FINE SANO

J lD- 760 mm

f5m~--~--~

Pile US 59 and results from penetration test

HH IV_l() so 100 r=-=-==-==-r-~--=-=- 0 0 II 15- flf ~ II~ Ibull If t f

CLAY SAND

Sm

)

= -middotl lo - GtOmm

~ JI

SILTY SANO tOm

Pile HH and results from penetration t est

APPENDIX 14 4

61 NJO 50 --------00

11 1 =f J - 1 -- 0

CLAYSILT

E ~ Sm ltrj

SILTY SAND

q I lDmiddot 910 mrn tom

I) t bull

Pile G1 and results from penetration test

88

0 50 too ~1-e I q 111bull - Q

CLAY

SIL TY SAND 5m

]

l lDmiddot760mrn

Om

Pile BB and results from penetration test

APPENDIX 145

Klosinski B (1977)

Loading tests 50 bored piles 09-125 m diameter average Op= 11 m On t he sett l ement of rigid pla te the settlement of t he pi le base is given by

PmiddotOSp = T-K b

where Mb - equivalent deformability modu lus

1) Sand and sandy gravel of medium density

Mb = 25-50 MPa

According to Bergdahl (1979) medium sand is between

q(l) 5 MPa (Io=035)c2)

ql = 10 MPa (Io=065)C

from fig 117 rp1 = 055 for qc = 5 MPa 1Tp = 036 for qc = 10 MPa

q(l)= 0 55middot5 = 2 75 MPacp bull

q(2= 0 36middot10 = 360 MPacp

allowable p~ 1)= ~p = yen = 092 MPa and p~2) = ~ = 120 MPa

settlement of the pi l e base

5(1)= o 92 middot 1bull1 = O 0135 m = 13 5 mm p 325 middot middot

5( 2)= 1bull2bull1middot 1 = O 0088 m = 8 8 m p 350 bull bull

1) _ s _ 135 _ 14 7 (mm) a(2) _ 88 _ a 1 - p - o---92 - bull NPa bull 1 - T-7 - 733 (Wa)

2) Loose sand lo= 030-040

Mb = 12- 25 MPa

q~l) = 44 MPa q~2)= 58 MPa

1Tp = 058 and 052

q(3) = 0 58middot4 4 = 2 55 MPa middot q( 4) = 0 52middot5 8 = 3 02 MPa cp bull middot bull cp bull middot middot

allowable p~ 3)= 4i = 085 MPa p~4)= yenl = 101 MPa

s(3)_ 085-11 = 26 mmmiddot s(4)_ 101middot11 = 148 mm p - 312 p - 3 25

STATENS GEOTEKNISKA INSTITUT Swedish Geotechnical Institute S-581 01 Linkoping Tel 01311 51 00

Serien Rapport ersatter vara tidigare serier Proceedings (27 nr) Sartryck och Preliminara rapporter (60 nr) samt Meddelanden (10 nr)

The series Report supersedes the previous series Proceedings (27 Nos) Reprints and Preliminary Reports (60 Nos) and Meddelanden (10 Nos)

RAPPORT REPORT Pris kr

No Ar (Swcrs)

1 Grundvattensankning till foljd av 1977 50shytunnelsprangning P Ahlberg T Lundgren

2 Pahangskrafter pa langa betongpalar 1977 50shyL Bjerin

3 Methods for reducing undrained 1977 30shyshear strength of soft clay K V Helenelund

4 Basic behaviour of Scandinavian soft 1977 40shyclays R Larsson

5 Snabba odometerforsok 1978 25 shyR Karlsson L Viberg

6 Skredriskbedomningar med hjalp av 1978 40shyelektromagnetisk faltstyrkematning - provning av ny metod J Ingands

7 Forebyggande av sattningar i 1979 40shyledningsgravar - en forstudie U Bergdahl R Fogelstrom K - G Larsson P Liljekvist

8 Grundlaggningskostnadernas fordelning 1979 25 shyB Carlsson

9 Horisontalarmerade fyllningar pa los 1981 50 shyjord J Belfrage

RAPPORTREPORT

No

10 Tuveskredet 1977-11-30 Inlagg om skredets orsaker

11a Tuveskredet geoteknik

l1b Tuveskredet geologi

11 c Tuveskredet hydrogeologi

12 Drained behaviour of Swedish clays

R Larsson

13 Long term consolidation beneath the test fills at Vasby Sweden YCE Chang

14 Bentonittatning mot lakvatten T Lundgren L Karlqvist U Qvarfort

15 Kartering och klassificering av leromradens stabilitetsforutshysattningar L Viberg

16 Geotekniska faltundersokningar Metoder - Erfarenheter - FoU-behov E Ottosson (red)

17 Symposium on Slopes on Soft Clays

18 The Landslide at Tuve November 30 1 977 R Larsson M Jansson

19 Slantstabilitetsberakningar i lera Skall man anvanda total spanningsanalys effektivspanningsanalys eller kombinerad analys R Larsson

20 Portrycksvariationer i leror i Gateshyborgsregionen J Berntson

21 Tekniska egenskaper hos restproshydukter fran kolforbranning shyen laboratoriestudie B Moller G Nilson

Ar

1981

1981

1981

1981

1981

1982

1982

1982

1983

1982

1983

1983

1983

Pris kr (Swcrs)

50shy

50shy

40shy

50shy

100shy

60shy

80shy

60shy

190shy

75shy

60shy

150shy

65shy

RAPPORTREPORT

No Ar Pri s kr (Sw crs)

22 Bestamning av jordegenskaper med sondering - en litteraturstudie U Bergdahl U Eriksson

1983 75 shy

23 Geobildtolkn ing L Vi berg

av grova moraner 1984 70 -

24 Radon i jord -Exhal ation- vatten kvot -Arstidsvariationer - Permeabilitet A Lindmar k B Rosen

1984 75 shy

25 Geoteknisk terrangklassificering for fysisk planering L Viber g

1984 120shy

26 Large diameter bored piles in nonshycohesive soils Determination of the bearing capacity and settlement from results of static penetration tests (CPT) and standard penetration test (SPT) K Gwizdala

1984 85shy

ISSN 0348-0755

AS OSTGOTATRYCK UltPG 19amp4

3

P R E F A C E

The work was carried out at the Swedish Geotechnical

Institute in Linkoping during my stay in Sweden as a

scholar of the Swedish Institute

I wish to express my thanks to the Swedish Institute

for the possibility to stay and to research in Sweden

In my work and during the whole stay I have received

every possible support help and encouragement from

the Head of the Swedish Geotechnical Institute Dr Jan

Hartlen For this and for the possibility of studying

at the Swedish Geotechnical Institute I am extremely

grateful and wish to express my very best thanks

Special thanks are due to Dr Bo Berggren and Civing

Per-Evert Bengtsson for the constant and great help

given to me in the daily work at the Institute

I would like to thank all members of the staff at the

Swedish Geotechnical Institute who have helped me

during my stay in Sweden

AcKnowledgement is extended to Mrs Eva Dyrenas who typed

the manuscript a nd to Mrs Rutgerd Abrink and Mrs Irene

Aberg who made the drawings

Linkoping January 1983

Kazimierz Gwizdala

Institute of Hydro-tngineering

of the Gdansk Technical University

Poland

5

CONTENTS

Page

7SUMMARY

NOTATIONS AND SYMBOLS 9

1 LARGE DIAMETER BORED PILES IN NON-COHESIVE SOILS 11

11 Determination of bearing capacity of bored piles from results of Cone Penetration Test (CPT) 11

12 Determination of bearing capacity of the large diameter bored piles from results of the Standard Penetration Tests (SPT) 18

13 Allowable load of large diameter bored piles 22

14 Determination of settlement of large diameter bored piles based on static cone penetration tests CPT 27

15 Initial slope of pile point resistance shysettlement

REFERENCES

FIGURES

TABLES

APPENDIXES

curve 37

43

51

105

7

16 Summary

The work contains a study of the behaviour of l arge diameter

bored piles in non- cohesive soil The mai n attention was

paid to the determination of the bearin g capacity a nd

sett lement from results of Cone Penetration Test (CPT)

and Standard Penetration Test (SPT)

A new met hod to calculate bearing capacity on large bored

piles based on the in situ measurement is proposect taking

into account investigations made during the last years in

all the world The values based on the proposed method

are compar ed to field test results

The analysis of bearing capacity safety factors and loadshy

settlement curve allows to assume values individual safety

factors for resistance of pile point and shaft respectively

Based on a detailed investigation the pile point pressure

settlement curve and shaft resistance dependance during

loading a new method to predict the pile point pressure shy

displacement and load- settlement relationship is proposed

The initial slope of the point pressure- displacement curve

can be determined from in situ tests or laboratory test

based on the hyperbolic stress- strain parameters

9

Notations and symbols

Roman letters

a 1 Initial slope of the pile point resistance shysettlement curve

Ap Cross-sectional area of a pile

As Area of the pile shaft

CPT Static Penetration Test

D Diameter of pile shaft

Op Diameter of pile point

E Youngs modulus

fp Point resistance factor

fs Shaft resistance factor

F Universal safety factor

Fp Individual safety factor for ultimate resistance of pile point

Fs individual safety factor for ultimate resistance of pile shaft

K Dimensionless compression modulus

K At rest soil lateral stress coefficient0

Koc Lateral stress coefficient for fluid fresh concrete

Mo Constrained (oedometric) modulus

N30 Numbe r of blows for 030 m penetration in SPT

p Unit point resistance (contact pressure)

p (s) Unit point resistance versus settlement

Unit point resistance at failurePsf

Allowable unit point resistancePa

Sounding resistance

Average static cone penetrometer resistance close to tne pile point

qs Average static cone penetrometer resistance C along the pile

10

Ultimate point resistance of large diameter piles based on static sounding results

Ultimate skin friction resistance of large diameter piles based on static sounding results

Qa Allowable pile load

Qcp Point load of the static cone penetrometer

Qct Total load of the static cone penetrometer

Qpa Allowable point resistance of the pile

Qpu Ultimate point resistance of a pile

0 sa Allowable skin resistance of the pile

0su Ultimate bearing resistance of a pile

Qu Ultimate bearing resistance of a pile

s Settlement

sd Standard deviation

ss u Ultimate settlement for pile shaft

sv Standard variation

SPT Standard Penetration Test

t Unit shaft resistance

Ultimate unit shaft resistance

Circumference of the pile shaft

Circumference of the static penetrometer shaft

Greek letters

a Constant

B Constant

A Coefficient

microd Depth factor

v Poissonbulls ratio

v 1 Correction factor for hyperbola point resistance shysettlemen~ relationship

n Correlation coefficient

ahc Radial (horizontal stress in the concrete

ohs Radial (horizontal) stress in the soil

Ovc Vertical stress in the concrete

Ovs Vertical stress in the soil

11

1 LARGE DIAMETER BORED PILES IN NON-COHESIVE SOILS

11 peterminati on of bearing capacity of bored piles

from results of Cone Penetration Test (CPTl

The methods published in available literature up to 1976

were compiled by D Rollberg (1976 1977) It contains

totally 25 methods

- 22 use the results of static soundings (CPT)

3 use the results of standard soundings (SPT)

The failure load Qu of the pile is evaluated as the sum

of the pile point resistance Q and the pile skin reshypu sistance Qsu

(111)

Pile point resistance Q based on static soundina reshypu shysults can be expressed as

1- bull qP A ( 1 1 2)f C p

p

where

fp = point resistance factor

qP mean sounding resistance of static cone C

penetrometer in the area of the pile point

A cross-sectional area of the pilep

The pile skin resistance is expressed as

1 s -- bullq bullU middot Lih (113) fS C p

where

fs = shaft friction factor

sqc mean sounding resistance along the depth h

and skin surface area U middotLih p

1 2

The methods differ in

- the calculation of qPC

(074 to 40) Db below the pile base (Fig 11 1)

(10 to 80) Db above the pile base (Fig 1 11)

- the evaluation of the point resistance factor usually

values off gt 10 are used p

- the calculation of qsC

- the evaluation of the shaft friction factor

fs = 50-300 is applied

In Table 111 methods for determination of the bearing

capacity of bored piles are listed Rollberg 1977 The

point load the skin friction load and the ultimate total

load are evaluated for bored piles (shaft diameter D ~

03-090 m) from static sounding results in non-cohesive

soil

Calculation results based on static sounding measurements

are shown in Table 112 for pile point pile shaft and

total pile load respectively

The table shows that

- a ll methods overestimate the ultimate point resistance

- the best correlation for ultimate point resistance is

obtained with the Soviet method Trofimenkov 1974

n1 = 114

- there a re only five methods for evaluation of the ultimate

skin resistance

- all methods with exception of the Soviet norm Trofimenkov

1969 method overestimate the ultimate shaft resistance

- the Norwegian method Senneset 1974 gives the best

correlation for the ultimate shaft resistance =119n 2

- with exception of the Soviet methods the total ultimate

load is on the average overestimated by all methods

1 3

Taking into account the above results the Soviet and

the Norwegi an methods are presented below

The Soviet method JG TrofimenkgtV 1974

1 qP bullA + qsbullA (114a)Qu = Qpu+Qsu fp C p f C s s

where

11 40 DP 12 1 0 D p h+l1 qp r dhqcC l1+l2 h-12

0ct-0ceqs C u middoth s

f(qp) -+ see Fig 1 bull 1 2 fp C

f f ( qcs) -+ see Fig 1 1 3 s

The Norwegian methon K Senneset 1974

1 p A 1 s bullA ( 1 bull 1 bull 4b)-f-middotqcmiddot p + -f-q s p S C

where

11 30 D p

12 50 D p h+l11 f dhqP l1+l 2 qc

C h-12 h s 1

= f dhqc qch 0

f 20 p

f = f (q~ ) + see Fig 114 s

Note a ) The total skin friction -f-middotq~ is assumed to be

no less than 10 kPa even~ith a very little

cone penetrometer resistance

b) The poin t resistance -f-middotq~ is assumed to be

maximum 10 MPa even iJl case of very dense sand

14

It must be underlined that the best correlation for

the pile point is obtained with the Soviet method

101 for 94 driven piles in non-cohesive soil

- 172 114 for 46 bored piles in non-cohesive soil

Trofimenkov 19731974 showed the results of comparison

of the ultimate loads determined by formula (114a)

Q~ and by pile load tests Q~ for 153 driven friction

piles at the 57 various sites see Fig 115

In Germany a lot of investigations were made before

establishing the DIN 4014 part 2 (1977) on large diameter

piles

In Table 113 and 114 the results from these investigashy

tions are generalized

The data in the tables were obtained from 35 test loadings

(4 of which were published by Franke 1973 The diameter

of the piles was from 08 to 25 m the length from 5 m

to 34 m and the cone penetrometer resistance varied from

10 MPa to 15 MPa

Bustamente and Gianeselli 1982 proposed a prediction

of the pile bearing capacity by means of the static

penetrometer Their proposal was based on the intershy

pretation of a series of 197 full scale static loading

tests In this paper the results from tests of 55 bored

piles are chosen The diameter of the piles varies from

042 m to 150 m and the length from 6 m to 44 m The

equivalent cone resistance was determined as showed in

Fig 116 The authors have noticed that the point

resistance factor f depends on the nature of the soil p and its compactness but also on the different pile placeshy

ment techniques (see Tab 115)

Piles of category group I

- Plain bored piles - Cased bored piles

- Mud bored piles - Hollow auger bored piles

- Type I micropiles - Piers (grouted under low - Barrettespressure)

15

In Tab 116 values of the shaft resistance factor

fs are given

Category IA

- Plain bored piles - Mud bored piles

- Hollow auger bored piles - Cast screwed piles

- Type I micropiles - Piers

- Barrettes

Category IB

- Cased bored piles - Driven cast piles (concrete or metal shaft)

Category IIA

- Driven precast piles - Prestressed tubular piles

- Jacked concrete piles

Category IIB

- Driven metal piles - Jacked metal piles

It can be noted that the values in Tab 116 are in

genera l of the same range for the driven and the

bored piles

According to the Polish Specification 1979 the point

and shaft resistance factor are given by

1-f- = kmiddota

p p

where

ap 035 for sand

k coefficent of unhomogeneity k qcp min

qcp

= 0065 for sandfrac12

1

16

Similar results can be observed in Fig 116a and

Fig 116b It was showed by Kerisel (1965) and Franke

(1973) that the harder soil the more loosening at

excavation and thus relatively smaller bearing capacity

Taking into account the Franke diagrams we will have

for D = 125mand settlements= 2 cm p

Cone resistance qc (MPa) 1 5 50 1 0 15 22

qc p for s=2 cm 3 6 8 12 14

(see Fia 1 1 6b )

taking safety factor for pile base F = 3 the point resis~ance

33-10 ~-05

380375 lo 212 bull lo 2114 bull

factors- shy are p

The above anal ysis shows that it is possible to determine

ultimate point and shaft resistance of bored piles from

static cone sounding But it is very important and must

be taken into account type of pile kind of soil and

degree of compaction

Bel ow calculation method for large diameter bored piles

based on the static cone penetrometer resistance (CPT)

is proposed Equation (117) can be used directly for

the base diameter D lt 15 m For larger diameters p shyD gt 15 m the values should be multiplied by the

p ff t ITscoe icen Y~ as pi

( 1 1 5 )

where

qcp = according to equation (117)

D = diameter of the pile base D gt 15 mpi pi

17

This value q~p should be put into equation 116

The value qc s in equation 118 is independent on the

pile diameter

Proposed calculation method

(116)

where)

1 1 40 ~ 11 3 for piles wit h a nd enlarged bases12 10 12 = ~

h+h

q (h) dh (117)qcp l1+l2 f -f- Ch-li p

h 1 f 1

qcs = o -f- qc (h) dh (118)h s

1 -f- = f(q kind of soil ) -+- see Fig 11 7 and Tab 1 1 7

C p

f (q kind of soil ) -+- see Fig 1 1 8 and Tab 1 1 8 fs C

Note

a) the point resistance q for qc gt 20 MPa is assumed cp to be maximum as

- Gravel 70 MPa - Coarse sand medium sand 55 MPa - Fine sand s il ty sand 40 MPa

b ) The shaft resistance qcs for qc gt 20 MPa is assumed to

be maximum as

- Gravel 110 kPa - Coarse sand medium sand 90 kPa - Fine sand s ilty sand 70 kPa

These proposed values are compared with results by

Bustamente (1 982) and the Polish Specification (1978)

Fig 11 9 and F i g 1110 A similar comparison for DIN

4014 1 977 is shown in Fig 1111 and Fig 1112

) In this paper was used the above values 1 1 and l z But it can be used in practice 11 =30 D and h =2Dp respectively The results shall be very simi l ar to the above onPs

18

The proposed method has been examined with field test

results This is shown in Fig 1113 to Fig 1128

and Appendix 1 11 to 1110 and Tab 119

The comparison shows that the value of q in equationcp (117) corresponds to the settlement -10 of the base

diameter (s=010 DP) see Fig 1113 and Tab 119

(average sDp=88 and standard deviation sd=3)

Later in this paper the allowable load and dependence of

the load versus settlement will be determined

12 Determination of bearing capacity of the large

diameter bored piles from results of the Standard

Penetration Tests (SPT)

There are little published on pile tests coupled with

results from Standard Penetration Test (SPT) Among the

authors who have published material in the subject are

- Meyerhof 1956 1976

- Senneset 1974 (Norwegian method)

- Rodin Corbett Sherwood Thorburn 1974 (English method)

- Polish Specification 1975

- Weltman Healy 197 8

- Reese 1978

- Japanese Society 1981

- Decourt 1978 1982

The Norwegian method is valid o nly for concrete andor

wooden piles the English method only for gravel It is

very important to underline that the Norwegian a nd the

English methods use of the SPT resul ts intermediate by

the static cone penetrometer resistance (q ) as well C

Below methods are presented that are using the results of

SPT directly Meyerhof s method in total can also be used

on driven piles in non-cohesive soil Although we could

have found some proposes for bored piles Eqs (121 and

122) see Fig 121 and Fig 1 22 as well

19

Ultimate point resistance (psf)

12 N 3 omiddotH lt 120 N 30

(kPa) (1 2 1)Psf D

where

N30 the average standard penetration resistance

in blows per 03 m

H depth in bearing stratum

Ultimate skin friction tu

for bored piles tu N~ o (kPa) (1 22a)

for driven pil estu 2N30 (kPa) (1 2 2b)

where

N30 the average standard penetration resistance

in blows per 03 m within embedded length

of pile

Weltman and Healy (1978) taking into account Meherhofs

proposition for driven piles have introduced two coefshy

ficents for bored piles in gravels (glacial soil) Equ

123 and Fig 1 23

t = a 2 N30 (kPa ) (1 2 3)U 1

where

ai a 1 for impermeable gravels see Fig 123a

ai a 2 for permeable gravels see Fig 123b

The Polish Specification ( Specification for Design and

Construction of Large Diameter Bored Piles in Bridges

1975 Ministry of Transport) gives the ultimat e point

resistance in dependence of N30 base diameter and depth

see Tab 12 1 The Tab 121 contains values for coarse

and medium sand For other non-cohesive soils the following

coefficients are proposed

p f = S bull p f (medium sand) ( 1 2 4)S 1 S

20

where

S1 1 20 for grave lSi

f 132 080 for fine sand

13 3 070 for silty sand13i

In Fig 124 values of psf are shown for h = 10 m DP

06 m DP= 15 m and h = 20 m DP= 06 m DP 1 5 m

respectively

A few of the instrumented piles were tested and analyzed

by Wright and Reese (1979) The ultimate point and shaft

resistance in the fine and silty sand as a function of

blow count from SPT is shown in Fig 125 Results from

two additional tests reported by Koizumi (1971) are also

introduced in the figure The ultimate point resistance

is assumed to exist at a settlement equal to 5 of the

base diameter

Methods of prediction of the bearing capacity of piles

based exclusively on N30 values were presented by Decourt

1982 Below a proposition for high capacity piles excavated

and cast under bentoni te is presented

The ultimate skin friction is determined by the expression

(see Fig 126)

t = 33 N30 + 1 0 (kPa) ( 1 bull 2 5 ) u

where

N30 average value of N30 along the shaft

- for N30 lt 3 must be taken as = 3N30 - for N3o gt 5 0 must be taken as NJo= 50

The allowable point resistance can be obtained in a n

expedite way as

Psa = 33 N30 (kPa) (1 2 6)

where

N30 = average of Nat point level one metre above

and one metre below

Psa allowable point resistance

21

Decourt proposed a safety factor for the point of F = p

40 Therefore the ultimate point resistance can be

determined by the expression

(kPa) (1 2 7)

In Fig 12 7 and Fig 1 28 the above values for base

and skin friction resistance are compared respectively

Taking into account the type of soil thereis a good

correlation for ultimate point resistance The result for

ultimate skin friction is scattered but only apparently

The values for large diameter bored piles are between

the line 1a and 1b in Fig 128 Large diameter piles

have a high ultimate skin friction in relation to driven

piles (see points for bored piles in Fig 122 and DIN

4014 Part 2 1977 as well) The high values for piles

excavated and cast under bentonite have had a strong base

on the load tests (Decourt 1978 1982 and Wright and

Reese 1979)

Below the proposals are given for determination of the

values of the ultimate point resistance and the ultimate

skin friction Eqs 128 to 1214 and Fig129 1210

The ultimate point resistance

- gravel psf = 140 N30 (kPa) ( 1 bull 2 8)

for N~ 0 gt 50 blows3O cm Psf 7 MPa

- coarse sand and medium sand

(kPa) ( 1 2 9)

for N30 gt 50 blows3O cm Psf 55 MPa

- fine sand and silty sand

psf = 80 Nio (kPa ) (1210)

for N30 gt 50 blows3O cm p f = 40 MPa 5

where N3 o the average of N value near the point level as

22

h+l1

f N3o(h)dh ( 1 2 11 ) h-12

3DP see Fig 1 1 1 D

p

The ultimate skin friction for coarse sand and medium sand

tu = 1 8 N 3 o (kPa) (1212)

t (kPa) (excavated and cast (1213)u under bentonite)

where

N30= the average value of N along the shaft as h

N -

3 o = h1 f N 3 o ( h) dh ( 1 bull 2 bull 1 4 ) 0

The ultimate skin friction for N30 gt 50 blows30 cm is

assumed to be maximum as tu = 90 kPa and t = 150 kPa u

13 Allowable load of large diameter bored piles

The allowable load Qa of large diameter piles has been

expressed as

OuQa ( 1 3 1)Ft

Qa Q(s)=Qb(s) + Os(s) ( 1 3 2)

Opu + Osu (1 3 3)Qa Fp Fs

Qr lt mmiddotQf ( 1 bull 3 4)-

= universal safety factor

individual safety factor for ultimate resistance of the pile point

individual safety factor for ultimate resistance of the pile shaft

= load according to the allowable settlement

calculated load

m coefficient

calculated ultimate bearing load of the pile

23

The equations from (131) to (134) are used as

1) equation (131)

a) DIN 4014 - 1977 Ft= 2 175 15 (depending on the kind of load)

b) Polish Specification 1975 Ft = 18 16 ( -- )

1c) Trofimenkov 1974 Ft = 14307

2) equation (132)

a) DIN 4014-1977 i Q(s) = Qb(s) + Q (s) = A middotp(s) + E tAsmiddott(s)

s p 0

where Qbs) and Qs(s) are described in Fig 1423

3) equation (133)

a) Polish Specification 1974

F 25 22 depending on the kind of load p

F 1 bull 0 s

b) Wright SJ Reese LC 1979

The ultimate capacity or resistance is considered as a

random value and represented by a frequency distribution

The distribution can be described by a mean value and a

variance The distribution of the load applied to the

foundation can be described similarly The coefshy

ficients used to factor resistance and loads are called

partial safety factors Some recommended partial safety

factors for resistance under normal conditions of design

and construction are given in Tab 131 Normal control

is defined as a condition where the coefficient of variation

is less than about 035

Typical values for partial safety factors for loads are

in the range 1 to 2 depending on the type of load and

how it is applied The overall factor of safety Ft can

then be calculated from the equation

Ft = y RbullY S

24

where

YR the par tial sa f ety fac t or for resistance and

Ys the partial safety factor fo r load

The probability of fa i lur e of the foundation can be r eshy

lat ed to the factor of safety for a parti cular degree of

uncert ainty (see Tab 13 2)

c ) Tejchman Gwizdala 1979

The authors discuss adequate safety factors based on fie l d

test s by Spang (1 972) Franke (1976) Touma and Reese (1974)

Colombo (1971) Kerisel and Simons (1962) Appendirno (1973)

see Tab 1 33 Taking into account the universal safety

factor Ft= 2 0 for the tota l load settlement curves it

was estimated

i) F in the range of 111 to 237 with the average value s F = 166 and standard deviation sd = 034 s (see column 16 Tab 133)

ii) Fb in the range of 161 to 945 with the average

value Fb = 387 and standard deviation sd = 2 15

For model core d piles in laboratory conditions values of

Fs = 108 to 154 (average Fs = 132 s~ = 019) and

values of F = 280 to 5 94 (average F = 3 55 sd = 1 07)p p

see Tab 1 3 4

As a conclusion it was assumed that Fb = 40 and F 1 5 s

for l arge diameter bored piles

The investi gation has shown that for the above safety

factors settlements of piles under permissibl e loads are

10 to 20 mm There was assumed a maximum load on large

diameter piles corresponding to a settlement of 010

diameter of the piles

25

d) Bustamente Gianeselli 1 982

e) 0ecourt 1982

The safety factor is given by

F = FgmiddotFfmiddotFamiddotFw where

F 11 - skin friction g F 135 - point bearing capacity

g

Ff safety factor related to the formulation adapted

Ff= 10 for Decourts method

Fd safety factor related to excessive deformation

Fd = 10 for skin friction

As for the point Fa= 2 to 3 depending on the

pile diameter For usual cases 25 is suggested

Fw safety factor related to working load

Decourt recommends 12

Thus we will have

- for skin friction

Fs = 11bull10middot10middot12 132 - 13

- for the point

F = 135bull10bull25middot 1 2 = 405 = 40 p

4) equation (134)

a ) Polish Code 1983

Q lt mbullN r shy

where

total load coefficient (depending on the kind of load For foundation we can assume Yf = 12 )= code load

correction coeffic i ent

09 for pile foundations

m 08 for two piles

m 07 for single pile

26

N ymmiddotQu

ym material (soil) coefficient

ym 08 to 09 (Polish Code 1981)

Thus we will have

QnmiddotYf lt mmiddotym middotQu-

Yf9uFt = On m bull Ym

1 2 max = 2 14Ft 0 7 bull 0 8

1 2min = 1 48Ft 0909

The above analysis has shown different ways to determine

the allowable load The analysis is in direct connection

with mobilization of the load (versus settlement) The

dependence of total load point resistance and shaft reshy

sistance will be discussed in detail in Chapter 14

In the authors opinion taking into account the above

analysis the allowable load should be determined based

on the equation 133 ie based on individual safety

factors for ultimate point and shaft resistance Proposed

values of F and F in literature are shown in Tab 135 s p The average values are Fs = 145 and Fp = 3 38 respectively

Taking into account that the bearing capacity is determined

based on the results from sounding measurements direct from

a place near the piling without a ny indirect correlation

the allowable load of large diameter bored piles is given

by the equation (133a)

( 1 3 3a)

where F = 30 and F 13 are proposedp s

27

14 Determination of settlement of larqe diameter bored

piles based on static cone penetration tests CPT

Determination of ultimate point and skin friction resistance

based on static cone penetration tests has been discussed

in Chapter 11 above Based on the results of this calcushy

lation and on Chapter 13 we can establish an approximate

relation between point resistance shaft resistance and

total load on one hand and settlement on the other However

the approximation gives a wide scatter especially for base

resistance as can be observed in Fig 141 to Fig 144

Only the first part of the point resistance - settlement

curves are in good agreement with measured values It can

be observed in Fig 145 that the average correlation

coefficient n = 098 and standard deviation sd= 029

This way of calculation can be used only for rough calcushy

lation (see Chapter 13)

In Chapter 11 also measured point resistance - settlement

curves were shown The base resistance increases gradually

with increasing pressure and settlement Below the cur7

vature of the point resistance - settl ement curve will be

examined It is assumed that this curve can be described

as a part of the hyperbola curve Thus if the ratio of

the measured settlement (s ) to the point resistance (p)

is plotted against the measured settlement the result

will fall closely to a straight line with the equation

( 1 4 1)

where a 1 and b 1 are constants (see Fig 1 46a and Fig

14 6b)

Then the point resistance - settlement realtionship can be

expressed as a hyperbola

s p = ( 1 bull 4 2)

The constant is the initial s lope of the point resistanceshya 1

settlement curve ie a 1 = t~a The inverse of the constant

28

b 1 is the vertical tangent (asymptote) to the curve 1ie for s = 00

bf= ~ If the ultimate point reshy1

sistance psf is equal to bf (psf=bf) the whole point

resistance settlement curve will be a hyperbola type

Now the Eq 1 4 2 can be written as

s s ( 1 4 3)a) p s or b) p = a+__sect_a1 + 1 Psfbf

If the ultimate point resistance is smaller than bf only

a part of the hyperbola curve ought to be considered

Further the Eq 14 3 will be written as

p ( 1 4 4)

where

poundf_ correction factor for hyperbola point Psf resistance-settlement relationship

Taking into account the discussion in Chapter 11 the

ultimate point resistance psf = qcp based on the CPT measurements

Therefore the relationship between the point resistance

the sett l ement and the CPT result can be expressed as

s p (1 4 5)s

The correction coefficient v 1 will cause a change of the

position of the vertical asymptote bf in r elation to the

ultimate point resistance q bull This means that we take cp into account a different part of the hyperbola curve for

the description of the point resistance-settlement relationshy

ship

Now if we want to use the equation (145) in practice

we must determine the constant and the coefficienta 1 v 1 (assumed that q is determined ear l ier Chapter 11)cp

29

The constant a 1 and t h e coefficient Vi have been detershy

mined based on fi e ld tests according to pi l es No 1 - 20

see Tab 14 1 and Tab 1 1 9 as wel l The values of

a 1 versus the point diameter D and the ul timate pointp

resistance respectively are shown in F i g 147 and Fig

148 Fig 1 47 shows that a 1 is independent of the

point diameter D Based on Fig 148 it can be assumed p

that

28-4bullq (1 4 6)cp

This correlation has been examined with data of the

literature see Fig 1 49 and Appendix 141 to 1 45

(Note there were no static penetration tests and qcp was determined based on a correlation made by Bergdahl

(1982))

A good correlation with equation 146 can be seen taking

into account the safety factor in the DIN 4014 Part 2

(1977) bull

The correction factor v 1 versus the poi nt diameter is shown

in Fig 1410 I t is assumed that the correlation is

V1 = 3 0 - D ( 1 4 7)p

where D is in m p

The above equations ie 146 and 147 were assumed for

a later analyses see Fig 14 11 and Fig 1412 The

piles No 1 to 20 were examined taking into account Eqs

14 5 14 6 and 1 4 7 The result of this cal cul ation is

presented in Fig 1 413 to Fig 1 4 18 and in Tab 1 4 2

respectively In Fig 1413 the calculation way for pile

No 2 is shown as an example

In Fig 1414 to Fig 1 417 measured and calculated

values of the point resistance versus settl ement can be

compared In tota l good correlation exists for all the

30

pressure-settlement curves Values of q from static cp

cone penetration tests and generalized values of anda 1

v 1 were considered Only for piles No 17-20 qcp was

assumed as the point resistance for s = 010 D because p

the static penetration test results were inaccessible

The similar comparison is shown in Fig 1417a for piles

in sand based on experimental results (Tuoma Reese 1972

and Wright Reese 1979) where the ultimate case resistance

was assumed as the resistance at a base settlement of 005

D The relative base resistance is the mobilized base p resistance divided by the ultinate base resistance The

curvature of the proposed point resistance settlement shy

curve to mean value proposed by Wright and Reese is excellent

However the constant a 1 and the coefficient v 1 were

determined for sand only In the future they should be

examined especially for gravel and silty sand based on

field tests Until then in the authors opinion the

values of v 1 can be chosen from Eq 147 for all nonshy

cohesive soils But for a 1 there is proposed

at = gt bulla (1 4 8)1

where

gt- 1 = 080 for gravel

gt 2 120 for silty sand

This proposal is shown in Fig 14 11 as dashed lines

A good correlation can be seen with the investigation by I

Kiosimiddotnski for sandy gravel and on the safety side with

the investigation by Tuoma and Reese for silty sand (see

Fig 149)

In Fig 1418 all calcul ations for pile No 1 to 20 are

summarize d The correlation coefficient n is defined as

the calculated point resistance p(s) divided by measured

point resistance p(s) For totally 126 points from 20

curves an average of n = 098 with standard deviation

31

al= 023 was obtained see Fig 1418 A similar result

can be observed for the range usually assumed of the

allowable settlement for sinqle large diameter bored

piles as

for

- for

- for

s

s

s =

10

20

30

mm a

mm

mm

verage n10 II

II

mm 089

095

099

and sd =

and sd

and sd

031

027

026

It can be questioned whether the sonstant a 1 can be deshy

termined in different ways The constant a 1 is the initial

slope of the point resistance-settlement curve as menshy

tioned above Then we can use all methods for determination

of settlement of a pile point The range of validity of

these methods then must be determined This will be shown

later

In order to be able to design the total load settlement

curve the skin friction resistance-settlement relationshy

ship must be determined The ultimate skin resistance of

large diameter bored piles was determined in Chapter 11

(based on static penetration tests) and in Chapter 12

(based on standard penetration tests)

In the past a lot of field tests have been done on the

mobilization of the shaft resistance versus pile settleshy

ment In this subject there is a rather good agreement

in the whole investigation for cohesive and non-cohesive

soil

Some results and opinions on thispresented in the literashy

ture during the last few years are shown below

Ultimate shaft resistance versus settlement

1) BurlandJB Butler FG Duncan P (1969)

-The shaft l oadsettlement curve is derived using a=0 3

with 90 ultimate load being mobilized at 025 in

settlement(~65 mm)

- soil London clay

- see Fig 1 419

32

2) Touma FT Reese LC (1974)

- The failure of the sides of the shaft takes place

at a downward movement of about 04 in (10 mm)

- soil sand

- see Fig 1420

3) Tomlinson HJ (1977)

- The maximum shaft resistance is mobilized at a

settlement of only 10 mm (or j in)

- soil stiff clay

- see Fig 1421

4) Klosinski B ( 1977)

- It was assumed that skin friction increased proshy

portionally to pile settlement up to the limit value

s bull This value depends on soil conditions and pile0 diameter and is usually from 3 to 8 mm For soft

compressible soil it may be grater than 10 mm

- soil cohesive soils

- see Fig 1422

5) Franke E Garbrecht D (1977)

- At settlement of 2 to 3 cm which are normally

allowed in Germany under working loads for buildings

not very sensitive to differential settlementsthe

skin friction is almost always fully mobilized

- soil sand

6) DIN 4014 part 2 (1977) and Franke E (1981)

- The skin friction Tm is approximated as diameter

independent having failure settlements of smf = 2 cm

in sand and 1 cm in clay

- soil sand and clay

- see Fig 1423

33

7) Reese By L (1978) Reese By L Wright SJ (1979)

(1978) The maximum skin friction being developed at

an average downward movement ranging from about 05shy

2 of the shaft diameter The average of six load tests

reported by Whitaker and Cooke (1966) are a lso plotted

for comparison

- soil stiff clays

- see Fig 1424 and Fig 1425a

(1979) The relative settlement is the average settleshy

ment of the butt and base devided by the shaft diameter

The mean curve maximises at a relative settlement of

about 002 D

- soil sand and clay

- see Fig 1425b

8) Tejchman A Gwizda3a K (1979)

- A clear differentiation of the distribution of shaft

and base resistances is observed for changing settleshy

ment For fairly small settlements the shaft resist shy

ance increases quite fast and the ultimate values

are reached soon while the base resistance increases

gradually with increasing loads and settlements withshy

out clearout ultimate values it can be assumed that

complete mobilization of shaft resistance corresponds

to settlements equal to 001 or 002 diameter of pile

- soil cohesive and non-cohesive soils

- see Tab 131 and Fig 1 426

9) Promboon S Brenner R P (1981)

- Load distribution and load transfer curves disclose

that most of the load is carried by shaft friction

which is developed at small displacements in the order

of 10 mm

- soil Bangkok clay

- see Fig 1427

34

10) Prodinger w Veder Ch (1981)

- The maximum value of skin friction resistance

occurred for a total settlement of 12 mm

- soil silty clay and sand

- see Fig 1428

11) Farr JS Aurora RP (1981)

- Ultimate load transfer was recehed (or nearly reached)

at a relative settlement of about 04 in (10 mm)

- soil gravelly sand

- see Fig 1429

12) Decourt (1982)

The skin friction resistance is totally mobilized

with deformations of about 10 mm or at the most 15

mm regardless of shaft dimensions This observation

of ours seems to clash with the opinions of other

authors who seek to relate the deformation necessary

for full skin friction mobilization with the shaft

diameter

- soil cohesive and non-cohesive soil

In Tab 143 all these results are shown Depending on

the kind of soil the following v a lue s of ultimate settleshy

ment for shaft can be assumed

- averages 142 mm (sd 5 3 mm) for sand

- averages 100 mm (sd = 21 mm) for cohesive soil

averages 726 mm (sd 67 mm) for claysand

It can be observed (see Fig 1419 to 1428) that the

shaft friction resistance increases proportionally to

the pile settlement up to the above limit value and

thereafter becomes constant

35

Taking into account what was mentioned earlier on point

resistance settlement relationship and the above results

a relationship between total load point resistance and

shaft resistance on one hand and settlement on the other

can be made see Fig 1430

It is assumed on the safety side that the following

ultimate settlement (S~) exists for the shaft resistance

of large diameter bored piles

SS1 ) 200 mm for non-cohesive soil u SS2) = 100 mm for cohesive soil u SS3) 15 0 mm for claysandu

In Fig 1 430 the curve Q (s) is calculated based on p

the equation 14 5 or 144

The values of psf in equation 144 can be calculated

based on other methods as well

The total load-settlement relationship is obtained by

summing up point and s haft resistance as

Q (s) = Q (s) + Q (s) (149)s p

for each point

Now the allowable load can be determined from equation

133a and versus the allowabl e settlement as

Q (s) = Q (s) + Q (s) (1410)s p

where s lt Sa

Sa= the allowable settlement of the pile

The analysis allows determination of the approximative

load settlement dependence without calculating the settleshy

ment for non-cohesive soil In Fig 1431 it is shown

36

In Tab 144 the settlement for allowable point reshy

sistance q5P according to equation 133a is shown

as well The average settlements= 198 mm (sd=78 mm)

is obtained This value is similar to the assumed ultimate

settlement of shaft for non-cohesive soil The ultimate

settlement for point resistance is assumed s = 010 Dp as mentioned earlier

37

15 Initial slope of pile point resistance shy

settlement curve

Settlement of piles and pile foundations can be cal culated

based on

- empirical correlations

load-transfer methods using measured relationships

between pile resistance and pile movement at various

points along the pile

- theory of elasticity that employs the equations of

Mindlin for subsurface loading within a semi-infinite

mass

- numerical methods and in particular the finite element

method

- use of in-situ tests (Cone Penetration Test Standard

Penetration Test Pressuremeter Test)

The critical slope of the pile point resistance-settlement

curve is important for calculation in chapter 14 The

constant a1 can be determined from all the above mentioned

methods

Comparison is made to Berggrens and Schmertmanns methods

below (see Berggren 1981 as well)

6sIn Tab 151 (No 1 2 3) the values of a 1 =~p for s =

10 mm and s = 20 mm (measured for large diameter bored

piles No 1 to 24) are compared to the calculated values

according to the modified hyperbola method (see Fig 14 6)

It can be seen that these calculated values are between

s = 1U-2u mm but rather closer the measured values for

the settlements= 10 mm see correlation coefficient n 6

and n 7 in Tab 151 respectively The average correlat i on

coefficent for the settlements= 10 mm is n9 = 108 and

the standard deviation is sct = 014 The comparison to

Berggrens and Schmertmanns methods for s = 20 mm ( see

Berggren 1~81 and Tab 151 as well) shows that the

results based om these methods give too high values of a 1 bull

38

The average values are ne= 143 sd = OJ3 and ng= 137

sd = 037 for Berggrens and Schmertmanns methods

respectively A bit better agreement can be observed

for Schmertmanns method

Taking into account the results in Tab 151 ana Tab

15l it must be assumed that for the determination of

a 1 the pile point contact pressure p(a1) should be

assumed as the ultimate point bearing capacity devided

by about 4

p(ai) - ( 1 bull 5 1 )

Most of the methods for determination of settlement are

based on the theory of elasticity The settlement ot the

pile point can be expressed as the average settlement of

a rigid circular foundation from the equation

11-Dp 1-v 2

s = p -4- -E-bull microd (1 ~ 2 J

where

p pile point contact pressure

E Youngs modulus

D diameter ot pile pointp ) = Poissons ratio

microd = depth factor

The range of validity of the pile point contact pressure

was determined in equation 151 Youngs modulus has an

important meaning lt can be determined from triaxial

tests or oedometer tests The relationship between the

constrained (oedometric) modulus Mo and Young s modulus

Eis dependent on Poissons ratio v as expressed by the

equation

E = l 1 + V ) ( 1 - 2 V ) Mo ( 1 bull 1 bull 1)- 1-v

39

TaKing into account the analyses made ny Chaplin (19b1a

1 961bJ Janbu (1 963 1970 1973J Andreassen (1973)

Duncan and Cheng (1970) Tejchman anct Gwizdala (1979)

Gwizdala (1978) Franke (1981) Berggren (1981) Withiam

and Kulhawy (7981) and the present investigation the

calculation of settlement is proposed to be

s = 24 bull p bull ~ D bull 1-v 2 bull micro d (154)Do o E

where s (r1)

p (kPa)

Dp (m)

E (kPa)

D0 =10 m

micro = 05 + 01 vfrac34E (1 5 5)d vs

but 05 lt microd lt 10-tip= p - (J (ovs see Fig 151)vs

E =Et= Kbullpat (Oo )n [1- Rf(1-sinltj) 101 - 03 ) 12 (1 5 6)2 c cosltP + 2o 3 sinltP 1Pat

in which K n and Rf= hyperbolic stress-strain parameters

Pa= atmosferic pressure ando 1 o 3 and o0 are determined by

averaging the concrete and soil vertical and radial stresses

near the pile point according to Fig 151 Then the

stresses at the pile point level are h

(J vs = L

0 Yi h

l vertical stress in the soil

0 hs Ko h

0 vs radial (horizontal) stress in the soil

0 vc L ye h -l

vertical stress in the concrete 0

0 hc K oc a vc radial (horizontal)

concrete stress in the

40

K at rest soil lateral stress coefficient 0

K c lateral stress coefficient for fluid fresh concrete0

K 1 0 oc

and average values

a 05(a +a)V vc vs

1 1 - shy~ = -(a +a+a I = -3 (av+2ahJ the applied mean normal stress0 j Z X y

Assuming this model calculation results for piles No 1-24

(see Tab 11~ as well) are shown in Tab 153

The piles are embedded mainly in medium sand to fine sand

For this kind of soil it can be assumed (soil parameters

from field or laboratory tests were inaccessible)

~ = 35deg c = 0 R~ = 09 n 05 v = 025 K c 10l 0

K = 04 Pat= 1UO kPa ye 24 kNrn 3 y = 14 kNm 3 bull0 C

Moreover in Tab 153 the following symbols are used

p(a1 ) - pile point contact pressure according to equation

1 bull 5 1

s(a1) - settl ement of pi l e point according to equation

143 and Tab 141

pound TT ( 2E = s bull Dp bull i 1-v ) according to equa~ion 152t

E~ Et bull microltl

EI

K = ro~ - according to equation 1 bull 5 6 p bullO middotA2

a~ o

E = E voD middot D middot ~4 ( 1 - v 2 ) according to equationt S p O 0

1 5 4

Et= E microd

K = according to equation 156 V PatmiddotaomiddotA2

41

The calculation results of Youngs modulus E = Et and

dimensionless canpressionrro1ulus for piles to 1-24 are shown

in Fig 152 to 155 using equation 152 and 15b

or equation 1~4 and 156 respectively lt can be obshy

served that the scatter in Fig 153 and Fig 155

where the influence of tne pile diameter is reduced

compare equation 154 is less than in the other figures

The reduced influence was made after observations from

field and laboratory tests while the equation 152 is

taken direct from theory of elasticity These values of

E and K are in good correlation with published values in

literature The values of Youngs modulus versus the

relative density of soil are compared to literature values

see Fig 15b Based on the analysis in this chapter it

can be assumed that

E = 9-ql 3 ( 1 bull 5 7)cp

where qcp is in accordance with equation 117

The calculation results based on this proposal are incluced

in Tab 1 5 3

The c a lculate d s e ttlements based on e q ua tion 154 and

157 are shown in column 23 and the values of the

correlation coef f icie nt (n= Seal ) in column 24 respectshyimeas

ively

The dimensionless canpression modulus can be d e termined as

K = 15Ubullq (qcp in MPa) (1 5 8)cp

see column 25 Tab 153

The calculation results based on the K compression modulus

according to equation 158 156 and 1 5 4 are shown in

columns 25 26 2 7 28 and 29 in Tab 153

42

For comparison and for determination of the range of

validity of this method the caLculation results of

pile point pressure for settlements s = 10 mm s = 20 mm

s = 30 mm (see Tab 141) according to equation 157

and 154 are shown in columns 30 to 35

The results obtained in Tab 153 confirm the possibility

to use the proposed method to calculate the initial part

of the pile point resistance settlement curve of large

diameter bored piles in non-cohesive soil and the initial

slope of this curve as well

A simple model has been proposed based on the theory of

elasticity ana the tangent modulus defined by Janbu (1963)

and Duncan amp Chang (1970)

A new approach according to the pile diameter depth factor

and principal stress is proposed

The settlement of the pile point can be made up to a point

pressure according to equation 151 on up to a settlement

of about s ~ 20 mm (30 mm)

-- The application of v Op in equation 1 5 4 a llows us ing

Youngs modulus as independent of the pile diameter

opposed to Bazants a nd Mosopusts (1981) proposal where

Youngs modulus wa s determined versus the pile diameter

The equation 1 5 6 takes into account the dependence of

Youngs modulus on depth (or overburden pressure) as

well

In the method field test (Cone Penetration Test) or

laboratory tests (hyperbolic stress-strain parameters

can be used

Comparison of the method to 24 availa ble load test r e sults

or large diameter bored piles in sand shows good a greement

to calculated and measured values

43

REFERE~CES

Adamczyk J (1978) Okreslanie udzwigu pali wierconych

za pomoca sondy statycznej (Bearing capacity of bored

piles based on the static sounding) Inz i Bud No 7

pp 253-257

Andreasson L (1973) The compressibility of cohesionless

soils Thesis Chalmers University of Technology

G6teborg (in Swedish)

Appendino M (1973) Comportamento di un palo di grande

diametro strumentato Rivista Italiano di Geotechnica

No 3 pp 115-118

Butterfield R Banerjee P (1971) A rigid disc embedded

in an elastic half space Geotechnical Engineering

Vol 2 pp 35-49

Bozant z Mosopust J (1981) Drilled pier design based

on load settlement curve X ICSMFE Stockholm Vol 2

pp 615-619

Begemann HK (1982) Cone penetration tests pile bearing

capacity and the thesis of Rollberg Proc of the Second

European Symposium on Penetration Testing Amsterdam

pp 433-438

Berggren B (1981) Bored piles on non-cohesive soils shy

settlement and bearing capacity (in Sweden) Thesis

Department of Geotechnical Engineering Chalmers

University of Technology G6teborg

Bergdahl UB (1979 1982) Sonderingen und in situ Messungen

Wien 18-19 Juni 1979 - Private information 19821983

Bustamante M Giane selli L(1982) Pile bearing capacity

prediction by means of static penetrometer CPT Proc

of the Second Europ Symp on PenTest Amsterdam

Vol 2 pp 493-500

Chaplin TK (1961a) An experimental study of the settleshy

ment of footings in sand PhD Thesis Univ of

Birmingham

44

Chaplin TK (1961b) Compressibility of sands and settleshy

ments of model footings and piles in sand 5th Int

Conf on Soil Mech a Found Engng Vol 2 p 33 Paris

Colombo P (1971) Observazoni sul comportamento ltli pali

a grande diametro Rivista Italiana di Geotechnika

No 3 pp 163-172

Dahlberg R (1975) Settlement characteristics of preconshy

solidated natural sands Swedish Council for Building

Research D11975

De Beer EE (1964) Some considerations concerning the

point bearing capacity of piles Proc Syrop Bearing

Capacity of Piles Boorkee I pp 178-204

Decourt L Quaresma AR (1978) Capacidade de Carga de

Carga de Estacas a partir de Valores de SPT VI Conshy

gresso Brasilerio de Mecanica dos Solos e Engenharia

de Fundacoes - Rio de Janerio - ABNS

Decourt L (1982) Prediction of the bearing capacity of

piles based exclusively on N values of the SPT Proc

of the Second Europ Syrop on Penetration Testing

Amsterdam Vol 1 pp 29-34

Duncan MJ Chang CV (1970) Non-linear analysis of stress

and strain in soils Journal Soil Mech Found Div Vol

96 SM5 pp 1629-1651

Durgunoglu HT (1979) Effect of foundation embedment on

stress and deformation distributions Third Int Conf

on Num Meth in Geomechanics Aachen pp 925-928

Farr JS Aurora RP (1981) Behaviour of an instrumented

pier in gravelly sand Proc of a session Drived Piers

and Caissons sponsored by the Geotech Eng Div of the

ASCE Nat Convention St Louis Missouri pp 53-65

Franke E (1981) Point pressure versus length and diameter

of piles X ICSMFE Stockholm Vol 2 pp 717-722

45

Gregersen os Aas G and Dibiagio E (1973) Load tests

on friction piles in loose sand Proc of the Eigth

International Conference on Soil Mech Moscow USSR

Vol 21 pp 109-117

Gwizda1a K (1978) Behaviour of large diameter bored piles

in non-cohesive soil (in Polish) Archiwum Hydrotechniki

Vol XXV No 2 pp 183-217 (English summary)

Huizinga TK (1951) Application of Results of Deep

Penetration Tests to Foundation Piles Building Research

Congress Vol 1 p 173

Janbu N (1963) Soil compressibility as determined by

oedometer and triaxial tests Proc Europ Conf Soil

Mech and Found Eng Vol 1 p 19 Vol 2 (Discussion)

p 17 Wiesbaden

Janbu N (1970) Grunlung i geoteknikk Tapir Forlag NTH

Trondheim

Janbu N Bjerrum L Kjaernsli B (1973) Soil Mechanics

applied to some engineering problems Norw Inst Publ

No 16 Oslo

Japanese Society SMFE (1981) Present state and future trend

of penetration testing in Japan Separate report at

X ICSMFE Stockholm

Kjekstad O Lunne T (1979) Soil parameters used for design

of gravity platforms in the north sea Second Int Conf

on Behaviour of Off-shore structures London Vol 1

pp 175-192

Klosinski B (1977) Bearing capacity of large diameter bored

piles IX ICSMFE Tokyo Vol 1 pp 609-612

Laboratory for soil mechanics Delft (1936) The predetershy

mination of the required and the prediction of the

resistance of piles Proc 1 Int Conf on Soil Mech

and Found Engng Cambridge (Mass) I p 181

46

Matich M and Stermac A (1971) Settlement performance of

the Burlington Bay Skyway Canadian Geotechnical Journal

Val 8 pp 252-271

Mccammon NR and Golder HQ (1970) Some loading tests

on long pipe piles Geotechnique London England

Val 20 pp 171-184

Meigh AC (1971) Some driving and loading tests on piles

in gravel and chalk Proc of the conference on beshy

haviour of piles London England pp 9-16

Mitchell JK Gardner WS (1976) In situ measurement

of volume change characteristics American Society of

Civil Engineers Specialty Conference on In-situ

Measurements of Soil Properties Raleigh 1975 Proc

Val II pp 279-345

Mezenbach E (1961) The determination of the permissible

pointload of piles by means of static penetration tests

Proc 5 Int Conf on Soil Mech and Found Engng

Paris II pp 99-104

Meyerhof CG (1956) Penetration tests and bearing capacity

of cohesionless soils Proc Amer Society of Civ Engng

SM 1 Pap 866 pp 1-19

Meyherhof GG (1 976) Bearing capacity and settlement of

pile foundations Proc Amer Society of Civ Engng

Journal Geotechnical Engineering Division Val 102

No GT3 pp 197-227

Mohan D Jain GS and Kumar V (196 3 ) Load bearing capacity

of piles Geotechn Val XIII pp 76-86

Nixon I (1982) Standard penetration test State of the

art report Proc of the Second Europ Symp on Pen

Test Amsterdam Val 1 pp 3-20

47

Nunes A Vargas M (1953) Computed bearing capacity of

piles in residual soil compared with laboratory and

load tests Proc of the Third International Conference

on Soil Mechanics Zlirich Switzerland Vol 2 pp 75-79

Nordal S Grande L Janbu N (1982) Prediction of offshy

shore pile behaviour The Norwegian Institute of

Technology Trondheim

Ohde J (1939) Zur Theorie der Druckverteilung im Baugrund

Der Bauingenieur Vol 20 No 3334 p 451

Parroth E (1972) Einfache Formel zur Vorausbestimmung der

Tragfahigkeit von Standpfahlen mit Hilfe der Sande

Bautechn 9 pp 312-314

Poulos HG Davis EH (1980) Pile foundation analysis

and design New York - J Wiley and sons

Prodinger W Veder Ch (1981) Bearing capacity of floating

groups of diaphragm walls Proc X ICSMFE Stockholm

Vol 2 pp 809-814

Promboon S Brenner R (1981) Large diameter bored piles

in Bangkok Clay Proc X ICSMFE Stockholm Vol 2 pp

815-818

Reese L (1978) Design and construction of drilled shafts

ASCE JSMFD Vol 104 No OT1 pp 95-116

Rodin s Corbett BO et al (1974) Penetration testing in

United Kingdom state-of-the-art-report Proc Europ

Symp on Penetration Testing 1 Stockholm pp 139-146

Rollberg D (1976) Bestimmung des verhaltens von Pfahlen

aus sandier und rammengebnissen Heft 4 FBG Technische

Hochschule Aachen

Rollberg D (1977) Determination of the bearing capacity

and pile driving resistance of piles using soundings

Publications of the Institute for Found Eng Soil Mech

Rock Mech and Water Ways Construction Aachen Vol 3

48

Schmertmann J (1970) Static cone to compute static

settlement over sand Journal of the Soil Mech and

Found Division ASCE SM3 pp 1011-1043

Schmertmann J Hartman JP Brown PR (1978) Improved

strain influence factor diagrams Journal of the Soil

Mech and Found Division ASCE GT8 pp 1131-1135

Shibata T Hijikuro K and Fominerga M (1973) Settlement

of a blast furnace foundation Proc of the Eighth Int

Conf on Soil Mech Moscow USSR Vol 13 pp 239-242

Spang J (1972) Die Bestimmung der Tragfahigkeit von Grossshy

borhpfahlen (I) Strassen und Tiefbau No 2 pp 339-355

Senneset K (1974) Penetration testing in Norway State-ofshy

the-art-report Proc Europ Symp on Penetration Testing

Stockholm I pp 85-95

Tejchman A Gwizdala K (1979) Analysis of safety factors

of bearing capacity for large diameter piles Proc VII

ECSMFE Brighton Vol 1 pp 293-296

Thorburn s and Mac Vicar R (1971) Pile load tests to

f a ilure in the clyde alluvium Proc of the conference

on behaviour of pile s London England pp 1-7

Trof imenkov JG (1969) Accuracy of determining the bearing

capacity of piles based on results of static penetration

sounding of soils Osnovaniya Fundamenty i Mekhanika

Gruntov 4 (Translation Soil Mechanics and Foundation

Engineering 4 p 248)

Trofimenkov JG (1974) Penetration testing in USSR Stateshy

of-the-art report Proc Europ Symp on Penetration

Testing Stockholm I pp 147-154

Tuoma F and Reese L (1974) Behaviour of bored piles in

sand JSMFD ASCE Vol 100 No GT 7 Proc Paper 10651

July pp 749-761

49

Van der Veen C (1953) The bearing capacity of a pile

Proc 3 Int Conf on Soil Mech and Found Engng

Zlirich II pp 84-90

Van der Veen C and Boersma L (1957) The bearing capacity

of a pile predetermined by a cone penetration test

Proc 4 Int Conf on Soil Mech and Found Engng

London II pp 72-75

Weltrnan AJ Healy PR (1978) Piling in boulder clay

and other glacial tills Construction Industry Research

and Information Association UK-Report PG 5

Withiam J Kulhawy F (1981) Analysis prodecure for

drilled shaft uplift capacity Proc of a session

Drilled piers and caissons ASCE St Louis Missouri

pp 82-97

Woodward R Lundgren R Boitano J (1961) Pile loading

tests in stiff clays Proc of the Fifth International

Conference on Soil Mechanics Paris France Vol 2

pp 177-184

Wright SJ Reese LC (1979) Design of large diameter

bored piles Ground Engineering Vol 12 No 8 pp

17-22

DIN 4014 Cods Teil 2 (1977) Bohrpfahle Grossbohrpfahle

Herstellung Bemessung und zulassige Belastung

Polish Specification (1975) Specification for design and

construction of large diameter bored piles in bridges

Ministry of Transport Warsaw (in Polish)

Polish Specification (1979) Specification for prevision

bearing capacity of the piles on the presiometer test

and static sounding ENERGOPOL Warsaw (In Polish)

Polish Code (1983) Foundations Bearing capacity of piles

and pile foundations

5 1

FIGURES

bull bull

53

Ou

+ sect raquo iir 1

4 + D

h + +Osu

bull + t2 =n- Dp

LDpl r f 1

Opu

Fig 1 1 1 Bearing pi le in the soil

J_

fp

080

070

060

050

0 40

030

020

010

q~ [MPa ]000 -+--~-~-~-~------------------------=-shy

00 20 4fJ 60 80 10 0 120 14fJ 160 180 200

Fig 1 1 2 The point resistance factor fp

(Trofimenkov 1974)

54

ts

160

140

120

100

080

060

040

020

q~5 [ kPa)

0Q0--1------~-~-~-~-~-~ - - ---=- -- shy000 10 20 30 40 50 60 70 80 90 100

Fig 1 1 3 The shaft resistance factor fs middot (TYofimenkov 1974)

f s

200

180

160

140

120

100 2 3 4 5 6 7 8 9

Fig 1 1 4 Shaft friction factor f depenshys

ding of the soil density (Senneset 1974)

55

Q~ [kN]

1500

1000

500

0-r-----------r----~- Q~ [kN] 0 500 1000 1500

Fig 1 1 5 Comparison of the pile resisshytance determined by the results of static sounding and load tests (TYofimenkov 1974)

D f f

0

Fig 1 16 Equivalent cone resisshytance (Bustamante 1982)

56

E u shy0 ~

QI I ltII ltII

~ a C QI

O C

D

w gt

0

Cone res istance Point resistance

80 160 240 320

05

10

15

e d

20

ver y dense Cone resistance 300 kgcm2

Dpcm

a =45 b = 30 C 60 d = 100 e = 150

Fig 1 16a

Cone resistance _ qc

80 160 80 160 qc [ k g cm2 ]p

05

10 10

15 15 e d a

e d20

Dense Medium2 2200 kgcm 100 kgcm

Cone resistance and point resistance of piles versus overburden pressure (Kerisel 1965)

Point resi stance - p(for s=2cm) of the pi le for

15 sett Iement s = 2 cm

10

5

E u

uJ1 o-~----shya er O 804 2500

32 56

I 1

L oose50 -I =25 Very loose L

----~--shy5000 7500 80 98

~-----lmiddotI1--------2 10000 12500 31400 =Flcn)

112 123 200 =Dplcm)

Fig 1 1 6b Point resistance versus cone resistance and pile diameter (Franke 193)

57

1

fp

080 (D Gravel

0 Coarse sand Medium sand 070

reg Fine sond Silty sand

060

050

040

030

020

010

qc [MPa]000-+----r--~-~-~--------r----r----r-~-~-- -shy

oo 20 40 60 80 100 120 140 160 180 200

Fig 1 1 7 Point resistance factor f (proposal) p

58

300

250

200

150

100

qc [MPa I50-+---------------r---r---r---r----r------------- shy

oo 20 40 60 80 100 120 140 160 180 200

Fig 1 1 8 Shaft resistance factor fs (pr oposal)

59

Bustamante (seetab 115 I

l fp

G)

0 Gravel

Coarse sand Medium sand

cl

b)

t-----l

1----1

080 reg Fine sand Silty sand a) D

070 Polish

060 Specification

( 1979) 050

040

030 CD 020 0

reg 010

qc [MPa]0 00 -+-------------------------------------=--shy

oo 20 4o 5o 80 100 120 14o 15o 180 200

Fig 1 19 Point resistance factor f comparisonp

Bustamente ( see tab 116 I 300

a) ~

250 b)~

cl~

200 Polish Specification ( 1979 l

150

100

q [ MPa]504---~--~--~----- ---___

00 20 40 60 80 100 120 140 150 180 200

Fig 1 1 10 Shaft resistance factor fs comparison

60

1 fp

~

080 CD CD Gravel

070 0 reg Coarse sand Medium sand

060 0 Q) Fine sand Silty sand

05

040 Franke (1973)___

030 DIN 4014

020 Part 2 1977

( see tab113 l 0shy

--shy --a - 010 C---0 Piles without enlarged bases

D---0 Piles with enlarged bases qc [MPa ] 000

00 20 4JJ 60 80 90 100 120 140 160 200

Fig 11 11 Point resistance factor f comparison p

fs

DIN 4014 Part 2 1977 ( see tab 114 l

300

~ 5 lt qc lt 10 MPa 50

~ 10 lt qclt 15 MPa

~qcgt15MPa

200

150

CD

100 0 0

qc [ 1Pa] 50-t-----T-~----T-r-~----------------shy

OO 20 40 6JJ 80 100 120 14JJ 160 180 200

Fig 1 1 12 Shaft resistance factor fs comparison

61

Measured p [ MPa]

( s=010 Dp) 10

9

8

7

6

5 0

4 0 61

3

I 2

Calculated qcp [MPa]

0 0 2 3 4 5 6 7 8 9 10

Fig 1 1 13 Comparison of experimental and aomputed values of the pile point resistanae

62

Contact pressure ( MPa ]

2 I 6

50

100

E E 150 Ill

c QI

E Sett lement for QI

calculated qcpai V) 200

Fig 1114 Results from load tests on piles No 1 and 5

Contact pressure [ MPa I 0 2 I 6

01---------------------1

50

E E 100 Ill

Settlement forc QI calculated qcp E ~ ai

I V) 150

Fig 1 1 15 Results from load test on piles No 7 and 5

63

Contact pressure p [ MPa] 0 2 3 4 6

0-t=-----~-~-----

E E

100 1)

c CU E 2 QI V) 150

Fig 1 1 16 Results from load test on piles No 9 10 and 11

Contact pressured p [MPa] 0 1 2 3 4 5

o~~~=------------___-~-shy

50

100

E E

i 150

CU E CU

-a V) 200 2

Fig 1 1 17 Results from load test on piles No 12 and 13

c

-------------- -

64

Contact pressured

0 1 2 3 4 p [ MPo] ~o __L____1_____J_____L___

50

100

150

E

E

IJ) 200

c a

E a

~ 250

Fig 1 1 18 Results f Pom load tests on piles No 2 4 6 and 8

p [MPa]

60

50

tO

30

~

Pile Pile Pile Pile

Pile No18

------+ Pile No17 + ~_ ---0 Pile No 19

bullbull - --bull Pile No 20

- ~middot -shy-shy -(y I Settlement for

20 tO 60

No17 +-middotmiddot- V 70 No 18 bull--- V 9o No19-middot- V 120 No20bull---- V150

qcp 3

80 100 120 140 160 s (mm)

Bose resistance

Fig 1 1 lBa Point Pesistance vePsus settlement (Spang 1972J

65 Cone resistance qc [ MPa]

0 10 20 30

mud

5 ~ lll

0 c 0

c CD

peat

10 sand

Ill N

10=10

D=lOOOmm

1540=40

20__________________

[ml

Fig 1 119 Pile No 1 and results from static cone penetration test

Cone resistance qc [MPa l 0 10 20 30

7N V degW = 0+--------------------i

mud

5

lll

~ C 0

c peat~

10

sand lll N 1D15

15l lD=1500mm

40=60

20l---------=-------__J

[ml

Fig 1 1 20 Pile No 3 and results from static cone penetration test

66 Cone resistance qc [MPa]

10 20 II 3 igt pound ~

mud+peat

fine sand+ silt

50=11

l lo-11oomm

40= 44

10

15l____________c

[ml

Fig 1 1 21 Pile No 5 and results from static cone penetration test

Section Cone resistance Pile

0 0

5 10 15 20 25 30 qc [MPa] -----~-~shy~

Silt

[7r_ ___~ Medium Sand_~-----l

0 ltD

+shy4

0=11

9=

Fine sand + Silt t

30p=

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot1~11+-----E-----

[ml

Fig 1 1 22 Pile No 6 and results from static cone penetration test

Cone resistance qcmiddot 1MPuJ

0 10 20 30 67 01-+-------l--------------i

mud+ peat

fine sand

l1)

N

40=60

15L_____________

[ml Fig 1 1 23 PiZe No 7 and resuZts from static

cone penetr ation test

Section Cone resistance Pi le

0 5 10 15 20 25 30 qc [MPa 1 --~----Y-~-----~

Silt

Fine sand

Medium Sand Bentonite2----1~i

t 3

4

0

0=15

Fine iii ~~= 5

sand t ltD

6 +

Silt 7

3Dp=

63 g

10

11

12

13+------=~---l

[ml

Fig 1 1 24 PiZe No 8 and resuZts f rom static cone penetration test

68

I =3

Cone resistance qc [MPa]

0 10 20 30

C 0 C Cl

(I)

Said

Peat

Sand

l 0=110

D = 11

4 D = 44

Fig 1 125 Pile No 9 and results form static cone penetration test

69

Cone resistance qc[MPa)

0 10 20 30 I ~ II JE Ill= II=E IS

Fine sand QI

U) I

[- I C 0 + C Peat QI

CD

Fine sand 0

Ci D = 1 1

L l D= 110

4D= 4 4

Fig 1 1 25 Pile No 10 and results f rom static cone penetr ation test

70

Cone resistance 9c[MPa]

0 10 20 30

Sand

C 0 Mud peat

+shyc 5 ltII

co

Sand Op= 11

u 10 D= 110 4Dp=44

Fig 1 1 26 Pile No 11 and results foIm static cone penetration test

71

00 a_ N ~

middotu rr QI 0 u ~ C 0

QI ui C iij 0 QI U - 0

0 EN

d 2

Sll 1lOl

C

u (rr

C 0 u~

0

QI - C middot 0 C

U - O 0 EN

~ 0 2

E

ltD a---==-lr---___--~---6-l_-0_012 ~ Lr- - --1---------J J

S9l ls= apound QI -0 gtcc _gmiddot- 0 1) ui I

Fi g 1 1 2 Piles No 14 and 15 and results f r om stat i c cone penetr ation tests

72

Contact pressure p [ MPa] 2 4 6

01lt---------------~

50

E E

111 100 ~ (qcp=30 MPa for No16

~ iqcp =49 MPa for No14

~ 1so~--~~- _ _ __

I _ _

11 I lf--q = 32 MPa for No15

cp

Fig 1 1 28 Results f r om load tests on piles No 14 15 and 16

73

0300--------------~---~--~--shyE

Driven piles in ~ 0 bull Gravel

amp250 bull Sand L QJ X Silt a 1l o Bored piles in

sand -sect 200 0=-- shyC ~ ~ 10 unless ~~ middot D shown 1

ii O

~ ~ o 3 a 1501-----+-------I- --+---laquo-+-- -+------lt

~ sect 5 - 6 6middot 100t----+----+-----_-1---4--__co_--J~__j

-_

~ 0 t7

C

a 50 2 shyg ~ gt

0 20 30 40 50 60

Standard penetration resistanceN in blows per foot

(N 30

Fig 12 1 Emperical relation between ultimate point resistance of piles and standard penetrashytion test in cohesionless soil (Meyerhof 1976)

14 r-------------------r-------b-----q

References and symbols given in Fig121

121-----+---+----+----+------ll------j

- _sect ~ 10t----+----+-_--1-----+---lt~--~H---- 0 lt-~5- _-)0 I() l- I Q---+-----I[08 ~

H -(l () ltj-~C X bulls pound 061------lt----+-----i~- --+-- shy

- bull

-gt Q1pound--I---L---L---L---L--~ 0 10 20 30 40 50 60

Mean standard penetration resistance N in blows per foot ( N30 l

Fig 122 Empirical relation between ultimate skin friction of piles and standard penetration resistance in cohesionless soil (Meyerhof 1976)

74

a) b)0(1 0lt2

10 10

05 05

1 N30OD-+---------__ OD--t-----r-----r----------------ll--Nbull30~ 10 20 30 10 20 30 40 50

Fig 1 2 3 Reduction coefficient a) for impermeable gravels b) form permeablr gravels (Weltman and Healy 1978)

psf [MPo)

Fig 1 2 4 Relation between ultimate point resistance and SPT in cohesionless soil (Polish specification 1975)

75

30 35 40 45 Loo Med Dense Ver dense

50

40

~ E

l)

g 8 1)

middotu

1 ~

QI- bull Touma ~ bull Koizumi

(183)-depth base middotameter5

20 40 60 00 100 N30

30 35 40 45

OG2(294) bull G1 (183)

300 bull us 59 ( 102) bull 88(180)

bull 075 a GT (467)

150

~ 200-+--------+-- t--- --t-----i 130i 0 094 081

014 _- --- -- shy~ E 066bull bull 063 Note -~ ~m~r~s~ ~ 1001---1-r--t---1point is xh QI Ratio ~ Number in ( ) middotn key is h c Ratio s ~

0 20 40 60 00 100

~ig 1 2 5 Ultimate point and shaft resistance versus N30

(Wr ight and Reese 1979)

-----

76

tu Psa

[kPa] [MPa]

200 tu

------ shy150 Psa

1 1

1100 10 1 1

1 50

0+----------T----~---~-N-3J~shy0 20 40 60 80

Relation between ultimate skin friction and SPT (Decourt 1982)

Fig 1 2 6

Psa

[MPa]

8

0----Meyerhof 1976) 0 7

--- - --~ - copy Polish Specifcoti on 1975)6 ~-

~

reg- middot - Reese (1978) middot 5

f41- -- Decourt (1982) -I bull 4 2

----==---______z__ h25m Dp=12m

3 ---shybull

2 7

--shy ----shy~----shy0-t----i----------r-- ----------------------N3l~shy

0 10 20 30 40 so 60 70

Fig 1 2 7 Relation between ultimate point re~istance of large diameter piles and standard peneshytration test (SPT) in cohesionless soil

------

77

tu [kPa)

200 17 Cast under -J bentonite

~----Meyerhof (1976) ~copy -=middotmiddotmiddotmiddot== middotmiddot150 ~------- Wei tman (1978 ) middot Healy middotmiddot ___ Japanese ) 119810 Society

(0 -middotmiddot- Decourt (1982)middot Wright

100

- -middotmiddot -- 11979]reg Reesemiddot Bored piles

~shy50 1 -- shy

-- shy middotmiddot s-shy - --~ ------reg~~ ---~E_==---- ------- shy

N_ ---shy0-+--C--------------r---- ---------~---~-~shyo 10 20 30 40 50 60 70

Fig 12 8 Relation between ultimate skin friction of piles and standard penetration test (SPT)

78

Pst [MPa]

8

7 ---------ist=7MPa

6

5

4

3

2

I N30o~------------------------------+---------__=-shyo 10 20 30 40 50 60 70

Fig 12 9 Relation between ultimate point resistance of large diamter piles and standard peneshytration test (SPT) in cohesionless soil (proposal)

tu [MPa ]

( excavanted and cast

150 under bentonite ) tu=150 kPa

100 tu=90 kPa

I I

50 I I I I I N30

10 20 30 40 50 60 70

Fig 1 2 10 Relation between ultimate skin friction of large diameter piles and standard penetrashytion test (SPT) in sand (proposal)

79

2 3 4 5 p[MPa] 0 2 3 4 5 p[MPa]0

40 40 Cl

80 c 80

c 120 120

Pile No 1 PileNo216 160

200 2

s s c [mm] (mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MPa]

40 40

00 80

120 120

16 160 Pile No 3 Pile No 4

200 200

s s [mm] (mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MAJ]

tgt11 tgt- measured40 40

80 80

120 120

Pile No 5 Pile No 6 160 160

20 200 s s

[mm) [mm)

Fig 1 4 1 Base resistance vs settlement appoximative method piZe No 1- 6

80

0 2 3 6 5 p[MPa) 0 2 3 4 5 p[MPa]

40 40

80 80 6

120 120 6

6160 160

Pi le No 7 Pile No 8 6

200 3J s s

[mm] (mm]

0 2 3 4 5 4 p [ MPo)

6 6 40

6 6

6 80

6 6

6

Pi le No 9 Pile No 10

XJO s s

[mm] [mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MPa)

6 6

40 40 6 6

6

00 80 6

6

12 1Xl 6

160 Pile No 11 160 Pile No 12

200 200 s s

[mm ] [mm]

Fig 1 4 2 Base resistance vs settlement approximative method pile No - 12

81

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MPa]

6 6

40 6 40 6

6

80 6 80 6

120 6 120

Pile No 13 Pile No 141fO 160

200 200 s s

[mm] [mm]

0 2 3 4 5 p [MPa) 0 2 3 4 5 p [MPa)

40 40

80 80

120 120

HiO 160

200 200Pile No 15 Pile No 16

s s (mm) [rrrn 1

0 2 3 4 5 p[MPa] 0 2 3 4 5 p[MPa)

40 40 A A A-measured

680 80 t t

120 c 120 c

1fil Pi le No 17 160 Pile No 18

200 200 s s

[mm] [mm]

Fig 1 4 3 Base r esistance vs settlement approximative method pile No 13- 18

82

0 2 3 4 5 p[MPal 0 2 3 4 5 p (MPa]

D D40 40 c c

80 c 80 c

120 120

160 160

Pile No 19 Pile No 20 200 200

~ml (mm]

Fig 1 4 4 Base resistance vs settlement approximative method pile No 19- 20

LlJ QI

0 average lJ = 098 E sd = 029 C

6 SY = 030

4

2

lJ calculated ________________________ _______ measu red

06 08 10 12 14 16

Fig 1 4 5 Calculated pressure divided by the measured pressure at 20 mn settlement for aZZowabZe

q Zoad Pa= ~p approximative method pile

No 1- 20

8 3

Point resistance p [ MPaJ

a)

p(s) = s a +--sshy1 y qcp

1

SQ100p -- --- ---shy

~ s

[mml

I- 01 s rmm]-l p LMPa b)

f~]

c Cll E ~ i s

[mm)

Fig 146 Definition of the point resistance - settlement curve according to the modified hyperbolic method

84

01 ~ 0

20 0 0

0

16 0

medium 0 value a1 = 905-+ 256 Op 0 0

12 (r=039)

0 0

----0 0

8 0

0 0

0 0

4 0

05 06 07 08 09 10 11 12 f3 14 15 16 17 18 19 20 2 1 Op (ml

Fig 1 4 Initial slope of the base resistance curve vs pile diameter

a1 [p] 0

0020

16 assumed a 1= 28 - 4 qcp

12 0

0 Ct) 0 a = 2659 - 369 qcp8 1

0 0 (r = 0188)0

4

2 3 4 5 (MPa]qcp

Fig 1 4 8 Initial slope of the point resistance curve vs ultimate point resistance on the static cone resistance for pile tests No 1 20

85

a [~ 28

24

20

16

12

8

4

0 2 3 4 5 6 Qcp [MPa]

~ Kiosinski (1977) sand and sandy gravel of mediwn density

~ Klosinski (1977) loose sand ID= 0 3 0 4

o US59 ] t HH Touma p and Reese L (1974) fine sand and silty sand OGl (US59 HH BB - very dense Cl - mediwn dense) 1 BB

DIN 4014 Part 2 (1977)

Fig 1 4 9 Initial s lope of the point res istance curve vs ultimate point resis tance

86

assumed [il =30 -10 Op but )1~ 10 )1 [1 I

u 311-10 Op ( r =0 368)4 1 0

3 0 0

02 0

0 0co 0 8 0 0

0

0

05 06 07 08 09 10 11 12 13 14 15 16 17 19 20 21 Dp [ ml

Fig 14 10 Correction factor for hyperbolic base resistance shysettlement relationship

87

a [~] 28

24

20

16

12

8

4

2 3 4 5 qcp [ MPa]

Fig 14 11 Initial slope of the base resistance curve vs ultimate base resistance (proposal)

v [ 1 ]

3

2 -----G- DP J l 1J I Op lm] J

for Dp ~ 2 0 m ~ u = 1 01

0 --------r----r---r----r-----------------r-------------------------r------r-~-~--shy

05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 Dp[m)

Fig 1 4 12 Correction facto r for hyperbolic base resisshytance - settlement relationship (proposal)

s P ( s)

s +

u qcp

88

a) b)1

bt=o212= 47 MPa a1=1~32 tMWJ s 2 3 4 5 O 1 10 20 30 40 50 60 p [~a]0

0p [ MPa] 40 40

80 80

120 ~

160 b1 = ~ajtg ~= 0 212

~=1132 + 0212middot s

mJ 240 r=0994t t t measured s __ according to Jl s

o o o according to p (bull ll l[mm] [mm]

Pile No 2

slmm) 10 20 30 40 50 60 80 100 125 150 175 2)0 225 Note

p [ MPa] 09 14 17 20 22 24 27 30 32 34 36 38 39

measured

pibull) [ MPa] 074 128 169 202 228 249 282 307 330 347 360 371 380calculated

plbullbull1[MPal 070 125 168 203 233 257 297 327 356 378 396 410 422calculated

1) (bull) ij l099082 091 099 101 104 104 104 102 103 102 100 098 097 sd = 006

ij (HJ1041) (bull10) 078 089 099 102 106 107 110 109 111 111 110 10B 10B sd = 010

plbulll-according to a =1132 [ Jp(s) = s s for pile No21 0 1132 12 39

plbullbulll-according toa =1241 lmiddotGcp=39MPa1 0

~=14 see fig 1411 and fig 14 12 sp(S)=

124+ _ s_ 14middot39

11lbulll11l-J - correlation coefficient calculat~d P5 for

measure p s p(bull) and p(bull) respectively

Fig 1 41 3 Modified hyperboZic point resistance - settZement reZationship for piZe No 2

89

0 2 3 4 5 p(MA1] 0 2 3 4 5 p[MPa)

40 40

80 A 80 A

120 120

160 16 Pile No 1 Pile No 2

20 200 s s

[mm] rnm

0 2 3 4 5 0 2 3 4 5p [MPa] p [MPo]

40 40

80 80

120 1ZJ

lfpound) Pi le No 3 Pile No 4 A

200 A

s s A

[mm) [mm

0 2 3 4 5 p [MPa] 0 2 3 4 5 p [MPa]

40 40 A A A measured ~ calculated

80 80

12

160 160 Pi le No 5 Pile No 6

200 Z)Q

Fig 1 4 14 l3ase resmiddotistance vs settlement pr oposed method pile No 1- 6

90

2 3 4 5 p [MPa] 2 3 4 5 p [ MPa]

40 6

6 40

1 80 80

6

120 120 6

6 160 160

Pile No 7 6

200 200 s

[mm ] s

[mm]

0 2 3 4 5 6 p [MR] 0 2 3 4 5 p [MPa] 0 0

40 40 6

6

80 80

6

120 120

160 160 Pile No9 Pile No 10

200 200

s [mm] [msml I

0 2 3 4 5 6p[MR] 0 2 3 4 5 p [MPa]04--___ ____ ___ ___ ____

0+-=---------------~-~- shy

40 40 c 6 c - measured

0--0-0 shy calculated

80 80

120 120

160 160 Pile No11 Pi le No12

200 200

s [mm]

s [mm]

Fig 1415 Base resistance vs settlement proposed method pile No 7-12

91

0 2 3 4 5 p [MPal 0 2 3 4 5 p [MPa)

40 40

80 80

120

16 Pile No 13 Pile No 14

200 s

tnml [mm]

0 2 3 4 5 p [ MPa] 0 2 3 4 5 p [MPa)

40 40

80 80

120 120

160 1fD

Pi le No 15200 axJ s s

[mm] [mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 6 plMPa ]

A A A measured40 0---0-0 calculated

80

120 120

160 1ED Pile No 17 Pi le No 18

200 200

s s [mm] [mm]

Fig 1 4 16 Base resistance vs settlement proposed method pile No 13- 18

92

0 2 3 4 5 p [MFb] 0 2 3 4 5 p[MPa]

0 6 o -measured40 40 0 0 o -calculated

80 80

120 120

160 160 Pile No 19 Pile No 20

200 200 s s

[mm] [mnil

Fig 1 4 17 Base resistance vs settlement proposed method pile No 19-20

p(s~Psf

15 20

ean

-C 5 w u L Lower ~ confidence

linea 0

a IJl 10

o---o proposed

method I I I

15

Fig 1 4 17a Design curves for estimating developed base resistance in sand (Wr ight and Reese 1979)

93

n (number)

30

28

26

24

22

20

18

16

14

12

10

8

6

4

2

0 02 04

Fig 1 4 18

I= 126

Between 1] = 0 7 - 1 3--- I= 106 ( 84 frac34)

Average ~ = 098 Standard sd =023 deviation

Standard sv =023 veriation

1] (Coefficient Calculated Measured

06 08 10 12 14 16 18

Calculated pressur e divided by the measured pr essure for all pressure - settlement curves pr oposed method pile No 1- 20

94

a) b) Total load

Total load curve

---- _____-- shy- -- -Base load ~- Base load

-0-0 ~

00 00 J

ldeoli zed shaft load J

Shaft sesistanc1---------- 0=0middot30 a= 0 middot 30

025 Settlement IN 025 Settlement IN

Fig 1 419 Proposed method of synthesizing design loadsettlement curve (a) conservative design prodiction b) design prediction- peak in shaft loadsettlement curve (Burland et al 1966)

Cf

-0 0 0

J

0

~-----~--~-~ amp- 2 3 4 5 6 (cm)

a~middotltii -0 lt) cco2 41 -~ -0 1)

vi ~ llloli=----------- ---c~0 1 2 3 4 5 6 7 ( of diameter)1 1 1 1

05 10 15 20 ( in) for 30 in Pile Movemen~ ( 75cm pile)

Fig 1 4 20 Approximate load settlement curves for 30 in bored piles (AB and C represent failure load at 1 in settlement A B and C represent ultimate failure load) (Touma and Reese 194)

95

Load in MN 0 2 3 4 5

25

50E E C

-C 75

-~ ~

-Z 100 lJ

Shaft resistshy

125 once

15 Fig 1 4 21 Load-settlement relationships for largeshydiameter bored piles in stiff clay (Tomlinson 1977)

SettlementSo

Fig 1 4 22 Diagrams of s1iaft and base resistances versus settleshyment assumed in analysis (Kiosinski 1977)

96

0 0 1 ~ r- 025g ~~ 2

1- -shy3 03Sg 14 5 2

Qls =Qpls+Q5 (sQpls) Qs(s-3E

0

degsis __ -- Qpls) a~ C

4

t Sg l

5 Qu Is)

Q(s)in MN-l T

Ouls Q Is) in MN ---

Fig 1 4 23 Construction of load - settlement curves a) for sand b) for cohesive soil (DIN 4014 Part 2 1977 and Franke 1981)

-

s C 5C

Cl

3 0 00 05 10 15 20 Mean settlement I in)

Fig 1 4 24 Load- settlement curves for test shaft S4 (1 in = 25 4 mm 1 ton= 8 90 kN) (Reese 1978)

97

Relative side resistance

0 05 10 15 20 0E=--t----+---+--~

c QI lt) ~ 2 C

I itaker c

QI amp Cooke3E QI-j

c-en 4

C QI

E us 59o

5 QI gt

SA0 w 0 6

Fig 1425a Relative side resistance for clay vesus relative midlength settlement (Reese 1978)

degs (Osl u l t 0 05 10 15 2 0

Mean

2 Lower ~ C QI u

confidence line

~ 3 a

0

~4 E

()

5

6 __ _ ______ ________ __1

Fig 1 4 25b Design curves for esti mating developed side resistance (~Jy1nht ReertP- 1987 J

98 Load Q

8 - 15 mm

1- 2 of p ile diameter

100-200 10-15 of pile Os Ot diameter Shaft Total

Settlement S Resistshy Resist- Load ance once

Fig 1426 Dependence of total load base resistance and shaft resistance on settlement of lar-ge diameter pile (Tejchman Gwizdala 1979)

6

5 Shaft load

4

3

2

z ~

-0

g Pile EF- 56 J 0

0 0 20 30 Butt settlement (mm)

Fig 1 4 27 Deveiopment of shaft and base resistance with settiement (Promboon Brenner 1981)

99

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 0 r-=-1---J__-----------------------~----_shy

Load [ k N l5

10

20

( I

Skin friction ----1 I I

~ 40 QI E

fQI

50 I

Q) I () ICOntinuos fost deolading

Fig 1428 Load-Settlement-Diagram Testelement III (Diaphragm-Wall 0515 m 244 m deep) Portion of Skin Friction and Base Resistance (Prodinger Veder 1981)

Qs (QJ max

0 05 10

Upper Limit of Data

Farr and Aurora (1981J C

~ 2 - shy -+shy - Mean of Data

I QI

Lower Limit of Data a

0 - 3 E

Vl

4

Smid = Approximate shaft buff movement ignoring the elastic compression of upper halt of the shaft

D = Shaft diameter

Q Mobi Ii zed shaft resistance

Qs1max = Maximum shaft resistance

Fig 1 4 29 Relative shaft resistance vs relative movement (Farr and Aurora 1981)

100 Load Q (s) [ MN]

Su5 s s 20 mm for non- cohesive soil u

s s 10 mm f or cohesive soil u

s s 15 mm for claysand u

Q (s) + Q (s)s p

Qs(s)

-C ltII E s ~- [mm]-ltII IJ)

Fig 1 430 Dependence of total load Q(s) point res i stance Q (s) and shaft resistance Q (s) versus settlement p s

~ 3 Usu Qpu Qu Q(s) [ MN]

Sus= 20

1J

60

80

100

120

degs (s ) 140

5 P=Ol Op

1EO

C -ltII E 180 ~ ] 200

s [mm]

Approximative dependence of total load point resistance and shaft resistance versus settlement fny non-cohesive soil

Fig 1 4 31

101

113 3 ~fic0P Ye hY

1 Ground water

D

I y

yh C

Fig 1 5 1 Determination of 01 and 03 for settlement analysis of lar ge diameter bored piles

102

I

E=Et [MPa]

160 0

140

120 0

100

80

6

40

--- --shy 0

0

8 0

0

0

20

2 3 4

I 0 15

Fig 1 5 2

E = Et [MPa]

120

100

80

60

40

I I 0 35 065 085

0

Et= 17 81 qcp0844

( r = 0 128)

5

100

6 qcplMPo]

Calculated values of Young s modulus for piles No 1shy24 according to equation 1 5 2 and 1 56

0

0 0

E =898qcp127 (r= 0314)

E = 9 middot qcp 13 0

20 shy 0

0 0

0 1 2

loJ

I 0 35

3 I

065

4

I 085

5

100

6 qcp [MPo]

Fig 1 5 3 Calculated valueBof Young s modulus for piles No 1shy24 according to equation 1 5 4 and 1 5 6

I K 10 3

( 1 ] 1832

1400 0

1200 0

0

1000 0

800 0

m=2821 qcp0621

600 0

(r=0057)

400 0 0 0 0 0

200

2 3 4 5 6 qcp (MPa]

I 035

I 065

I 085 100 Io

Fig 15 4 Calculated valuesof the dimensionless compress ion modulus K for piles No 1- 24 according to equation 1 5 2 and 1 56

K ( 1 ]

0

1400

1200 0 0

1000

800

600

0

0 0

0

0 0

0 K= 1422 qcpl05

(r=0181)

0 K= 150 qcp

400 0

3)0 0 0

2 3 4 5 6 qcp(MPa)

I I -J 035 065 085 100 Io

Fig 1 5 5 Calculated values of the dimensionless compression modulus K for pile~ No 1-24 according to equation 1 5 2 and 1 5 6

104

120

100

2 3 4 5

I I I rv 0 15 035 065 085 100 lo

Bergdahl (1982) for shallow foundation

o----o Bozant Masopust (1981) D= 1 0 rn h=10 rn large diameter bored piles in noncohesive so il

0----0 Proposal according to current anal ysis

Klosinski (1977) D=090 to 125 rn large diameter bored piles in sand and sandy grave l

Mitchell Gardner (1976) very dense sand E=(35)q (it depends on sand density and stress history) c

Fig 1 5 6 Composision of Young s moduius

105

TABLES

0 Tab 1 11 Methods for detemination of the bearing capacity of bored piles (Ro llberg 1977)

Cl

Nol -- I Soil Areas of Q) Q) Editor Determination of Coefficients 5 type influenceqP qs p ~ C C 11 12 fP I fs

1 all Lab f Soil Mech (1936) l qp at the elevashy 1 0

2 all Huizinga (1951) ~ t~on of the pile 14 point

3 all Van der Veen (1953) ) 18 1 h+l14 all Van der Veen 1 0 Dpl375 D~ 15-- J qcmiddotdhBoersma (1957)

~ 11 +12 h - 12

5 12 all Menzenbach ( 1961) qc at the elevashy~ tion of pile point

6 18 all Mohan Jain Kuman (1963)1 average of qc over 1 h Q) h ~qcmiddotdhl 10 Dpj 3 75 Dj 15 50_micro

and 1 2C 11

7 I amp all de Beer ( 1964) graphically from 10 Q) qc 0 1 h+l18 u C

sand Soviet norm SNIP II 9ct9cp I4 bull O Dp I10 DP l66-1 083shyu clay B5- 67 Trofimenkov (1969) 2 50 1 251 +l J qc middotdh micro middot h middot-l l 2h-~ _micro

9 _micro u all Paproth (1972) at the elevation 3 5 I shy

) of pile point (Dpgt0 5 m 7 D8DpE

E-lt p 1 h+l1 1 h Dplt 5 m u l+l J qcmiddotdh h f qcmiddotd~ 30 Dpl 50 Dp 2 0 100shy10 sand Norwegian method

0l 2 h-12 200Senneseth (1974)

11 lall Soviet method h+l (20-0lqgl - 101 1 q middotdhTrofimenkov (1974) -- f C UpUsmiddotQct

l1+l2 h - 1212 Qct-Qcp 40 D~ 10 Dp 1 33- 0 67shyUsbullh 4 00 2 50

13 English method 10 DFJ 375Dp 10 I

Rodin Corbett Shershywood Thorburn (1974)

3 7 5 Dcl 8 0 DP 10h+l1 _1_ J qcmiddotdh 1 h

qcmiddotdh 20011 +12 h - 12 hb

1 h qcmiddotdh 150hf

0

Observations

fp I f (qp)fs C

Dp E = 1 cm Qbu = 2 Qpa (approx )

s fs=f (qc)

q=~g Us 0 h

fp=f(q~)

fs=f(qgl

bull fine grained non- cohesive soil loosely packed

bull fine grained non- cohesive soil medium dense comp

fine grained non- cohesive soil

Tab 111 (cont)

h+h bE 14 non-cohe- Meyerhof ( 1956 poundti J N 3o middot dh CtME fN3 o dh 1 0 DP 4 0 DP 10 100 etM= l 2

sive soil 1976) lJ +12 h - li hE o hgp taken into consi der ~ Ul (I)

E-lt

C 0

~E = 1 kgbull 30 cm

(statistical limit depth of the pile) hE - clamping length of

pile micro rrJ l-l micro (I)

15 C (I) p

sand Norwegian method

- irm - - - 10 IT

m = diagram O l-l Senneset (1 974) rrJO C

16 rrJ micro gravel English meth it 3 middot N30 - - - 10 - Jf 3 + diagram U) ~

E-lt p U)

iiouiu Coruett Sherwood Thorshyburn (1974 )

(NJQat the elevashytion of pile point1

0 -i

108

Tab 11 2

Results of calculati o n of p i le point load pile shaft load and total pile load from static con e penetration test (Rol l berg 1977)

~ gt

~ gt Ultima te Ultimate Ult imate

No Method micro micro poi nt skin bearing 080lt17nlt1 50 Q) -l

-l middot-i resistanceuro resistance r esistancE

middot-i p 0

(J n1 n n2 n n3 n n1 n2 n3

1

2

Lab fSoil Mech

Hu izinga (1951)

(1936 ) 430

307 i 3 Van der Veen (1953) 239

49

4

5

Van der VeenBoersma

Menzenbach (1961)

(1957) -l middot-i 0

2 4 7

1 57 1-CJ)

6

7

8

Mohan Jain Kumen

de Beer (1964)

Sovi et Norm (1969)

(1963) CJ) Q)

-l middot-i 0

lJ Q)

Q)

gt- CJ) Q)

c 0

2 44

1 37

183

47

t I

49

487

0 18

47

16

3 02

0 85 1

47

16

137

08

9

10

Paproth ( 1972)

Norw Method (1974)

~ 0

0

u I

C 0 C

1 8 1

180 l 46

1- - -_L~ 46 167 46 1 19

1 1 Soviet Method ( 1974) [1 1 41 46 1 62 13 083 13 1 14 0 8

12 Engl Method (1974) 2 66 35 128 35 2 30 35 1 28

Note

cal Q a) n = --- mean value of the rat i o between calculat ed pile loads and those n Q determined f r om loading test

b) n = number of piles

109

Tab 113

Point resistance of large diameter piles (DIN 4014 Part 2 1977)

Settlement Point pressure 1 Factor -fshy

(cm) (MPa) cf=lOMPa I i=15 MPa C C

Piles without enlarged base

1 05 005 003 2 08 008 005 3 11 0 11 007

15 34 034 023

Piles with enlarged base

1 035 0 04 002 2 065 0 07 004 3 0 90 009 006

15 2 40 0 24 0 16

Note 10 lt qp lt 15 (MPa)C

Tab 114

Skin friction resistance of large diameter piles (DIN 4014 1977)

Strength Static cone pen- Depth below Skin frict ion Factor of sand etration resist surface

(MPa) (m) (MPa) fs

Very small lt 5 - 0

Small 5 to 10 0 to 2 0 2 to 5 003 ln6 to 333

gt 5 005 100 to 200

Medium I I 10 to 15 0 to 2 0 I

I 2 to 7 5

gt 75 I 0045 0075

222 to 133 to

333 200

High I I

i

l

gt 15 0 2

to 2 to 10 gt 10

I I I

I

i

0 006 0 10

gt gt

250 150

Note Skin friction is assumpted as linear until s =2 cm and constant for s gt 2 cm

11 0

Tab 115

Values of the inverse of the point resistance factor (Bustamante 1982) fp

Soil type qPC I 1

Factor - shyfp(MPa)

for piles group

a) Silt and loose sand lt 5 0 40 -b) Moderately compact

5 - 12 040sand and gravel

c) Compact to very gt 12 i 030compact sand and gravel I

Tab 116

Values of the shaft resistance factor fs (Bustamante 1982)

Factor fs

Soil type qs

C Category I(MPa) I A I B I II A III BI

I a) Silt and loose lt 5 60

i 150 I 60 I 120-

sand

b) Moderately corn- I pact sand and 5 - 12 100 200 100 200 gravel i

Icl Compact to very

compact sand gt 12 150 i I 300 150 I 200I

I I and gravel i

I

111

Tab 117

Point resistance factor (proposal)

-

1-fp

qc (MPa)

Gravel

Coarse sand Medium sand

Fine sand Silty sand

25

080

0 70

060

5 0

0 65

055

047

75

054

045

039

10 0

045

036

031

150

035

027

022

200

030

0 23

018

Tab 118

Shaf t r e sistance factor (proposal)

fs

qc (MPa)

Gravel

Coarse sand Medium sand

Fine sand Silty sand

25

80

100

130

10 0

120

150

190

I 200

180

230

300

11 2

Tab 119

Calculated values qcp

for large diameter piles

Pile Literature Length Diameter (m) Measured p Cr1 lcul Settlement Note Authcr(year) No (ml D Dp (MPa)

(s=0 10Dp) (MPa)p ~~JL__

s s ()(mm) Dp

1 Franke (1977) 1 13 11 36 38 117 106 Garbrecht

2

3

2

3

13

14

11

15

1 58 36

37

38

40

215

185

136

123

) qg accord to Franke

4 4 13 15 204 3 2 33 220 108 and Garshy

5 5 6 11 33 35 127 11 5 brecht (1977)

6 6 6 11 153 36 35 146 9 5

7 7 6 1 5 34 35 158 105

8 -shy 8 6 15 2 1 41 3 0 109 52

9 10 9 11 39 52 47

10 11 95 11 43 35 77 70

11 12 9 11 49 66 60

12 13 10 11 15 5 1 4 0 77 5 1

13 14 9 11 1 5 4 8 46 115 77--shy14 Pranke ( 1973) 15 115 18 4 9

) ) average 88

15 13$ 13 5 1 3 19 -2 5 3 2 sd=3 0

16 - - 165 16 5 13 19 30 sv=0 34

17

18

Spang (1972)

llXJ

V90

6 6

6 75

0 7

09

3 2

4 2

32X

42X

x) s =0 10 D p

19 VlaJ 720 1 2 39 3 9X

20 - - VlsJ 6 5 1 5 3 0 3 ox

21 Touma and US59 9 9 o 76 8 0 Reese ( 1977)

22 HH 75 0 61 8 0

23 Gl 180 091 - 2 5

24 BB 137 o 76

sd = standard deviation

sv = standard variation

Tab 1 2 1

Ultimate point resistance coarse and medium sand psf (MPal (Pol ish Specification 1975)

Depth h

Medium sand r = 0 40 N = 200 30 Base diam (Op) and depthbase diam (hDp)

Dense sand r 0 Base diam (Op)

= 0 80 = 50N30 and dpethbase diam (hDp)

(ml Dp = 0 6 m Dp = 1 0 m Dp =12 m Dp = 1 5 m Dp = 0 6 m DP = 10 m DP = 12 m DP = 15 m

Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp

5 10 83 0 85 5 0 075 42 07 33 20 8 3 16 50 14 42 13 3 3

7 14 11 7 1 2 70 11 5 8 10 4 7 2 8 11 7 22 70 2 0 5 8 1 8 47

10 18 16 7 15 10 0 14 8 3 1 3 67 35 167 28 100 2 5 83 2 2 67

15 18 250 18 15 0 16 12 5 15 100 4 2 25 0 3 4 15 0 30 125 27 100

20 2 4 333 2 0 200 185 167 1 7 133 4 7 333 3 8 200 33 167 30 13 3

25 26 41 7 2 2 25 0 20 208 19 167 5 0 41 7 4 0 250 3 5 20 8 3 2 167

w

11 4

Tab 131

Partial safety factors for resistance to axial load for bored piles (Wright Reese 1979)

Partial safety Normal Poor factor for control control

Unit skin resistance 1 70 185

(no load test)

Unit skin resistance 160 1 70

(from load test)

End bearing 165 180

Tab 1 3 2

Probability of failure of bored piles under normal design conditions (Wright Reese 1979)

Probability of Factor of Structure failure safety classification

5 10-3 25 monumental

210shy 22 permanent- 2

5 middot 10 2 0 110shy 1 85

temporary 5 bull 10-l 165

11 5

Tab 133 Results of field tests (Tejchman Gwizdara 1979)

L

II C C C 0 0 0

micro micro

micro micro micro For universal safe~y F2u u CUNo micro C C ~ ~g~ middot- C

~ Permisible micro micro i ~c -i micro

cmiddot-~ micro~ L

micro oo ~ load ~t~ ~~ omicro micro ~ ~ 3Z~ ~ ~ micro

-~~

~ e ~ --middot--

middot- ~ obull 0

~ g ~~ ~~ ~

~ L

o Jl i5 sect~ =gt L Q~ = yen t p Qp Qp

D h Q~ Srrx s tm p s E~ iQ~lQ~cm ~~ KN X ll1l kPa kPa kN kN kN Jl ~e ~ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 70 6 60 4081 1550 2531 38 0 1182 10 4040 175 2041 245 1796 632 141 120

2 90 6 75 5082 3041 2041 598 1785 10 4782 107 2541 1079 1462 282 140 42 5

3 120 720 7259 4041 3218 557 1035 10 3576 119 3630 2158 1472 187 2 19 594

4 150 650 8643 4454 4189 51 5 928 20 2521 136 4326 2158 2168 3 10 166 253

5 130190 195 7750 3011 4709 392 805 10 1075 - 3875 981 2894 3 10 166 253

6 130190 165 9516 5101 4415 536 522 20 1800 - 4758 1962 2796 260 158 412

7 130190 135 8044 5199 2845 646 114 4 15 1834 - 4022 2109 1913 2 47 149 524

8 180 115 11380 4415 6965 388 792 15 1735 - 5690 2747 2943 161 2 37 483

9 76 980 6867 4316 2551 628 110 13 9529 109 3534 1128 2306 383 111 32 8

10 61 7 60 7161 2747 44 14 383 67 15 9404 303 3581 392 3188 700 169 109

11 92 180 4807 883 3924 184 20 8 1329 76 2404 196 2207 450 178 82

12 76 24 5 6769 736 6033 109 20 8 1623 103 3385 147 3238 500 186 43

13 76 137 5396 2060 3336 38 2 63 8 4535 102 2698 589 1109 350 t 58 218

14 120 23 5297 1854 3443 35 0 960 10 1640 39 2649 196 2453 945 130 7 4

15 135 16 7 13489 7554 5935 560 181 10 5260 83 6749 2060 4689 367 127 305

16 170 46 0 8829 2943 5886 333 17 10 3466 39 4415 1373 3042 2 14 1 94 31 1

Average Fi 387 166 Standard deviation Sd 2 1 5 034 Standard variation sv= 0 56 0 20

1234 Spang1972 567 8 Franke 1976 9 10 111 2 1 3 Touma Reese 1974

14 Colombo 1971 15 Kerisel Simons 1962 16 Appendino 1973

11 6

Tab 134

Results of model

SafetyScheme factor

medium F ssand

F p

loose F s

samd Fp

F 3 55 sd _P F 1 32 sd

s

tests (Tejchman Gwizdara 1979)

Diameter D (mm)

30 60 90 133

145 129 108 112

280 3 08 307 294

140 154 153 112

594 3 04 324 426

107 sv 030

0 19 sv 0 14

117

Tab 135

Individual safety factors according to literature

Literature proposal ofLiterature individual safety factor

Fs Fb

Polish Specification (1974) 100 250

Tejchman Gwizdala (1979) 150 400

Bustamante Gianeselli 200 300 (1982)

Decourt ( 1982) 130 400

average 145 3 38

TAB 141 0)

Load settlement curves - measured

Pile No

Settlement 1 c 3 4 5 6 7 8 9 10 11 12

s p s p p s

p p s P

p s P

p s p p s

P p s

P p s

p p s p p S

p I i p s

p p s p

mm MPa rrrn lifl5a MPa mm

lifl5a MPa

mm lifl5a MPa mm

RPa mmMPa nwa MPa mm

RPa MPa mm RPa MPa mm

RPa MPa mm RPa MPa mm

RPa MPa mm RPa MPa mm

RPa 10 045 222 09 1 1 05 20 07 143 06 167 08 125 0 5 20 08 125 10 100 08 12 5 15 67 16 63 20 092 21 7 14 43 08 25 10 20 0 1 1 182 12 167 0 9 22 2 12 167 18 111 14 143 24 83 22 9 1 30 125 240 1 7 I 7 6 1 1 273 1 2 250 14 214 15 200 1 2 250 15 200 25 12 0 19 15 8 30 100 26 11 5 40 1ti 250 20 10 0 14 28 6 14 286 1 7 235 18 222 1 4 286 18 22 2 3 2 12 5 23 174 36 111 3 0 133 50 20 250 22 ~27 1 7 294 1 5 333 20 250 2 1 ~38 1 7 294 1 9 263 37 135 27 18 5 4 2 11 9 33 152 60 2 2 273 24 ~5o 20 300 1 7 353 23 61 22 ~73 18 333 21 286 43 140 30 20 0 46 13 0 36 16 7 80 271 295 27 796 24 333 20 400 27 ~96 25 1320 22 364 25 32 0 53 15 1 36 222 41 195

100 322 31 1 30 333 28 357 22 454 31 1323 29 345 26 385 28 357 60 16 7 40 25 0 45 22 2 125 38 329 32 391 32 391 25 500 32 139 1 30 41 7 32 39 1 4 6 272 48 ~6 0 150 14 2 357 34 1441 36 41 7 27 555 36 ~1 7 34 44 1 36 41 7 175 36 486 39 449 30 583 38 ~61 38 461 200 38 526 42 476 32 625 225 39 577 33 682

(mmMPa) ( 1 MPa)

1

1=2074

t 1=O ~01 =0 98S

a1=1132

b1 =0 212 V =0994

a1=2217

b1=O 131

V =Q 978

a1=1860 b1=0233

V =Q966

a1=1562

b1=0174 V =Q983

a1=1382

b1=O195

V =0975

a1 =20 37

b1 =C 174

V =0957

a1=1443

b1=(l 193 v =O 961

a1=965

b1= 0071 V =0 990

a1=1 91

b1 =o 128

V =0 993

a1=5 83

b1=C124

v =O 981

a1=6 1 4

b1=01 64 v =U 985

li(MPa) ~9 4 7 76 43 57 middot5 1 57 5 2 141 78 81 61 cp (MPa) B8 39 40 33 35 35 35 3 0 39 3 5 49 40 __Ef ~-6 1 2 1 9 1 3 16 15 16 1 7 36 22 16 15 qcp

TAB 141 (continue) Load settlement curves - measured

Pi le No 3ettlement 13 14 15 1 17 18 19 20 21 22 23 24

s p s T5

p s T5

p s T5

p s P

p s P

p s P

p s P

p s P

p s T5

p s T5

p s p p s

p mm MPa lll1l

HPa MPa mm HPa MPa mm

fWa MPa mm fWa MPa lll1l

HPa MPa mm HPa MPa mm

MPa MPa lll1l NT5a MPa HPa MPa 111111

HPa MPa 111111

HPa MPa 1)1111

mra 10 1 7 59 075 133 06 167 075 133 ~95 105 09 11 1 07 143 3 76 1 7 59 08 133 10 100 20 2 4 83 130 154 095 21 1 1 15 17 4 1 75 114 16 125 12 167 ~7 74 33 6 2 1 3 15 3 1 9 103 30 29 103 1 7 176 1 2 250 15 200 r55 118 22 136 16 18 8 38 79 46 66 1 7 182 27 110 40 33 12 1 20 200 1 35 29 6 1 75 229 ~O 133 26 154 175 229 49 82 58 6 9 1 9 21 1 35 115 50 36 139 235 21 3 145 34 5 1 95 256 24 208 ~-4 147 28 17 9 20 250 gt8 86 6 9 72 2 2 233 4 2 11 8 60 39 154 265 22 6 1 55 387 2 15 279 28 214 ~6 16 7 30 120 0 2 2 27 3 o 8 89 80 7 5 2 3 262 80 43 186 31 258 1 7 47 1 36 222 14 05 198 33 124 2 25 320 B 1 98 25 327

100 45 222 18 556 39~ 253 ~-5 222 36 1278 27 370 ~8 113 125 47 26 6 20 625 42 29 8 149 255 28 1446 t50 22 682 3 0 500 175 200 225

(mmMPa) a1=479 a1=1206 a1=14 51 a1=1113 a1=1406 ~=836 a1=843 a1=1176 ~=64 a =561 a1=10 0 a1=9 5 (1MPa) b1=0175 b1=0 178 b1=0 382 b=0287 b1=O 119 p 1=0 137 h1 =o 193 b=0258 p1=0 049 b1=0032 b1=0 276 b1 =0 048

hf (MPa)

v =0998 57

v =0-987 5 6

v =0989 26

v =0992 35

v =0933 Iv =0991 84 73

v =0993 5 2

v =0998 tJ

3 9 =0944 v =0998 v =0996 v =0981

qcp (MPa) 46 39 32 30 32 14 2 39 30

lL 12 1 1 08 12 26 1 7 1 3 13 qcp

lD

N 0

TAB 142

Calculated point resistance curves

Setlement (mm) p(s)

1

n p(s)

Calculated value of the p(s) for pile No

2 3 4 5

n p(s) n p(s) n p(s) n p(s) 6

(MPa)

n p(s)

7

n p(s) 8

n p(s) 9

n p(s)

10 20 30 50 80

100

150 200 225

070 128 177 253 335

375 446 493

157 140 141

127

123

1 16 106

070 1 25 168 232

297

327 378 410

422

078 089 099 1 06

1 10

109 1 11 108

108

073 1 30 176 246

315 349

405 441

146 163

160 145

1 32 125

113 105

056 096

1 26

167 205 222

249 265

271

0 80 096

105

1 11 100 101

092 0 83

082

065

118 162 233

308 345

412 456

108 108

1 16 116 114 111

064

1 12 151 2 10 2 69

298

346 3 76

078 P63 093 tt 13 101 tt 53 100 I 13

108 ~75

103 ~04 096 ~ 55

~ 87

1 26 125 127 126

125

1 17 1 04

052 088

1 15 153

188 2 03 227 242

065 0 74

o 77 0 81 0 75

0 73

063

072 122

1 83 262 347 388

463 5 11

073

0 74

073 0 71 0 65 065

064 1 18

162 233 309

3 46

41 3 4 57

Dp (m) 1 1 Qcp (MPa) 38 (mmMPa) h2 8 1 1 9 Qcpbullv1(MPa) 72

158

39

124 14 55

15

40

n20 15 60

204

33 148 10 33

1 1

35

tt 4o 1 9 67

1 53 3 5

tt 4 0 1 5 51

15

13 5

114 0 15 i-gt 3

2 1

30

tt 6 0 10 3 0

1 1

3 9

12 4 1 9 74

1 1

3 5 h40

1 9 67

Note n = condition coefficient calculated p(s) measured p(s)

10

n

081

084 0 85 0 86 0 85

087

TAB 142 (continue)

Calculated point resistance curves

Calculated value of the p(s) for pile No (MPa) Setlement 11 12 13 14 15 16 17 18 19 20

(mm) p(s) ll p(s) n p(s) ll p(s) n p(s) n p(s) n p(s) n p(s) n p(s n p(s) n

10 106 070 0 71 045 091 054 099 1 32 055 092 053 070 060 081 085 0 72 080 055 078

20 1 90 079 130 059 160 067 1 70 1 30 096 101 091 079 1 12 148 085 1 31 082 098 082

30 258 086 1 76 068 2 15 074 222 1 31 1 26 105 120 080 156 205 081 180 082 132 083

50 363 086 246 075 297 082 296 1 26 1 70 117 161 082 228 095 295 087 256 0 91 184 092

80 471 316 o 77 3 77 088 364 1 18 2 1 o 1 24 199 308 085 393 097 336 1 02 237 095

100 522 349 078 415 092 394 228 1 27 2 16 348 088 442 098 375 104 262 097

150 611 405 479 443 258 117 244 423 529 443 304 101

200 669 441 518 473 276 261 474 587 488 331

Dp (MPa) 1 1 1 5 1 5 18 1 9 19 070 090 12 15

qcp (MPa) 49 4 0 46 49 32 30 32 42 39 30 12 a1 mmMPa) 84 h20 96 84 152 160 152 124 160

IV1 1 9 1 5 15 12 11 1 1 23 21 18 15

qcpmiddotv1 (MPa) 93 60 69 59 35 33 74 88 70 45

- 12287 average = ~ = 098

standard deviation sd = 023 standard variation sv = 023

N

122

TAB 143 Ultimate settlement for shaft resistance - summing up

Ultimate settlements (mm)Literature sand cohesive claysand

soil

Burland Butler Dunican (1966) 7

Touma Reese (1974) 10 Tomlinson (1977) 10 Klosinski (1977) 8

Francke Gerbrecht (1977) 20-30 DIN 4014 part 2 (1977) 20 10 Francke (1981) Reese (1978) (1979) 05-2 of 05-2 of Farr Aurora (1981) shaft dia~ shaft diam

5-20 mm 5-20 mm Tejchman Gwizdala (1979) - Spang (1972) 10

10 10 20

- Francke (1976) 10 20 15 15

- Touma Reese (1974) 13 8 15 8

8 - Colombo (1971) 10

- Kerisel Simons (1962) 20 - Appendino (1973) 10 Promboon Brenner (1981) 10 Prodinger Veder (1981) 12 Decourt (1982) 10-15 10-15

-average s = 14 1 10 126

standard deviation sd = 53 2 1 47

standard variation sv = 038 021 037

123

TABLE 14 4 Al l owab l e base resistance versus sett lement

Pile Li terature ength Diameter (m) Calculated qcp=qcp Settl ement Fp-3- sa (mm)No Aut hor No (m) D DP qcp (MPa) for qcp3(MPa)

1 Francke ( 1977) 1 13 11 38 127 25 Garbrecht

II2 2 13 11 158 39 130 19

II3 3 14 15 40 133 33

II4 4 13 15 204 33 110 23

II5 5 6 11 35 117 22

II6 6 6 11 153 35 117 19

II

8

7 7 6 15 35 1 17 25

II 8 6 15 21 30 100 21

II9 10 9 11 39 130 13

II10 11 95 11 35 117 15

II11 12 9 11 39 163 11

II12 13 10 11 15 40 133 7

II13 14 9 11 15 46 153 9

14 Francke ( 1973) 115 11 5 18 30 100 15

II15 135 135 13 19 32 107 29

II16 165 165 13 19 49 163 35

17 Spang (1972) V70 660 070 32 107 28

18 II V90 675 0 90 42 140 16

II19 V120 720 1 20 3 9 130 16

II20 V15C 650 150 30 100 16 average for pi les 198

standard dev sd = 78

standard var sv = 039

)assumed qc = p for s = 010 Op sonding meRsurement were not availab le

IV

TA~LE 15 1

Comparison of the initial sl ope of the pile point resistance - settlement curve

Accardi ng to 1 2 3 4

In i t i ~l 5

slope a1 for the pile No

6 7 8 9

(mmMPa)

10 11 12 13 14 15 Note

a 1 for s=10 mm 222 11 1 a1 for s=20 mm 21 7 14 3 calculated 207 113see Tab 14 1 Bo Berggren (198 )230s=20 mm

Schmertmann s method (see 202B Berggren 1981)s=20 mm

No 1 _ llNo - 6 1 97 098

202 250

22 2

400

30 8

090

14 3

200

186

076

167

182 156

286

18 2

107

125

167 138

091

20 0

222

204

426

263

098

125

167

144

087

100

11 1 9 7

182

23 5

1 03

12 5

14 3

11 9

174

164

105

67 83

58

14 6

125

1 16

63

9 1

61

103

59

8 3 48

123

13 3

15 4 12 1

1 10

167 21 1

aceto hypershy14 5 bola type curve

1 15

No 2 NQj = n1

No 4Noz ~ na No 5Naz= T]g

105 1 27

106

093

1 13

160

1 23

108 1 17

157

100

121 109

1 92

118

1 16 1 14

164

2 12

120

122

1 15

143

1 76

151

149 1 73 1 27 146

TAllLE 151 (continue)

Compa ri son of the initial slope of the pile point resistance - settl ement curve

Initial slope a1 for the pile No (mmMPa)According Note to 16 17 18 19 20 21 22 23 24 -a1 for s=10 mm 133 - 105 11 1 143 76 59 133 100 a1 for s=20 mm 174 - 114 125 167 74 62 153 10 3 calculated see 11 1 146 84 84 118 64 56 100 95Tab 141

Bo Berggren 198 67 78 25 0 114s=20 mm Schmertmann s method (see B 136 67 250 146 Berggren 1981) s = 20 mm

nG = 108 No 1NoJ = n 1 20 125 1 32 121 1 19 105 1 33 105 sd = 0 14

SY= 013 No 2 i) = 1 29ro1 = n1 157 136 149 142 1 16 1 11 1 53 108 sd = 019

SY= 015 No 4 iis = 143 INo2 = ns 091 126 1 63 111 sd = 033

SY= 0 23 No 5 ii9 = 1 37183 108 163 142INoz = n9 sd = 0 37

SY = 027

N Vl

126

TABLE 152

Measured and calculated pile point resistance

Pile Calculated Measured Measured No qcp P for

s=10 mm P for s=20 mm

~ 10 mm ~ 20 mm

- (MPa) (MPa) (MPa) - -

1 38 045 092 84 41 2 39 09 14 43 28

3 40 05 08 80 50 4 33 07 10 47 33 5 35 06 11 58 30 6 35 08 12 44 29 7 35 05 09 70 39 8 30 08 12 38 25 9 39 10 18 39 22

10 35 08 14 44 25 11 49 15 24 33 20 12 40 16 22 25 18 13 46 1 7 2 4 27 19 14 30 075 13 40 23 15 32 06 095 53 34 16 49 075 115 65 43 17 32 - - - -18 42 095 1 75 44 24 19 39 09 160 4 3 23 20 3 0 07 12 43 25

average= 484 291

sd 163 088 sv 034 030

Tab 153 Results of calculation for piles No 1-24

Pile No

Length (m)

Overburden pressure 0 vs

0hs (kPa)

0ve (kPa)

0 nc (kPa)

- -ov=o1 (kPa)

- -OV=03 ( kPa)

00 (kPa)

p(a il ( kPa)

s (a 1) (mm)

A2 ( 1 )

E t

(kPa)

Md ( 1 )

K (1)

E I

t (kPa)

( kPa) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

l 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

13 12 14 13 6 6 6 6 9 95 9

10 95

11 5 135 165 66 675 72 65 99 75

180 137

l 33 133 123 116

70 70 70 70

104 102 95

102 95 94

106 139 95

101 106 97

180 137 221 215

53 53 49 46 28 28 28 28 42 41 38 41 38 38 42 56 38 40 42 39 72 55 88 86

202 202 216 202 1114 104 104 104 146 153 146 160 153 181 209 251 120 128 134 123 238 180 305 277

202 202 216 202 104 104 104 104 146 153 146 160 153 181 209 251 120 128 134 123 238 180 305 277

168 Hi8 170 159 87 87 87 87

125 128 121 131 124 138 158 195 108 115 120 110 209 159 263 246

128 128 133 124 66 66 66 66 94 97 92

101 96

110 126 154 79 84 88 81

155 118 197 182

141 141 145 136

73 73 73 73

104 107 104 111 105 119 137 117 89 94 99 91

173 132 219 203

950 975

1000 825 875 875 875 750 975 875

1225 1000 1150 750 800

1225 800

1050 975 750

2000 2000 625

1500

218 139 255 190 16 1 146 210 12 7 10 1 11 7 84 73 69

104 167 210 124 103 10 1 109 142 120 76

153

0802 0802 0822 0820 0798 0798 0798 0798 0791 0798 0800 0811 0814 0837 0837 0830 0769 0 768 0771 0 775 0 780 0 781 0 788 o 779

35296 81603 43312 65222 44019 67515 4609 91313 78186 60572

118115 15129 5 184075 95577 67017 81607 33252 67554 85294 75994 78816 74857 55101 54862

075 075 0 77 075 084 084 084 081 079 078 084 080 083 076 076 078 0 77 081 079 076 082 087 064 0 74

278 643 337 512 542 832 567

1085 766 572

1216 1417 1832

796 520 709 353 735 878 781 630 726 302 366

26472 61202 33350 48917 36976 56713 38656 73964 61767 47246 99217

121036 152782

72639 51932 63653 25604 54719 67382 57755 64629 65126 35265 40598

a=282l a =l781 y=axs S=0621 B=0 844

V=0 057 V=0 128 _ Iv -J

~

N co

Tab l53 Results of calculation for piles No 7-24

Pile No

17

1 2 3 4 5 6 7 8 9

70 11 72 13 74 75 16 17 78 79 20 27 22 23 24

Ground water

18

-20 m b s

-28 m -335 m -330 m -3 15 m dry dry -53 m -85 m

E t (kPa)

19

33653 64979 35364 45664 47969 54583 37574 63072 74548 57753

71 2618 123531 150297

71239 48619 59204 39744 77208 77863 62049 90407 95844 57762 62937

vxEt=E Md (kPa)

20

25240 48689 27230 34248 35254 45849 31562 51040 58893 45047 94599 98825

724747 54142 36950 46179 30603 57678 61572 47157 47734 83384 36968 46569

a=898 S=l 27 =0314

K (l )

21

265 511 275 358 517 672 463 749 730 546

1160 1157 7496

593 377 514 422 775 802 638 723 929 377 420

a=l422 S=l 05 =0187

E=E = t1 3

g-gcp (kPa)

22

51046 52799 54566 42492 45870 45870 45870 37547 52799 45870 77039 54566 65438 52799 40826 71039 40926 58739 52799 37541 82549 82549 40826 59945

Calculated s

(mm)

23

708 128 72 7 15 3 724 146 144 17 3 71 3 11 5 11 2 732 13 2 707 1 5 1 13 7 93

102 118 137 728 12 l 69

11 9

s__caL n=smeos

() 24

050 092 050 087 0 77 7 00 069 l36 l 12 098 133 l81 l97 103 090 065 0 75 099 117 126 090 101 097 078

ri=l00 sd=035 sv=035

K = l50gcp

25

570 585 600 495 525 525 525 450 585 525 735 600 690 450 480 735 480 630 585 450 825 825 1180 645

E l

(kPa)

26

67684 69465 72250 57726 44856 44856 44856 38448 59659 54306 74956 63214 70704 49089 56783 79502 45283 61081 58207 42927

708572 94785 71033 91898

E = t E middotA2

l

(kPa)

27

54283 5571 l 59389 47336 35795 35795 35795 30682 47790 43336 59964 51266 57553 47088 47024 65987 34823 46970 44877 33269 84639 74027 55974 71589

Calculated s

(mm)

28

l O l 12 l 11 7 737 15 9 18 7 185 21 1 12 6 12 2 133 14 l 150 13 7 13 l 14 7 709 12 7 738 755 12 4 735 50

100

- -

Tab l53 Results of calculation for piles No l-24

Pile

29

l 2 3 4 5 6 7 8 9

10 ll 12 13 14 15 76 17 78 19 20 21 22 23 24

sea l n= middotshy

smeas

28 TT

30

0 46 087 046 0 72 099 l 28 088 l 66 l 25 l 04 l 58 l 93 2 17 l 32 078 0 70 088 l 23 l 37 l42 087 l l 3 066 065

n=l 10 sd=0 44 sv=040

s seal for p n=s=lOrnn ac cording to s = 70mm

(mm)

37 32

5 l 0 51 ll 8 l18 64 064

13 0 l30 85 0 85

13 3 l 33 83 0 83

184 l84 ll6 l l 6 105 l05 137 l 37 21 3 2 12 19 4 l94 107 l06 l l 3 l l 3 84 084

92 092 l 0 9 l09 128 l28 83 083

l 0 3 l03 88 088 79 0 79

n=1 73 sd=025 sv=027

s for p according to s = 20mm

(mm)

33

10 4 184 102 18 6 15 6 200 14 9 276 209 18 4 219 292 274 185 17 9 12 9 -

169 194 219 172 200 143 15 0

seal n=s=20rnn

34

052 092 051 093 078 l00 075 l 38 l 05 092 l l 0 l46 l 37 093 090 065

-085 097 l1 0 086 l00 072 075

n=093 sd=025 sv=0 27

s for p according to s = 30rnn

(mm)

35

142 223 14 l 22 3 198 249 142 34 5 290 249 274 345 33 l 243 22 6 168 -

24 7 26 6 293 24 3 279 187 213

seal n=s=30rnn

36

047 0 74 047 0 74 066 083 047 l 15 0 97 083 091 l 15 l10 0 81 075 056 -

082 089 098 081 093 062 0 71

n=o80 sd=020 _ sv=0 25 N

IO

APPENDIXES

APPENDIX 1 1 1

Pi le No 1 Length 13 m D 10 m

Areas of influence

-

qe

(MPa)

1 fp

___9c_ f

(MPR) zyen

(MPf) qcp (MPa)

Soil type

22 20 18 16 14 1 2

l 2 (m)

10

1 0 08 06

16 15 16

026 027 026

42 41 42 Sand

04 14 U28 39 02 14 028 39 41

02 16 0 26 42 04 16 026 42 06 16 026 42 08 14 028 39 Sand 1 0 13 030 39 12 15 027 4 1 38 14 13 030 39 16 12 032 38 18 12 032 38

40 20 10 036 36 22 10 036 36 24 9 U39 35 2 6 8 043 34 28 10 036 36 30 10 036 36 3 2 10 036 36 34 10 0 36 36 36 11 0 34 37 38 11 034 37

l 1 (m)

40

42 44

11 0 34 37 15 1

46 48 50 52 54 56 58 60 62 64 66 68 70 7 2 74 76 78 8 0

APPENDIX 112

Pile No 2

to little depth of sounding

q~ = middle values for 11 = 2 Op

q~ = 145 MAa (Francke Garbrecht 1977 Tab 2 p 50) (Fi g No 2)

for sand

qcp = 0275middot145 = 40 MPa q~p =V ~~s) middot 40 = 097middot40 = 39 MPa

Pile No 4

q~ = 120 MPa sand (Fig No 4)

q = 0 315middot12 = 3 8 MPa q bull 38 = 086middot38 = 33 MPa=V Jmiddot54

1

cp middot bull cp

Pile No 12

qg = 155 MPa sand (Fig No 13)

qcp = 026middot155 = 4 03 MPa

Pile No 13

q~ = 200 MPa sand (Fig No 14)

q = 0 23middot20 = 46 MPacp

APPENDIX 113

PileNo3 Length 14 m D 15 m

Areas of influence

-

qe

(MPa)

1 Tp

----9cf

(t-1Pf) r~

(MPf) qcp (MPa)

Soil type

22 2D 18 16 17 025 43 14 17 II II

L 2 17 II II

12 (m)

16 10 08 06

17 17 17

o

II

II

II

II

Sand 04 17 II II

02 19 024 46 b9

02 19 024 46 04 17 025 43 06 15 027 41 08 13 030 48 1 0 12 032 38 12 11 033 36 14 13 0 30 39 16 14 028 39 18 12 032 38 40 20 16 026 42 2 2 16 026 42 24 11 033 36 26 11 033 36

60 28 30

10 10

036 036

36 36

Sand

32 10 036 36 34 12 032 3 8 3 6 12 032 38 38 12 032 38

1 1 (m)

40

4 2 4 4

13

14 16

030

028 026

39

39 42

46 13 030 39 48 12 032 38 50 14 028 39 52 10 036 36 54 13 030 39 56 14 028 39 58 15 027 41 60 15 027 ~-1 236 62 64 66 68 70 72 74 76 7 8 80

APPENDIX 114

Pi l e No 5 Length 6 0m D 11 m Dp 11 m

Area s of i nfluence

-

qc

(MPa)

1 Tp

-3Lf

( MPf) l ~

(MP~) qcp (MPa)

Soil type

2 2 2 0 18 1 6 14 1 2 155 U i1 33

l 2 (m)

1 2 10 08 06

15 14 12

022 023 0 27

3 3 32 32

Fine sand

+ silt

04 125 026 33 02 16 0 21 34 39

02 16 021 34 04 13 025 33 06 08 10

15 5 17 20

022 0 20 018

34 34 36

35 Fi ne sand

1 2 20 0 18 36 14 20 018 36 + s ilt 16 20 0 18 36 18 165 020 32 20 165 0 20 32 22 17 0 20 34 24 26 2 8 30 32 3 36 38 4 0

19 21 5 21 5 21 5 20 19 5 19 5 20 215

01 9 ---

018 018 0 18 0 18 -

3 6 40 40 40 36 35 3 5 36 4 0

l 1 (m) 4 2

44 20 19

018 01 9

36 3 6 157

46 48 50 5 2 54 56 58 6 0 62 64 66 68 70 7 2 74 76 7 8 8 0

APPENDIX 1 15

Pi le No 6 Lengt h6 0 m D 11 m

Areas of qc 1 __9_c_ qcp Soil typei nfluence fp f 1 yen (MPa) (MPf ) (MPf) (MPa)

-2 2 20 18 16 t 4---0 14 75 038 29 L2 20 018 36 Fi ne sand

1ti 10 30 40 + s i lt12 08 19 0 19 36(m) 06 17 020 34 04 14 023 32 02 9 034 31 56

02 6 043 26 04 12 026 3 1 06 17 020 34 08 11 028 3 1 1 0 14 023 32 35 1 2 17 020 34 Fi ne sand14 19 019 35 16 20 018 36 + silt18 18 0 19 34 20 14 023 32

46 22 12 026 31 24 12 026 31 26 15 022 33 28 18 019 34 30 20 018 36 3 20 0 18 36 34 20 018 36 3G 20 018 36 38 20 018 36 4 0 20 018 36

l 1 42 22 40

(m) 44 22 40 46 L2 4 0 158 48 50 52 54 56 q =V ~ - 3 b =0 99middot35 = 35 MPp cp 53 58 6 0 62 64 66 68 70 72 74 76 78 80

APPENDIX 116

Pi leNo7 Length 60 m 0 15 m

Areas of influence

-

qe

(MPa)

1 Tp ~

(MPg) r~

(MPf) qcp (MPa)

Soil type

22 20 18 16 9 U33 30 14 10 031 31 12 135 024 32

l 2 (m)

16 10 08 06 04 02

13 12 6

10 175

025 026 043 0 31 020

33 31 26 3 1 35 50

Fine sand

+ silt

02 04 06

17 10 115

0 20 0 31 027

34 31 3 1

08 10

145 185

023 019

33 35 3 5

1 2 14

20 19

018 0 19

36 36 Fine sand

l 1 (m)

60

16 18 20 22 24 26 28 30 3 2 34 36 38 40

42 44 46 48 50 52 54 56 58 6 0

185 125 125 165 17 19 21 215 205 20 21 20 20

24 22 20 215 22 22 21 19 18 22

0 19 026 0 26 020 020 019 --

018 018 -

018 01 8 --

018 ----

0 19 0 19

35 33 33 33 34 36 40 40 37 36 40 36 36

40 40 36 40 40 40 40 36 34 40 219

+ silt

62 64 66 68 70 72 74 76 78 80

APPENDIX 117

Pile No 8 Length60 m D 15 m Dp 2 1 m

Areas of influence

-

qe

(MPa)

1 r +

(MPg) r~

(MPf) qcp (MPa)

Soil type

22 18 019 34 20 16 021 34 18 125 026 3 3 16 115 027 31 14 11 028 3 1 12 11 028 3 1

l 2 (m)

10 08 06

105 11 145

D29 028 023

30 31 33

Fine sand

+ silt

04 18 0 19 34 02 18 019 34 71

02 15 022 33 04 11 0 28 31 06 13 0 25 33 08 20 0 18 36 10 15 022 33 12 13 025 33 14 175 020 35 16 18 20 22

20 21 20 15

018 -

018 0 22

36 40 36 33

35 Fine sand

+ s i lt

24 26 28 30 3 =

13 16 175 19 20 20

025 021 020 0 18 018 018

33 34 3 5 34 36 36

36 38 4 0

20 20 21

018 0 18 -

36 36 40

11 (m)

4 2 4 4 4 6 48 50 5 2 5 4 56 5 8 60 6 2 6 4

20 20 21 22 21 20 19 175 19 20 25 28

018 0 18 ---

01 8 01 9 0 20 0 19 018

36 36 40 40 40 36 36 35 36 36 40 4 0 23 0

6 6 68 70 72 74 76 78

qcp 1f5=v 2T middot35 = b85 middot35 = 30 MPa

80

APPENDIX 118

Pi le No 9 Le ngth 90 m D 11 m m

Areas of 1Qe -9c qcp Soil typeinfluence Tp f ryen (MPa) (MPg) (MPf) (MPa)

-

2 2 2 0 18 16 14 lc 11 034 37

12 10 10 036 36 12 08 9 039 35 Medium(m) 06 10 036 36 sand04 10 036 36

02 11 034 37 43

02 12 032 38 04 12 0 32 38 06 12 0 32 38 08 13 030 39 10 13 030 39 12 13 030 39 14 14 028 39 16 14 028 39

44 18 14 028 39 20 14 028 39 39 Med ium 22 15 027 4 1 sand 24 16 026 4 2 26 17 025 43 28 13 0 30 39 3 0 9 039 35 32 13 030 39 34 16 026 42 36 17 025 43 38 17 025 43 40 19 024 4 6

11 42 17 025 43

(m) 44 15 027 41 17 7 46 48 50 52 54 56 58 60 6 2 64 66 68 7 0 7 2 74 76 78 80

APPENDIX 119

Pi 1 e No 10 Length 95m D 11 m m

Areas of influence

-

qe

(MPa)

1 fp

-9c f

(t-1Pf) [~

(MPf)

qcp

(MPa)

Soil type

22 20 1 8 16 14 L 2 13 Uti 3J

l 2 (m) 12

10 08 06 04

18 18 28 19

0 19 019 0 19 019

34 34 34 34

Fine

sand

02 21 40 42

02 20 4 0 04 17 020 34 06 21 40 0 8 10

23 22

40 40 Fine

1 2 14 16 18

21 20 16 15

0 21 022

4 0 4 0 34 33

sand

44

20 2 2 24 26 28 30 32 34 36 38 40

14 14 13 11 11 14 17 14 12 13 12

023 023 025 0 28 028 023 020 023 027 025 027

32 32 33 31 31 32 34 3 2 32 3 3 32

l 1 (m) 42

44 12 13

0 27 025

32 33 15 2

46 48 50 5 2 5 4 56 5 8 6 0 6 2 6 4 66 6 8 70 72 74 76 78 80

APPENDIX 11 10

Pi 1 e No 11 Lengt h 9 0m D 11 m m

Area s of influence

-

Qe

(MPa)

1 fp

__k_ f

(MP~) ryen

(MPf) qcp (MPa)

Soi l type

22 20 18 16 14 12 lb 55

12 (m)

1 0 08 06 04

23 19 20 21

024 023

55 46 46 55

Medium

sand

02 22 55 62

0 2 04

24 25

55 55

06 08

27 28

55 55

10 12 14

28 28 28

55 55 55 49

16 26 55

44

18 20 22 24 26 28 30 3 34 36 38 40

24 19 18 17 22 21 17 11 13 12 11 9

024 024 025

025 0 34 030 032 034 039

55 46 43 43 55 55 4 3 37 39 38 3 7 35

1 1 (m) 42

Ll Ll

12 16

032 0 26

38 4 2 209

46 48 50 5 2 54 56 58 60 62 64 66 68 70 72 74 76 78 80

APPENDIX 141

0 2 3 4 p [MPa)

PILES WITH 40 ENLARGED BASES

80

120

160 C----0

200 IN4014 s (1977)

[mm]

P s calculateds P p(s)(mm) (MPa)(mmMPa)(MPa) ()

10 035 286 046 20 065 308 080 30 090 333 104

150 24 625 214 200 229

ai = 2605 (mmMPa) b1 = 0243 1MPa V 1000 bi = 1b = 411 MPa

_ 411 MP Vi - 24 a

() assumed

average Dp = 18 m

qcp = 24 MPa ai = 184 (mmMPa) (28-4middot24)

Vi = 1 2 (3-18)

qcpmiddotvi = 29 MPa

40

80

120

160

200 s

[mm]

DIN 4014 Part 2 ( 1977)

0 1 2 3 4 5 p [MPal

PILES WITHOUT ENLARGED BASES

C----0

DIN 4014 ( 1977

s calculated s p -p- p(s)

(mm) (MPa)mmMPa)(MPa) ()

10 05 20 062 20 08 25 113 30 11 27 3 155

150 34 441 385 200 424

ai = 2085 (mmMPa) bi= 0 157 1MPa V = 0970

bi= 1s = 637 MPa

Vi 187=3f =

() assumed

average Dp = 12 m

qcp = 34 MPa a1 = 144 (mmMPa)

Vi = 18

qcpmiddotvi = 61 MPa

Range qc = 10-15 MPa

(28-4bull34)

(3-12)

1 1 q = r -r- = 036 for qc = 10 MPaCp p Ip+= 027 for qc = 15 MPa

qcp = 36-405 MPa P

APPENDIX 142

Touma F and Reese L (1974)

Soil parameters pile parameters and base resistance see fig bullbullbullbull

TAB

Measured load settlement curves

Settlement s

mm

10 20 30 40 50 60 80

100 120

a 1 (mmMPa) bi(MPa) V

N3u

q =04 -N30 (cMPa) ()

1 qCp=--rpbullqC

Pile No 21 (US 59) 22 (HH) 23 (G1) 24 (BB) Notep Sp p S p p S p f Sp MPa mmMPa MPa mmMPa MPa mmMPa Mla mmMPa

131 76 169 59 075 133 100 100 269 74 325 62 131 153 1 94 103 381 79 456 66 165 182 273 11 0 488 82 581 69 1 90 21 1 349 115 581 86 694 72 2 15 233 424 118 675 89 800 75 229 262 813 98 245 327 884 113 925 130

64 56 100 95 U049 0032 0276 0048 0944 0998 0996 0981

80 gt100 30 60 32 gt 40 12 24 ()

Bergdahl (1982)

gt5 5 gt55 32 4 3

(0 18middot32) (018middot40) (0265middot12) (018middot24)

CONTACT PRESSURE p [ MPa]

0 2 4 6 8 100 N-------r---------------(us 59) ( HH) ( BBi

E E SQ-------lt+-----+--------------lt

VI

1shyz UJ

~ 100 1---------i----+----+----+------l------I -J I shyI shyUJ V)

so~----~--~-- ~--~

APPENDIX 143

us 59 fYJo 0 50 00

ff-t r-=-~c~=~-r~c_---_---l-~e-J-C~ 0 ------

CLAY

FINE SANO

J lD- 760 mm

f5m~--~--~

Pile US 59 and results from penetration test

HH IV_l() so 100 r=-=-==-==-r-~--=-=- 0 0 II 15- flf ~ II~ Ibull If t f

CLAY SAND

Sm

)

= -middotl lo - GtOmm

~ JI

SILTY SANO tOm

Pile HH and results from penetration t est

APPENDIX 14 4

61 NJO 50 --------00

11 1 =f J - 1 -- 0

CLAYSILT

E ~ Sm ltrj

SILTY SAND

q I lDmiddot 910 mrn tom

I) t bull

Pile G1 and results from penetration test

88

0 50 too ~1-e I q 111bull - Q

CLAY

SIL TY SAND 5m

]

l lDmiddot760mrn

Om

Pile BB and results from penetration test

APPENDIX 145

Klosinski B (1977)

Loading tests 50 bored piles 09-125 m diameter average Op= 11 m On t he sett l ement of rigid pla te the settlement of t he pi le base is given by

PmiddotOSp = T-K b

where Mb - equivalent deformability modu lus

1) Sand and sandy gravel of medium density

Mb = 25-50 MPa

According to Bergdahl (1979) medium sand is between

q(l) 5 MPa (Io=035)c2)

ql = 10 MPa (Io=065)C

from fig 117 rp1 = 055 for qc = 5 MPa 1Tp = 036 for qc = 10 MPa

q(l)= 0 55middot5 = 2 75 MPacp bull

q(2= 0 36middot10 = 360 MPacp

allowable p~ 1)= ~p = yen = 092 MPa and p~2) = ~ = 120 MPa

settlement of the pi l e base

5(1)= o 92 middot 1bull1 = O 0135 m = 13 5 mm p 325 middot middot

5( 2)= 1bull2bull1middot 1 = O 0088 m = 8 8 m p 350 bull bull

1) _ s _ 135 _ 14 7 (mm) a(2) _ 88 _ a 1 - p - o---92 - bull NPa bull 1 - T-7 - 733 (Wa)

2) Loose sand lo= 030-040

Mb = 12- 25 MPa

q~l) = 44 MPa q~2)= 58 MPa

1Tp = 058 and 052

q(3) = 0 58middot4 4 = 2 55 MPa middot q( 4) = 0 52middot5 8 = 3 02 MPa cp bull middot bull cp bull middot middot

allowable p~ 3)= 4i = 085 MPa p~4)= yenl = 101 MPa

s(3)_ 085-11 = 26 mmmiddot s(4)_ 101middot11 = 148 mm p - 312 p - 3 25

STATENS GEOTEKNISKA INSTITUT Swedish Geotechnical Institute S-581 01 Linkoping Tel 01311 51 00

Serien Rapport ersatter vara tidigare serier Proceedings (27 nr) Sartryck och Preliminara rapporter (60 nr) samt Meddelanden (10 nr)

The series Report supersedes the previous series Proceedings (27 Nos) Reprints and Preliminary Reports (60 Nos) and Meddelanden (10 Nos)

RAPPORT REPORT Pris kr

No Ar (Swcrs)

1 Grundvattensankning till foljd av 1977 50shytunnelsprangning P Ahlberg T Lundgren

2 Pahangskrafter pa langa betongpalar 1977 50shyL Bjerin

3 Methods for reducing undrained 1977 30shyshear strength of soft clay K V Helenelund

4 Basic behaviour of Scandinavian soft 1977 40shyclays R Larsson

5 Snabba odometerforsok 1978 25 shyR Karlsson L Viberg

6 Skredriskbedomningar med hjalp av 1978 40shyelektromagnetisk faltstyrkematning - provning av ny metod J Ingands

7 Forebyggande av sattningar i 1979 40shyledningsgravar - en forstudie U Bergdahl R Fogelstrom K - G Larsson P Liljekvist

8 Grundlaggningskostnadernas fordelning 1979 25 shyB Carlsson

9 Horisontalarmerade fyllningar pa los 1981 50 shyjord J Belfrage

RAPPORTREPORT

No

10 Tuveskredet 1977-11-30 Inlagg om skredets orsaker

11a Tuveskredet geoteknik

l1b Tuveskredet geologi

11 c Tuveskredet hydrogeologi

12 Drained behaviour of Swedish clays

R Larsson

13 Long term consolidation beneath the test fills at Vasby Sweden YCE Chang

14 Bentonittatning mot lakvatten T Lundgren L Karlqvist U Qvarfort

15 Kartering och klassificering av leromradens stabilitetsforutshysattningar L Viberg

16 Geotekniska faltundersokningar Metoder - Erfarenheter - FoU-behov E Ottosson (red)

17 Symposium on Slopes on Soft Clays

18 The Landslide at Tuve November 30 1 977 R Larsson M Jansson

19 Slantstabilitetsberakningar i lera Skall man anvanda total spanningsanalys effektivspanningsanalys eller kombinerad analys R Larsson

20 Portrycksvariationer i leror i Gateshyborgsregionen J Berntson

21 Tekniska egenskaper hos restproshydukter fran kolforbranning shyen laboratoriestudie B Moller G Nilson

Ar

1981

1981

1981

1981

1981

1982

1982

1982

1983

1982

1983

1983

1983

Pris kr (Swcrs)

50shy

50shy

40shy

50shy

100shy

60shy

80shy

60shy

190shy

75shy

60shy

150shy

65shy

RAPPORTREPORT

No Ar Pri s kr (Sw crs)

22 Bestamning av jordegenskaper med sondering - en litteraturstudie U Bergdahl U Eriksson

1983 75 shy

23 Geobildtolkn ing L Vi berg

av grova moraner 1984 70 -

24 Radon i jord -Exhal ation- vatten kvot -Arstidsvariationer - Permeabilitet A Lindmar k B Rosen

1984 75 shy

25 Geoteknisk terrangklassificering for fysisk planering L Viber g

1984 120shy

26 Large diameter bored piles in nonshycohesive soils Determination of the bearing capacity and settlement from results of static penetration tests (CPT) and standard penetration test (SPT) K Gwizdala

1984 85shy

3

P R E F A C E

The work was carried out at the Swedish Geotechnical

Institute in Linkoping during my stay in Sweden as a

scholar of the Swedish Institute

I wish to express my thanks to the Swedish Institute

for the possibility to stay and to research in Sweden

In my work and during the whole stay I have received

every possible support help and encouragement from

the Head of the Swedish Geotechnical Institute Dr Jan

Hartlen For this and for the possibility of studying

at the Swedish Geotechnical Institute I am extremely

grateful and wish to express my very best thanks

Special thanks are due to Dr Bo Berggren and Civing

Per-Evert Bengtsson for the constant and great help

given to me in the daily work at the Institute

I would like to thank all members of the staff at the

Swedish Geotechnical Institute who have helped me

during my stay in Sweden

AcKnowledgement is extended to Mrs Eva Dyrenas who typed

the manuscript a nd to Mrs Rutgerd Abrink and Mrs Irene

Aberg who made the drawings

Linkoping January 1983

Kazimierz Gwizdala

Institute of Hydro-tngineering

of the Gdansk Technical University

Poland

5

CONTENTS

Page

7SUMMARY

NOTATIONS AND SYMBOLS 9

1 LARGE DIAMETER BORED PILES IN NON-COHESIVE SOILS 11

11 Determination of bearing capacity of bored piles from results of Cone Penetration Test (CPT) 11

12 Determination of bearing capacity of the large diameter bored piles from results of the Standard Penetration Tests (SPT) 18

13 Allowable load of large diameter bored piles 22

14 Determination of settlement of large diameter bored piles based on static cone penetration tests CPT 27

15 Initial slope of pile point resistance shysettlement

REFERENCES

FIGURES

TABLES

APPENDIXES

curve 37

43

51

105

7

16 Summary

The work contains a study of the behaviour of l arge diameter

bored piles in non- cohesive soil The mai n attention was

paid to the determination of the bearin g capacity a nd

sett lement from results of Cone Penetration Test (CPT)

and Standard Penetration Test (SPT)

A new met hod to calculate bearing capacity on large bored

piles based on the in situ measurement is proposect taking

into account investigations made during the last years in

all the world The values based on the proposed method

are compar ed to field test results

The analysis of bearing capacity safety factors and loadshy

settlement curve allows to assume values individual safety

factors for resistance of pile point and shaft respectively

Based on a detailed investigation the pile point pressure

settlement curve and shaft resistance dependance during

loading a new method to predict the pile point pressure shy

displacement and load- settlement relationship is proposed

The initial slope of the point pressure- displacement curve

can be determined from in situ tests or laboratory test

based on the hyperbolic stress- strain parameters

9

Notations and symbols

Roman letters

a 1 Initial slope of the pile point resistance shysettlement curve

Ap Cross-sectional area of a pile

As Area of the pile shaft

CPT Static Penetration Test

D Diameter of pile shaft

Op Diameter of pile point

E Youngs modulus

fp Point resistance factor

fs Shaft resistance factor

F Universal safety factor

Fp Individual safety factor for ultimate resistance of pile point

Fs individual safety factor for ultimate resistance of pile shaft

K Dimensionless compression modulus

K At rest soil lateral stress coefficient0

Koc Lateral stress coefficient for fluid fresh concrete

Mo Constrained (oedometric) modulus

N30 Numbe r of blows for 030 m penetration in SPT

p Unit point resistance (contact pressure)

p (s) Unit point resistance versus settlement

Unit point resistance at failurePsf

Allowable unit point resistancePa

Sounding resistance

Average static cone penetrometer resistance close to tne pile point

qs Average static cone penetrometer resistance C along the pile

10

Ultimate point resistance of large diameter piles based on static sounding results

Ultimate skin friction resistance of large diameter piles based on static sounding results

Qa Allowable pile load

Qcp Point load of the static cone penetrometer

Qct Total load of the static cone penetrometer

Qpa Allowable point resistance of the pile

Qpu Ultimate point resistance of a pile

0 sa Allowable skin resistance of the pile

0su Ultimate bearing resistance of a pile

Qu Ultimate bearing resistance of a pile

s Settlement

sd Standard deviation

ss u Ultimate settlement for pile shaft

sv Standard variation

SPT Standard Penetration Test

t Unit shaft resistance

Ultimate unit shaft resistance

Circumference of the pile shaft

Circumference of the static penetrometer shaft

Greek letters

a Constant

B Constant

A Coefficient

microd Depth factor

v Poissonbulls ratio

v 1 Correction factor for hyperbola point resistance shysettlemen~ relationship

n Correlation coefficient

ahc Radial (horizontal stress in the concrete

ohs Radial (horizontal) stress in the soil

Ovc Vertical stress in the concrete

Ovs Vertical stress in the soil

11

1 LARGE DIAMETER BORED PILES IN NON-COHESIVE SOILS

11 peterminati on of bearing capacity of bored piles

from results of Cone Penetration Test (CPTl

The methods published in available literature up to 1976

were compiled by D Rollberg (1976 1977) It contains

totally 25 methods

- 22 use the results of static soundings (CPT)

3 use the results of standard soundings (SPT)

The failure load Qu of the pile is evaluated as the sum

of the pile point resistance Q and the pile skin reshypu sistance Qsu

(111)

Pile point resistance Q based on static soundina reshypu shysults can be expressed as

1- bull qP A ( 1 1 2)f C p

p

where

fp = point resistance factor

qP mean sounding resistance of static cone C

penetrometer in the area of the pile point

A cross-sectional area of the pilep

The pile skin resistance is expressed as

1 s -- bullq bullU middot Lih (113) fS C p

where

fs = shaft friction factor

sqc mean sounding resistance along the depth h

and skin surface area U middotLih p

1 2

The methods differ in

- the calculation of qPC

(074 to 40) Db below the pile base (Fig 11 1)

(10 to 80) Db above the pile base (Fig 1 11)

- the evaluation of the point resistance factor usually

values off gt 10 are used p

- the calculation of qsC

- the evaluation of the shaft friction factor

fs = 50-300 is applied

In Table 111 methods for determination of the bearing

capacity of bored piles are listed Rollberg 1977 The

point load the skin friction load and the ultimate total

load are evaluated for bored piles (shaft diameter D ~

03-090 m) from static sounding results in non-cohesive

soil

Calculation results based on static sounding measurements

are shown in Table 112 for pile point pile shaft and

total pile load respectively

The table shows that

- a ll methods overestimate the ultimate point resistance

- the best correlation for ultimate point resistance is

obtained with the Soviet method Trofimenkov 1974

n1 = 114

- there a re only five methods for evaluation of the ultimate

skin resistance

- all methods with exception of the Soviet norm Trofimenkov

1969 method overestimate the ultimate shaft resistance

- the Norwegian method Senneset 1974 gives the best

correlation for the ultimate shaft resistance =119n 2

- with exception of the Soviet methods the total ultimate

load is on the average overestimated by all methods

1 3

Taking into account the above results the Soviet and

the Norwegi an methods are presented below

The Soviet method JG TrofimenkgtV 1974

1 qP bullA + qsbullA (114a)Qu = Qpu+Qsu fp C p f C s s

where

11 40 DP 12 1 0 D p h+l1 qp r dhqcC l1+l2 h-12

0ct-0ceqs C u middoth s

f(qp) -+ see Fig 1 bull 1 2 fp C

f f ( qcs) -+ see Fig 1 1 3 s

The Norwegian methon K Senneset 1974

1 p A 1 s bullA ( 1 bull 1 bull 4b)-f-middotqcmiddot p + -f-q s p S C

where

11 30 D p

12 50 D p h+l11 f dhqP l1+l 2 qc

C h-12 h s 1

= f dhqc qch 0

f 20 p

f = f (q~ ) + see Fig 114 s

Note a ) The total skin friction -f-middotq~ is assumed to be

no less than 10 kPa even~ith a very little

cone penetrometer resistance

b) The poin t resistance -f-middotq~ is assumed to be

maximum 10 MPa even iJl case of very dense sand

14

It must be underlined that the best correlation for

the pile point is obtained with the Soviet method

101 for 94 driven piles in non-cohesive soil

- 172 114 for 46 bored piles in non-cohesive soil

Trofimenkov 19731974 showed the results of comparison

of the ultimate loads determined by formula (114a)

Q~ and by pile load tests Q~ for 153 driven friction

piles at the 57 various sites see Fig 115

In Germany a lot of investigations were made before

establishing the DIN 4014 part 2 (1977) on large diameter

piles

In Table 113 and 114 the results from these investigashy

tions are generalized

The data in the tables were obtained from 35 test loadings

(4 of which were published by Franke 1973 The diameter

of the piles was from 08 to 25 m the length from 5 m

to 34 m and the cone penetrometer resistance varied from

10 MPa to 15 MPa

Bustamente and Gianeselli 1982 proposed a prediction

of the pile bearing capacity by means of the static

penetrometer Their proposal was based on the intershy

pretation of a series of 197 full scale static loading

tests In this paper the results from tests of 55 bored

piles are chosen The diameter of the piles varies from

042 m to 150 m and the length from 6 m to 44 m The

equivalent cone resistance was determined as showed in

Fig 116 The authors have noticed that the point

resistance factor f depends on the nature of the soil p and its compactness but also on the different pile placeshy

ment techniques (see Tab 115)

Piles of category group I

- Plain bored piles - Cased bored piles

- Mud bored piles - Hollow auger bored piles

- Type I micropiles - Piers (grouted under low - Barrettespressure)

15

In Tab 116 values of the shaft resistance factor

fs are given

Category IA

- Plain bored piles - Mud bored piles

- Hollow auger bored piles - Cast screwed piles

- Type I micropiles - Piers

- Barrettes

Category IB

- Cased bored piles - Driven cast piles (concrete or metal shaft)

Category IIA

- Driven precast piles - Prestressed tubular piles

- Jacked concrete piles

Category IIB

- Driven metal piles - Jacked metal piles

It can be noted that the values in Tab 116 are in

genera l of the same range for the driven and the

bored piles

According to the Polish Specification 1979 the point

and shaft resistance factor are given by

1-f- = kmiddota

p p

where

ap 035 for sand

k coefficent of unhomogeneity k qcp min

qcp

= 0065 for sandfrac12

1

16

Similar results can be observed in Fig 116a and

Fig 116b It was showed by Kerisel (1965) and Franke

(1973) that the harder soil the more loosening at

excavation and thus relatively smaller bearing capacity

Taking into account the Franke diagrams we will have

for D = 125mand settlements= 2 cm p

Cone resistance qc (MPa) 1 5 50 1 0 15 22

qc p for s=2 cm 3 6 8 12 14

(see Fia 1 1 6b )

taking safety factor for pile base F = 3 the point resis~ance

33-10 ~-05

380375 lo 212 bull lo 2114 bull

factors- shy are p

The above anal ysis shows that it is possible to determine

ultimate point and shaft resistance of bored piles from

static cone sounding But it is very important and must

be taken into account type of pile kind of soil and

degree of compaction

Bel ow calculation method for large diameter bored piles

based on the static cone penetrometer resistance (CPT)

is proposed Equation (117) can be used directly for

the base diameter D lt 15 m For larger diameters p shyD gt 15 m the values should be multiplied by the

p ff t ITscoe icen Y~ as pi

( 1 1 5 )

where

qcp = according to equation (117)

D = diameter of the pile base D gt 15 mpi pi

17

This value q~p should be put into equation 116

The value qc s in equation 118 is independent on the

pile diameter

Proposed calculation method

(116)

where)

1 1 40 ~ 11 3 for piles wit h a nd enlarged bases12 10 12 = ~

h+h

q (h) dh (117)qcp l1+l2 f -f- Ch-li p

h 1 f 1

qcs = o -f- qc (h) dh (118)h s

1 -f- = f(q kind of soil ) -+- see Fig 11 7 and Tab 1 1 7

C p

f (q kind of soil ) -+- see Fig 1 1 8 and Tab 1 1 8 fs C

Note

a) the point resistance q for qc gt 20 MPa is assumed cp to be maximum as

- Gravel 70 MPa - Coarse sand medium sand 55 MPa - Fine sand s il ty sand 40 MPa

b ) The shaft resistance qcs for qc gt 20 MPa is assumed to

be maximum as

- Gravel 110 kPa - Coarse sand medium sand 90 kPa - Fine sand s ilty sand 70 kPa

These proposed values are compared with results by

Bustamente (1 982) and the Polish Specification (1978)

Fig 11 9 and F i g 1110 A similar comparison for DIN

4014 1 977 is shown in Fig 1111 and Fig 1112

) In this paper was used the above values 1 1 and l z But it can be used in practice 11 =30 D and h =2Dp respectively The results shall be very simi l ar to the above onPs

18

The proposed method has been examined with field test

results This is shown in Fig 1113 to Fig 1128

and Appendix 1 11 to 1110 and Tab 119

The comparison shows that the value of q in equationcp (117) corresponds to the settlement -10 of the base

diameter (s=010 DP) see Fig 1113 and Tab 119

(average sDp=88 and standard deviation sd=3)

Later in this paper the allowable load and dependence of

the load versus settlement will be determined

12 Determination of bearing capacity of the large

diameter bored piles from results of the Standard

Penetration Tests (SPT)

There are little published on pile tests coupled with

results from Standard Penetration Test (SPT) Among the

authors who have published material in the subject are

- Meyerhof 1956 1976

- Senneset 1974 (Norwegian method)

- Rodin Corbett Sherwood Thorburn 1974 (English method)

- Polish Specification 1975

- Weltman Healy 197 8

- Reese 1978

- Japanese Society 1981

- Decourt 1978 1982

The Norwegian method is valid o nly for concrete andor

wooden piles the English method only for gravel It is

very important to underline that the Norwegian a nd the

English methods use of the SPT resul ts intermediate by

the static cone penetrometer resistance (q ) as well C

Below methods are presented that are using the results of

SPT directly Meyerhof s method in total can also be used

on driven piles in non-cohesive soil Although we could

have found some proposes for bored piles Eqs (121 and

122) see Fig 121 and Fig 1 22 as well

19

Ultimate point resistance (psf)

12 N 3 omiddotH lt 120 N 30

(kPa) (1 2 1)Psf D

where

N30 the average standard penetration resistance

in blows per 03 m

H depth in bearing stratum

Ultimate skin friction tu

for bored piles tu N~ o (kPa) (1 22a)

for driven pil estu 2N30 (kPa) (1 2 2b)

where

N30 the average standard penetration resistance

in blows per 03 m within embedded length

of pile

Weltman and Healy (1978) taking into account Meherhofs

proposition for driven piles have introduced two coefshy

ficents for bored piles in gravels (glacial soil) Equ

123 and Fig 1 23

t = a 2 N30 (kPa ) (1 2 3)U 1

where

ai a 1 for impermeable gravels see Fig 123a

ai a 2 for permeable gravels see Fig 123b

The Polish Specification ( Specification for Design and

Construction of Large Diameter Bored Piles in Bridges

1975 Ministry of Transport) gives the ultimat e point

resistance in dependence of N30 base diameter and depth

see Tab 12 1 The Tab 121 contains values for coarse

and medium sand For other non-cohesive soils the following

coefficients are proposed

p f = S bull p f (medium sand) ( 1 2 4)S 1 S

20

where

S1 1 20 for grave lSi

f 132 080 for fine sand

13 3 070 for silty sand13i

In Fig 124 values of psf are shown for h = 10 m DP

06 m DP= 15 m and h = 20 m DP= 06 m DP 1 5 m

respectively

A few of the instrumented piles were tested and analyzed

by Wright and Reese (1979) The ultimate point and shaft

resistance in the fine and silty sand as a function of

blow count from SPT is shown in Fig 125 Results from

two additional tests reported by Koizumi (1971) are also

introduced in the figure The ultimate point resistance

is assumed to exist at a settlement equal to 5 of the

base diameter

Methods of prediction of the bearing capacity of piles

based exclusively on N30 values were presented by Decourt

1982 Below a proposition for high capacity piles excavated

and cast under bentoni te is presented

The ultimate skin friction is determined by the expression

(see Fig 126)

t = 33 N30 + 1 0 (kPa) ( 1 bull 2 5 ) u

where

N30 average value of N30 along the shaft

- for N30 lt 3 must be taken as = 3N30 - for N3o gt 5 0 must be taken as NJo= 50

The allowable point resistance can be obtained in a n

expedite way as

Psa = 33 N30 (kPa) (1 2 6)

where

N30 = average of Nat point level one metre above

and one metre below

Psa allowable point resistance

21

Decourt proposed a safety factor for the point of F = p

40 Therefore the ultimate point resistance can be

determined by the expression

(kPa) (1 2 7)

In Fig 12 7 and Fig 1 28 the above values for base

and skin friction resistance are compared respectively

Taking into account the type of soil thereis a good

correlation for ultimate point resistance The result for

ultimate skin friction is scattered but only apparently

The values for large diameter bored piles are between

the line 1a and 1b in Fig 128 Large diameter piles

have a high ultimate skin friction in relation to driven

piles (see points for bored piles in Fig 122 and DIN

4014 Part 2 1977 as well) The high values for piles

excavated and cast under bentonite have had a strong base

on the load tests (Decourt 1978 1982 and Wright and

Reese 1979)

Below the proposals are given for determination of the

values of the ultimate point resistance and the ultimate

skin friction Eqs 128 to 1214 and Fig129 1210

The ultimate point resistance

- gravel psf = 140 N30 (kPa) ( 1 bull 2 8)

for N~ 0 gt 50 blows3O cm Psf 7 MPa

- coarse sand and medium sand

(kPa) ( 1 2 9)

for N30 gt 50 blows3O cm Psf 55 MPa

- fine sand and silty sand

psf = 80 Nio (kPa ) (1210)

for N30 gt 50 blows3O cm p f = 40 MPa 5

where N3 o the average of N value near the point level as

22

h+l1

f N3o(h)dh ( 1 2 11 ) h-12

3DP see Fig 1 1 1 D

p

The ultimate skin friction for coarse sand and medium sand

tu = 1 8 N 3 o (kPa) (1212)

t (kPa) (excavated and cast (1213)u under bentonite)

where

N30= the average value of N along the shaft as h

N -

3 o = h1 f N 3 o ( h) dh ( 1 bull 2 bull 1 4 ) 0

The ultimate skin friction for N30 gt 50 blows30 cm is

assumed to be maximum as tu = 90 kPa and t = 150 kPa u

13 Allowable load of large diameter bored piles

The allowable load Qa of large diameter piles has been

expressed as

OuQa ( 1 3 1)Ft

Qa Q(s)=Qb(s) + Os(s) ( 1 3 2)

Opu + Osu (1 3 3)Qa Fp Fs

Qr lt mmiddotQf ( 1 bull 3 4)-

= universal safety factor

individual safety factor for ultimate resistance of the pile point

individual safety factor for ultimate resistance of the pile shaft

= load according to the allowable settlement

calculated load

m coefficient

calculated ultimate bearing load of the pile

23

The equations from (131) to (134) are used as

1) equation (131)

a) DIN 4014 - 1977 Ft= 2 175 15 (depending on the kind of load)

b) Polish Specification 1975 Ft = 18 16 ( -- )

1c) Trofimenkov 1974 Ft = 14307

2) equation (132)

a) DIN 4014-1977 i Q(s) = Qb(s) + Q (s) = A middotp(s) + E tAsmiddott(s)

s p 0

where Qbs) and Qs(s) are described in Fig 1423

3) equation (133)

a) Polish Specification 1974

F 25 22 depending on the kind of load p

F 1 bull 0 s

b) Wright SJ Reese LC 1979

The ultimate capacity or resistance is considered as a

random value and represented by a frequency distribution

The distribution can be described by a mean value and a

variance The distribution of the load applied to the

foundation can be described similarly The coefshy

ficients used to factor resistance and loads are called

partial safety factors Some recommended partial safety

factors for resistance under normal conditions of design

and construction are given in Tab 131 Normal control

is defined as a condition where the coefficient of variation

is less than about 035

Typical values for partial safety factors for loads are

in the range 1 to 2 depending on the type of load and

how it is applied The overall factor of safety Ft can

then be calculated from the equation

Ft = y RbullY S

24

where

YR the par tial sa f ety fac t or for resistance and

Ys the partial safety factor fo r load

The probability of fa i lur e of the foundation can be r eshy

lat ed to the factor of safety for a parti cular degree of

uncert ainty (see Tab 13 2)

c ) Tejchman Gwizdala 1979

The authors discuss adequate safety factors based on fie l d

test s by Spang (1 972) Franke (1976) Touma and Reese (1974)

Colombo (1971) Kerisel and Simons (1962) Appendirno (1973)

see Tab 1 33 Taking into account the universal safety

factor Ft= 2 0 for the tota l load settlement curves it

was estimated

i) F in the range of 111 to 237 with the average value s F = 166 and standard deviation sd = 034 s (see column 16 Tab 133)

ii) Fb in the range of 161 to 945 with the average

value Fb = 387 and standard deviation sd = 2 15

For model core d piles in laboratory conditions values of

Fs = 108 to 154 (average Fs = 132 s~ = 019) and

values of F = 280 to 5 94 (average F = 3 55 sd = 1 07)p p

see Tab 1 3 4

As a conclusion it was assumed that Fb = 40 and F 1 5 s

for l arge diameter bored piles

The investi gation has shown that for the above safety

factors settlements of piles under permissibl e loads are

10 to 20 mm There was assumed a maximum load on large

diameter piles corresponding to a settlement of 010

diameter of the piles

25

d) Bustamente Gianeselli 1 982

e) 0ecourt 1982

The safety factor is given by

F = FgmiddotFfmiddotFamiddotFw where

F 11 - skin friction g F 135 - point bearing capacity

g

Ff safety factor related to the formulation adapted

Ff= 10 for Decourts method

Fd safety factor related to excessive deformation

Fd = 10 for skin friction

As for the point Fa= 2 to 3 depending on the

pile diameter For usual cases 25 is suggested

Fw safety factor related to working load

Decourt recommends 12

Thus we will have

- for skin friction

Fs = 11bull10middot10middot12 132 - 13

- for the point

F = 135bull10bull25middot 1 2 = 405 = 40 p

4) equation (134)

a ) Polish Code 1983

Q lt mbullN r shy

where

total load coefficient (depending on the kind of load For foundation we can assume Yf = 12 )= code load

correction coeffic i ent

09 for pile foundations

m 08 for two piles

m 07 for single pile

26

N ymmiddotQu

ym material (soil) coefficient

ym 08 to 09 (Polish Code 1981)

Thus we will have

QnmiddotYf lt mmiddotym middotQu-

Yf9uFt = On m bull Ym

1 2 max = 2 14Ft 0 7 bull 0 8

1 2min = 1 48Ft 0909

The above analysis has shown different ways to determine

the allowable load The analysis is in direct connection

with mobilization of the load (versus settlement) The

dependence of total load point resistance and shaft reshy

sistance will be discussed in detail in Chapter 14

In the authors opinion taking into account the above

analysis the allowable load should be determined based

on the equation 133 ie based on individual safety

factors for ultimate point and shaft resistance Proposed

values of F and F in literature are shown in Tab 135 s p The average values are Fs = 145 and Fp = 3 38 respectively

Taking into account that the bearing capacity is determined

based on the results from sounding measurements direct from

a place near the piling without a ny indirect correlation

the allowable load of large diameter bored piles is given

by the equation (133a)

( 1 3 3a)

where F = 30 and F 13 are proposedp s

27

14 Determination of settlement of larqe diameter bored

piles based on static cone penetration tests CPT

Determination of ultimate point and skin friction resistance

based on static cone penetration tests has been discussed

in Chapter 11 above Based on the results of this calcushy

lation and on Chapter 13 we can establish an approximate

relation between point resistance shaft resistance and

total load on one hand and settlement on the other However

the approximation gives a wide scatter especially for base

resistance as can be observed in Fig 141 to Fig 144

Only the first part of the point resistance - settlement

curves are in good agreement with measured values It can

be observed in Fig 145 that the average correlation

coefficient n = 098 and standard deviation sd= 029

This way of calculation can be used only for rough calcushy

lation (see Chapter 13)

In Chapter 11 also measured point resistance - settlement

curves were shown The base resistance increases gradually

with increasing pressure and settlement Below the cur7

vature of the point resistance - settl ement curve will be

examined It is assumed that this curve can be described

as a part of the hyperbola curve Thus if the ratio of

the measured settlement (s ) to the point resistance (p)

is plotted against the measured settlement the result

will fall closely to a straight line with the equation

( 1 4 1)

where a 1 and b 1 are constants (see Fig 1 46a and Fig

14 6b)

Then the point resistance - settlement realtionship can be

expressed as a hyperbola

s p = ( 1 bull 4 2)

The constant is the initial s lope of the point resistanceshya 1

settlement curve ie a 1 = t~a The inverse of the constant

28

b 1 is the vertical tangent (asymptote) to the curve 1ie for s = 00

bf= ~ If the ultimate point reshy1

sistance psf is equal to bf (psf=bf) the whole point

resistance settlement curve will be a hyperbola type

Now the Eq 1 4 2 can be written as

s s ( 1 4 3)a) p s or b) p = a+__sect_a1 + 1 Psfbf

If the ultimate point resistance is smaller than bf only

a part of the hyperbola curve ought to be considered

Further the Eq 14 3 will be written as

p ( 1 4 4)

where

poundf_ correction factor for hyperbola point Psf resistance-settlement relationship

Taking into account the discussion in Chapter 11 the

ultimate point resistance psf = qcp based on the CPT measurements

Therefore the relationship between the point resistance

the sett l ement and the CPT result can be expressed as

s p (1 4 5)s

The correction coefficient v 1 will cause a change of the

position of the vertical asymptote bf in r elation to the

ultimate point resistance q bull This means that we take cp into account a different part of the hyperbola curve for

the description of the point resistance-settlement relationshy

ship

Now if we want to use the equation (145) in practice

we must determine the constant and the coefficienta 1 v 1 (assumed that q is determined ear l ier Chapter 11)cp

29

The constant a 1 and t h e coefficient Vi have been detershy

mined based on fi e ld tests according to pi l es No 1 - 20

see Tab 14 1 and Tab 1 1 9 as wel l The values of

a 1 versus the point diameter D and the ul timate pointp

resistance respectively are shown in F i g 147 and Fig

148 Fig 1 47 shows that a 1 is independent of the

point diameter D Based on Fig 148 it can be assumed p

that

28-4bullq (1 4 6)cp

This correlation has been examined with data of the

literature see Fig 1 49 and Appendix 141 to 1 45

(Note there were no static penetration tests and qcp was determined based on a correlation made by Bergdahl

(1982))

A good correlation with equation 146 can be seen taking

into account the safety factor in the DIN 4014 Part 2

(1977) bull

The correction factor v 1 versus the poi nt diameter is shown

in Fig 1410 I t is assumed that the correlation is

V1 = 3 0 - D ( 1 4 7)p

where D is in m p

The above equations ie 146 and 147 were assumed for

a later analyses see Fig 14 11 and Fig 1412 The

piles No 1 to 20 were examined taking into account Eqs

14 5 14 6 and 1 4 7 The result of this cal cul ation is

presented in Fig 1 413 to Fig 1 4 18 and in Tab 1 4 2

respectively In Fig 1413 the calculation way for pile

No 2 is shown as an example

In Fig 1414 to Fig 1 417 measured and calculated

values of the point resistance versus settl ement can be

compared In tota l good correlation exists for all the

30

pressure-settlement curves Values of q from static cp

cone penetration tests and generalized values of anda 1

v 1 were considered Only for piles No 17-20 qcp was

assumed as the point resistance for s = 010 D because p

the static penetration test results were inaccessible

The similar comparison is shown in Fig 1417a for piles

in sand based on experimental results (Tuoma Reese 1972

and Wright Reese 1979) where the ultimate case resistance

was assumed as the resistance at a base settlement of 005

D The relative base resistance is the mobilized base p resistance divided by the ultinate base resistance The

curvature of the proposed point resistance settlement shy

curve to mean value proposed by Wright and Reese is excellent

However the constant a 1 and the coefficient v 1 were

determined for sand only In the future they should be

examined especially for gravel and silty sand based on

field tests Until then in the authors opinion the

values of v 1 can be chosen from Eq 147 for all nonshy

cohesive soils But for a 1 there is proposed

at = gt bulla (1 4 8)1

where

gt- 1 = 080 for gravel

gt 2 120 for silty sand

This proposal is shown in Fig 14 11 as dashed lines

A good correlation can be seen with the investigation by I

Kiosimiddotnski for sandy gravel and on the safety side with

the investigation by Tuoma and Reese for silty sand (see

Fig 149)

In Fig 1418 all calcul ations for pile No 1 to 20 are

summarize d The correlation coefficient n is defined as

the calculated point resistance p(s) divided by measured

point resistance p(s) For totally 126 points from 20

curves an average of n = 098 with standard deviation

31

al= 023 was obtained see Fig 1418 A similar result

can be observed for the range usually assumed of the

allowable settlement for sinqle large diameter bored

piles as

for

- for

- for

s

s

s =

10

20

30

mm a

mm

mm

verage n10 II

II

mm 089

095

099

and sd =

and sd

and sd

031

027

026

It can be questioned whether the sonstant a 1 can be deshy

termined in different ways The constant a 1 is the initial

slope of the point resistance-settlement curve as menshy

tioned above Then we can use all methods for determination

of settlement of a pile point The range of validity of

these methods then must be determined This will be shown

later

In order to be able to design the total load settlement

curve the skin friction resistance-settlement relationshy

ship must be determined The ultimate skin resistance of

large diameter bored piles was determined in Chapter 11

(based on static penetration tests) and in Chapter 12

(based on standard penetration tests)

In the past a lot of field tests have been done on the

mobilization of the shaft resistance versus pile settleshy

ment In this subject there is a rather good agreement

in the whole investigation for cohesive and non-cohesive

soil

Some results and opinions on thispresented in the literashy

ture during the last few years are shown below

Ultimate shaft resistance versus settlement

1) BurlandJB Butler FG Duncan P (1969)

-The shaft l oadsettlement curve is derived using a=0 3

with 90 ultimate load being mobilized at 025 in

settlement(~65 mm)

- soil London clay

- see Fig 1 419

32

2) Touma FT Reese LC (1974)

- The failure of the sides of the shaft takes place

at a downward movement of about 04 in (10 mm)

- soil sand

- see Fig 1420

3) Tomlinson HJ (1977)

- The maximum shaft resistance is mobilized at a

settlement of only 10 mm (or j in)

- soil stiff clay

- see Fig 1421

4) Klosinski B ( 1977)

- It was assumed that skin friction increased proshy

portionally to pile settlement up to the limit value

s bull This value depends on soil conditions and pile0 diameter and is usually from 3 to 8 mm For soft

compressible soil it may be grater than 10 mm

- soil cohesive soils

- see Fig 1422

5) Franke E Garbrecht D (1977)

- At settlement of 2 to 3 cm which are normally

allowed in Germany under working loads for buildings

not very sensitive to differential settlementsthe

skin friction is almost always fully mobilized

- soil sand

6) DIN 4014 part 2 (1977) and Franke E (1981)

- The skin friction Tm is approximated as diameter

independent having failure settlements of smf = 2 cm

in sand and 1 cm in clay

- soil sand and clay

- see Fig 1423

33

7) Reese By L (1978) Reese By L Wright SJ (1979)

(1978) The maximum skin friction being developed at

an average downward movement ranging from about 05shy

2 of the shaft diameter The average of six load tests

reported by Whitaker and Cooke (1966) are a lso plotted

for comparison

- soil stiff clays

- see Fig 1424 and Fig 1425a

(1979) The relative settlement is the average settleshy

ment of the butt and base devided by the shaft diameter

The mean curve maximises at a relative settlement of

about 002 D

- soil sand and clay

- see Fig 1425b

8) Tejchman A Gwizda3a K (1979)

- A clear differentiation of the distribution of shaft

and base resistances is observed for changing settleshy

ment For fairly small settlements the shaft resist shy

ance increases quite fast and the ultimate values

are reached soon while the base resistance increases

gradually with increasing loads and settlements withshy

out clearout ultimate values it can be assumed that

complete mobilization of shaft resistance corresponds

to settlements equal to 001 or 002 diameter of pile

- soil cohesive and non-cohesive soils

- see Tab 131 and Fig 1 426

9) Promboon S Brenner R P (1981)

- Load distribution and load transfer curves disclose

that most of the load is carried by shaft friction

which is developed at small displacements in the order

of 10 mm

- soil Bangkok clay

- see Fig 1427

34

10) Prodinger w Veder Ch (1981)

- The maximum value of skin friction resistance

occurred for a total settlement of 12 mm

- soil silty clay and sand

- see Fig 1428

11) Farr JS Aurora RP (1981)

- Ultimate load transfer was recehed (or nearly reached)

at a relative settlement of about 04 in (10 mm)

- soil gravelly sand

- see Fig 1429

12) Decourt (1982)

The skin friction resistance is totally mobilized

with deformations of about 10 mm or at the most 15

mm regardless of shaft dimensions This observation

of ours seems to clash with the opinions of other

authors who seek to relate the deformation necessary

for full skin friction mobilization with the shaft

diameter

- soil cohesive and non-cohesive soil

In Tab 143 all these results are shown Depending on

the kind of soil the following v a lue s of ultimate settleshy

ment for shaft can be assumed

- averages 142 mm (sd 5 3 mm) for sand

- averages 100 mm (sd = 21 mm) for cohesive soil

averages 726 mm (sd 67 mm) for claysand

It can be observed (see Fig 1419 to 1428) that the

shaft friction resistance increases proportionally to

the pile settlement up to the above limit value and

thereafter becomes constant

35

Taking into account what was mentioned earlier on point

resistance settlement relationship and the above results

a relationship between total load point resistance and

shaft resistance on one hand and settlement on the other

can be made see Fig 1430

It is assumed on the safety side that the following

ultimate settlement (S~) exists for the shaft resistance

of large diameter bored piles

SS1 ) 200 mm for non-cohesive soil u SS2) = 100 mm for cohesive soil u SS3) 15 0 mm for claysandu

In Fig 1 430 the curve Q (s) is calculated based on p

the equation 14 5 or 144

The values of psf in equation 144 can be calculated

based on other methods as well

The total load-settlement relationship is obtained by

summing up point and s haft resistance as

Q (s) = Q (s) + Q (s) (149)s p

for each point

Now the allowable load can be determined from equation

133a and versus the allowabl e settlement as

Q (s) = Q (s) + Q (s) (1410)s p

where s lt Sa

Sa= the allowable settlement of the pile

The analysis allows determination of the approximative

load settlement dependence without calculating the settleshy

ment for non-cohesive soil In Fig 1431 it is shown

36

In Tab 144 the settlement for allowable point reshy

sistance q5P according to equation 133a is shown

as well The average settlements= 198 mm (sd=78 mm)

is obtained This value is similar to the assumed ultimate

settlement of shaft for non-cohesive soil The ultimate

settlement for point resistance is assumed s = 010 Dp as mentioned earlier

37

15 Initial slope of pile point resistance shy

settlement curve

Settlement of piles and pile foundations can be cal culated

based on

- empirical correlations

load-transfer methods using measured relationships

between pile resistance and pile movement at various

points along the pile

- theory of elasticity that employs the equations of

Mindlin for subsurface loading within a semi-infinite

mass

- numerical methods and in particular the finite element

method

- use of in-situ tests (Cone Penetration Test Standard

Penetration Test Pressuremeter Test)

The critical slope of the pile point resistance-settlement

curve is important for calculation in chapter 14 The

constant a1 can be determined from all the above mentioned

methods

Comparison is made to Berggrens and Schmertmanns methods

below (see Berggren 1981 as well)

6sIn Tab 151 (No 1 2 3) the values of a 1 =~p for s =

10 mm and s = 20 mm (measured for large diameter bored

piles No 1 to 24) are compared to the calculated values

according to the modified hyperbola method (see Fig 14 6)

It can be seen that these calculated values are between

s = 1U-2u mm but rather closer the measured values for

the settlements= 10 mm see correlation coefficient n 6

and n 7 in Tab 151 respectively The average correlat i on

coefficent for the settlements= 10 mm is n9 = 108 and

the standard deviation is sct = 014 The comparison to

Berggrens and Schmertmanns methods for s = 20 mm ( see

Berggren 1~81 and Tab 151 as well) shows that the

results based om these methods give too high values of a 1 bull

38

The average values are ne= 143 sd = OJ3 and ng= 137

sd = 037 for Berggrens and Schmertmanns methods

respectively A bit better agreement can be observed

for Schmertmanns method

Taking into account the results in Tab 151 ana Tab

15l it must be assumed that for the determination of

a 1 the pile point contact pressure p(a1) should be

assumed as the ultimate point bearing capacity devided

by about 4

p(ai) - ( 1 bull 5 1 )

Most of the methods for determination of settlement are

based on the theory of elasticity The settlement ot the

pile point can be expressed as the average settlement of

a rigid circular foundation from the equation

11-Dp 1-v 2

s = p -4- -E-bull microd (1 ~ 2 J

where

p pile point contact pressure

E Youngs modulus

D diameter ot pile pointp ) = Poissons ratio

microd = depth factor

The range of validity of the pile point contact pressure

was determined in equation 151 Youngs modulus has an

important meaning lt can be determined from triaxial

tests or oedometer tests The relationship between the

constrained (oedometric) modulus Mo and Young s modulus

Eis dependent on Poissons ratio v as expressed by the

equation

E = l 1 + V ) ( 1 - 2 V ) Mo ( 1 bull 1 bull 1)- 1-v

39

TaKing into account the analyses made ny Chaplin (19b1a

1 961bJ Janbu (1 963 1970 1973J Andreassen (1973)

Duncan and Cheng (1970) Tejchman anct Gwizdala (1979)

Gwizdala (1978) Franke (1981) Berggren (1981) Withiam

and Kulhawy (7981) and the present investigation the

calculation of settlement is proposed to be

s = 24 bull p bull ~ D bull 1-v 2 bull micro d (154)Do o E

where s (r1)

p (kPa)

Dp (m)

E (kPa)

D0 =10 m

micro = 05 + 01 vfrac34E (1 5 5)d vs

but 05 lt microd lt 10-tip= p - (J (ovs see Fig 151)vs

E =Et= Kbullpat (Oo )n [1- Rf(1-sinltj) 101 - 03 ) 12 (1 5 6)2 c cosltP + 2o 3 sinltP 1Pat

in which K n and Rf= hyperbolic stress-strain parameters

Pa= atmosferic pressure ando 1 o 3 and o0 are determined by

averaging the concrete and soil vertical and radial stresses

near the pile point according to Fig 151 Then the

stresses at the pile point level are h

(J vs = L

0 Yi h

l vertical stress in the soil

0 hs Ko h

0 vs radial (horizontal) stress in the soil

0 vc L ye h -l

vertical stress in the concrete 0

0 hc K oc a vc radial (horizontal)

concrete stress in the

40

K at rest soil lateral stress coefficient 0

K c lateral stress coefficient for fluid fresh concrete0

K 1 0 oc

and average values

a 05(a +a)V vc vs

1 1 - shy~ = -(a +a+a I = -3 (av+2ahJ the applied mean normal stress0 j Z X y

Assuming this model calculation results for piles No 1-24

(see Tab 11~ as well) are shown in Tab 153

The piles are embedded mainly in medium sand to fine sand

For this kind of soil it can be assumed (soil parameters

from field or laboratory tests were inaccessible)

~ = 35deg c = 0 R~ = 09 n 05 v = 025 K c 10l 0

K = 04 Pat= 1UO kPa ye 24 kNrn 3 y = 14 kNm 3 bull0 C

Moreover in Tab 153 the following symbols are used

p(a1 ) - pile point contact pressure according to equation

1 bull 5 1

s(a1) - settl ement of pi l e point according to equation

143 and Tab 141

pound TT ( 2E = s bull Dp bull i 1-v ) according to equa~ion 152t

E~ Et bull microltl

EI

K = ro~ - according to equation 1 bull 5 6 p bullO middotA2

a~ o

E = E voD middot D middot ~4 ( 1 - v 2 ) according to equationt S p O 0

1 5 4

Et= E microd

K = according to equation 156 V PatmiddotaomiddotA2

41

The calculation results of Youngs modulus E = Et and

dimensionless canpressionrro1ulus for piles to 1-24 are shown

in Fig 152 to 155 using equation 152 and 15b

or equation 1~4 and 156 respectively lt can be obshy

served that the scatter in Fig 153 and Fig 155

where the influence of tne pile diameter is reduced

compare equation 154 is less than in the other figures

The reduced influence was made after observations from

field and laboratory tests while the equation 152 is

taken direct from theory of elasticity These values of

E and K are in good correlation with published values in

literature The values of Youngs modulus versus the

relative density of soil are compared to literature values

see Fig 15b Based on the analysis in this chapter it

can be assumed that

E = 9-ql 3 ( 1 bull 5 7)cp

where qcp is in accordance with equation 117

The calculation results based on this proposal are incluced

in Tab 1 5 3

The c a lculate d s e ttlements based on e q ua tion 154 and

157 are shown in column 23 and the values of the

correlation coef f icie nt (n= Seal ) in column 24 respectshyimeas

ively

The dimensionless canpression modulus can be d e termined as

K = 15Ubullq (qcp in MPa) (1 5 8)cp

see column 25 Tab 153

The calculation results based on the K compression modulus

according to equation 158 156 and 1 5 4 are shown in

columns 25 26 2 7 28 and 29 in Tab 153

42

For comparison and for determination of the range of

validity of this method the caLculation results of

pile point pressure for settlements s = 10 mm s = 20 mm

s = 30 mm (see Tab 141) according to equation 157

and 154 are shown in columns 30 to 35

The results obtained in Tab 153 confirm the possibility

to use the proposed method to calculate the initial part

of the pile point resistance settlement curve of large

diameter bored piles in non-cohesive soil and the initial

slope of this curve as well

A simple model has been proposed based on the theory of

elasticity ana the tangent modulus defined by Janbu (1963)

and Duncan amp Chang (1970)

A new approach according to the pile diameter depth factor

and principal stress is proposed

The settlement of the pile point can be made up to a point

pressure according to equation 151 on up to a settlement

of about s ~ 20 mm (30 mm)

-- The application of v Op in equation 1 5 4 a llows us ing

Youngs modulus as independent of the pile diameter

opposed to Bazants a nd Mosopusts (1981) proposal where

Youngs modulus wa s determined versus the pile diameter

The equation 1 5 6 takes into account the dependence of

Youngs modulus on depth (or overburden pressure) as

well

In the method field test (Cone Penetration Test) or

laboratory tests (hyperbolic stress-strain parameters

can be used

Comparison of the method to 24 availa ble load test r e sults

or large diameter bored piles in sand shows good a greement

to calculated and measured values

43

REFERE~CES

Adamczyk J (1978) Okreslanie udzwigu pali wierconych

za pomoca sondy statycznej (Bearing capacity of bored

piles based on the static sounding) Inz i Bud No 7

pp 253-257

Andreasson L (1973) The compressibility of cohesionless

soils Thesis Chalmers University of Technology

G6teborg (in Swedish)

Appendino M (1973) Comportamento di un palo di grande

diametro strumentato Rivista Italiano di Geotechnica

No 3 pp 115-118

Butterfield R Banerjee P (1971) A rigid disc embedded

in an elastic half space Geotechnical Engineering

Vol 2 pp 35-49

Bozant z Mosopust J (1981) Drilled pier design based

on load settlement curve X ICSMFE Stockholm Vol 2

pp 615-619

Begemann HK (1982) Cone penetration tests pile bearing

capacity and the thesis of Rollberg Proc of the Second

European Symposium on Penetration Testing Amsterdam

pp 433-438

Berggren B (1981) Bored piles on non-cohesive soils shy

settlement and bearing capacity (in Sweden) Thesis

Department of Geotechnical Engineering Chalmers

University of Technology G6teborg

Bergdahl UB (1979 1982) Sonderingen und in situ Messungen

Wien 18-19 Juni 1979 - Private information 19821983

Bustamante M Giane selli L(1982) Pile bearing capacity

prediction by means of static penetrometer CPT Proc

of the Second Europ Symp on PenTest Amsterdam

Vol 2 pp 493-500

Chaplin TK (1961a) An experimental study of the settleshy

ment of footings in sand PhD Thesis Univ of

Birmingham

44

Chaplin TK (1961b) Compressibility of sands and settleshy

ments of model footings and piles in sand 5th Int

Conf on Soil Mech a Found Engng Vol 2 p 33 Paris

Colombo P (1971) Observazoni sul comportamento ltli pali

a grande diametro Rivista Italiana di Geotechnika

No 3 pp 163-172

Dahlberg R (1975) Settlement characteristics of preconshy

solidated natural sands Swedish Council for Building

Research D11975

De Beer EE (1964) Some considerations concerning the

point bearing capacity of piles Proc Syrop Bearing

Capacity of Piles Boorkee I pp 178-204

Decourt L Quaresma AR (1978) Capacidade de Carga de

Carga de Estacas a partir de Valores de SPT VI Conshy

gresso Brasilerio de Mecanica dos Solos e Engenharia

de Fundacoes - Rio de Janerio - ABNS

Decourt L (1982) Prediction of the bearing capacity of

piles based exclusively on N values of the SPT Proc

of the Second Europ Syrop on Penetration Testing

Amsterdam Vol 1 pp 29-34

Duncan MJ Chang CV (1970) Non-linear analysis of stress

and strain in soils Journal Soil Mech Found Div Vol

96 SM5 pp 1629-1651

Durgunoglu HT (1979) Effect of foundation embedment on

stress and deformation distributions Third Int Conf

on Num Meth in Geomechanics Aachen pp 925-928

Farr JS Aurora RP (1981) Behaviour of an instrumented

pier in gravelly sand Proc of a session Drived Piers

and Caissons sponsored by the Geotech Eng Div of the

ASCE Nat Convention St Louis Missouri pp 53-65

Franke E (1981) Point pressure versus length and diameter

of piles X ICSMFE Stockholm Vol 2 pp 717-722

45

Gregersen os Aas G and Dibiagio E (1973) Load tests

on friction piles in loose sand Proc of the Eigth

International Conference on Soil Mech Moscow USSR

Vol 21 pp 109-117

Gwizda1a K (1978) Behaviour of large diameter bored piles

in non-cohesive soil (in Polish) Archiwum Hydrotechniki

Vol XXV No 2 pp 183-217 (English summary)

Huizinga TK (1951) Application of Results of Deep

Penetration Tests to Foundation Piles Building Research

Congress Vol 1 p 173

Janbu N (1963) Soil compressibility as determined by

oedometer and triaxial tests Proc Europ Conf Soil

Mech and Found Eng Vol 1 p 19 Vol 2 (Discussion)

p 17 Wiesbaden

Janbu N (1970) Grunlung i geoteknikk Tapir Forlag NTH

Trondheim

Janbu N Bjerrum L Kjaernsli B (1973) Soil Mechanics

applied to some engineering problems Norw Inst Publ

No 16 Oslo

Japanese Society SMFE (1981) Present state and future trend

of penetration testing in Japan Separate report at

X ICSMFE Stockholm

Kjekstad O Lunne T (1979) Soil parameters used for design

of gravity platforms in the north sea Second Int Conf

on Behaviour of Off-shore structures London Vol 1

pp 175-192

Klosinski B (1977) Bearing capacity of large diameter bored

piles IX ICSMFE Tokyo Vol 1 pp 609-612

Laboratory for soil mechanics Delft (1936) The predetershy

mination of the required and the prediction of the

resistance of piles Proc 1 Int Conf on Soil Mech

and Found Engng Cambridge (Mass) I p 181

46

Matich M and Stermac A (1971) Settlement performance of

the Burlington Bay Skyway Canadian Geotechnical Journal

Val 8 pp 252-271

Mccammon NR and Golder HQ (1970) Some loading tests

on long pipe piles Geotechnique London England

Val 20 pp 171-184

Meigh AC (1971) Some driving and loading tests on piles

in gravel and chalk Proc of the conference on beshy

haviour of piles London England pp 9-16

Mitchell JK Gardner WS (1976) In situ measurement

of volume change characteristics American Society of

Civil Engineers Specialty Conference on In-situ

Measurements of Soil Properties Raleigh 1975 Proc

Val II pp 279-345

Mezenbach E (1961) The determination of the permissible

pointload of piles by means of static penetration tests

Proc 5 Int Conf on Soil Mech and Found Engng

Paris II pp 99-104

Meyerhof CG (1956) Penetration tests and bearing capacity

of cohesionless soils Proc Amer Society of Civ Engng

SM 1 Pap 866 pp 1-19

Meyherhof GG (1 976) Bearing capacity and settlement of

pile foundations Proc Amer Society of Civ Engng

Journal Geotechnical Engineering Division Val 102

No GT3 pp 197-227

Mohan D Jain GS and Kumar V (196 3 ) Load bearing capacity

of piles Geotechn Val XIII pp 76-86

Nixon I (1982) Standard penetration test State of the

art report Proc of the Second Europ Symp on Pen

Test Amsterdam Val 1 pp 3-20

47

Nunes A Vargas M (1953) Computed bearing capacity of

piles in residual soil compared with laboratory and

load tests Proc of the Third International Conference

on Soil Mechanics Zlirich Switzerland Vol 2 pp 75-79

Nordal S Grande L Janbu N (1982) Prediction of offshy

shore pile behaviour The Norwegian Institute of

Technology Trondheim

Ohde J (1939) Zur Theorie der Druckverteilung im Baugrund

Der Bauingenieur Vol 20 No 3334 p 451

Parroth E (1972) Einfache Formel zur Vorausbestimmung der

Tragfahigkeit von Standpfahlen mit Hilfe der Sande

Bautechn 9 pp 312-314

Poulos HG Davis EH (1980) Pile foundation analysis

and design New York - J Wiley and sons

Prodinger W Veder Ch (1981) Bearing capacity of floating

groups of diaphragm walls Proc X ICSMFE Stockholm

Vol 2 pp 809-814

Promboon S Brenner R (1981) Large diameter bored piles

in Bangkok Clay Proc X ICSMFE Stockholm Vol 2 pp

815-818

Reese L (1978) Design and construction of drilled shafts

ASCE JSMFD Vol 104 No OT1 pp 95-116

Rodin s Corbett BO et al (1974) Penetration testing in

United Kingdom state-of-the-art-report Proc Europ

Symp on Penetration Testing 1 Stockholm pp 139-146

Rollberg D (1976) Bestimmung des verhaltens von Pfahlen

aus sandier und rammengebnissen Heft 4 FBG Technische

Hochschule Aachen

Rollberg D (1977) Determination of the bearing capacity

and pile driving resistance of piles using soundings

Publications of the Institute for Found Eng Soil Mech

Rock Mech and Water Ways Construction Aachen Vol 3

48

Schmertmann J (1970) Static cone to compute static

settlement over sand Journal of the Soil Mech and

Found Division ASCE SM3 pp 1011-1043

Schmertmann J Hartman JP Brown PR (1978) Improved

strain influence factor diagrams Journal of the Soil

Mech and Found Division ASCE GT8 pp 1131-1135

Shibata T Hijikuro K and Fominerga M (1973) Settlement

of a blast furnace foundation Proc of the Eighth Int

Conf on Soil Mech Moscow USSR Vol 13 pp 239-242

Spang J (1972) Die Bestimmung der Tragfahigkeit von Grossshy

borhpfahlen (I) Strassen und Tiefbau No 2 pp 339-355

Senneset K (1974) Penetration testing in Norway State-ofshy

the-art-report Proc Europ Symp on Penetration Testing

Stockholm I pp 85-95

Tejchman A Gwizdala K (1979) Analysis of safety factors

of bearing capacity for large diameter piles Proc VII

ECSMFE Brighton Vol 1 pp 293-296

Thorburn s and Mac Vicar R (1971) Pile load tests to

f a ilure in the clyde alluvium Proc of the conference

on behaviour of pile s London England pp 1-7

Trof imenkov JG (1969) Accuracy of determining the bearing

capacity of piles based on results of static penetration

sounding of soils Osnovaniya Fundamenty i Mekhanika

Gruntov 4 (Translation Soil Mechanics and Foundation

Engineering 4 p 248)

Trofimenkov JG (1974) Penetration testing in USSR Stateshy

of-the-art report Proc Europ Symp on Penetration

Testing Stockholm I pp 147-154

Tuoma F and Reese L (1974) Behaviour of bored piles in

sand JSMFD ASCE Vol 100 No GT 7 Proc Paper 10651

July pp 749-761

49

Van der Veen C (1953) The bearing capacity of a pile

Proc 3 Int Conf on Soil Mech and Found Engng

Zlirich II pp 84-90

Van der Veen C and Boersma L (1957) The bearing capacity

of a pile predetermined by a cone penetration test

Proc 4 Int Conf on Soil Mech and Found Engng

London II pp 72-75

Weltrnan AJ Healy PR (1978) Piling in boulder clay

and other glacial tills Construction Industry Research

and Information Association UK-Report PG 5

Withiam J Kulhawy F (1981) Analysis prodecure for

drilled shaft uplift capacity Proc of a session

Drilled piers and caissons ASCE St Louis Missouri

pp 82-97

Woodward R Lundgren R Boitano J (1961) Pile loading

tests in stiff clays Proc of the Fifth International

Conference on Soil Mechanics Paris France Vol 2

pp 177-184

Wright SJ Reese LC (1979) Design of large diameter

bored piles Ground Engineering Vol 12 No 8 pp

17-22

DIN 4014 Cods Teil 2 (1977) Bohrpfahle Grossbohrpfahle

Herstellung Bemessung und zulassige Belastung

Polish Specification (1975) Specification for design and

construction of large diameter bored piles in bridges

Ministry of Transport Warsaw (in Polish)

Polish Specification (1979) Specification for prevision

bearing capacity of the piles on the presiometer test

and static sounding ENERGOPOL Warsaw (In Polish)

Polish Code (1983) Foundations Bearing capacity of piles

and pile foundations

5 1

FIGURES

bull bull

53

Ou

+ sect raquo iir 1

4 + D

h + +Osu

bull + t2 =n- Dp

LDpl r f 1

Opu

Fig 1 1 1 Bearing pi le in the soil

J_

fp

080

070

060

050

0 40

030

020

010

q~ [MPa ]000 -+--~-~-~-~------------------------=-shy

00 20 4fJ 60 80 10 0 120 14fJ 160 180 200

Fig 1 1 2 The point resistance factor fp

(Trofimenkov 1974)

54

ts

160

140

120

100

080

060

040

020

q~5 [ kPa)

0Q0--1------~-~-~-~-~-~ - - ---=- -- shy000 10 20 30 40 50 60 70 80 90 100

Fig 1 1 3 The shaft resistance factor fs middot (TYofimenkov 1974)

f s

200

180

160

140

120

100 2 3 4 5 6 7 8 9

Fig 1 1 4 Shaft friction factor f depenshys

ding of the soil density (Senneset 1974)

55

Q~ [kN]

1500

1000

500

0-r-----------r----~- Q~ [kN] 0 500 1000 1500

Fig 1 1 5 Comparison of the pile resisshytance determined by the results of static sounding and load tests (TYofimenkov 1974)

D f f

0

Fig 1 16 Equivalent cone resisshytance (Bustamante 1982)

56

E u shy0 ~

QI I ltII ltII

~ a C QI

O C

D

w gt

0

Cone res istance Point resistance

80 160 240 320

05

10

15

e d

20

ver y dense Cone resistance 300 kgcm2

Dpcm

a =45 b = 30 C 60 d = 100 e = 150

Fig 1 16a

Cone resistance _ qc

80 160 80 160 qc [ k g cm2 ]p

05

10 10

15 15 e d a

e d20

Dense Medium2 2200 kgcm 100 kgcm

Cone resistance and point resistance of piles versus overburden pressure (Kerisel 1965)

Point resi stance - p(for s=2cm) of the pi le for

15 sett Iement s = 2 cm

10

5

E u

uJ1 o-~----shya er O 804 2500

32 56

I 1

L oose50 -I =25 Very loose L

----~--shy5000 7500 80 98

~-----lmiddotI1--------2 10000 12500 31400 =Flcn)

112 123 200 =Dplcm)

Fig 1 1 6b Point resistance versus cone resistance and pile diameter (Franke 193)

57

1

fp

080 (D Gravel

0 Coarse sand Medium sand 070

reg Fine sond Silty sand

060

050

040

030

020

010

qc [MPa]000-+----r--~-~-~--------r----r----r-~-~-- -shy

oo 20 40 60 80 100 120 140 160 180 200

Fig 1 1 7 Point resistance factor f (proposal) p

58

300

250

200

150

100

qc [MPa I50-+---------------r---r---r---r----r------------- shy

oo 20 40 60 80 100 120 140 160 180 200

Fig 1 1 8 Shaft resistance factor fs (pr oposal)

59

Bustamante (seetab 115 I

l fp

G)

0 Gravel

Coarse sand Medium sand

cl

b)

t-----l

1----1

080 reg Fine sand Silty sand a) D

070 Polish

060 Specification

( 1979) 050

040

030 CD 020 0

reg 010

qc [MPa]0 00 -+-------------------------------------=--shy

oo 20 4o 5o 80 100 120 14o 15o 180 200

Fig 1 19 Point resistance factor f comparisonp

Bustamente ( see tab 116 I 300

a) ~

250 b)~

cl~

200 Polish Specification ( 1979 l

150

100

q [ MPa]504---~--~--~----- ---___

00 20 40 60 80 100 120 140 150 180 200

Fig 1 1 10 Shaft resistance factor fs comparison

60

1 fp

~

080 CD CD Gravel

070 0 reg Coarse sand Medium sand

060 0 Q) Fine sand Silty sand

05

040 Franke (1973)___

030 DIN 4014

020 Part 2 1977

( see tab113 l 0shy

--shy --a - 010 C---0 Piles without enlarged bases

D---0 Piles with enlarged bases qc [MPa ] 000

00 20 4JJ 60 80 90 100 120 140 160 200

Fig 11 11 Point resistance factor f comparison p

fs

DIN 4014 Part 2 1977 ( see tab 114 l

300

~ 5 lt qc lt 10 MPa 50

~ 10 lt qclt 15 MPa

~qcgt15MPa

200

150

CD

100 0 0

qc [ 1Pa] 50-t-----T-~----T-r-~----------------shy

OO 20 40 6JJ 80 100 120 14JJ 160 180 200

Fig 1 1 12 Shaft resistance factor fs comparison

61

Measured p [ MPa]

( s=010 Dp) 10

9

8

7

6

5 0

4 0 61

3

I 2

Calculated qcp [MPa]

0 0 2 3 4 5 6 7 8 9 10

Fig 1 1 13 Comparison of experimental and aomputed values of the pile point resistanae

62

Contact pressure ( MPa ]

2 I 6

50

100

E E 150 Ill

c QI

E Sett lement for QI

calculated qcpai V) 200

Fig 1114 Results from load tests on piles No 1 and 5

Contact pressure [ MPa I 0 2 I 6

01---------------------1

50

E E 100 Ill

Settlement forc QI calculated qcp E ~ ai

I V) 150

Fig 1 1 15 Results from load test on piles No 7 and 5

63

Contact pressure p [ MPa] 0 2 3 4 6

0-t=-----~-~-----

E E

100 1)

c CU E 2 QI V) 150

Fig 1 1 16 Results from load test on piles No 9 10 and 11

Contact pressured p [MPa] 0 1 2 3 4 5

o~~~=------------___-~-shy

50

100

E E

i 150

CU E CU

-a V) 200 2

Fig 1 1 17 Results from load test on piles No 12 and 13

c

-------------- -

64

Contact pressured

0 1 2 3 4 p [ MPo] ~o __L____1_____J_____L___

50

100

150

E

E

IJ) 200

c a

E a

~ 250

Fig 1 1 18 Results f Pom load tests on piles No 2 4 6 and 8

p [MPa]

60

50

tO

30

~

Pile Pile Pile Pile

Pile No18

------+ Pile No17 + ~_ ---0 Pile No 19

bullbull - --bull Pile No 20

- ~middot -shy-shy -(y I Settlement for

20 tO 60

No17 +-middotmiddot- V 70 No 18 bull--- V 9o No19-middot- V 120 No20bull---- V150

qcp 3

80 100 120 140 160 s (mm)

Bose resistance

Fig 1 1 lBa Point Pesistance vePsus settlement (Spang 1972J

65 Cone resistance qc [ MPa]

0 10 20 30

mud

5 ~ lll

0 c 0

c CD

peat

10 sand

Ill N

10=10

D=lOOOmm

1540=40

20__________________

[ml

Fig 1 119 Pile No 1 and results from static cone penetration test

Cone resistance qc [MPa l 0 10 20 30

7N V degW = 0+--------------------i

mud

5

lll

~ C 0

c peat~

10

sand lll N 1D15

15l lD=1500mm

40=60

20l---------=-------__J

[ml

Fig 1 1 20 Pile No 3 and results from static cone penetration test

66 Cone resistance qc [MPa]

10 20 II 3 igt pound ~

mud+peat

fine sand+ silt

50=11

l lo-11oomm

40= 44

10

15l____________c

[ml

Fig 1 1 21 Pile No 5 and results from static cone penetration test

Section Cone resistance Pile

0 0

5 10 15 20 25 30 qc [MPa] -----~-~shy~

Silt

[7r_ ___~ Medium Sand_~-----l

0 ltD

+shy4

0=11

9=

Fine sand + Silt t

30p=

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot1~11+-----E-----

[ml

Fig 1 1 22 Pile No 6 and results from static cone penetration test

Cone resistance qcmiddot 1MPuJ

0 10 20 30 67 01-+-------l--------------i

mud+ peat

fine sand

l1)

N

40=60

15L_____________

[ml Fig 1 1 23 PiZe No 7 and resuZts from static

cone penetr ation test

Section Cone resistance Pi le

0 5 10 15 20 25 30 qc [MPa 1 --~----Y-~-----~

Silt

Fine sand

Medium Sand Bentonite2----1~i

t 3

4

0

0=15

Fine iii ~~= 5

sand t ltD

6 +

Silt 7

3Dp=

63 g

10

11

12

13+------=~---l

[ml

Fig 1 1 24 PiZe No 8 and resuZts f rom static cone penetration test

68

I =3

Cone resistance qc [MPa]

0 10 20 30

C 0 C Cl

(I)

Said

Peat

Sand

l 0=110

D = 11

4 D = 44

Fig 1 125 Pile No 9 and results form static cone penetration test

69

Cone resistance qc[MPa)

0 10 20 30 I ~ II JE Ill= II=E IS

Fine sand QI

U) I

[- I C 0 + C Peat QI

CD

Fine sand 0

Ci D = 1 1

L l D= 110

4D= 4 4

Fig 1 1 25 Pile No 10 and results f rom static cone penetr ation test

70

Cone resistance 9c[MPa]

0 10 20 30

Sand

C 0 Mud peat

+shyc 5 ltII

co

Sand Op= 11

u 10 D= 110 4Dp=44

Fig 1 1 26 Pile No 11 and results foIm static cone penetration test

71

00 a_ N ~

middotu rr QI 0 u ~ C 0

QI ui C iij 0 QI U - 0

0 EN

d 2

Sll 1lOl

C

u (rr

C 0 u~

0

QI - C middot 0 C

U - O 0 EN

~ 0 2

E

ltD a---==-lr---___--~---6-l_-0_012 ~ Lr- - --1---------J J

S9l ls= apound QI -0 gtcc _gmiddot- 0 1) ui I

Fi g 1 1 2 Piles No 14 and 15 and results f r om stat i c cone penetr ation tests

72

Contact pressure p [ MPa] 2 4 6

01lt---------------~

50

E E

111 100 ~ (qcp=30 MPa for No16

~ iqcp =49 MPa for No14

~ 1so~--~~- _ _ __

I _ _

11 I lf--q = 32 MPa for No15

cp

Fig 1 1 28 Results f r om load tests on piles No 14 15 and 16

73

0300--------------~---~--~--shyE

Driven piles in ~ 0 bull Gravel

amp250 bull Sand L QJ X Silt a 1l o Bored piles in

sand -sect 200 0=-- shyC ~ ~ 10 unless ~~ middot D shown 1

ii O

~ ~ o 3 a 1501-----+-------I- --+---laquo-+-- -+------lt

~ sect 5 - 6 6middot 100t----+----+-----_-1---4--__co_--J~__j

-_

~ 0 t7

C

a 50 2 shyg ~ gt

0 20 30 40 50 60

Standard penetration resistanceN in blows per foot

(N 30

Fig 12 1 Emperical relation between ultimate point resistance of piles and standard penetrashytion test in cohesionless soil (Meyerhof 1976)

14 r-------------------r-------b-----q

References and symbols given in Fig121

121-----+---+----+----+------ll------j

- _sect ~ 10t----+----+-_--1-----+---lt~--~H---- 0 lt-~5- _-)0 I() l- I Q---+-----I[08 ~

H -(l () ltj-~C X bulls pound 061------lt----+-----i~- --+-- shy

- bull

-gt Q1pound--I---L---L---L---L--~ 0 10 20 30 40 50 60

Mean standard penetration resistance N in blows per foot ( N30 l

Fig 122 Empirical relation between ultimate skin friction of piles and standard penetration resistance in cohesionless soil (Meyerhof 1976)

74

a) b)0(1 0lt2

10 10

05 05

1 N30OD-+---------__ OD--t-----r-----r----------------ll--Nbull30~ 10 20 30 10 20 30 40 50

Fig 1 2 3 Reduction coefficient a) for impermeable gravels b) form permeablr gravels (Weltman and Healy 1978)

psf [MPo)

Fig 1 2 4 Relation between ultimate point resistance and SPT in cohesionless soil (Polish specification 1975)

75

30 35 40 45 Loo Med Dense Ver dense

50

40

~ E

l)

g 8 1)

middotu

1 ~

QI- bull Touma ~ bull Koizumi

(183)-depth base middotameter5

20 40 60 00 100 N30

30 35 40 45

OG2(294) bull G1 (183)

300 bull us 59 ( 102) bull 88(180)

bull 075 a GT (467)

150

~ 200-+--------+-- t--- --t-----i 130i 0 094 081

014 _- --- -- shy~ E 066bull bull 063 Note -~ ~m~r~s~ ~ 1001---1-r--t---1point is xh QI Ratio ~ Number in ( ) middotn key is h c Ratio s ~

0 20 40 60 00 100

~ig 1 2 5 Ultimate point and shaft resistance versus N30

(Wr ight and Reese 1979)

-----

76

tu Psa

[kPa] [MPa]

200 tu

------ shy150 Psa

1 1

1100 10 1 1

1 50

0+----------T----~---~-N-3J~shy0 20 40 60 80

Relation between ultimate skin friction and SPT (Decourt 1982)

Fig 1 2 6

Psa

[MPa]

8

0----Meyerhof 1976) 0 7

--- - --~ - copy Polish Specifcoti on 1975)6 ~-

~

reg- middot - Reese (1978) middot 5

f41- -- Decourt (1982) -I bull 4 2

----==---______z__ h25m Dp=12m

3 ---shybull

2 7

--shy ----shy~----shy0-t----i----------r-- ----------------------N3l~shy

0 10 20 30 40 so 60 70

Fig 1 2 7 Relation between ultimate point re~istance of large diameter piles and standard peneshytration test (SPT) in cohesionless soil

------

77

tu [kPa)

200 17 Cast under -J bentonite

~----Meyerhof (1976) ~copy -=middotmiddotmiddotmiddot== middotmiddot150 ~------- Wei tman (1978 ) middot Healy middotmiddot ___ Japanese ) 119810 Society

(0 -middotmiddot- Decourt (1982)middot Wright

100

- -middotmiddot -- 11979]reg Reesemiddot Bored piles

~shy50 1 -- shy

-- shy middotmiddot s-shy - --~ ------reg~~ ---~E_==---- ------- shy

N_ ---shy0-+--C--------------r---- ---------~---~-~shyo 10 20 30 40 50 60 70

Fig 12 8 Relation between ultimate skin friction of piles and standard penetration test (SPT)

78

Pst [MPa]

8

7 ---------ist=7MPa

6

5

4

3

2

I N30o~------------------------------+---------__=-shyo 10 20 30 40 50 60 70

Fig 12 9 Relation between ultimate point resistance of large diamter piles and standard peneshytration test (SPT) in cohesionless soil (proposal)

tu [MPa ]

( excavanted and cast

150 under bentonite ) tu=150 kPa

100 tu=90 kPa

I I

50 I I I I I N30

10 20 30 40 50 60 70

Fig 1 2 10 Relation between ultimate skin friction of large diameter piles and standard penetrashytion test (SPT) in sand (proposal)

79

2 3 4 5 p[MPa] 0 2 3 4 5 p[MPa]0

40 40 Cl

80 c 80

c 120 120

Pile No 1 PileNo216 160

200 2

s s c [mm] (mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MPa]

40 40

00 80

120 120

16 160 Pile No 3 Pile No 4

200 200

s s [mm] (mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MAJ]

tgt11 tgt- measured40 40

80 80

120 120

Pile No 5 Pile No 6 160 160

20 200 s s

[mm) [mm)

Fig 1 4 1 Base resistance vs settlement appoximative method piZe No 1- 6

80

0 2 3 6 5 p[MPa) 0 2 3 4 5 p[MPa]

40 40

80 80 6

120 120 6

6160 160

Pi le No 7 Pile No 8 6

200 3J s s

[mm] (mm]

0 2 3 4 5 4 p [ MPo)

6 6 40

6 6

6 80

6 6

6

Pi le No 9 Pile No 10

XJO s s

[mm] [mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MPa)

6 6

40 40 6 6

6

00 80 6

6

12 1Xl 6

160 Pile No 11 160 Pile No 12

200 200 s s

[mm ] [mm]

Fig 1 4 2 Base resistance vs settlement approximative method pile No - 12

81

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MPa]

6 6

40 6 40 6

6

80 6 80 6

120 6 120

Pile No 13 Pile No 141fO 160

200 200 s s

[mm] [mm]

0 2 3 4 5 p [MPa) 0 2 3 4 5 p [MPa)

40 40

80 80

120 120

HiO 160

200 200Pile No 15 Pile No 16

s s (mm) [rrrn 1

0 2 3 4 5 p[MPa] 0 2 3 4 5 p[MPa)

40 40 A A A-measured

680 80 t t

120 c 120 c

1fil Pi le No 17 160 Pile No 18

200 200 s s

[mm] [mm]

Fig 1 4 3 Base r esistance vs settlement approximative method pile No 13- 18

82

0 2 3 4 5 p[MPal 0 2 3 4 5 p (MPa]

D D40 40 c c

80 c 80 c

120 120

160 160

Pile No 19 Pile No 20 200 200

~ml (mm]

Fig 1 4 4 Base resistance vs settlement approximative method pile No 19- 20

LlJ QI

0 average lJ = 098 E sd = 029 C

6 SY = 030

4

2

lJ calculated ________________________ _______ measu red

06 08 10 12 14 16

Fig 1 4 5 Calculated pressure divided by the measured pressure at 20 mn settlement for aZZowabZe

q Zoad Pa= ~p approximative method pile

No 1- 20

8 3

Point resistance p [ MPaJ

a)

p(s) = s a +--sshy1 y qcp

1

SQ100p -- --- ---shy

~ s

[mml

I- 01 s rmm]-l p LMPa b)

f~]

c Cll E ~ i s

[mm)

Fig 146 Definition of the point resistance - settlement curve according to the modified hyperbolic method

84

01 ~ 0

20 0 0

0

16 0

medium 0 value a1 = 905-+ 256 Op 0 0

12 (r=039)

0 0

----0 0

8 0

0 0

0 0

4 0

05 06 07 08 09 10 11 12 f3 14 15 16 17 18 19 20 2 1 Op (ml

Fig 1 4 Initial slope of the base resistance curve vs pile diameter

a1 [p] 0

0020

16 assumed a 1= 28 - 4 qcp

12 0

0 Ct) 0 a = 2659 - 369 qcp8 1

0 0 (r = 0188)0

4

2 3 4 5 (MPa]qcp

Fig 1 4 8 Initial slope of the point resistance curve vs ultimate point resistance on the static cone resistance for pile tests No 1 20

85

a [~ 28

24

20

16

12

8

4

0 2 3 4 5 6 Qcp [MPa]

~ Kiosinski (1977) sand and sandy gravel of mediwn density

~ Klosinski (1977) loose sand ID= 0 3 0 4

o US59 ] t HH Touma p and Reese L (1974) fine sand and silty sand OGl (US59 HH BB - very dense Cl - mediwn dense) 1 BB

DIN 4014 Part 2 (1977)

Fig 1 4 9 Initial s lope of the point res istance curve vs ultimate point resis tance

86

assumed [il =30 -10 Op but )1~ 10 )1 [1 I

u 311-10 Op ( r =0 368)4 1 0

3 0 0

02 0

0 0co 0 8 0 0

0

0

05 06 07 08 09 10 11 12 13 14 15 16 17 19 20 21 Dp [ ml

Fig 14 10 Correction factor for hyperbolic base resistance shysettlement relationship

87

a [~] 28

24

20

16

12

8

4

2 3 4 5 qcp [ MPa]

Fig 14 11 Initial slope of the base resistance curve vs ultimate base resistance (proposal)

v [ 1 ]

3

2 -----G- DP J l 1J I Op lm] J

for Dp ~ 2 0 m ~ u = 1 01

0 --------r----r---r----r-----------------r-------------------------r------r-~-~--shy

05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 Dp[m)

Fig 1 4 12 Correction facto r for hyperbolic base resisshytance - settlement relationship (proposal)

s P ( s)

s +

u qcp

88

a) b)1

bt=o212= 47 MPa a1=1~32 tMWJ s 2 3 4 5 O 1 10 20 30 40 50 60 p [~a]0

0p [ MPa] 40 40

80 80

120 ~

160 b1 = ~ajtg ~= 0 212

~=1132 + 0212middot s

mJ 240 r=0994t t t measured s __ according to Jl s

o o o according to p (bull ll l[mm] [mm]

Pile No 2

slmm) 10 20 30 40 50 60 80 100 125 150 175 2)0 225 Note

p [ MPa] 09 14 17 20 22 24 27 30 32 34 36 38 39

measured

pibull) [ MPa] 074 128 169 202 228 249 282 307 330 347 360 371 380calculated

plbullbull1[MPal 070 125 168 203 233 257 297 327 356 378 396 410 422calculated

1) (bull) ij l099082 091 099 101 104 104 104 102 103 102 100 098 097 sd = 006

ij (HJ1041) (bull10) 078 089 099 102 106 107 110 109 111 111 110 10B 10B sd = 010

plbulll-according to a =1132 [ Jp(s) = s s for pile No21 0 1132 12 39

plbullbulll-according toa =1241 lmiddotGcp=39MPa1 0

~=14 see fig 1411 and fig 14 12 sp(S)=

124+ _ s_ 14middot39

11lbulll11l-J - correlation coefficient calculat~d P5 for

measure p s p(bull) and p(bull) respectively

Fig 1 41 3 Modified hyperboZic point resistance - settZement reZationship for piZe No 2

89

0 2 3 4 5 p(MA1] 0 2 3 4 5 p[MPa)

40 40

80 A 80 A

120 120

160 16 Pile No 1 Pile No 2

20 200 s s

[mm] rnm

0 2 3 4 5 0 2 3 4 5p [MPa] p [MPo]

40 40

80 80

120 1ZJ

lfpound) Pi le No 3 Pile No 4 A

200 A

s s A

[mm) [mm

0 2 3 4 5 p [MPa] 0 2 3 4 5 p [MPa]

40 40 A A A measured ~ calculated

80 80

12

160 160 Pi le No 5 Pile No 6

200 Z)Q

Fig 1 4 14 l3ase resmiddotistance vs settlement pr oposed method pile No 1- 6

90

2 3 4 5 p [MPa] 2 3 4 5 p [ MPa]

40 6

6 40

1 80 80

6

120 120 6

6 160 160

Pile No 7 6

200 200 s

[mm ] s

[mm]

0 2 3 4 5 6 p [MR] 0 2 3 4 5 p [MPa] 0 0

40 40 6

6

80 80

6

120 120

160 160 Pile No9 Pile No 10

200 200

s [mm] [msml I

0 2 3 4 5 6p[MR] 0 2 3 4 5 p [MPa]04--___ ____ ___ ___ ____

0+-=---------------~-~- shy

40 40 c 6 c - measured

0--0-0 shy calculated

80 80

120 120

160 160 Pile No11 Pi le No12

200 200

s [mm]

s [mm]

Fig 1415 Base resistance vs settlement proposed method pile No 7-12

91

0 2 3 4 5 p [MPal 0 2 3 4 5 p [MPa)

40 40

80 80

120

16 Pile No 13 Pile No 14

200 s

tnml [mm]

0 2 3 4 5 p [ MPa] 0 2 3 4 5 p [MPa)

40 40

80 80

120 120

160 1fD

Pi le No 15200 axJ s s

[mm] [mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 6 plMPa ]

A A A measured40 0---0-0 calculated

80

120 120

160 1ED Pile No 17 Pi le No 18

200 200

s s [mm] [mm]

Fig 1 4 16 Base resistance vs settlement proposed method pile No 13- 18

92

0 2 3 4 5 p [MFb] 0 2 3 4 5 p[MPa]

0 6 o -measured40 40 0 0 o -calculated

80 80

120 120

160 160 Pile No 19 Pile No 20

200 200 s s

[mm] [mnil

Fig 1 4 17 Base resistance vs settlement proposed method pile No 19-20

p(s~Psf

15 20

ean

-C 5 w u L Lower ~ confidence

linea 0

a IJl 10

o---o proposed

method I I I

15

Fig 1 4 17a Design curves for estimating developed base resistance in sand (Wr ight and Reese 1979)

93

n (number)

30

28

26

24

22

20

18

16

14

12

10

8

6

4

2

0 02 04

Fig 1 4 18

I= 126

Between 1] = 0 7 - 1 3--- I= 106 ( 84 frac34)

Average ~ = 098 Standard sd =023 deviation

Standard sv =023 veriation

1] (Coefficient Calculated Measured

06 08 10 12 14 16 18

Calculated pressur e divided by the measured pr essure for all pressure - settlement curves pr oposed method pile No 1- 20

94

a) b) Total load

Total load curve

---- _____-- shy- -- -Base load ~- Base load

-0-0 ~

00 00 J

ldeoli zed shaft load J

Shaft sesistanc1---------- 0=0middot30 a= 0 middot 30

025 Settlement IN 025 Settlement IN

Fig 1 419 Proposed method of synthesizing design loadsettlement curve (a) conservative design prodiction b) design prediction- peak in shaft loadsettlement curve (Burland et al 1966)

Cf

-0 0 0

J

0

~-----~--~-~ amp- 2 3 4 5 6 (cm)

a~middotltii -0 lt) cco2 41 -~ -0 1)

vi ~ llloli=----------- ---c~0 1 2 3 4 5 6 7 ( of diameter)1 1 1 1

05 10 15 20 ( in) for 30 in Pile Movemen~ ( 75cm pile)

Fig 1 4 20 Approximate load settlement curves for 30 in bored piles (AB and C represent failure load at 1 in settlement A B and C represent ultimate failure load) (Touma and Reese 194)

95

Load in MN 0 2 3 4 5

25

50E E C

-C 75

-~ ~

-Z 100 lJ

Shaft resistshy

125 once

15 Fig 1 4 21 Load-settlement relationships for largeshydiameter bored piles in stiff clay (Tomlinson 1977)

SettlementSo

Fig 1 4 22 Diagrams of s1iaft and base resistances versus settleshyment assumed in analysis (Kiosinski 1977)

96

0 0 1 ~ r- 025g ~~ 2

1- -shy3 03Sg 14 5 2

Qls =Qpls+Q5 (sQpls) Qs(s-3E

0

degsis __ -- Qpls) a~ C

4

t Sg l

5 Qu Is)

Q(s)in MN-l T

Ouls Q Is) in MN ---

Fig 1 4 23 Construction of load - settlement curves a) for sand b) for cohesive soil (DIN 4014 Part 2 1977 and Franke 1981)

-

s C 5C

Cl

3 0 00 05 10 15 20 Mean settlement I in)

Fig 1 4 24 Load- settlement curves for test shaft S4 (1 in = 25 4 mm 1 ton= 8 90 kN) (Reese 1978)

97

Relative side resistance

0 05 10 15 20 0E=--t----+---+--~

c QI lt) ~ 2 C

I itaker c

QI amp Cooke3E QI-j

c-en 4

C QI

E us 59o

5 QI gt

SA0 w 0 6

Fig 1425a Relative side resistance for clay vesus relative midlength settlement (Reese 1978)

degs (Osl u l t 0 05 10 15 2 0

Mean

2 Lower ~ C QI u

confidence line

~ 3 a

0

~4 E

()

5

6 __ _ ______ ________ __1

Fig 1 4 25b Design curves for esti mating developed side resistance (~Jy1nht ReertP- 1987 J

98 Load Q

8 - 15 mm

1- 2 of p ile diameter

100-200 10-15 of pile Os Ot diameter Shaft Total

Settlement S Resistshy Resist- Load ance once

Fig 1426 Dependence of total load base resistance and shaft resistance on settlement of lar-ge diameter pile (Tejchman Gwizdala 1979)

6

5 Shaft load

4

3

2

z ~

-0

g Pile EF- 56 J 0

0 0 20 30 Butt settlement (mm)

Fig 1 4 27 Deveiopment of shaft and base resistance with settiement (Promboon Brenner 1981)

99

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 0 r-=-1---J__-----------------------~----_shy

Load [ k N l5

10

20

( I

Skin friction ----1 I I

~ 40 QI E

fQI

50 I

Q) I () ICOntinuos fost deolading

Fig 1428 Load-Settlement-Diagram Testelement III (Diaphragm-Wall 0515 m 244 m deep) Portion of Skin Friction and Base Resistance (Prodinger Veder 1981)

Qs (QJ max

0 05 10

Upper Limit of Data

Farr and Aurora (1981J C

~ 2 - shy -+shy - Mean of Data

I QI

Lower Limit of Data a

0 - 3 E

Vl

4

Smid = Approximate shaft buff movement ignoring the elastic compression of upper halt of the shaft

D = Shaft diameter

Q Mobi Ii zed shaft resistance

Qs1max = Maximum shaft resistance

Fig 1 4 29 Relative shaft resistance vs relative movement (Farr and Aurora 1981)

100 Load Q (s) [ MN]

Su5 s s 20 mm for non- cohesive soil u

s s 10 mm f or cohesive soil u

s s 15 mm for claysand u

Q (s) + Q (s)s p

Qs(s)

-C ltII E s ~- [mm]-ltII IJ)

Fig 1 430 Dependence of total load Q(s) point res i stance Q (s) and shaft resistance Q (s) versus settlement p s

~ 3 Usu Qpu Qu Q(s) [ MN]

Sus= 20

1J

60

80

100

120

degs (s ) 140

5 P=Ol Op

1EO

C -ltII E 180 ~ ] 200

s [mm]

Approximative dependence of total load point resistance and shaft resistance versus settlement fny non-cohesive soil

Fig 1 4 31

101

113 3 ~fic0P Ye hY

1 Ground water

D

I y

yh C

Fig 1 5 1 Determination of 01 and 03 for settlement analysis of lar ge diameter bored piles

102

I

E=Et [MPa]

160 0

140

120 0

100

80

6

40

--- --shy 0

0

8 0

0

0

20

2 3 4

I 0 15

Fig 1 5 2

E = Et [MPa]

120

100

80

60

40

I I 0 35 065 085

0

Et= 17 81 qcp0844

( r = 0 128)

5

100

6 qcplMPo]

Calculated values of Young s modulus for piles No 1shy24 according to equation 1 5 2 and 1 56

0

0 0

E =898qcp127 (r= 0314)

E = 9 middot qcp 13 0

20 shy 0

0 0

0 1 2

loJ

I 0 35

3 I

065

4

I 085

5

100

6 qcp [MPo]

Fig 1 5 3 Calculated valueBof Young s modulus for piles No 1shy24 according to equation 1 5 4 and 1 5 6

I K 10 3

( 1 ] 1832

1400 0

1200 0

0

1000 0

800 0

m=2821 qcp0621

600 0

(r=0057)

400 0 0 0 0 0

200

2 3 4 5 6 qcp (MPa]

I 035

I 065

I 085 100 Io

Fig 15 4 Calculated valuesof the dimensionless compress ion modulus K for piles No 1- 24 according to equation 1 5 2 and 1 56

K ( 1 ]

0

1400

1200 0 0

1000

800

600

0

0 0

0

0 0

0 K= 1422 qcpl05

(r=0181)

0 K= 150 qcp

400 0

3)0 0 0

2 3 4 5 6 qcp(MPa)

I I -J 035 065 085 100 Io

Fig 1 5 5 Calculated values of the dimensionless compression modulus K for pile~ No 1-24 according to equation 1 5 2 and 1 5 6

104

120

100

2 3 4 5

I I I rv 0 15 035 065 085 100 lo

Bergdahl (1982) for shallow foundation

o----o Bozant Masopust (1981) D= 1 0 rn h=10 rn large diameter bored piles in noncohesive so il

0----0 Proposal according to current anal ysis

Klosinski (1977) D=090 to 125 rn large diameter bored piles in sand and sandy grave l

Mitchell Gardner (1976) very dense sand E=(35)q (it depends on sand density and stress history) c

Fig 1 5 6 Composision of Young s moduius

105

TABLES

0 Tab 1 11 Methods for detemination of the bearing capacity of bored piles (Ro llberg 1977)

Cl

Nol -- I Soil Areas of Q) Q) Editor Determination of Coefficients 5 type influenceqP qs p ~ C C 11 12 fP I fs

1 all Lab f Soil Mech (1936) l qp at the elevashy 1 0

2 all Huizinga (1951) ~ t~on of the pile 14 point

3 all Van der Veen (1953) ) 18 1 h+l14 all Van der Veen 1 0 Dpl375 D~ 15-- J qcmiddotdhBoersma (1957)

~ 11 +12 h - 12

5 12 all Menzenbach ( 1961) qc at the elevashy~ tion of pile point

6 18 all Mohan Jain Kuman (1963)1 average of qc over 1 h Q) h ~qcmiddotdhl 10 Dpj 3 75 Dj 15 50_micro

and 1 2C 11

7 I amp all de Beer ( 1964) graphically from 10 Q) qc 0 1 h+l18 u C

sand Soviet norm SNIP II 9ct9cp I4 bull O Dp I10 DP l66-1 083shyu clay B5- 67 Trofimenkov (1969) 2 50 1 251 +l J qc middotdh micro middot h middot-l l 2h-~ _micro

9 _micro u all Paproth (1972) at the elevation 3 5 I shy

) of pile point (Dpgt0 5 m 7 D8DpE

E-lt p 1 h+l1 1 h Dplt 5 m u l+l J qcmiddotdh h f qcmiddotd~ 30 Dpl 50 Dp 2 0 100shy10 sand Norwegian method

0l 2 h-12 200Senneseth (1974)

11 lall Soviet method h+l (20-0lqgl - 101 1 q middotdhTrofimenkov (1974) -- f C UpUsmiddotQct

l1+l2 h - 1212 Qct-Qcp 40 D~ 10 Dp 1 33- 0 67shyUsbullh 4 00 2 50

13 English method 10 DFJ 375Dp 10 I

Rodin Corbett Shershywood Thorburn (1974)

3 7 5 Dcl 8 0 DP 10h+l1 _1_ J qcmiddotdh 1 h

qcmiddotdh 20011 +12 h - 12 hb

1 h qcmiddotdh 150hf

0

Observations

fp I f (qp)fs C

Dp E = 1 cm Qbu = 2 Qpa (approx )

s fs=f (qc)

q=~g Us 0 h

fp=f(q~)

fs=f(qgl

bull fine grained non- cohesive soil loosely packed

bull fine grained non- cohesive soil medium dense comp

fine grained non- cohesive soil

Tab 111 (cont)

h+h bE 14 non-cohe- Meyerhof ( 1956 poundti J N 3o middot dh CtME fN3 o dh 1 0 DP 4 0 DP 10 100 etM= l 2

sive soil 1976) lJ +12 h - li hE o hgp taken into consi der ~ Ul (I)

E-lt

C 0

~E = 1 kgbull 30 cm

(statistical limit depth of the pile) hE - clamping length of

pile micro rrJ l-l micro (I)

15 C (I) p

sand Norwegian method

- irm - - - 10 IT

m = diagram O l-l Senneset (1 974) rrJO C

16 rrJ micro gravel English meth it 3 middot N30 - - - 10 - Jf 3 + diagram U) ~

E-lt p U)

iiouiu Coruett Sherwood Thorshyburn (1974 )

(NJQat the elevashytion of pile point1

0 -i

108

Tab 11 2

Results of calculati o n of p i le point load pile shaft load and total pile load from static con e penetration test (Rol l berg 1977)

~ gt

~ gt Ultima te Ultimate Ult imate

No Method micro micro poi nt skin bearing 080lt17nlt1 50 Q) -l

-l middot-i resistanceuro resistance r esistancE

middot-i p 0

(J n1 n n2 n n3 n n1 n2 n3

1

2

Lab fSoil Mech

Hu izinga (1951)

(1936 ) 430

307 i 3 Van der Veen (1953) 239

49

4

5

Van der VeenBoersma

Menzenbach (1961)

(1957) -l middot-i 0

2 4 7

1 57 1-CJ)

6

7

8

Mohan Jain Kumen

de Beer (1964)

Sovi et Norm (1969)

(1963) CJ) Q)

-l middot-i 0

lJ Q)

Q)

gt- CJ) Q)

c 0

2 44

1 37

183

47

t I

49

487

0 18

47

16

3 02

0 85 1

47

16

137

08

9

10

Paproth ( 1972)

Norw Method (1974)

~ 0

0

u I

C 0 C

1 8 1

180 l 46

1- - -_L~ 46 167 46 1 19

1 1 Soviet Method ( 1974) [1 1 41 46 1 62 13 083 13 1 14 0 8

12 Engl Method (1974) 2 66 35 128 35 2 30 35 1 28

Note

cal Q a) n = --- mean value of the rat i o between calculat ed pile loads and those n Q determined f r om loading test

b) n = number of piles

109

Tab 113

Point resistance of large diameter piles (DIN 4014 Part 2 1977)

Settlement Point pressure 1 Factor -fshy

(cm) (MPa) cf=lOMPa I i=15 MPa C C

Piles without enlarged base

1 05 005 003 2 08 008 005 3 11 0 11 007

15 34 034 023

Piles with enlarged base

1 035 0 04 002 2 065 0 07 004 3 0 90 009 006

15 2 40 0 24 0 16

Note 10 lt qp lt 15 (MPa)C

Tab 114

Skin friction resistance of large diameter piles (DIN 4014 1977)

Strength Static cone pen- Depth below Skin frict ion Factor of sand etration resist surface

(MPa) (m) (MPa) fs

Very small lt 5 - 0

Small 5 to 10 0 to 2 0 2 to 5 003 ln6 to 333

gt 5 005 100 to 200

Medium I I 10 to 15 0 to 2 0 I

I 2 to 7 5

gt 75 I 0045 0075

222 to 133 to

333 200

High I I

i

l

gt 15 0 2

to 2 to 10 gt 10

I I I

I

i

0 006 0 10

gt gt

250 150

Note Skin friction is assumpted as linear until s =2 cm and constant for s gt 2 cm

11 0

Tab 115

Values of the inverse of the point resistance factor (Bustamante 1982) fp

Soil type qPC I 1

Factor - shyfp(MPa)

for piles group

a) Silt and loose sand lt 5 0 40 -b) Moderately compact

5 - 12 040sand and gravel

c) Compact to very gt 12 i 030compact sand and gravel I

Tab 116

Values of the shaft resistance factor fs (Bustamante 1982)

Factor fs

Soil type qs

C Category I(MPa) I A I B I II A III BI

I a) Silt and loose lt 5 60

i 150 I 60 I 120-

sand

b) Moderately corn- I pact sand and 5 - 12 100 200 100 200 gravel i

Icl Compact to very

compact sand gt 12 150 i I 300 150 I 200I

I I and gravel i

I

111

Tab 117

Point resistance factor (proposal)

-

1-fp

qc (MPa)

Gravel

Coarse sand Medium sand

Fine sand Silty sand

25

080

0 70

060

5 0

0 65

055

047

75

054

045

039

10 0

045

036

031

150

035

027

022

200

030

0 23

018

Tab 118

Shaf t r e sistance factor (proposal)

fs

qc (MPa)

Gravel

Coarse sand Medium sand

Fine sand Silty sand

25

80

100

130

10 0

120

150

190

I 200

180

230

300

11 2

Tab 119

Calculated values qcp

for large diameter piles

Pile Literature Length Diameter (m) Measured p Cr1 lcul Settlement Note Authcr(year) No (ml D Dp (MPa)

(s=0 10Dp) (MPa)p ~~JL__

s s ()(mm) Dp

1 Franke (1977) 1 13 11 36 38 117 106 Garbrecht

2

3

2

3

13

14

11

15

1 58 36

37

38

40

215

185

136

123

) qg accord to Franke

4 4 13 15 204 3 2 33 220 108 and Garshy

5 5 6 11 33 35 127 11 5 brecht (1977)

6 6 6 11 153 36 35 146 9 5

7 7 6 1 5 34 35 158 105

8 -shy 8 6 15 2 1 41 3 0 109 52

9 10 9 11 39 52 47

10 11 95 11 43 35 77 70

11 12 9 11 49 66 60

12 13 10 11 15 5 1 4 0 77 5 1

13 14 9 11 1 5 4 8 46 115 77--shy14 Pranke ( 1973) 15 115 18 4 9

) ) average 88

15 13$ 13 5 1 3 19 -2 5 3 2 sd=3 0

16 - - 165 16 5 13 19 30 sv=0 34

17

18

Spang (1972)

llXJ

V90

6 6

6 75

0 7

09

3 2

4 2

32X

42X

x) s =0 10 D p

19 VlaJ 720 1 2 39 3 9X

20 - - VlsJ 6 5 1 5 3 0 3 ox

21 Touma and US59 9 9 o 76 8 0 Reese ( 1977)

22 HH 75 0 61 8 0

23 Gl 180 091 - 2 5

24 BB 137 o 76

sd = standard deviation

sv = standard variation

Tab 1 2 1

Ultimate point resistance coarse and medium sand psf (MPal (Pol ish Specification 1975)

Depth h

Medium sand r = 0 40 N = 200 30 Base diam (Op) and depthbase diam (hDp)

Dense sand r 0 Base diam (Op)

= 0 80 = 50N30 and dpethbase diam (hDp)

(ml Dp = 0 6 m Dp = 1 0 m Dp =12 m Dp = 1 5 m Dp = 0 6 m DP = 10 m DP = 12 m DP = 15 m

Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp

5 10 83 0 85 5 0 075 42 07 33 20 8 3 16 50 14 42 13 3 3

7 14 11 7 1 2 70 11 5 8 10 4 7 2 8 11 7 22 70 2 0 5 8 1 8 47

10 18 16 7 15 10 0 14 8 3 1 3 67 35 167 28 100 2 5 83 2 2 67

15 18 250 18 15 0 16 12 5 15 100 4 2 25 0 3 4 15 0 30 125 27 100

20 2 4 333 2 0 200 185 167 1 7 133 4 7 333 3 8 200 33 167 30 13 3

25 26 41 7 2 2 25 0 20 208 19 167 5 0 41 7 4 0 250 3 5 20 8 3 2 167

w

11 4

Tab 131

Partial safety factors for resistance to axial load for bored piles (Wright Reese 1979)

Partial safety Normal Poor factor for control control

Unit skin resistance 1 70 185

(no load test)

Unit skin resistance 160 1 70

(from load test)

End bearing 165 180

Tab 1 3 2

Probability of failure of bored piles under normal design conditions (Wright Reese 1979)

Probability of Factor of Structure failure safety classification

5 10-3 25 monumental

210shy 22 permanent- 2

5 middot 10 2 0 110shy 1 85

temporary 5 bull 10-l 165

11 5

Tab 133 Results of field tests (Tejchman Gwizdara 1979)

L

II C C C 0 0 0

micro micro

micro micro micro For universal safe~y F2u u CUNo micro C C ~ ~g~ middot- C

~ Permisible micro micro i ~c -i micro

cmiddot-~ micro~ L

micro oo ~ load ~t~ ~~ omicro micro ~ ~ 3Z~ ~ ~ micro

-~~

~ e ~ --middot--

middot- ~ obull 0

~ g ~~ ~~ ~

~ L

o Jl i5 sect~ =gt L Q~ = yen t p Qp Qp

D h Q~ Srrx s tm p s E~ iQ~lQ~cm ~~ KN X ll1l kPa kPa kN kN kN Jl ~e ~ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 70 6 60 4081 1550 2531 38 0 1182 10 4040 175 2041 245 1796 632 141 120

2 90 6 75 5082 3041 2041 598 1785 10 4782 107 2541 1079 1462 282 140 42 5

3 120 720 7259 4041 3218 557 1035 10 3576 119 3630 2158 1472 187 2 19 594

4 150 650 8643 4454 4189 51 5 928 20 2521 136 4326 2158 2168 3 10 166 253

5 130190 195 7750 3011 4709 392 805 10 1075 - 3875 981 2894 3 10 166 253

6 130190 165 9516 5101 4415 536 522 20 1800 - 4758 1962 2796 260 158 412

7 130190 135 8044 5199 2845 646 114 4 15 1834 - 4022 2109 1913 2 47 149 524

8 180 115 11380 4415 6965 388 792 15 1735 - 5690 2747 2943 161 2 37 483

9 76 980 6867 4316 2551 628 110 13 9529 109 3534 1128 2306 383 111 32 8

10 61 7 60 7161 2747 44 14 383 67 15 9404 303 3581 392 3188 700 169 109

11 92 180 4807 883 3924 184 20 8 1329 76 2404 196 2207 450 178 82

12 76 24 5 6769 736 6033 109 20 8 1623 103 3385 147 3238 500 186 43

13 76 137 5396 2060 3336 38 2 63 8 4535 102 2698 589 1109 350 t 58 218

14 120 23 5297 1854 3443 35 0 960 10 1640 39 2649 196 2453 945 130 7 4

15 135 16 7 13489 7554 5935 560 181 10 5260 83 6749 2060 4689 367 127 305

16 170 46 0 8829 2943 5886 333 17 10 3466 39 4415 1373 3042 2 14 1 94 31 1

Average Fi 387 166 Standard deviation Sd 2 1 5 034 Standard variation sv= 0 56 0 20

1234 Spang1972 567 8 Franke 1976 9 10 111 2 1 3 Touma Reese 1974

14 Colombo 1971 15 Kerisel Simons 1962 16 Appendino 1973

11 6

Tab 134

Results of model

SafetyScheme factor

medium F ssand

F p

loose F s

samd Fp

F 3 55 sd _P F 1 32 sd

s

tests (Tejchman Gwizdara 1979)

Diameter D (mm)

30 60 90 133

145 129 108 112

280 3 08 307 294

140 154 153 112

594 3 04 324 426

107 sv 030

0 19 sv 0 14

117

Tab 135

Individual safety factors according to literature

Literature proposal ofLiterature individual safety factor

Fs Fb

Polish Specification (1974) 100 250

Tejchman Gwizdala (1979) 150 400

Bustamante Gianeselli 200 300 (1982)

Decourt ( 1982) 130 400

average 145 3 38

TAB 141 0)

Load settlement curves - measured

Pile No

Settlement 1 c 3 4 5 6 7 8 9 10 11 12

s p s p p s

p p s P

p s P

p s p p s

P p s

P p s

p p s p p S

p I i p s

p p s p

mm MPa rrrn lifl5a MPa mm

lifl5a MPa

mm lifl5a MPa mm

RPa mmMPa nwa MPa mm

RPa MPa mm RPa MPa mm

RPa MPa mm RPa MPa mm

RPa MPa mm RPa MPa mm

RPa 10 045 222 09 1 1 05 20 07 143 06 167 08 125 0 5 20 08 125 10 100 08 12 5 15 67 16 63 20 092 21 7 14 43 08 25 10 20 0 1 1 182 12 167 0 9 22 2 12 167 18 111 14 143 24 83 22 9 1 30 125 240 1 7 I 7 6 1 1 273 1 2 250 14 214 15 200 1 2 250 15 200 25 12 0 19 15 8 30 100 26 11 5 40 1ti 250 20 10 0 14 28 6 14 286 1 7 235 18 222 1 4 286 18 22 2 3 2 12 5 23 174 36 111 3 0 133 50 20 250 22 ~27 1 7 294 1 5 333 20 250 2 1 ~38 1 7 294 1 9 263 37 135 27 18 5 4 2 11 9 33 152 60 2 2 273 24 ~5o 20 300 1 7 353 23 61 22 ~73 18 333 21 286 43 140 30 20 0 46 13 0 36 16 7 80 271 295 27 796 24 333 20 400 27 ~96 25 1320 22 364 25 32 0 53 15 1 36 222 41 195

100 322 31 1 30 333 28 357 22 454 31 1323 29 345 26 385 28 357 60 16 7 40 25 0 45 22 2 125 38 329 32 391 32 391 25 500 32 139 1 30 41 7 32 39 1 4 6 272 48 ~6 0 150 14 2 357 34 1441 36 41 7 27 555 36 ~1 7 34 44 1 36 41 7 175 36 486 39 449 30 583 38 ~61 38 461 200 38 526 42 476 32 625 225 39 577 33 682

(mmMPa) ( 1 MPa)

1

1=2074

t 1=O ~01 =0 98S

a1=1132

b1 =0 212 V =0994

a1=2217

b1=O 131

V =Q 978

a1=1860 b1=0233

V =Q966

a1=1562

b1=0174 V =Q983

a1=1382

b1=O195

V =0975

a1 =20 37

b1 =C 174

V =0957

a1=1443

b1=(l 193 v =O 961

a1=965

b1= 0071 V =0 990

a1=1 91

b1 =o 128

V =0 993

a1=5 83

b1=C124

v =O 981

a1=6 1 4

b1=01 64 v =U 985

li(MPa) ~9 4 7 76 43 57 middot5 1 57 5 2 141 78 81 61 cp (MPa) B8 39 40 33 35 35 35 3 0 39 3 5 49 40 __Ef ~-6 1 2 1 9 1 3 16 15 16 1 7 36 22 16 15 qcp

TAB 141 (continue) Load settlement curves - measured

Pi le No 3ettlement 13 14 15 1 17 18 19 20 21 22 23 24

s p s T5

p s T5

p s T5

p s P

p s P

p s P

p s P

p s P

p s T5

p s T5

p s p p s

p mm MPa lll1l

HPa MPa mm HPa MPa mm

fWa MPa mm fWa MPa lll1l

HPa MPa mm HPa MPa mm

MPa MPa lll1l NT5a MPa HPa MPa 111111

HPa MPa 111111

HPa MPa 1)1111

mra 10 1 7 59 075 133 06 167 075 133 ~95 105 09 11 1 07 143 3 76 1 7 59 08 133 10 100 20 2 4 83 130 154 095 21 1 1 15 17 4 1 75 114 16 125 12 167 ~7 74 33 6 2 1 3 15 3 1 9 103 30 29 103 1 7 176 1 2 250 15 200 r55 118 22 136 16 18 8 38 79 46 66 1 7 182 27 110 40 33 12 1 20 200 1 35 29 6 1 75 229 ~O 133 26 154 175 229 49 82 58 6 9 1 9 21 1 35 115 50 36 139 235 21 3 145 34 5 1 95 256 24 208 ~-4 147 28 17 9 20 250 gt8 86 6 9 72 2 2 233 4 2 11 8 60 39 154 265 22 6 1 55 387 2 15 279 28 214 ~6 16 7 30 120 0 2 2 27 3 o 8 89 80 7 5 2 3 262 80 43 186 31 258 1 7 47 1 36 222 14 05 198 33 124 2 25 320 B 1 98 25 327

100 45 222 18 556 39~ 253 ~-5 222 36 1278 27 370 ~8 113 125 47 26 6 20 625 42 29 8 149 255 28 1446 t50 22 682 3 0 500 175 200 225

(mmMPa) a1=479 a1=1206 a1=14 51 a1=1113 a1=1406 ~=836 a1=843 a1=1176 ~=64 a =561 a1=10 0 a1=9 5 (1MPa) b1=0175 b1=0 178 b1=0 382 b=0287 b1=O 119 p 1=0 137 h1 =o 193 b=0258 p1=0 049 b1=0032 b1=0 276 b1 =0 048

hf (MPa)

v =0998 57

v =0-987 5 6

v =0989 26

v =0992 35

v =0933 Iv =0991 84 73

v =0993 5 2

v =0998 tJ

3 9 =0944 v =0998 v =0996 v =0981

qcp (MPa) 46 39 32 30 32 14 2 39 30

lL 12 1 1 08 12 26 1 7 1 3 13 qcp

lD

N 0

TAB 142

Calculated point resistance curves

Setlement (mm) p(s)

1

n p(s)

Calculated value of the p(s) for pile No

2 3 4 5

n p(s) n p(s) n p(s) n p(s) 6

(MPa)

n p(s)

7

n p(s) 8

n p(s) 9

n p(s)

10 20 30 50 80

100

150 200 225

070 128 177 253 335

375 446 493

157 140 141

127

123

1 16 106

070 1 25 168 232

297

327 378 410

422

078 089 099 1 06

1 10

109 1 11 108

108

073 1 30 176 246

315 349

405 441

146 163

160 145

1 32 125

113 105

056 096

1 26

167 205 222

249 265

271

0 80 096

105

1 11 100 101

092 0 83

082

065

118 162 233

308 345

412 456

108 108

1 16 116 114 111

064

1 12 151 2 10 2 69

298

346 3 76

078 P63 093 tt 13 101 tt 53 100 I 13

108 ~75

103 ~04 096 ~ 55

~ 87

1 26 125 127 126

125

1 17 1 04

052 088

1 15 153

188 2 03 227 242

065 0 74

o 77 0 81 0 75

0 73

063

072 122

1 83 262 347 388

463 5 11

073

0 74

073 0 71 0 65 065

064 1 18

162 233 309

3 46

41 3 4 57

Dp (m) 1 1 Qcp (MPa) 38 (mmMPa) h2 8 1 1 9 Qcpbullv1(MPa) 72

158

39

124 14 55

15

40

n20 15 60

204

33 148 10 33

1 1

35

tt 4o 1 9 67

1 53 3 5

tt 4 0 1 5 51

15

13 5

114 0 15 i-gt 3

2 1

30

tt 6 0 10 3 0

1 1

3 9

12 4 1 9 74

1 1

3 5 h40

1 9 67

Note n = condition coefficient calculated p(s) measured p(s)

10

n

081

084 0 85 0 86 0 85

087

TAB 142 (continue)

Calculated point resistance curves

Calculated value of the p(s) for pile No (MPa) Setlement 11 12 13 14 15 16 17 18 19 20

(mm) p(s) ll p(s) n p(s) ll p(s) n p(s) n p(s) n p(s) n p(s) n p(s n p(s) n

10 106 070 0 71 045 091 054 099 1 32 055 092 053 070 060 081 085 0 72 080 055 078

20 1 90 079 130 059 160 067 1 70 1 30 096 101 091 079 1 12 148 085 1 31 082 098 082

30 258 086 1 76 068 2 15 074 222 1 31 1 26 105 120 080 156 205 081 180 082 132 083

50 363 086 246 075 297 082 296 1 26 1 70 117 161 082 228 095 295 087 256 0 91 184 092

80 471 316 o 77 3 77 088 364 1 18 2 1 o 1 24 199 308 085 393 097 336 1 02 237 095

100 522 349 078 415 092 394 228 1 27 2 16 348 088 442 098 375 104 262 097

150 611 405 479 443 258 117 244 423 529 443 304 101

200 669 441 518 473 276 261 474 587 488 331

Dp (MPa) 1 1 1 5 1 5 18 1 9 19 070 090 12 15

qcp (MPa) 49 4 0 46 49 32 30 32 42 39 30 12 a1 mmMPa) 84 h20 96 84 152 160 152 124 160

IV1 1 9 1 5 15 12 11 1 1 23 21 18 15

qcpmiddotv1 (MPa) 93 60 69 59 35 33 74 88 70 45

- 12287 average = ~ = 098

standard deviation sd = 023 standard variation sv = 023

N

122

TAB 143 Ultimate settlement for shaft resistance - summing up

Ultimate settlements (mm)Literature sand cohesive claysand

soil

Burland Butler Dunican (1966) 7

Touma Reese (1974) 10 Tomlinson (1977) 10 Klosinski (1977) 8

Francke Gerbrecht (1977) 20-30 DIN 4014 part 2 (1977) 20 10 Francke (1981) Reese (1978) (1979) 05-2 of 05-2 of Farr Aurora (1981) shaft dia~ shaft diam

5-20 mm 5-20 mm Tejchman Gwizdala (1979) - Spang (1972) 10

10 10 20

- Francke (1976) 10 20 15 15

- Touma Reese (1974) 13 8 15 8

8 - Colombo (1971) 10

- Kerisel Simons (1962) 20 - Appendino (1973) 10 Promboon Brenner (1981) 10 Prodinger Veder (1981) 12 Decourt (1982) 10-15 10-15

-average s = 14 1 10 126

standard deviation sd = 53 2 1 47

standard variation sv = 038 021 037

123

TABLE 14 4 Al l owab l e base resistance versus sett lement

Pile Li terature ength Diameter (m) Calculated qcp=qcp Settl ement Fp-3- sa (mm)No Aut hor No (m) D DP qcp (MPa) for qcp3(MPa)

1 Francke ( 1977) 1 13 11 38 127 25 Garbrecht

II2 2 13 11 158 39 130 19

II3 3 14 15 40 133 33

II4 4 13 15 204 33 110 23

II5 5 6 11 35 117 22

II6 6 6 11 153 35 117 19

II

8

7 7 6 15 35 1 17 25

II 8 6 15 21 30 100 21

II9 10 9 11 39 130 13

II10 11 95 11 35 117 15

II11 12 9 11 39 163 11

II12 13 10 11 15 40 133 7

II13 14 9 11 15 46 153 9

14 Francke ( 1973) 115 11 5 18 30 100 15

II15 135 135 13 19 32 107 29

II16 165 165 13 19 49 163 35

17 Spang (1972) V70 660 070 32 107 28

18 II V90 675 0 90 42 140 16

II19 V120 720 1 20 3 9 130 16

II20 V15C 650 150 30 100 16 average for pi les 198

standard dev sd = 78

standard var sv = 039

)assumed qc = p for s = 010 Op sonding meRsurement were not availab le

IV

TA~LE 15 1

Comparison of the initial sl ope of the pile point resistance - settlement curve

Accardi ng to 1 2 3 4

In i t i ~l 5

slope a1 for the pile No

6 7 8 9

(mmMPa)

10 11 12 13 14 15 Note

a 1 for s=10 mm 222 11 1 a1 for s=20 mm 21 7 14 3 calculated 207 113see Tab 14 1 Bo Berggren (198 )230s=20 mm

Schmertmann s method (see 202B Berggren 1981)s=20 mm

No 1 _ llNo - 6 1 97 098

202 250

22 2

400

30 8

090

14 3

200

186

076

167

182 156

286

18 2

107

125

167 138

091

20 0

222

204

426

263

098

125

167

144

087

100

11 1 9 7

182

23 5

1 03

12 5

14 3

11 9

174

164

105

67 83

58

14 6

125

1 16

63

9 1

61

103

59

8 3 48

123

13 3

15 4 12 1

1 10

167 21 1

aceto hypershy14 5 bola type curve

1 15

No 2 NQj = n1

No 4Noz ~ na No 5Naz= T]g

105 1 27

106

093

1 13

160

1 23

108 1 17

157

100

121 109

1 92

118

1 16 1 14

164

2 12

120

122

1 15

143

1 76

151

149 1 73 1 27 146

TAllLE 151 (continue)

Compa ri son of the initial slope of the pile point resistance - settl ement curve

Initial slope a1 for the pile No (mmMPa)According Note to 16 17 18 19 20 21 22 23 24 -a1 for s=10 mm 133 - 105 11 1 143 76 59 133 100 a1 for s=20 mm 174 - 114 125 167 74 62 153 10 3 calculated see 11 1 146 84 84 118 64 56 100 95Tab 141

Bo Berggren 198 67 78 25 0 114s=20 mm Schmertmann s method (see B 136 67 250 146 Berggren 1981) s = 20 mm

nG = 108 No 1NoJ = n 1 20 125 1 32 121 1 19 105 1 33 105 sd = 0 14

SY= 013 No 2 i) = 1 29ro1 = n1 157 136 149 142 1 16 1 11 1 53 108 sd = 019

SY= 015 No 4 iis = 143 INo2 = ns 091 126 1 63 111 sd = 033

SY= 0 23 No 5 ii9 = 1 37183 108 163 142INoz = n9 sd = 0 37

SY = 027

N Vl

126

TABLE 152

Measured and calculated pile point resistance

Pile Calculated Measured Measured No qcp P for

s=10 mm P for s=20 mm

~ 10 mm ~ 20 mm

- (MPa) (MPa) (MPa) - -

1 38 045 092 84 41 2 39 09 14 43 28

3 40 05 08 80 50 4 33 07 10 47 33 5 35 06 11 58 30 6 35 08 12 44 29 7 35 05 09 70 39 8 30 08 12 38 25 9 39 10 18 39 22

10 35 08 14 44 25 11 49 15 24 33 20 12 40 16 22 25 18 13 46 1 7 2 4 27 19 14 30 075 13 40 23 15 32 06 095 53 34 16 49 075 115 65 43 17 32 - - - -18 42 095 1 75 44 24 19 39 09 160 4 3 23 20 3 0 07 12 43 25

average= 484 291

sd 163 088 sv 034 030

Tab 153 Results of calculation for piles No 1-24

Pile No

Length (m)

Overburden pressure 0 vs

0hs (kPa)

0ve (kPa)

0 nc (kPa)

- -ov=o1 (kPa)

- -OV=03 ( kPa)

00 (kPa)

p(a il ( kPa)

s (a 1) (mm)

A2 ( 1 )

E t

(kPa)

Md ( 1 )

K (1)

E I

t (kPa)

( kPa) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

l 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

13 12 14 13 6 6 6 6 9 95 9

10 95

11 5 135 165 66 675 72 65 99 75

180 137

l 33 133 123 116

70 70 70 70

104 102 95

102 95 94

106 139 95

101 106 97

180 137 221 215

53 53 49 46 28 28 28 28 42 41 38 41 38 38 42 56 38 40 42 39 72 55 88 86

202 202 216 202 1114 104 104 104 146 153 146 160 153 181 209 251 120 128 134 123 238 180 305 277

202 202 216 202 104 104 104 104 146 153 146 160 153 181 209 251 120 128 134 123 238 180 305 277

168 Hi8 170 159 87 87 87 87

125 128 121 131 124 138 158 195 108 115 120 110 209 159 263 246

128 128 133 124 66 66 66 66 94 97 92

101 96

110 126 154 79 84 88 81

155 118 197 182

141 141 145 136

73 73 73 73

104 107 104 111 105 119 137 117 89 94 99 91

173 132 219 203

950 975

1000 825 875 875 875 750 975 875

1225 1000 1150 750 800

1225 800

1050 975 750

2000 2000 625

1500

218 139 255 190 16 1 146 210 12 7 10 1 11 7 84 73 69

104 167 210 124 103 10 1 109 142 120 76

153

0802 0802 0822 0820 0798 0798 0798 0798 0791 0798 0800 0811 0814 0837 0837 0830 0769 0 768 0771 0 775 0 780 0 781 0 788 o 779

35296 81603 43312 65222 44019 67515 4609 91313 78186 60572

118115 15129 5 184075 95577 67017 81607 33252 67554 85294 75994 78816 74857 55101 54862

075 075 0 77 075 084 084 084 081 079 078 084 080 083 076 076 078 0 77 081 079 076 082 087 064 0 74

278 643 337 512 542 832 567

1085 766 572

1216 1417 1832

796 520 709 353 735 878 781 630 726 302 366

26472 61202 33350 48917 36976 56713 38656 73964 61767 47246 99217

121036 152782

72639 51932 63653 25604 54719 67382 57755 64629 65126 35265 40598

a=282l a =l781 y=axs S=0621 B=0 844

V=0 057 V=0 128 _ Iv -J

~

N co

Tab l53 Results of calculation for piles No 7-24

Pile No

17

1 2 3 4 5 6 7 8 9

70 11 72 13 74 75 16 17 78 79 20 27 22 23 24

Ground water

18

-20 m b s

-28 m -335 m -330 m -3 15 m dry dry -53 m -85 m

E t (kPa)

19

33653 64979 35364 45664 47969 54583 37574 63072 74548 57753

71 2618 123531 150297

71239 48619 59204 39744 77208 77863 62049 90407 95844 57762 62937

vxEt=E Md (kPa)

20

25240 48689 27230 34248 35254 45849 31562 51040 58893 45047 94599 98825

724747 54142 36950 46179 30603 57678 61572 47157 47734 83384 36968 46569

a=898 S=l 27 =0314

K (l )

21

265 511 275 358 517 672 463 749 730 546

1160 1157 7496

593 377 514 422 775 802 638 723 929 377 420

a=l422 S=l 05 =0187

E=E = t1 3

g-gcp (kPa)

22

51046 52799 54566 42492 45870 45870 45870 37547 52799 45870 77039 54566 65438 52799 40826 71039 40926 58739 52799 37541 82549 82549 40826 59945

Calculated s

(mm)

23

708 128 72 7 15 3 724 146 144 17 3 71 3 11 5 11 2 732 13 2 707 1 5 1 13 7 93

102 118 137 728 12 l 69

11 9

s__caL n=smeos

() 24

050 092 050 087 0 77 7 00 069 l36 l 12 098 133 l81 l97 103 090 065 0 75 099 117 126 090 101 097 078

ri=l00 sd=035 sv=035

K = l50gcp

25

570 585 600 495 525 525 525 450 585 525 735 600 690 450 480 735 480 630 585 450 825 825 1180 645

E l

(kPa)

26

67684 69465 72250 57726 44856 44856 44856 38448 59659 54306 74956 63214 70704 49089 56783 79502 45283 61081 58207 42927

708572 94785 71033 91898

E = t E middotA2

l

(kPa)

27

54283 5571 l 59389 47336 35795 35795 35795 30682 47790 43336 59964 51266 57553 47088 47024 65987 34823 46970 44877 33269 84639 74027 55974 71589

Calculated s

(mm)

28

l O l 12 l 11 7 737 15 9 18 7 185 21 1 12 6 12 2 133 14 l 150 13 7 13 l 14 7 709 12 7 738 755 12 4 735 50

100

- -

Tab l53 Results of calculation for piles No l-24

Pile

29

l 2 3 4 5 6 7 8 9

10 ll 12 13 14 15 76 17 78 19 20 21 22 23 24

sea l n= middotshy

smeas

28 TT

30

0 46 087 046 0 72 099 l 28 088 l 66 l 25 l 04 l 58 l 93 2 17 l 32 078 0 70 088 l 23 l 37 l42 087 l l 3 066 065

n=l 10 sd=0 44 sv=040

s seal for p n=s=lOrnn ac cording to s = 70mm

(mm)

37 32

5 l 0 51 ll 8 l18 64 064

13 0 l30 85 0 85

13 3 l 33 83 0 83

184 l84 ll6 l l 6 105 l05 137 l 37 21 3 2 12 19 4 l94 107 l06 l l 3 l l 3 84 084

92 092 l 0 9 l09 128 l28 83 083

l 0 3 l03 88 088 79 0 79

n=1 73 sd=025 sv=027

s for p according to s = 20mm

(mm)

33

10 4 184 102 18 6 15 6 200 14 9 276 209 18 4 219 292 274 185 17 9 12 9 -

169 194 219 172 200 143 15 0

seal n=s=20rnn

34

052 092 051 093 078 l00 075 l 38 l 05 092 l l 0 l46 l 37 093 090 065

-085 097 l1 0 086 l00 072 075

n=093 sd=025 sv=0 27

s for p according to s = 30rnn

(mm)

35

142 223 14 l 22 3 198 249 142 34 5 290 249 274 345 33 l 243 22 6 168 -

24 7 26 6 293 24 3 279 187 213

seal n=s=30rnn

36

047 0 74 047 0 74 066 083 047 l 15 0 97 083 091 l 15 l10 0 81 075 056 -

082 089 098 081 093 062 0 71

n=o80 sd=020 _ sv=0 25 N

IO

APPENDIXES

APPENDIX 1 1 1

Pi le No 1 Length 13 m D 10 m

Areas of influence

-

qe

(MPa)

1 fp

___9c_ f

(MPR) zyen

(MPf) qcp (MPa)

Soil type

22 20 18 16 14 1 2

l 2 (m)

10

1 0 08 06

16 15 16

026 027 026

42 41 42 Sand

04 14 U28 39 02 14 028 39 41

02 16 0 26 42 04 16 026 42 06 16 026 42 08 14 028 39 Sand 1 0 13 030 39 12 15 027 4 1 38 14 13 030 39 16 12 032 38 18 12 032 38

40 20 10 036 36 22 10 036 36 24 9 U39 35 2 6 8 043 34 28 10 036 36 30 10 036 36 3 2 10 036 36 34 10 0 36 36 36 11 0 34 37 38 11 034 37

l 1 (m)

40

42 44

11 0 34 37 15 1

46 48 50 52 54 56 58 60 62 64 66 68 70 7 2 74 76 78 8 0

APPENDIX 112

Pile No 2

to little depth of sounding

q~ = middle values for 11 = 2 Op

q~ = 145 MAa (Francke Garbrecht 1977 Tab 2 p 50) (Fi g No 2)

for sand

qcp = 0275middot145 = 40 MPa q~p =V ~~s) middot 40 = 097middot40 = 39 MPa

Pile No 4

q~ = 120 MPa sand (Fig No 4)

q = 0 315middot12 = 3 8 MPa q bull 38 = 086middot38 = 33 MPa=V Jmiddot54

1

cp middot bull cp

Pile No 12

qg = 155 MPa sand (Fig No 13)

qcp = 026middot155 = 4 03 MPa

Pile No 13

q~ = 200 MPa sand (Fig No 14)

q = 0 23middot20 = 46 MPacp

APPENDIX 113

PileNo3 Length 14 m D 15 m

Areas of influence

-

qe

(MPa)

1 Tp

----9cf

(t-1Pf) r~

(MPf) qcp (MPa)

Soil type

22 2D 18 16 17 025 43 14 17 II II

L 2 17 II II

12 (m)

16 10 08 06

17 17 17

o

II

II

II

II

Sand 04 17 II II

02 19 024 46 b9

02 19 024 46 04 17 025 43 06 15 027 41 08 13 030 48 1 0 12 032 38 12 11 033 36 14 13 0 30 39 16 14 028 39 18 12 032 38 40 20 16 026 42 2 2 16 026 42 24 11 033 36 26 11 033 36

60 28 30

10 10

036 036

36 36

Sand

32 10 036 36 34 12 032 3 8 3 6 12 032 38 38 12 032 38

1 1 (m)

40

4 2 4 4

13

14 16

030

028 026

39

39 42

46 13 030 39 48 12 032 38 50 14 028 39 52 10 036 36 54 13 030 39 56 14 028 39 58 15 027 41 60 15 027 ~-1 236 62 64 66 68 70 72 74 76 7 8 80

APPENDIX 114

Pi l e No 5 Length 6 0m D 11 m Dp 11 m

Area s of i nfluence

-

qc

(MPa)

1 Tp

-3Lf

( MPf) l ~

(MP~) qcp (MPa)

Soil type

2 2 2 0 18 1 6 14 1 2 155 U i1 33

l 2 (m)

1 2 10 08 06

15 14 12

022 023 0 27

3 3 32 32

Fine sand

+ silt

04 125 026 33 02 16 0 21 34 39

02 16 021 34 04 13 025 33 06 08 10

15 5 17 20

022 0 20 018

34 34 36

35 Fi ne sand

1 2 20 0 18 36 14 20 018 36 + s ilt 16 20 0 18 36 18 165 020 32 20 165 0 20 32 22 17 0 20 34 24 26 2 8 30 32 3 36 38 4 0

19 21 5 21 5 21 5 20 19 5 19 5 20 215

01 9 ---

018 018 0 18 0 18 -

3 6 40 40 40 36 35 3 5 36 4 0

l 1 (m) 4 2

44 20 19

018 01 9

36 3 6 157

46 48 50 5 2 54 56 58 6 0 62 64 66 68 70 7 2 74 76 7 8 8 0

APPENDIX 1 15

Pi le No 6 Lengt h6 0 m D 11 m

Areas of qc 1 __9_c_ qcp Soil typei nfluence fp f 1 yen (MPa) (MPf ) (MPf) (MPa)

-2 2 20 18 16 t 4---0 14 75 038 29 L2 20 018 36 Fi ne sand

1ti 10 30 40 + s i lt12 08 19 0 19 36(m) 06 17 020 34 04 14 023 32 02 9 034 31 56

02 6 043 26 04 12 026 3 1 06 17 020 34 08 11 028 3 1 1 0 14 023 32 35 1 2 17 020 34 Fi ne sand14 19 019 35 16 20 018 36 + silt18 18 0 19 34 20 14 023 32

46 22 12 026 31 24 12 026 31 26 15 022 33 28 18 019 34 30 20 018 36 3 20 0 18 36 34 20 018 36 3G 20 018 36 38 20 018 36 4 0 20 018 36

l 1 42 22 40

(m) 44 22 40 46 L2 4 0 158 48 50 52 54 56 q =V ~ - 3 b =0 99middot35 = 35 MPp cp 53 58 6 0 62 64 66 68 70 72 74 76 78 80

APPENDIX 116

Pi leNo7 Length 60 m 0 15 m

Areas of influence

-

qe

(MPa)

1 Tp ~

(MPg) r~

(MPf) qcp (MPa)

Soil type

22 20 18 16 9 U33 30 14 10 031 31 12 135 024 32

l 2 (m)

16 10 08 06 04 02

13 12 6

10 175

025 026 043 0 31 020

33 31 26 3 1 35 50

Fine sand

+ silt

02 04 06

17 10 115

0 20 0 31 027

34 31 3 1

08 10

145 185

023 019

33 35 3 5

1 2 14

20 19

018 0 19

36 36 Fine sand

l 1 (m)

60

16 18 20 22 24 26 28 30 3 2 34 36 38 40

42 44 46 48 50 52 54 56 58 6 0

185 125 125 165 17 19 21 215 205 20 21 20 20

24 22 20 215 22 22 21 19 18 22

0 19 026 0 26 020 020 019 --

018 018 -

018 01 8 --

018 ----

0 19 0 19

35 33 33 33 34 36 40 40 37 36 40 36 36

40 40 36 40 40 40 40 36 34 40 219

+ silt

62 64 66 68 70 72 74 76 78 80

APPENDIX 117

Pile No 8 Length60 m D 15 m Dp 2 1 m

Areas of influence

-

qe

(MPa)

1 r +

(MPg) r~

(MPf) qcp (MPa)

Soil type

22 18 019 34 20 16 021 34 18 125 026 3 3 16 115 027 31 14 11 028 3 1 12 11 028 3 1

l 2 (m)

10 08 06

105 11 145

D29 028 023

30 31 33

Fine sand

+ silt

04 18 0 19 34 02 18 019 34 71

02 15 022 33 04 11 0 28 31 06 13 0 25 33 08 20 0 18 36 10 15 022 33 12 13 025 33 14 175 020 35 16 18 20 22

20 21 20 15

018 -

018 0 22

36 40 36 33

35 Fine sand

+ s i lt

24 26 28 30 3 =

13 16 175 19 20 20

025 021 020 0 18 018 018

33 34 3 5 34 36 36

36 38 4 0

20 20 21

018 0 18 -

36 36 40

11 (m)

4 2 4 4 4 6 48 50 5 2 5 4 56 5 8 60 6 2 6 4

20 20 21 22 21 20 19 175 19 20 25 28

018 0 18 ---

01 8 01 9 0 20 0 19 018

36 36 40 40 40 36 36 35 36 36 40 4 0 23 0

6 6 68 70 72 74 76 78

qcp 1f5=v 2T middot35 = b85 middot35 = 30 MPa

80

APPENDIX 118

Pi le No 9 Le ngth 90 m D 11 m m

Areas of 1Qe -9c qcp Soil typeinfluence Tp f ryen (MPa) (MPg) (MPf) (MPa)

-

2 2 2 0 18 16 14 lc 11 034 37

12 10 10 036 36 12 08 9 039 35 Medium(m) 06 10 036 36 sand04 10 036 36

02 11 034 37 43

02 12 032 38 04 12 0 32 38 06 12 0 32 38 08 13 030 39 10 13 030 39 12 13 030 39 14 14 028 39 16 14 028 39

44 18 14 028 39 20 14 028 39 39 Med ium 22 15 027 4 1 sand 24 16 026 4 2 26 17 025 43 28 13 0 30 39 3 0 9 039 35 32 13 030 39 34 16 026 42 36 17 025 43 38 17 025 43 40 19 024 4 6

11 42 17 025 43

(m) 44 15 027 41 17 7 46 48 50 52 54 56 58 60 6 2 64 66 68 7 0 7 2 74 76 78 80

APPENDIX 119

Pi 1 e No 10 Length 95m D 11 m m

Areas of influence

-

qe

(MPa)

1 fp

-9c f

(t-1Pf) [~

(MPf)

qcp

(MPa)

Soil type

22 20 1 8 16 14 L 2 13 Uti 3J

l 2 (m) 12

10 08 06 04

18 18 28 19

0 19 019 0 19 019

34 34 34 34

Fine

sand

02 21 40 42

02 20 4 0 04 17 020 34 06 21 40 0 8 10

23 22

40 40 Fine

1 2 14 16 18

21 20 16 15

0 21 022

4 0 4 0 34 33

sand

44

20 2 2 24 26 28 30 32 34 36 38 40

14 14 13 11 11 14 17 14 12 13 12

023 023 025 0 28 028 023 020 023 027 025 027

32 32 33 31 31 32 34 3 2 32 3 3 32

l 1 (m) 42

44 12 13

0 27 025

32 33 15 2

46 48 50 5 2 5 4 56 5 8 6 0 6 2 6 4 66 6 8 70 72 74 76 78 80

APPENDIX 11 10

Pi 1 e No 11 Lengt h 9 0m D 11 m m

Area s of influence

-

Qe

(MPa)

1 fp

__k_ f

(MP~) ryen

(MPf) qcp (MPa)

Soi l type

22 20 18 16 14 12 lb 55

12 (m)

1 0 08 06 04

23 19 20 21

024 023

55 46 46 55

Medium

sand

02 22 55 62

0 2 04

24 25

55 55

06 08

27 28

55 55

10 12 14

28 28 28

55 55 55 49

16 26 55

44

18 20 22 24 26 28 30 3 34 36 38 40

24 19 18 17 22 21 17 11 13 12 11 9

024 024 025

025 0 34 030 032 034 039

55 46 43 43 55 55 4 3 37 39 38 3 7 35

1 1 (m) 42

Ll Ll

12 16

032 0 26

38 4 2 209

46 48 50 5 2 54 56 58 60 62 64 66 68 70 72 74 76 78 80

APPENDIX 141

0 2 3 4 p [MPa)

PILES WITH 40 ENLARGED BASES

80

120

160 C----0

200 IN4014 s (1977)

[mm]

P s calculateds P p(s)(mm) (MPa)(mmMPa)(MPa) ()

10 035 286 046 20 065 308 080 30 090 333 104

150 24 625 214 200 229

ai = 2605 (mmMPa) b1 = 0243 1MPa V 1000 bi = 1b = 411 MPa

_ 411 MP Vi - 24 a

() assumed

average Dp = 18 m

qcp = 24 MPa ai = 184 (mmMPa) (28-4middot24)

Vi = 1 2 (3-18)

qcpmiddotvi = 29 MPa

40

80

120

160

200 s

[mm]

DIN 4014 Part 2 ( 1977)

0 1 2 3 4 5 p [MPal

PILES WITHOUT ENLARGED BASES

C----0

DIN 4014 ( 1977

s calculated s p -p- p(s)

(mm) (MPa)mmMPa)(MPa) ()

10 05 20 062 20 08 25 113 30 11 27 3 155

150 34 441 385 200 424

ai = 2085 (mmMPa) bi= 0 157 1MPa V = 0970

bi= 1s = 637 MPa

Vi 187=3f =

() assumed

average Dp = 12 m

qcp = 34 MPa a1 = 144 (mmMPa)

Vi = 18

qcpmiddotvi = 61 MPa

Range qc = 10-15 MPa

(28-4bull34)

(3-12)

1 1 q = r -r- = 036 for qc = 10 MPaCp p Ip+= 027 for qc = 15 MPa

qcp = 36-405 MPa P

APPENDIX 142

Touma F and Reese L (1974)

Soil parameters pile parameters and base resistance see fig bullbullbullbull

TAB

Measured load settlement curves

Settlement s

mm

10 20 30 40 50 60 80

100 120

a 1 (mmMPa) bi(MPa) V

N3u

q =04 -N30 (cMPa) ()

1 qCp=--rpbullqC

Pile No 21 (US 59) 22 (HH) 23 (G1) 24 (BB) Notep Sp p S p p S p f Sp MPa mmMPa MPa mmMPa MPa mmMPa Mla mmMPa

131 76 169 59 075 133 100 100 269 74 325 62 131 153 1 94 103 381 79 456 66 165 182 273 11 0 488 82 581 69 1 90 21 1 349 115 581 86 694 72 2 15 233 424 118 675 89 800 75 229 262 813 98 245 327 884 113 925 130

64 56 100 95 U049 0032 0276 0048 0944 0998 0996 0981

80 gt100 30 60 32 gt 40 12 24 ()

Bergdahl (1982)

gt5 5 gt55 32 4 3

(0 18middot32) (018middot40) (0265middot12) (018middot24)

CONTACT PRESSURE p [ MPa]

0 2 4 6 8 100 N-------r---------------(us 59) ( HH) ( BBi

E E SQ-------lt+-----+--------------lt

VI

1shyz UJ

~ 100 1---------i----+----+----+------l------I -J I shyI shyUJ V)

so~----~--~-- ~--~

APPENDIX 143

us 59 fYJo 0 50 00

ff-t r-=-~c~=~-r~c_---_---l-~e-J-C~ 0 ------

CLAY

FINE SANO

J lD- 760 mm

f5m~--~--~

Pile US 59 and results from penetration test

HH IV_l() so 100 r=-=-==-==-r-~--=-=- 0 0 II 15- flf ~ II~ Ibull If t f

CLAY SAND

Sm

)

= -middotl lo - GtOmm

~ JI

SILTY SANO tOm

Pile HH and results from penetration t est

APPENDIX 14 4

61 NJO 50 --------00

11 1 =f J - 1 -- 0

CLAYSILT

E ~ Sm ltrj

SILTY SAND

q I lDmiddot 910 mrn tom

I) t bull

Pile G1 and results from penetration test

88

0 50 too ~1-e I q 111bull - Q

CLAY

SIL TY SAND 5m

]

l lDmiddot760mrn

Om

Pile BB and results from penetration test

APPENDIX 145

Klosinski B (1977)

Loading tests 50 bored piles 09-125 m diameter average Op= 11 m On t he sett l ement of rigid pla te the settlement of t he pi le base is given by

PmiddotOSp = T-K b

where Mb - equivalent deformability modu lus

1) Sand and sandy gravel of medium density

Mb = 25-50 MPa

According to Bergdahl (1979) medium sand is between

q(l) 5 MPa (Io=035)c2)

ql = 10 MPa (Io=065)C

from fig 117 rp1 = 055 for qc = 5 MPa 1Tp = 036 for qc = 10 MPa

q(l)= 0 55middot5 = 2 75 MPacp bull

q(2= 0 36middot10 = 360 MPacp

allowable p~ 1)= ~p = yen = 092 MPa and p~2) = ~ = 120 MPa

settlement of the pi l e base

5(1)= o 92 middot 1bull1 = O 0135 m = 13 5 mm p 325 middot middot

5( 2)= 1bull2bull1middot 1 = O 0088 m = 8 8 m p 350 bull bull

1) _ s _ 135 _ 14 7 (mm) a(2) _ 88 _ a 1 - p - o---92 - bull NPa bull 1 - T-7 - 733 (Wa)

2) Loose sand lo= 030-040

Mb = 12- 25 MPa

q~l) = 44 MPa q~2)= 58 MPa

1Tp = 058 and 052

q(3) = 0 58middot4 4 = 2 55 MPa middot q( 4) = 0 52middot5 8 = 3 02 MPa cp bull middot bull cp bull middot middot

allowable p~ 3)= 4i = 085 MPa p~4)= yenl = 101 MPa

s(3)_ 085-11 = 26 mmmiddot s(4)_ 101middot11 = 148 mm p - 312 p - 3 25

STATENS GEOTEKNISKA INSTITUT Swedish Geotechnical Institute S-581 01 Linkoping Tel 01311 51 00

Serien Rapport ersatter vara tidigare serier Proceedings (27 nr) Sartryck och Preliminara rapporter (60 nr) samt Meddelanden (10 nr)

The series Report supersedes the previous series Proceedings (27 Nos) Reprints and Preliminary Reports (60 Nos) and Meddelanden (10 Nos)

RAPPORT REPORT Pris kr

No Ar (Swcrs)

1 Grundvattensankning till foljd av 1977 50shytunnelsprangning P Ahlberg T Lundgren

2 Pahangskrafter pa langa betongpalar 1977 50shyL Bjerin

3 Methods for reducing undrained 1977 30shyshear strength of soft clay K V Helenelund

4 Basic behaviour of Scandinavian soft 1977 40shyclays R Larsson

5 Snabba odometerforsok 1978 25 shyR Karlsson L Viberg

6 Skredriskbedomningar med hjalp av 1978 40shyelektromagnetisk faltstyrkematning - provning av ny metod J Ingands

7 Forebyggande av sattningar i 1979 40shyledningsgravar - en forstudie U Bergdahl R Fogelstrom K - G Larsson P Liljekvist

8 Grundlaggningskostnadernas fordelning 1979 25 shyB Carlsson

9 Horisontalarmerade fyllningar pa los 1981 50 shyjord J Belfrage

RAPPORTREPORT

No

10 Tuveskredet 1977-11-30 Inlagg om skredets orsaker

11a Tuveskredet geoteknik

l1b Tuveskredet geologi

11 c Tuveskredet hydrogeologi

12 Drained behaviour of Swedish clays

R Larsson

13 Long term consolidation beneath the test fills at Vasby Sweden YCE Chang

14 Bentonittatning mot lakvatten T Lundgren L Karlqvist U Qvarfort

15 Kartering och klassificering av leromradens stabilitetsforutshysattningar L Viberg

16 Geotekniska faltundersokningar Metoder - Erfarenheter - FoU-behov E Ottosson (red)

17 Symposium on Slopes on Soft Clays

18 The Landslide at Tuve November 30 1 977 R Larsson M Jansson

19 Slantstabilitetsberakningar i lera Skall man anvanda total spanningsanalys effektivspanningsanalys eller kombinerad analys R Larsson

20 Portrycksvariationer i leror i Gateshyborgsregionen J Berntson

21 Tekniska egenskaper hos restproshydukter fran kolforbranning shyen laboratoriestudie B Moller G Nilson

Ar

1981

1981

1981

1981

1981

1982

1982

1982

1983

1982

1983

1983

1983

Pris kr (Swcrs)

50shy

50shy

40shy

50shy

100shy

60shy

80shy

60shy

190shy

75shy

60shy

150shy

65shy

RAPPORTREPORT

No Ar Pri s kr (Sw crs)

22 Bestamning av jordegenskaper med sondering - en litteraturstudie U Bergdahl U Eriksson

1983 75 shy

23 Geobildtolkn ing L Vi berg

av grova moraner 1984 70 -

24 Radon i jord -Exhal ation- vatten kvot -Arstidsvariationer - Permeabilitet A Lindmar k B Rosen

1984 75 shy

25 Geoteknisk terrangklassificering for fysisk planering L Viber g

1984 120shy

26 Large diameter bored piles in nonshycohesive soils Determination of the bearing capacity and settlement from results of static penetration tests (CPT) and standard penetration test (SPT) K Gwizdala

1984 85shy

5

CONTENTS

Page

7SUMMARY

NOTATIONS AND SYMBOLS 9

1 LARGE DIAMETER BORED PILES IN NON-COHESIVE SOILS 11

11 Determination of bearing capacity of bored piles from results of Cone Penetration Test (CPT) 11

12 Determination of bearing capacity of the large diameter bored piles from results of the Standard Penetration Tests (SPT) 18

13 Allowable load of large diameter bored piles 22

14 Determination of settlement of large diameter bored piles based on static cone penetration tests CPT 27

15 Initial slope of pile point resistance shysettlement

REFERENCES

FIGURES

TABLES

APPENDIXES

curve 37

43

51

105

7

16 Summary

The work contains a study of the behaviour of l arge diameter

bored piles in non- cohesive soil The mai n attention was

paid to the determination of the bearin g capacity a nd

sett lement from results of Cone Penetration Test (CPT)

and Standard Penetration Test (SPT)

A new met hod to calculate bearing capacity on large bored

piles based on the in situ measurement is proposect taking

into account investigations made during the last years in

all the world The values based on the proposed method

are compar ed to field test results

The analysis of bearing capacity safety factors and loadshy

settlement curve allows to assume values individual safety

factors for resistance of pile point and shaft respectively

Based on a detailed investigation the pile point pressure

settlement curve and shaft resistance dependance during

loading a new method to predict the pile point pressure shy

displacement and load- settlement relationship is proposed

The initial slope of the point pressure- displacement curve

can be determined from in situ tests or laboratory test

based on the hyperbolic stress- strain parameters

9

Notations and symbols

Roman letters

a 1 Initial slope of the pile point resistance shysettlement curve

Ap Cross-sectional area of a pile

As Area of the pile shaft

CPT Static Penetration Test

D Diameter of pile shaft

Op Diameter of pile point

E Youngs modulus

fp Point resistance factor

fs Shaft resistance factor

F Universal safety factor

Fp Individual safety factor for ultimate resistance of pile point

Fs individual safety factor for ultimate resistance of pile shaft

K Dimensionless compression modulus

K At rest soil lateral stress coefficient0

Koc Lateral stress coefficient for fluid fresh concrete

Mo Constrained (oedometric) modulus

N30 Numbe r of blows for 030 m penetration in SPT

p Unit point resistance (contact pressure)

p (s) Unit point resistance versus settlement

Unit point resistance at failurePsf

Allowable unit point resistancePa

Sounding resistance

Average static cone penetrometer resistance close to tne pile point

qs Average static cone penetrometer resistance C along the pile

10

Ultimate point resistance of large diameter piles based on static sounding results

Ultimate skin friction resistance of large diameter piles based on static sounding results

Qa Allowable pile load

Qcp Point load of the static cone penetrometer

Qct Total load of the static cone penetrometer

Qpa Allowable point resistance of the pile

Qpu Ultimate point resistance of a pile

0 sa Allowable skin resistance of the pile

0su Ultimate bearing resistance of a pile

Qu Ultimate bearing resistance of a pile

s Settlement

sd Standard deviation

ss u Ultimate settlement for pile shaft

sv Standard variation

SPT Standard Penetration Test

t Unit shaft resistance

Ultimate unit shaft resistance

Circumference of the pile shaft

Circumference of the static penetrometer shaft

Greek letters

a Constant

B Constant

A Coefficient

microd Depth factor

v Poissonbulls ratio

v 1 Correction factor for hyperbola point resistance shysettlemen~ relationship

n Correlation coefficient

ahc Radial (horizontal stress in the concrete

ohs Radial (horizontal) stress in the soil

Ovc Vertical stress in the concrete

Ovs Vertical stress in the soil

11

1 LARGE DIAMETER BORED PILES IN NON-COHESIVE SOILS

11 peterminati on of bearing capacity of bored piles

from results of Cone Penetration Test (CPTl

The methods published in available literature up to 1976

were compiled by D Rollberg (1976 1977) It contains

totally 25 methods

- 22 use the results of static soundings (CPT)

3 use the results of standard soundings (SPT)

The failure load Qu of the pile is evaluated as the sum

of the pile point resistance Q and the pile skin reshypu sistance Qsu

(111)

Pile point resistance Q based on static soundina reshypu shysults can be expressed as

1- bull qP A ( 1 1 2)f C p

p

where

fp = point resistance factor

qP mean sounding resistance of static cone C

penetrometer in the area of the pile point

A cross-sectional area of the pilep

The pile skin resistance is expressed as

1 s -- bullq bullU middot Lih (113) fS C p

where

fs = shaft friction factor

sqc mean sounding resistance along the depth h

and skin surface area U middotLih p

1 2

The methods differ in

- the calculation of qPC

(074 to 40) Db below the pile base (Fig 11 1)

(10 to 80) Db above the pile base (Fig 1 11)

- the evaluation of the point resistance factor usually

values off gt 10 are used p

- the calculation of qsC

- the evaluation of the shaft friction factor

fs = 50-300 is applied

In Table 111 methods for determination of the bearing

capacity of bored piles are listed Rollberg 1977 The

point load the skin friction load and the ultimate total

load are evaluated for bored piles (shaft diameter D ~

03-090 m) from static sounding results in non-cohesive

soil

Calculation results based on static sounding measurements

are shown in Table 112 for pile point pile shaft and

total pile load respectively

The table shows that

- a ll methods overestimate the ultimate point resistance

- the best correlation for ultimate point resistance is

obtained with the Soviet method Trofimenkov 1974

n1 = 114

- there a re only five methods for evaluation of the ultimate

skin resistance

- all methods with exception of the Soviet norm Trofimenkov

1969 method overestimate the ultimate shaft resistance

- the Norwegian method Senneset 1974 gives the best

correlation for the ultimate shaft resistance =119n 2

- with exception of the Soviet methods the total ultimate

load is on the average overestimated by all methods

1 3

Taking into account the above results the Soviet and

the Norwegi an methods are presented below

The Soviet method JG TrofimenkgtV 1974

1 qP bullA + qsbullA (114a)Qu = Qpu+Qsu fp C p f C s s

where

11 40 DP 12 1 0 D p h+l1 qp r dhqcC l1+l2 h-12

0ct-0ceqs C u middoth s

f(qp) -+ see Fig 1 bull 1 2 fp C

f f ( qcs) -+ see Fig 1 1 3 s

The Norwegian methon K Senneset 1974

1 p A 1 s bullA ( 1 bull 1 bull 4b)-f-middotqcmiddot p + -f-q s p S C

where

11 30 D p

12 50 D p h+l11 f dhqP l1+l 2 qc

C h-12 h s 1

= f dhqc qch 0

f 20 p

f = f (q~ ) + see Fig 114 s

Note a ) The total skin friction -f-middotq~ is assumed to be

no less than 10 kPa even~ith a very little

cone penetrometer resistance

b) The poin t resistance -f-middotq~ is assumed to be

maximum 10 MPa even iJl case of very dense sand

14

It must be underlined that the best correlation for

the pile point is obtained with the Soviet method

101 for 94 driven piles in non-cohesive soil

- 172 114 for 46 bored piles in non-cohesive soil

Trofimenkov 19731974 showed the results of comparison

of the ultimate loads determined by formula (114a)

Q~ and by pile load tests Q~ for 153 driven friction

piles at the 57 various sites see Fig 115

In Germany a lot of investigations were made before

establishing the DIN 4014 part 2 (1977) on large diameter

piles

In Table 113 and 114 the results from these investigashy

tions are generalized

The data in the tables were obtained from 35 test loadings

(4 of which were published by Franke 1973 The diameter

of the piles was from 08 to 25 m the length from 5 m

to 34 m and the cone penetrometer resistance varied from

10 MPa to 15 MPa

Bustamente and Gianeselli 1982 proposed a prediction

of the pile bearing capacity by means of the static

penetrometer Their proposal was based on the intershy

pretation of a series of 197 full scale static loading

tests In this paper the results from tests of 55 bored

piles are chosen The diameter of the piles varies from

042 m to 150 m and the length from 6 m to 44 m The

equivalent cone resistance was determined as showed in

Fig 116 The authors have noticed that the point

resistance factor f depends on the nature of the soil p and its compactness but also on the different pile placeshy

ment techniques (see Tab 115)

Piles of category group I

- Plain bored piles - Cased bored piles

- Mud bored piles - Hollow auger bored piles

- Type I micropiles - Piers (grouted under low - Barrettespressure)

15

In Tab 116 values of the shaft resistance factor

fs are given

Category IA

- Plain bored piles - Mud bored piles

- Hollow auger bored piles - Cast screwed piles

- Type I micropiles - Piers

- Barrettes

Category IB

- Cased bored piles - Driven cast piles (concrete or metal shaft)

Category IIA

- Driven precast piles - Prestressed tubular piles

- Jacked concrete piles

Category IIB

- Driven metal piles - Jacked metal piles

It can be noted that the values in Tab 116 are in

genera l of the same range for the driven and the

bored piles

According to the Polish Specification 1979 the point

and shaft resistance factor are given by

1-f- = kmiddota

p p

where

ap 035 for sand

k coefficent of unhomogeneity k qcp min

qcp

= 0065 for sandfrac12

1

16

Similar results can be observed in Fig 116a and

Fig 116b It was showed by Kerisel (1965) and Franke

(1973) that the harder soil the more loosening at

excavation and thus relatively smaller bearing capacity

Taking into account the Franke diagrams we will have

for D = 125mand settlements= 2 cm p

Cone resistance qc (MPa) 1 5 50 1 0 15 22

qc p for s=2 cm 3 6 8 12 14

(see Fia 1 1 6b )

taking safety factor for pile base F = 3 the point resis~ance

33-10 ~-05

380375 lo 212 bull lo 2114 bull

factors- shy are p

The above anal ysis shows that it is possible to determine

ultimate point and shaft resistance of bored piles from

static cone sounding But it is very important and must

be taken into account type of pile kind of soil and

degree of compaction

Bel ow calculation method for large diameter bored piles

based on the static cone penetrometer resistance (CPT)

is proposed Equation (117) can be used directly for

the base diameter D lt 15 m For larger diameters p shyD gt 15 m the values should be multiplied by the

p ff t ITscoe icen Y~ as pi

( 1 1 5 )

where

qcp = according to equation (117)

D = diameter of the pile base D gt 15 mpi pi

17

This value q~p should be put into equation 116

The value qc s in equation 118 is independent on the

pile diameter

Proposed calculation method

(116)

where)

1 1 40 ~ 11 3 for piles wit h a nd enlarged bases12 10 12 = ~

h+h

q (h) dh (117)qcp l1+l2 f -f- Ch-li p

h 1 f 1

qcs = o -f- qc (h) dh (118)h s

1 -f- = f(q kind of soil ) -+- see Fig 11 7 and Tab 1 1 7

C p

f (q kind of soil ) -+- see Fig 1 1 8 and Tab 1 1 8 fs C

Note

a) the point resistance q for qc gt 20 MPa is assumed cp to be maximum as

- Gravel 70 MPa - Coarse sand medium sand 55 MPa - Fine sand s il ty sand 40 MPa

b ) The shaft resistance qcs for qc gt 20 MPa is assumed to

be maximum as

- Gravel 110 kPa - Coarse sand medium sand 90 kPa - Fine sand s ilty sand 70 kPa

These proposed values are compared with results by

Bustamente (1 982) and the Polish Specification (1978)

Fig 11 9 and F i g 1110 A similar comparison for DIN

4014 1 977 is shown in Fig 1111 and Fig 1112

) In this paper was used the above values 1 1 and l z But it can be used in practice 11 =30 D and h =2Dp respectively The results shall be very simi l ar to the above onPs

18

The proposed method has been examined with field test

results This is shown in Fig 1113 to Fig 1128

and Appendix 1 11 to 1110 and Tab 119

The comparison shows that the value of q in equationcp (117) corresponds to the settlement -10 of the base

diameter (s=010 DP) see Fig 1113 and Tab 119

(average sDp=88 and standard deviation sd=3)

Later in this paper the allowable load and dependence of

the load versus settlement will be determined

12 Determination of bearing capacity of the large

diameter bored piles from results of the Standard

Penetration Tests (SPT)

There are little published on pile tests coupled with

results from Standard Penetration Test (SPT) Among the

authors who have published material in the subject are

- Meyerhof 1956 1976

- Senneset 1974 (Norwegian method)

- Rodin Corbett Sherwood Thorburn 1974 (English method)

- Polish Specification 1975

- Weltman Healy 197 8

- Reese 1978

- Japanese Society 1981

- Decourt 1978 1982

The Norwegian method is valid o nly for concrete andor

wooden piles the English method only for gravel It is

very important to underline that the Norwegian a nd the

English methods use of the SPT resul ts intermediate by

the static cone penetrometer resistance (q ) as well C

Below methods are presented that are using the results of

SPT directly Meyerhof s method in total can also be used

on driven piles in non-cohesive soil Although we could

have found some proposes for bored piles Eqs (121 and

122) see Fig 121 and Fig 1 22 as well

19

Ultimate point resistance (psf)

12 N 3 omiddotH lt 120 N 30

(kPa) (1 2 1)Psf D

where

N30 the average standard penetration resistance

in blows per 03 m

H depth in bearing stratum

Ultimate skin friction tu

for bored piles tu N~ o (kPa) (1 22a)

for driven pil estu 2N30 (kPa) (1 2 2b)

where

N30 the average standard penetration resistance

in blows per 03 m within embedded length

of pile

Weltman and Healy (1978) taking into account Meherhofs

proposition for driven piles have introduced two coefshy

ficents for bored piles in gravels (glacial soil) Equ

123 and Fig 1 23

t = a 2 N30 (kPa ) (1 2 3)U 1

where

ai a 1 for impermeable gravels see Fig 123a

ai a 2 for permeable gravels see Fig 123b

The Polish Specification ( Specification for Design and

Construction of Large Diameter Bored Piles in Bridges

1975 Ministry of Transport) gives the ultimat e point

resistance in dependence of N30 base diameter and depth

see Tab 12 1 The Tab 121 contains values for coarse

and medium sand For other non-cohesive soils the following

coefficients are proposed

p f = S bull p f (medium sand) ( 1 2 4)S 1 S

20

where

S1 1 20 for grave lSi

f 132 080 for fine sand

13 3 070 for silty sand13i

In Fig 124 values of psf are shown for h = 10 m DP

06 m DP= 15 m and h = 20 m DP= 06 m DP 1 5 m

respectively

A few of the instrumented piles were tested and analyzed

by Wright and Reese (1979) The ultimate point and shaft

resistance in the fine and silty sand as a function of

blow count from SPT is shown in Fig 125 Results from

two additional tests reported by Koizumi (1971) are also

introduced in the figure The ultimate point resistance

is assumed to exist at a settlement equal to 5 of the

base diameter

Methods of prediction of the bearing capacity of piles

based exclusively on N30 values were presented by Decourt

1982 Below a proposition for high capacity piles excavated

and cast under bentoni te is presented

The ultimate skin friction is determined by the expression

(see Fig 126)

t = 33 N30 + 1 0 (kPa) ( 1 bull 2 5 ) u

where

N30 average value of N30 along the shaft

- for N30 lt 3 must be taken as = 3N30 - for N3o gt 5 0 must be taken as NJo= 50

The allowable point resistance can be obtained in a n

expedite way as

Psa = 33 N30 (kPa) (1 2 6)

where

N30 = average of Nat point level one metre above

and one metre below

Psa allowable point resistance

21

Decourt proposed a safety factor for the point of F = p

40 Therefore the ultimate point resistance can be

determined by the expression

(kPa) (1 2 7)

In Fig 12 7 and Fig 1 28 the above values for base

and skin friction resistance are compared respectively

Taking into account the type of soil thereis a good

correlation for ultimate point resistance The result for

ultimate skin friction is scattered but only apparently

The values for large diameter bored piles are between

the line 1a and 1b in Fig 128 Large diameter piles

have a high ultimate skin friction in relation to driven

piles (see points for bored piles in Fig 122 and DIN

4014 Part 2 1977 as well) The high values for piles

excavated and cast under bentonite have had a strong base

on the load tests (Decourt 1978 1982 and Wright and

Reese 1979)

Below the proposals are given for determination of the

values of the ultimate point resistance and the ultimate

skin friction Eqs 128 to 1214 and Fig129 1210

The ultimate point resistance

- gravel psf = 140 N30 (kPa) ( 1 bull 2 8)

for N~ 0 gt 50 blows3O cm Psf 7 MPa

- coarse sand and medium sand

(kPa) ( 1 2 9)

for N30 gt 50 blows3O cm Psf 55 MPa

- fine sand and silty sand

psf = 80 Nio (kPa ) (1210)

for N30 gt 50 blows3O cm p f = 40 MPa 5

where N3 o the average of N value near the point level as

22

h+l1

f N3o(h)dh ( 1 2 11 ) h-12

3DP see Fig 1 1 1 D

p

The ultimate skin friction for coarse sand and medium sand

tu = 1 8 N 3 o (kPa) (1212)

t (kPa) (excavated and cast (1213)u under bentonite)

where

N30= the average value of N along the shaft as h

N -

3 o = h1 f N 3 o ( h) dh ( 1 bull 2 bull 1 4 ) 0

The ultimate skin friction for N30 gt 50 blows30 cm is

assumed to be maximum as tu = 90 kPa and t = 150 kPa u

13 Allowable load of large diameter bored piles

The allowable load Qa of large diameter piles has been

expressed as

OuQa ( 1 3 1)Ft

Qa Q(s)=Qb(s) + Os(s) ( 1 3 2)

Opu + Osu (1 3 3)Qa Fp Fs

Qr lt mmiddotQf ( 1 bull 3 4)-

= universal safety factor

individual safety factor for ultimate resistance of the pile point

individual safety factor for ultimate resistance of the pile shaft

= load according to the allowable settlement

calculated load

m coefficient

calculated ultimate bearing load of the pile

23

The equations from (131) to (134) are used as

1) equation (131)

a) DIN 4014 - 1977 Ft= 2 175 15 (depending on the kind of load)

b) Polish Specification 1975 Ft = 18 16 ( -- )

1c) Trofimenkov 1974 Ft = 14307

2) equation (132)

a) DIN 4014-1977 i Q(s) = Qb(s) + Q (s) = A middotp(s) + E tAsmiddott(s)

s p 0

where Qbs) and Qs(s) are described in Fig 1423

3) equation (133)

a) Polish Specification 1974

F 25 22 depending on the kind of load p

F 1 bull 0 s

b) Wright SJ Reese LC 1979

The ultimate capacity or resistance is considered as a

random value and represented by a frequency distribution

The distribution can be described by a mean value and a

variance The distribution of the load applied to the

foundation can be described similarly The coefshy

ficients used to factor resistance and loads are called

partial safety factors Some recommended partial safety

factors for resistance under normal conditions of design

and construction are given in Tab 131 Normal control

is defined as a condition where the coefficient of variation

is less than about 035

Typical values for partial safety factors for loads are

in the range 1 to 2 depending on the type of load and

how it is applied The overall factor of safety Ft can

then be calculated from the equation

Ft = y RbullY S

24

where

YR the par tial sa f ety fac t or for resistance and

Ys the partial safety factor fo r load

The probability of fa i lur e of the foundation can be r eshy

lat ed to the factor of safety for a parti cular degree of

uncert ainty (see Tab 13 2)

c ) Tejchman Gwizdala 1979

The authors discuss adequate safety factors based on fie l d

test s by Spang (1 972) Franke (1976) Touma and Reese (1974)

Colombo (1971) Kerisel and Simons (1962) Appendirno (1973)

see Tab 1 33 Taking into account the universal safety

factor Ft= 2 0 for the tota l load settlement curves it

was estimated

i) F in the range of 111 to 237 with the average value s F = 166 and standard deviation sd = 034 s (see column 16 Tab 133)

ii) Fb in the range of 161 to 945 with the average

value Fb = 387 and standard deviation sd = 2 15

For model core d piles in laboratory conditions values of

Fs = 108 to 154 (average Fs = 132 s~ = 019) and

values of F = 280 to 5 94 (average F = 3 55 sd = 1 07)p p

see Tab 1 3 4

As a conclusion it was assumed that Fb = 40 and F 1 5 s

for l arge diameter bored piles

The investi gation has shown that for the above safety

factors settlements of piles under permissibl e loads are

10 to 20 mm There was assumed a maximum load on large

diameter piles corresponding to a settlement of 010

diameter of the piles

25

d) Bustamente Gianeselli 1 982

e) 0ecourt 1982

The safety factor is given by

F = FgmiddotFfmiddotFamiddotFw where

F 11 - skin friction g F 135 - point bearing capacity

g

Ff safety factor related to the formulation adapted

Ff= 10 for Decourts method

Fd safety factor related to excessive deformation

Fd = 10 for skin friction

As for the point Fa= 2 to 3 depending on the

pile diameter For usual cases 25 is suggested

Fw safety factor related to working load

Decourt recommends 12

Thus we will have

- for skin friction

Fs = 11bull10middot10middot12 132 - 13

- for the point

F = 135bull10bull25middot 1 2 = 405 = 40 p

4) equation (134)

a ) Polish Code 1983

Q lt mbullN r shy

where

total load coefficient (depending on the kind of load For foundation we can assume Yf = 12 )= code load

correction coeffic i ent

09 for pile foundations

m 08 for two piles

m 07 for single pile

26

N ymmiddotQu

ym material (soil) coefficient

ym 08 to 09 (Polish Code 1981)

Thus we will have

QnmiddotYf lt mmiddotym middotQu-

Yf9uFt = On m bull Ym

1 2 max = 2 14Ft 0 7 bull 0 8

1 2min = 1 48Ft 0909

The above analysis has shown different ways to determine

the allowable load The analysis is in direct connection

with mobilization of the load (versus settlement) The

dependence of total load point resistance and shaft reshy

sistance will be discussed in detail in Chapter 14

In the authors opinion taking into account the above

analysis the allowable load should be determined based

on the equation 133 ie based on individual safety

factors for ultimate point and shaft resistance Proposed

values of F and F in literature are shown in Tab 135 s p The average values are Fs = 145 and Fp = 3 38 respectively

Taking into account that the bearing capacity is determined

based on the results from sounding measurements direct from

a place near the piling without a ny indirect correlation

the allowable load of large diameter bored piles is given

by the equation (133a)

( 1 3 3a)

where F = 30 and F 13 are proposedp s

27

14 Determination of settlement of larqe diameter bored

piles based on static cone penetration tests CPT

Determination of ultimate point and skin friction resistance

based on static cone penetration tests has been discussed

in Chapter 11 above Based on the results of this calcushy

lation and on Chapter 13 we can establish an approximate

relation between point resistance shaft resistance and

total load on one hand and settlement on the other However

the approximation gives a wide scatter especially for base

resistance as can be observed in Fig 141 to Fig 144

Only the first part of the point resistance - settlement

curves are in good agreement with measured values It can

be observed in Fig 145 that the average correlation

coefficient n = 098 and standard deviation sd= 029

This way of calculation can be used only for rough calcushy

lation (see Chapter 13)

In Chapter 11 also measured point resistance - settlement

curves were shown The base resistance increases gradually

with increasing pressure and settlement Below the cur7

vature of the point resistance - settl ement curve will be

examined It is assumed that this curve can be described

as a part of the hyperbola curve Thus if the ratio of

the measured settlement (s ) to the point resistance (p)

is plotted against the measured settlement the result

will fall closely to a straight line with the equation

( 1 4 1)

where a 1 and b 1 are constants (see Fig 1 46a and Fig

14 6b)

Then the point resistance - settlement realtionship can be

expressed as a hyperbola

s p = ( 1 bull 4 2)

The constant is the initial s lope of the point resistanceshya 1

settlement curve ie a 1 = t~a The inverse of the constant

28

b 1 is the vertical tangent (asymptote) to the curve 1ie for s = 00

bf= ~ If the ultimate point reshy1

sistance psf is equal to bf (psf=bf) the whole point

resistance settlement curve will be a hyperbola type

Now the Eq 1 4 2 can be written as

s s ( 1 4 3)a) p s or b) p = a+__sect_a1 + 1 Psfbf

If the ultimate point resistance is smaller than bf only

a part of the hyperbola curve ought to be considered

Further the Eq 14 3 will be written as

p ( 1 4 4)

where

poundf_ correction factor for hyperbola point Psf resistance-settlement relationship

Taking into account the discussion in Chapter 11 the

ultimate point resistance psf = qcp based on the CPT measurements

Therefore the relationship between the point resistance

the sett l ement and the CPT result can be expressed as

s p (1 4 5)s

The correction coefficient v 1 will cause a change of the

position of the vertical asymptote bf in r elation to the

ultimate point resistance q bull This means that we take cp into account a different part of the hyperbola curve for

the description of the point resistance-settlement relationshy

ship

Now if we want to use the equation (145) in practice

we must determine the constant and the coefficienta 1 v 1 (assumed that q is determined ear l ier Chapter 11)cp

29

The constant a 1 and t h e coefficient Vi have been detershy

mined based on fi e ld tests according to pi l es No 1 - 20

see Tab 14 1 and Tab 1 1 9 as wel l The values of

a 1 versus the point diameter D and the ul timate pointp

resistance respectively are shown in F i g 147 and Fig

148 Fig 1 47 shows that a 1 is independent of the

point diameter D Based on Fig 148 it can be assumed p

that

28-4bullq (1 4 6)cp

This correlation has been examined with data of the

literature see Fig 1 49 and Appendix 141 to 1 45

(Note there were no static penetration tests and qcp was determined based on a correlation made by Bergdahl

(1982))

A good correlation with equation 146 can be seen taking

into account the safety factor in the DIN 4014 Part 2

(1977) bull

The correction factor v 1 versus the poi nt diameter is shown

in Fig 1410 I t is assumed that the correlation is

V1 = 3 0 - D ( 1 4 7)p

where D is in m p

The above equations ie 146 and 147 were assumed for

a later analyses see Fig 14 11 and Fig 1412 The

piles No 1 to 20 were examined taking into account Eqs

14 5 14 6 and 1 4 7 The result of this cal cul ation is

presented in Fig 1 413 to Fig 1 4 18 and in Tab 1 4 2

respectively In Fig 1413 the calculation way for pile

No 2 is shown as an example

In Fig 1414 to Fig 1 417 measured and calculated

values of the point resistance versus settl ement can be

compared In tota l good correlation exists for all the

30

pressure-settlement curves Values of q from static cp

cone penetration tests and generalized values of anda 1

v 1 were considered Only for piles No 17-20 qcp was

assumed as the point resistance for s = 010 D because p

the static penetration test results were inaccessible

The similar comparison is shown in Fig 1417a for piles

in sand based on experimental results (Tuoma Reese 1972

and Wright Reese 1979) where the ultimate case resistance

was assumed as the resistance at a base settlement of 005

D The relative base resistance is the mobilized base p resistance divided by the ultinate base resistance The

curvature of the proposed point resistance settlement shy

curve to mean value proposed by Wright and Reese is excellent

However the constant a 1 and the coefficient v 1 were

determined for sand only In the future they should be

examined especially for gravel and silty sand based on

field tests Until then in the authors opinion the

values of v 1 can be chosen from Eq 147 for all nonshy

cohesive soils But for a 1 there is proposed

at = gt bulla (1 4 8)1

where

gt- 1 = 080 for gravel

gt 2 120 for silty sand

This proposal is shown in Fig 14 11 as dashed lines

A good correlation can be seen with the investigation by I

Kiosimiddotnski for sandy gravel and on the safety side with

the investigation by Tuoma and Reese for silty sand (see

Fig 149)

In Fig 1418 all calcul ations for pile No 1 to 20 are

summarize d The correlation coefficient n is defined as

the calculated point resistance p(s) divided by measured

point resistance p(s) For totally 126 points from 20

curves an average of n = 098 with standard deviation

31

al= 023 was obtained see Fig 1418 A similar result

can be observed for the range usually assumed of the

allowable settlement for sinqle large diameter bored

piles as

for

- for

- for

s

s

s =

10

20

30

mm a

mm

mm

verage n10 II

II

mm 089

095

099

and sd =

and sd

and sd

031

027

026

It can be questioned whether the sonstant a 1 can be deshy

termined in different ways The constant a 1 is the initial

slope of the point resistance-settlement curve as menshy

tioned above Then we can use all methods for determination

of settlement of a pile point The range of validity of

these methods then must be determined This will be shown

later

In order to be able to design the total load settlement

curve the skin friction resistance-settlement relationshy

ship must be determined The ultimate skin resistance of

large diameter bored piles was determined in Chapter 11

(based on static penetration tests) and in Chapter 12

(based on standard penetration tests)

In the past a lot of field tests have been done on the

mobilization of the shaft resistance versus pile settleshy

ment In this subject there is a rather good agreement

in the whole investigation for cohesive and non-cohesive

soil

Some results and opinions on thispresented in the literashy

ture during the last few years are shown below

Ultimate shaft resistance versus settlement

1) BurlandJB Butler FG Duncan P (1969)

-The shaft l oadsettlement curve is derived using a=0 3

with 90 ultimate load being mobilized at 025 in

settlement(~65 mm)

- soil London clay

- see Fig 1 419

32

2) Touma FT Reese LC (1974)

- The failure of the sides of the shaft takes place

at a downward movement of about 04 in (10 mm)

- soil sand

- see Fig 1420

3) Tomlinson HJ (1977)

- The maximum shaft resistance is mobilized at a

settlement of only 10 mm (or j in)

- soil stiff clay

- see Fig 1421

4) Klosinski B ( 1977)

- It was assumed that skin friction increased proshy

portionally to pile settlement up to the limit value

s bull This value depends on soil conditions and pile0 diameter and is usually from 3 to 8 mm For soft

compressible soil it may be grater than 10 mm

- soil cohesive soils

- see Fig 1422

5) Franke E Garbrecht D (1977)

- At settlement of 2 to 3 cm which are normally

allowed in Germany under working loads for buildings

not very sensitive to differential settlementsthe

skin friction is almost always fully mobilized

- soil sand

6) DIN 4014 part 2 (1977) and Franke E (1981)

- The skin friction Tm is approximated as diameter

independent having failure settlements of smf = 2 cm

in sand and 1 cm in clay

- soil sand and clay

- see Fig 1423

33

7) Reese By L (1978) Reese By L Wright SJ (1979)

(1978) The maximum skin friction being developed at

an average downward movement ranging from about 05shy

2 of the shaft diameter The average of six load tests

reported by Whitaker and Cooke (1966) are a lso plotted

for comparison

- soil stiff clays

- see Fig 1424 and Fig 1425a

(1979) The relative settlement is the average settleshy

ment of the butt and base devided by the shaft diameter

The mean curve maximises at a relative settlement of

about 002 D

- soil sand and clay

- see Fig 1425b

8) Tejchman A Gwizda3a K (1979)

- A clear differentiation of the distribution of shaft

and base resistances is observed for changing settleshy

ment For fairly small settlements the shaft resist shy

ance increases quite fast and the ultimate values

are reached soon while the base resistance increases

gradually with increasing loads and settlements withshy

out clearout ultimate values it can be assumed that

complete mobilization of shaft resistance corresponds

to settlements equal to 001 or 002 diameter of pile

- soil cohesive and non-cohesive soils

- see Tab 131 and Fig 1 426

9) Promboon S Brenner R P (1981)

- Load distribution and load transfer curves disclose

that most of the load is carried by shaft friction

which is developed at small displacements in the order

of 10 mm

- soil Bangkok clay

- see Fig 1427

34

10) Prodinger w Veder Ch (1981)

- The maximum value of skin friction resistance

occurred for a total settlement of 12 mm

- soil silty clay and sand

- see Fig 1428

11) Farr JS Aurora RP (1981)

- Ultimate load transfer was recehed (or nearly reached)

at a relative settlement of about 04 in (10 mm)

- soil gravelly sand

- see Fig 1429

12) Decourt (1982)

The skin friction resistance is totally mobilized

with deformations of about 10 mm or at the most 15

mm regardless of shaft dimensions This observation

of ours seems to clash with the opinions of other

authors who seek to relate the deformation necessary

for full skin friction mobilization with the shaft

diameter

- soil cohesive and non-cohesive soil

In Tab 143 all these results are shown Depending on

the kind of soil the following v a lue s of ultimate settleshy

ment for shaft can be assumed

- averages 142 mm (sd 5 3 mm) for sand

- averages 100 mm (sd = 21 mm) for cohesive soil

averages 726 mm (sd 67 mm) for claysand

It can be observed (see Fig 1419 to 1428) that the

shaft friction resistance increases proportionally to

the pile settlement up to the above limit value and

thereafter becomes constant

35

Taking into account what was mentioned earlier on point

resistance settlement relationship and the above results

a relationship between total load point resistance and

shaft resistance on one hand and settlement on the other

can be made see Fig 1430

It is assumed on the safety side that the following

ultimate settlement (S~) exists for the shaft resistance

of large diameter bored piles

SS1 ) 200 mm for non-cohesive soil u SS2) = 100 mm for cohesive soil u SS3) 15 0 mm for claysandu

In Fig 1 430 the curve Q (s) is calculated based on p

the equation 14 5 or 144

The values of psf in equation 144 can be calculated

based on other methods as well

The total load-settlement relationship is obtained by

summing up point and s haft resistance as

Q (s) = Q (s) + Q (s) (149)s p

for each point

Now the allowable load can be determined from equation

133a and versus the allowabl e settlement as

Q (s) = Q (s) + Q (s) (1410)s p

where s lt Sa

Sa= the allowable settlement of the pile

The analysis allows determination of the approximative

load settlement dependence without calculating the settleshy

ment for non-cohesive soil In Fig 1431 it is shown

36

In Tab 144 the settlement for allowable point reshy

sistance q5P according to equation 133a is shown

as well The average settlements= 198 mm (sd=78 mm)

is obtained This value is similar to the assumed ultimate

settlement of shaft for non-cohesive soil The ultimate

settlement for point resistance is assumed s = 010 Dp as mentioned earlier

37

15 Initial slope of pile point resistance shy

settlement curve

Settlement of piles and pile foundations can be cal culated

based on

- empirical correlations

load-transfer methods using measured relationships

between pile resistance and pile movement at various

points along the pile

- theory of elasticity that employs the equations of

Mindlin for subsurface loading within a semi-infinite

mass

- numerical methods and in particular the finite element

method

- use of in-situ tests (Cone Penetration Test Standard

Penetration Test Pressuremeter Test)

The critical slope of the pile point resistance-settlement

curve is important for calculation in chapter 14 The

constant a1 can be determined from all the above mentioned

methods

Comparison is made to Berggrens and Schmertmanns methods

below (see Berggren 1981 as well)

6sIn Tab 151 (No 1 2 3) the values of a 1 =~p for s =

10 mm and s = 20 mm (measured for large diameter bored

piles No 1 to 24) are compared to the calculated values

according to the modified hyperbola method (see Fig 14 6)

It can be seen that these calculated values are between

s = 1U-2u mm but rather closer the measured values for

the settlements= 10 mm see correlation coefficient n 6

and n 7 in Tab 151 respectively The average correlat i on

coefficent for the settlements= 10 mm is n9 = 108 and

the standard deviation is sct = 014 The comparison to

Berggrens and Schmertmanns methods for s = 20 mm ( see

Berggren 1~81 and Tab 151 as well) shows that the

results based om these methods give too high values of a 1 bull

38

The average values are ne= 143 sd = OJ3 and ng= 137

sd = 037 for Berggrens and Schmertmanns methods

respectively A bit better agreement can be observed

for Schmertmanns method

Taking into account the results in Tab 151 ana Tab

15l it must be assumed that for the determination of

a 1 the pile point contact pressure p(a1) should be

assumed as the ultimate point bearing capacity devided

by about 4

p(ai) - ( 1 bull 5 1 )

Most of the methods for determination of settlement are

based on the theory of elasticity The settlement ot the

pile point can be expressed as the average settlement of

a rigid circular foundation from the equation

11-Dp 1-v 2

s = p -4- -E-bull microd (1 ~ 2 J

where

p pile point contact pressure

E Youngs modulus

D diameter ot pile pointp ) = Poissons ratio

microd = depth factor

The range of validity of the pile point contact pressure

was determined in equation 151 Youngs modulus has an

important meaning lt can be determined from triaxial

tests or oedometer tests The relationship between the

constrained (oedometric) modulus Mo and Young s modulus

Eis dependent on Poissons ratio v as expressed by the

equation

E = l 1 + V ) ( 1 - 2 V ) Mo ( 1 bull 1 bull 1)- 1-v

39

TaKing into account the analyses made ny Chaplin (19b1a

1 961bJ Janbu (1 963 1970 1973J Andreassen (1973)

Duncan and Cheng (1970) Tejchman anct Gwizdala (1979)

Gwizdala (1978) Franke (1981) Berggren (1981) Withiam

and Kulhawy (7981) and the present investigation the

calculation of settlement is proposed to be

s = 24 bull p bull ~ D bull 1-v 2 bull micro d (154)Do o E

where s (r1)

p (kPa)

Dp (m)

E (kPa)

D0 =10 m

micro = 05 + 01 vfrac34E (1 5 5)d vs

but 05 lt microd lt 10-tip= p - (J (ovs see Fig 151)vs

E =Et= Kbullpat (Oo )n [1- Rf(1-sinltj) 101 - 03 ) 12 (1 5 6)2 c cosltP + 2o 3 sinltP 1Pat

in which K n and Rf= hyperbolic stress-strain parameters

Pa= atmosferic pressure ando 1 o 3 and o0 are determined by

averaging the concrete and soil vertical and radial stresses

near the pile point according to Fig 151 Then the

stresses at the pile point level are h

(J vs = L

0 Yi h

l vertical stress in the soil

0 hs Ko h

0 vs radial (horizontal) stress in the soil

0 vc L ye h -l

vertical stress in the concrete 0

0 hc K oc a vc radial (horizontal)

concrete stress in the

40

K at rest soil lateral stress coefficient 0

K c lateral stress coefficient for fluid fresh concrete0

K 1 0 oc

and average values

a 05(a +a)V vc vs

1 1 - shy~ = -(a +a+a I = -3 (av+2ahJ the applied mean normal stress0 j Z X y

Assuming this model calculation results for piles No 1-24

(see Tab 11~ as well) are shown in Tab 153

The piles are embedded mainly in medium sand to fine sand

For this kind of soil it can be assumed (soil parameters

from field or laboratory tests were inaccessible)

~ = 35deg c = 0 R~ = 09 n 05 v = 025 K c 10l 0

K = 04 Pat= 1UO kPa ye 24 kNrn 3 y = 14 kNm 3 bull0 C

Moreover in Tab 153 the following symbols are used

p(a1 ) - pile point contact pressure according to equation

1 bull 5 1

s(a1) - settl ement of pi l e point according to equation

143 and Tab 141

pound TT ( 2E = s bull Dp bull i 1-v ) according to equa~ion 152t

E~ Et bull microltl

EI

K = ro~ - according to equation 1 bull 5 6 p bullO middotA2

a~ o

E = E voD middot D middot ~4 ( 1 - v 2 ) according to equationt S p O 0

1 5 4

Et= E microd

K = according to equation 156 V PatmiddotaomiddotA2

41

The calculation results of Youngs modulus E = Et and

dimensionless canpressionrro1ulus for piles to 1-24 are shown

in Fig 152 to 155 using equation 152 and 15b

or equation 1~4 and 156 respectively lt can be obshy

served that the scatter in Fig 153 and Fig 155

where the influence of tne pile diameter is reduced

compare equation 154 is less than in the other figures

The reduced influence was made after observations from

field and laboratory tests while the equation 152 is

taken direct from theory of elasticity These values of

E and K are in good correlation with published values in

literature The values of Youngs modulus versus the

relative density of soil are compared to literature values

see Fig 15b Based on the analysis in this chapter it

can be assumed that

E = 9-ql 3 ( 1 bull 5 7)cp

where qcp is in accordance with equation 117

The calculation results based on this proposal are incluced

in Tab 1 5 3

The c a lculate d s e ttlements based on e q ua tion 154 and

157 are shown in column 23 and the values of the

correlation coef f icie nt (n= Seal ) in column 24 respectshyimeas

ively

The dimensionless canpression modulus can be d e termined as

K = 15Ubullq (qcp in MPa) (1 5 8)cp

see column 25 Tab 153

The calculation results based on the K compression modulus

according to equation 158 156 and 1 5 4 are shown in

columns 25 26 2 7 28 and 29 in Tab 153

42

For comparison and for determination of the range of

validity of this method the caLculation results of

pile point pressure for settlements s = 10 mm s = 20 mm

s = 30 mm (see Tab 141) according to equation 157

and 154 are shown in columns 30 to 35

The results obtained in Tab 153 confirm the possibility

to use the proposed method to calculate the initial part

of the pile point resistance settlement curve of large

diameter bored piles in non-cohesive soil and the initial

slope of this curve as well

A simple model has been proposed based on the theory of

elasticity ana the tangent modulus defined by Janbu (1963)

and Duncan amp Chang (1970)

A new approach according to the pile diameter depth factor

and principal stress is proposed

The settlement of the pile point can be made up to a point

pressure according to equation 151 on up to a settlement

of about s ~ 20 mm (30 mm)

-- The application of v Op in equation 1 5 4 a llows us ing

Youngs modulus as independent of the pile diameter

opposed to Bazants a nd Mosopusts (1981) proposal where

Youngs modulus wa s determined versus the pile diameter

The equation 1 5 6 takes into account the dependence of

Youngs modulus on depth (or overburden pressure) as

well

In the method field test (Cone Penetration Test) or

laboratory tests (hyperbolic stress-strain parameters

can be used

Comparison of the method to 24 availa ble load test r e sults

or large diameter bored piles in sand shows good a greement

to calculated and measured values

43

REFERE~CES

Adamczyk J (1978) Okreslanie udzwigu pali wierconych

za pomoca sondy statycznej (Bearing capacity of bored

piles based on the static sounding) Inz i Bud No 7

pp 253-257

Andreasson L (1973) The compressibility of cohesionless

soils Thesis Chalmers University of Technology

G6teborg (in Swedish)

Appendino M (1973) Comportamento di un palo di grande

diametro strumentato Rivista Italiano di Geotechnica

No 3 pp 115-118

Butterfield R Banerjee P (1971) A rigid disc embedded

in an elastic half space Geotechnical Engineering

Vol 2 pp 35-49

Bozant z Mosopust J (1981) Drilled pier design based

on load settlement curve X ICSMFE Stockholm Vol 2

pp 615-619

Begemann HK (1982) Cone penetration tests pile bearing

capacity and the thesis of Rollberg Proc of the Second

European Symposium on Penetration Testing Amsterdam

pp 433-438

Berggren B (1981) Bored piles on non-cohesive soils shy

settlement and bearing capacity (in Sweden) Thesis

Department of Geotechnical Engineering Chalmers

University of Technology G6teborg

Bergdahl UB (1979 1982) Sonderingen und in situ Messungen

Wien 18-19 Juni 1979 - Private information 19821983

Bustamante M Giane selli L(1982) Pile bearing capacity

prediction by means of static penetrometer CPT Proc

of the Second Europ Symp on PenTest Amsterdam

Vol 2 pp 493-500

Chaplin TK (1961a) An experimental study of the settleshy

ment of footings in sand PhD Thesis Univ of

Birmingham

44

Chaplin TK (1961b) Compressibility of sands and settleshy

ments of model footings and piles in sand 5th Int

Conf on Soil Mech a Found Engng Vol 2 p 33 Paris

Colombo P (1971) Observazoni sul comportamento ltli pali

a grande diametro Rivista Italiana di Geotechnika

No 3 pp 163-172

Dahlberg R (1975) Settlement characteristics of preconshy

solidated natural sands Swedish Council for Building

Research D11975

De Beer EE (1964) Some considerations concerning the

point bearing capacity of piles Proc Syrop Bearing

Capacity of Piles Boorkee I pp 178-204

Decourt L Quaresma AR (1978) Capacidade de Carga de

Carga de Estacas a partir de Valores de SPT VI Conshy

gresso Brasilerio de Mecanica dos Solos e Engenharia

de Fundacoes - Rio de Janerio - ABNS

Decourt L (1982) Prediction of the bearing capacity of

piles based exclusively on N values of the SPT Proc

of the Second Europ Syrop on Penetration Testing

Amsterdam Vol 1 pp 29-34

Duncan MJ Chang CV (1970) Non-linear analysis of stress

and strain in soils Journal Soil Mech Found Div Vol

96 SM5 pp 1629-1651

Durgunoglu HT (1979) Effect of foundation embedment on

stress and deformation distributions Third Int Conf

on Num Meth in Geomechanics Aachen pp 925-928

Farr JS Aurora RP (1981) Behaviour of an instrumented

pier in gravelly sand Proc of a session Drived Piers

and Caissons sponsored by the Geotech Eng Div of the

ASCE Nat Convention St Louis Missouri pp 53-65

Franke E (1981) Point pressure versus length and diameter

of piles X ICSMFE Stockholm Vol 2 pp 717-722

45

Gregersen os Aas G and Dibiagio E (1973) Load tests

on friction piles in loose sand Proc of the Eigth

International Conference on Soil Mech Moscow USSR

Vol 21 pp 109-117

Gwizda1a K (1978) Behaviour of large diameter bored piles

in non-cohesive soil (in Polish) Archiwum Hydrotechniki

Vol XXV No 2 pp 183-217 (English summary)

Huizinga TK (1951) Application of Results of Deep

Penetration Tests to Foundation Piles Building Research

Congress Vol 1 p 173

Janbu N (1963) Soil compressibility as determined by

oedometer and triaxial tests Proc Europ Conf Soil

Mech and Found Eng Vol 1 p 19 Vol 2 (Discussion)

p 17 Wiesbaden

Janbu N (1970) Grunlung i geoteknikk Tapir Forlag NTH

Trondheim

Janbu N Bjerrum L Kjaernsli B (1973) Soil Mechanics

applied to some engineering problems Norw Inst Publ

No 16 Oslo

Japanese Society SMFE (1981) Present state and future trend

of penetration testing in Japan Separate report at

X ICSMFE Stockholm

Kjekstad O Lunne T (1979) Soil parameters used for design

of gravity platforms in the north sea Second Int Conf

on Behaviour of Off-shore structures London Vol 1

pp 175-192

Klosinski B (1977) Bearing capacity of large diameter bored

piles IX ICSMFE Tokyo Vol 1 pp 609-612

Laboratory for soil mechanics Delft (1936) The predetershy

mination of the required and the prediction of the

resistance of piles Proc 1 Int Conf on Soil Mech

and Found Engng Cambridge (Mass) I p 181

46

Matich M and Stermac A (1971) Settlement performance of

the Burlington Bay Skyway Canadian Geotechnical Journal

Val 8 pp 252-271

Mccammon NR and Golder HQ (1970) Some loading tests

on long pipe piles Geotechnique London England

Val 20 pp 171-184

Meigh AC (1971) Some driving and loading tests on piles

in gravel and chalk Proc of the conference on beshy

haviour of piles London England pp 9-16

Mitchell JK Gardner WS (1976) In situ measurement

of volume change characteristics American Society of

Civil Engineers Specialty Conference on In-situ

Measurements of Soil Properties Raleigh 1975 Proc

Val II pp 279-345

Mezenbach E (1961) The determination of the permissible

pointload of piles by means of static penetration tests

Proc 5 Int Conf on Soil Mech and Found Engng

Paris II pp 99-104

Meyerhof CG (1956) Penetration tests and bearing capacity

of cohesionless soils Proc Amer Society of Civ Engng

SM 1 Pap 866 pp 1-19

Meyherhof GG (1 976) Bearing capacity and settlement of

pile foundations Proc Amer Society of Civ Engng

Journal Geotechnical Engineering Division Val 102

No GT3 pp 197-227

Mohan D Jain GS and Kumar V (196 3 ) Load bearing capacity

of piles Geotechn Val XIII pp 76-86

Nixon I (1982) Standard penetration test State of the

art report Proc of the Second Europ Symp on Pen

Test Amsterdam Val 1 pp 3-20

47

Nunes A Vargas M (1953) Computed bearing capacity of

piles in residual soil compared with laboratory and

load tests Proc of the Third International Conference

on Soil Mechanics Zlirich Switzerland Vol 2 pp 75-79

Nordal S Grande L Janbu N (1982) Prediction of offshy

shore pile behaviour The Norwegian Institute of

Technology Trondheim

Ohde J (1939) Zur Theorie der Druckverteilung im Baugrund

Der Bauingenieur Vol 20 No 3334 p 451

Parroth E (1972) Einfache Formel zur Vorausbestimmung der

Tragfahigkeit von Standpfahlen mit Hilfe der Sande

Bautechn 9 pp 312-314

Poulos HG Davis EH (1980) Pile foundation analysis

and design New York - J Wiley and sons

Prodinger W Veder Ch (1981) Bearing capacity of floating

groups of diaphragm walls Proc X ICSMFE Stockholm

Vol 2 pp 809-814

Promboon S Brenner R (1981) Large diameter bored piles

in Bangkok Clay Proc X ICSMFE Stockholm Vol 2 pp

815-818

Reese L (1978) Design and construction of drilled shafts

ASCE JSMFD Vol 104 No OT1 pp 95-116

Rodin s Corbett BO et al (1974) Penetration testing in

United Kingdom state-of-the-art-report Proc Europ

Symp on Penetration Testing 1 Stockholm pp 139-146

Rollberg D (1976) Bestimmung des verhaltens von Pfahlen

aus sandier und rammengebnissen Heft 4 FBG Technische

Hochschule Aachen

Rollberg D (1977) Determination of the bearing capacity

and pile driving resistance of piles using soundings

Publications of the Institute for Found Eng Soil Mech

Rock Mech and Water Ways Construction Aachen Vol 3

48

Schmertmann J (1970) Static cone to compute static

settlement over sand Journal of the Soil Mech and

Found Division ASCE SM3 pp 1011-1043

Schmertmann J Hartman JP Brown PR (1978) Improved

strain influence factor diagrams Journal of the Soil

Mech and Found Division ASCE GT8 pp 1131-1135

Shibata T Hijikuro K and Fominerga M (1973) Settlement

of a blast furnace foundation Proc of the Eighth Int

Conf on Soil Mech Moscow USSR Vol 13 pp 239-242

Spang J (1972) Die Bestimmung der Tragfahigkeit von Grossshy

borhpfahlen (I) Strassen und Tiefbau No 2 pp 339-355

Senneset K (1974) Penetration testing in Norway State-ofshy

the-art-report Proc Europ Symp on Penetration Testing

Stockholm I pp 85-95

Tejchman A Gwizdala K (1979) Analysis of safety factors

of bearing capacity for large diameter piles Proc VII

ECSMFE Brighton Vol 1 pp 293-296

Thorburn s and Mac Vicar R (1971) Pile load tests to

f a ilure in the clyde alluvium Proc of the conference

on behaviour of pile s London England pp 1-7

Trof imenkov JG (1969) Accuracy of determining the bearing

capacity of piles based on results of static penetration

sounding of soils Osnovaniya Fundamenty i Mekhanika

Gruntov 4 (Translation Soil Mechanics and Foundation

Engineering 4 p 248)

Trofimenkov JG (1974) Penetration testing in USSR Stateshy

of-the-art report Proc Europ Symp on Penetration

Testing Stockholm I pp 147-154

Tuoma F and Reese L (1974) Behaviour of bored piles in

sand JSMFD ASCE Vol 100 No GT 7 Proc Paper 10651

July pp 749-761

49

Van der Veen C (1953) The bearing capacity of a pile

Proc 3 Int Conf on Soil Mech and Found Engng

Zlirich II pp 84-90

Van der Veen C and Boersma L (1957) The bearing capacity

of a pile predetermined by a cone penetration test

Proc 4 Int Conf on Soil Mech and Found Engng

London II pp 72-75

Weltrnan AJ Healy PR (1978) Piling in boulder clay

and other glacial tills Construction Industry Research

and Information Association UK-Report PG 5

Withiam J Kulhawy F (1981) Analysis prodecure for

drilled shaft uplift capacity Proc of a session

Drilled piers and caissons ASCE St Louis Missouri

pp 82-97

Woodward R Lundgren R Boitano J (1961) Pile loading

tests in stiff clays Proc of the Fifth International

Conference on Soil Mechanics Paris France Vol 2

pp 177-184

Wright SJ Reese LC (1979) Design of large diameter

bored piles Ground Engineering Vol 12 No 8 pp

17-22

DIN 4014 Cods Teil 2 (1977) Bohrpfahle Grossbohrpfahle

Herstellung Bemessung und zulassige Belastung

Polish Specification (1975) Specification for design and

construction of large diameter bored piles in bridges

Ministry of Transport Warsaw (in Polish)

Polish Specification (1979) Specification for prevision

bearing capacity of the piles on the presiometer test

and static sounding ENERGOPOL Warsaw (In Polish)

Polish Code (1983) Foundations Bearing capacity of piles

and pile foundations

5 1

FIGURES

bull bull

53

Ou

+ sect raquo iir 1

4 + D

h + +Osu

bull + t2 =n- Dp

LDpl r f 1

Opu

Fig 1 1 1 Bearing pi le in the soil

J_

fp

080

070

060

050

0 40

030

020

010

q~ [MPa ]000 -+--~-~-~-~------------------------=-shy

00 20 4fJ 60 80 10 0 120 14fJ 160 180 200

Fig 1 1 2 The point resistance factor fp

(Trofimenkov 1974)

54

ts

160

140

120

100

080

060

040

020

q~5 [ kPa)

0Q0--1------~-~-~-~-~-~ - - ---=- -- shy000 10 20 30 40 50 60 70 80 90 100

Fig 1 1 3 The shaft resistance factor fs middot (TYofimenkov 1974)

f s

200

180

160

140

120

100 2 3 4 5 6 7 8 9

Fig 1 1 4 Shaft friction factor f depenshys

ding of the soil density (Senneset 1974)

55

Q~ [kN]

1500

1000

500

0-r-----------r----~- Q~ [kN] 0 500 1000 1500

Fig 1 1 5 Comparison of the pile resisshytance determined by the results of static sounding and load tests (TYofimenkov 1974)

D f f

0

Fig 1 16 Equivalent cone resisshytance (Bustamante 1982)

56

E u shy0 ~

QI I ltII ltII

~ a C QI

O C

D

w gt

0

Cone res istance Point resistance

80 160 240 320

05

10

15

e d

20

ver y dense Cone resistance 300 kgcm2

Dpcm

a =45 b = 30 C 60 d = 100 e = 150

Fig 1 16a

Cone resistance _ qc

80 160 80 160 qc [ k g cm2 ]p

05

10 10

15 15 e d a

e d20

Dense Medium2 2200 kgcm 100 kgcm

Cone resistance and point resistance of piles versus overburden pressure (Kerisel 1965)

Point resi stance - p(for s=2cm) of the pi le for

15 sett Iement s = 2 cm

10

5

E u

uJ1 o-~----shya er O 804 2500

32 56

I 1

L oose50 -I =25 Very loose L

----~--shy5000 7500 80 98

~-----lmiddotI1--------2 10000 12500 31400 =Flcn)

112 123 200 =Dplcm)

Fig 1 1 6b Point resistance versus cone resistance and pile diameter (Franke 193)

57

1

fp

080 (D Gravel

0 Coarse sand Medium sand 070

reg Fine sond Silty sand

060

050

040

030

020

010

qc [MPa]000-+----r--~-~-~--------r----r----r-~-~-- -shy

oo 20 40 60 80 100 120 140 160 180 200

Fig 1 1 7 Point resistance factor f (proposal) p

58

300

250

200

150

100

qc [MPa I50-+---------------r---r---r---r----r------------- shy

oo 20 40 60 80 100 120 140 160 180 200

Fig 1 1 8 Shaft resistance factor fs (pr oposal)

59

Bustamante (seetab 115 I

l fp

G)

0 Gravel

Coarse sand Medium sand

cl

b)

t-----l

1----1

080 reg Fine sand Silty sand a) D

070 Polish

060 Specification

( 1979) 050

040

030 CD 020 0

reg 010

qc [MPa]0 00 -+-------------------------------------=--shy

oo 20 4o 5o 80 100 120 14o 15o 180 200

Fig 1 19 Point resistance factor f comparisonp

Bustamente ( see tab 116 I 300

a) ~

250 b)~

cl~

200 Polish Specification ( 1979 l

150

100

q [ MPa]504---~--~--~----- ---___

00 20 40 60 80 100 120 140 150 180 200

Fig 1 1 10 Shaft resistance factor fs comparison

60

1 fp

~

080 CD CD Gravel

070 0 reg Coarse sand Medium sand

060 0 Q) Fine sand Silty sand

05

040 Franke (1973)___

030 DIN 4014

020 Part 2 1977

( see tab113 l 0shy

--shy --a - 010 C---0 Piles without enlarged bases

D---0 Piles with enlarged bases qc [MPa ] 000

00 20 4JJ 60 80 90 100 120 140 160 200

Fig 11 11 Point resistance factor f comparison p

fs

DIN 4014 Part 2 1977 ( see tab 114 l

300

~ 5 lt qc lt 10 MPa 50

~ 10 lt qclt 15 MPa

~qcgt15MPa

200

150

CD

100 0 0

qc [ 1Pa] 50-t-----T-~----T-r-~----------------shy

OO 20 40 6JJ 80 100 120 14JJ 160 180 200

Fig 1 1 12 Shaft resistance factor fs comparison

61

Measured p [ MPa]

( s=010 Dp) 10

9

8

7

6

5 0

4 0 61

3

I 2

Calculated qcp [MPa]

0 0 2 3 4 5 6 7 8 9 10

Fig 1 1 13 Comparison of experimental and aomputed values of the pile point resistanae

62

Contact pressure ( MPa ]

2 I 6

50

100

E E 150 Ill

c QI

E Sett lement for QI

calculated qcpai V) 200

Fig 1114 Results from load tests on piles No 1 and 5

Contact pressure [ MPa I 0 2 I 6

01---------------------1

50

E E 100 Ill

Settlement forc QI calculated qcp E ~ ai

I V) 150

Fig 1 1 15 Results from load test on piles No 7 and 5

63

Contact pressure p [ MPa] 0 2 3 4 6

0-t=-----~-~-----

E E

100 1)

c CU E 2 QI V) 150

Fig 1 1 16 Results from load test on piles No 9 10 and 11

Contact pressured p [MPa] 0 1 2 3 4 5

o~~~=------------___-~-shy

50

100

E E

i 150

CU E CU

-a V) 200 2

Fig 1 1 17 Results from load test on piles No 12 and 13

c

-------------- -

64

Contact pressured

0 1 2 3 4 p [ MPo] ~o __L____1_____J_____L___

50

100

150

E

E

IJ) 200

c a

E a

~ 250

Fig 1 1 18 Results f Pom load tests on piles No 2 4 6 and 8

p [MPa]

60

50

tO

30

~

Pile Pile Pile Pile

Pile No18

------+ Pile No17 + ~_ ---0 Pile No 19

bullbull - --bull Pile No 20

- ~middot -shy-shy -(y I Settlement for

20 tO 60

No17 +-middotmiddot- V 70 No 18 bull--- V 9o No19-middot- V 120 No20bull---- V150

qcp 3

80 100 120 140 160 s (mm)

Bose resistance

Fig 1 1 lBa Point Pesistance vePsus settlement (Spang 1972J

65 Cone resistance qc [ MPa]

0 10 20 30

mud

5 ~ lll

0 c 0

c CD

peat

10 sand

Ill N

10=10

D=lOOOmm

1540=40

20__________________

[ml

Fig 1 119 Pile No 1 and results from static cone penetration test

Cone resistance qc [MPa l 0 10 20 30

7N V degW = 0+--------------------i

mud

5

lll

~ C 0

c peat~

10

sand lll N 1D15

15l lD=1500mm

40=60

20l---------=-------__J

[ml

Fig 1 1 20 Pile No 3 and results from static cone penetration test

66 Cone resistance qc [MPa]

10 20 II 3 igt pound ~

mud+peat

fine sand+ silt

50=11

l lo-11oomm

40= 44

10

15l____________c

[ml

Fig 1 1 21 Pile No 5 and results from static cone penetration test

Section Cone resistance Pile

0 0

5 10 15 20 25 30 qc [MPa] -----~-~shy~

Silt

[7r_ ___~ Medium Sand_~-----l

0 ltD

+shy4

0=11

9=

Fine sand + Silt t

30p=

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot1~11+-----E-----

[ml

Fig 1 1 22 Pile No 6 and results from static cone penetration test

Cone resistance qcmiddot 1MPuJ

0 10 20 30 67 01-+-------l--------------i

mud+ peat

fine sand

l1)

N

40=60

15L_____________

[ml Fig 1 1 23 PiZe No 7 and resuZts from static

cone penetr ation test

Section Cone resistance Pi le

0 5 10 15 20 25 30 qc [MPa 1 --~----Y-~-----~

Silt

Fine sand

Medium Sand Bentonite2----1~i

t 3

4

0

0=15

Fine iii ~~= 5

sand t ltD

6 +

Silt 7

3Dp=

63 g

10

11

12

13+------=~---l

[ml

Fig 1 1 24 PiZe No 8 and resuZts f rom static cone penetration test

68

I =3

Cone resistance qc [MPa]

0 10 20 30

C 0 C Cl

(I)

Said

Peat

Sand

l 0=110

D = 11

4 D = 44

Fig 1 125 Pile No 9 and results form static cone penetration test

69

Cone resistance qc[MPa)

0 10 20 30 I ~ II JE Ill= II=E IS

Fine sand QI

U) I

[- I C 0 + C Peat QI

CD

Fine sand 0

Ci D = 1 1

L l D= 110

4D= 4 4

Fig 1 1 25 Pile No 10 and results f rom static cone penetr ation test

70

Cone resistance 9c[MPa]

0 10 20 30

Sand

C 0 Mud peat

+shyc 5 ltII

co

Sand Op= 11

u 10 D= 110 4Dp=44

Fig 1 1 26 Pile No 11 and results foIm static cone penetration test

71

00 a_ N ~

middotu rr QI 0 u ~ C 0

QI ui C iij 0 QI U - 0

0 EN

d 2

Sll 1lOl

C

u (rr

C 0 u~

0

QI - C middot 0 C

U - O 0 EN

~ 0 2

E

ltD a---==-lr---___--~---6-l_-0_012 ~ Lr- - --1---------J J

S9l ls= apound QI -0 gtcc _gmiddot- 0 1) ui I

Fi g 1 1 2 Piles No 14 and 15 and results f r om stat i c cone penetr ation tests

72

Contact pressure p [ MPa] 2 4 6

01lt---------------~

50

E E

111 100 ~ (qcp=30 MPa for No16

~ iqcp =49 MPa for No14

~ 1so~--~~- _ _ __

I _ _

11 I lf--q = 32 MPa for No15

cp

Fig 1 1 28 Results f r om load tests on piles No 14 15 and 16

73

0300--------------~---~--~--shyE

Driven piles in ~ 0 bull Gravel

amp250 bull Sand L QJ X Silt a 1l o Bored piles in

sand -sect 200 0=-- shyC ~ ~ 10 unless ~~ middot D shown 1

ii O

~ ~ o 3 a 1501-----+-------I- --+---laquo-+-- -+------lt

~ sect 5 - 6 6middot 100t----+----+-----_-1---4--__co_--J~__j

-_

~ 0 t7

C

a 50 2 shyg ~ gt

0 20 30 40 50 60

Standard penetration resistanceN in blows per foot

(N 30

Fig 12 1 Emperical relation between ultimate point resistance of piles and standard penetrashytion test in cohesionless soil (Meyerhof 1976)

14 r-------------------r-------b-----q

References and symbols given in Fig121

121-----+---+----+----+------ll------j

- _sect ~ 10t----+----+-_--1-----+---lt~--~H---- 0 lt-~5- _-)0 I() l- I Q---+-----I[08 ~

H -(l () ltj-~C X bulls pound 061------lt----+-----i~- --+-- shy

- bull

-gt Q1pound--I---L---L---L---L--~ 0 10 20 30 40 50 60

Mean standard penetration resistance N in blows per foot ( N30 l

Fig 122 Empirical relation between ultimate skin friction of piles and standard penetration resistance in cohesionless soil (Meyerhof 1976)

74

a) b)0(1 0lt2

10 10

05 05

1 N30OD-+---------__ OD--t-----r-----r----------------ll--Nbull30~ 10 20 30 10 20 30 40 50

Fig 1 2 3 Reduction coefficient a) for impermeable gravels b) form permeablr gravels (Weltman and Healy 1978)

psf [MPo)

Fig 1 2 4 Relation between ultimate point resistance and SPT in cohesionless soil (Polish specification 1975)

75

30 35 40 45 Loo Med Dense Ver dense

50

40

~ E

l)

g 8 1)

middotu

1 ~

QI- bull Touma ~ bull Koizumi

(183)-depth base middotameter5

20 40 60 00 100 N30

30 35 40 45

OG2(294) bull G1 (183)

300 bull us 59 ( 102) bull 88(180)

bull 075 a GT (467)

150

~ 200-+--------+-- t--- --t-----i 130i 0 094 081

014 _- --- -- shy~ E 066bull bull 063 Note -~ ~m~r~s~ ~ 1001---1-r--t---1point is xh QI Ratio ~ Number in ( ) middotn key is h c Ratio s ~

0 20 40 60 00 100

~ig 1 2 5 Ultimate point and shaft resistance versus N30

(Wr ight and Reese 1979)

-----

76

tu Psa

[kPa] [MPa]

200 tu

------ shy150 Psa

1 1

1100 10 1 1

1 50

0+----------T----~---~-N-3J~shy0 20 40 60 80

Relation between ultimate skin friction and SPT (Decourt 1982)

Fig 1 2 6

Psa

[MPa]

8

0----Meyerhof 1976) 0 7

--- - --~ - copy Polish Specifcoti on 1975)6 ~-

~

reg- middot - Reese (1978) middot 5

f41- -- Decourt (1982) -I bull 4 2

----==---______z__ h25m Dp=12m

3 ---shybull

2 7

--shy ----shy~----shy0-t----i----------r-- ----------------------N3l~shy

0 10 20 30 40 so 60 70

Fig 1 2 7 Relation between ultimate point re~istance of large diameter piles and standard peneshytration test (SPT) in cohesionless soil

------

77

tu [kPa)

200 17 Cast under -J bentonite

~----Meyerhof (1976) ~copy -=middotmiddotmiddotmiddot== middotmiddot150 ~------- Wei tman (1978 ) middot Healy middotmiddot ___ Japanese ) 119810 Society

(0 -middotmiddot- Decourt (1982)middot Wright

100

- -middotmiddot -- 11979]reg Reesemiddot Bored piles

~shy50 1 -- shy

-- shy middotmiddot s-shy - --~ ------reg~~ ---~E_==---- ------- shy

N_ ---shy0-+--C--------------r---- ---------~---~-~shyo 10 20 30 40 50 60 70

Fig 12 8 Relation between ultimate skin friction of piles and standard penetration test (SPT)

78

Pst [MPa]

8

7 ---------ist=7MPa

6

5

4

3

2

I N30o~------------------------------+---------__=-shyo 10 20 30 40 50 60 70

Fig 12 9 Relation between ultimate point resistance of large diamter piles and standard peneshytration test (SPT) in cohesionless soil (proposal)

tu [MPa ]

( excavanted and cast

150 under bentonite ) tu=150 kPa

100 tu=90 kPa

I I

50 I I I I I N30

10 20 30 40 50 60 70

Fig 1 2 10 Relation between ultimate skin friction of large diameter piles and standard penetrashytion test (SPT) in sand (proposal)

79

2 3 4 5 p[MPa] 0 2 3 4 5 p[MPa]0

40 40 Cl

80 c 80

c 120 120

Pile No 1 PileNo216 160

200 2

s s c [mm] (mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MPa]

40 40

00 80

120 120

16 160 Pile No 3 Pile No 4

200 200

s s [mm] (mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MAJ]

tgt11 tgt- measured40 40

80 80

120 120

Pile No 5 Pile No 6 160 160

20 200 s s

[mm) [mm)

Fig 1 4 1 Base resistance vs settlement appoximative method piZe No 1- 6

80

0 2 3 6 5 p[MPa) 0 2 3 4 5 p[MPa]

40 40

80 80 6

120 120 6

6160 160

Pi le No 7 Pile No 8 6

200 3J s s

[mm] (mm]

0 2 3 4 5 4 p [ MPo)

6 6 40

6 6

6 80

6 6

6

Pi le No 9 Pile No 10

XJO s s

[mm] [mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MPa)

6 6

40 40 6 6

6

00 80 6

6

12 1Xl 6

160 Pile No 11 160 Pile No 12

200 200 s s

[mm ] [mm]

Fig 1 4 2 Base resistance vs settlement approximative method pile No - 12

81

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MPa]

6 6

40 6 40 6

6

80 6 80 6

120 6 120

Pile No 13 Pile No 141fO 160

200 200 s s

[mm] [mm]

0 2 3 4 5 p [MPa) 0 2 3 4 5 p [MPa)

40 40

80 80

120 120

HiO 160

200 200Pile No 15 Pile No 16

s s (mm) [rrrn 1

0 2 3 4 5 p[MPa] 0 2 3 4 5 p[MPa)

40 40 A A A-measured

680 80 t t

120 c 120 c

1fil Pi le No 17 160 Pile No 18

200 200 s s

[mm] [mm]

Fig 1 4 3 Base r esistance vs settlement approximative method pile No 13- 18

82

0 2 3 4 5 p[MPal 0 2 3 4 5 p (MPa]

D D40 40 c c

80 c 80 c

120 120

160 160

Pile No 19 Pile No 20 200 200

~ml (mm]

Fig 1 4 4 Base resistance vs settlement approximative method pile No 19- 20

LlJ QI

0 average lJ = 098 E sd = 029 C

6 SY = 030

4

2

lJ calculated ________________________ _______ measu red

06 08 10 12 14 16

Fig 1 4 5 Calculated pressure divided by the measured pressure at 20 mn settlement for aZZowabZe

q Zoad Pa= ~p approximative method pile

No 1- 20

8 3

Point resistance p [ MPaJ

a)

p(s) = s a +--sshy1 y qcp

1

SQ100p -- --- ---shy

~ s

[mml

I- 01 s rmm]-l p LMPa b)

f~]

c Cll E ~ i s

[mm)

Fig 146 Definition of the point resistance - settlement curve according to the modified hyperbolic method

84

01 ~ 0

20 0 0

0

16 0

medium 0 value a1 = 905-+ 256 Op 0 0

12 (r=039)

0 0

----0 0

8 0

0 0

0 0

4 0

05 06 07 08 09 10 11 12 f3 14 15 16 17 18 19 20 2 1 Op (ml

Fig 1 4 Initial slope of the base resistance curve vs pile diameter

a1 [p] 0

0020

16 assumed a 1= 28 - 4 qcp

12 0

0 Ct) 0 a = 2659 - 369 qcp8 1

0 0 (r = 0188)0

4

2 3 4 5 (MPa]qcp

Fig 1 4 8 Initial slope of the point resistance curve vs ultimate point resistance on the static cone resistance for pile tests No 1 20

85

a [~ 28

24

20

16

12

8

4

0 2 3 4 5 6 Qcp [MPa]

~ Kiosinski (1977) sand and sandy gravel of mediwn density

~ Klosinski (1977) loose sand ID= 0 3 0 4

o US59 ] t HH Touma p and Reese L (1974) fine sand and silty sand OGl (US59 HH BB - very dense Cl - mediwn dense) 1 BB

DIN 4014 Part 2 (1977)

Fig 1 4 9 Initial s lope of the point res istance curve vs ultimate point resis tance

86

assumed [il =30 -10 Op but )1~ 10 )1 [1 I

u 311-10 Op ( r =0 368)4 1 0

3 0 0

02 0

0 0co 0 8 0 0

0

0

05 06 07 08 09 10 11 12 13 14 15 16 17 19 20 21 Dp [ ml

Fig 14 10 Correction factor for hyperbolic base resistance shysettlement relationship

87

a [~] 28

24

20

16

12

8

4

2 3 4 5 qcp [ MPa]

Fig 14 11 Initial slope of the base resistance curve vs ultimate base resistance (proposal)

v [ 1 ]

3

2 -----G- DP J l 1J I Op lm] J

for Dp ~ 2 0 m ~ u = 1 01

0 --------r----r---r----r-----------------r-------------------------r------r-~-~--shy

05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 Dp[m)

Fig 1 4 12 Correction facto r for hyperbolic base resisshytance - settlement relationship (proposal)

s P ( s)

s +

u qcp

88

a) b)1

bt=o212= 47 MPa a1=1~32 tMWJ s 2 3 4 5 O 1 10 20 30 40 50 60 p [~a]0

0p [ MPa] 40 40

80 80

120 ~

160 b1 = ~ajtg ~= 0 212

~=1132 + 0212middot s

mJ 240 r=0994t t t measured s __ according to Jl s

o o o according to p (bull ll l[mm] [mm]

Pile No 2

slmm) 10 20 30 40 50 60 80 100 125 150 175 2)0 225 Note

p [ MPa] 09 14 17 20 22 24 27 30 32 34 36 38 39

measured

pibull) [ MPa] 074 128 169 202 228 249 282 307 330 347 360 371 380calculated

plbullbull1[MPal 070 125 168 203 233 257 297 327 356 378 396 410 422calculated

1) (bull) ij l099082 091 099 101 104 104 104 102 103 102 100 098 097 sd = 006

ij (HJ1041) (bull10) 078 089 099 102 106 107 110 109 111 111 110 10B 10B sd = 010

plbulll-according to a =1132 [ Jp(s) = s s for pile No21 0 1132 12 39

plbullbulll-according toa =1241 lmiddotGcp=39MPa1 0

~=14 see fig 1411 and fig 14 12 sp(S)=

124+ _ s_ 14middot39

11lbulll11l-J - correlation coefficient calculat~d P5 for

measure p s p(bull) and p(bull) respectively

Fig 1 41 3 Modified hyperboZic point resistance - settZement reZationship for piZe No 2

89

0 2 3 4 5 p(MA1] 0 2 3 4 5 p[MPa)

40 40

80 A 80 A

120 120

160 16 Pile No 1 Pile No 2

20 200 s s

[mm] rnm

0 2 3 4 5 0 2 3 4 5p [MPa] p [MPo]

40 40

80 80

120 1ZJ

lfpound) Pi le No 3 Pile No 4 A

200 A

s s A

[mm) [mm

0 2 3 4 5 p [MPa] 0 2 3 4 5 p [MPa]

40 40 A A A measured ~ calculated

80 80

12

160 160 Pi le No 5 Pile No 6

200 Z)Q

Fig 1 4 14 l3ase resmiddotistance vs settlement pr oposed method pile No 1- 6

90

2 3 4 5 p [MPa] 2 3 4 5 p [ MPa]

40 6

6 40

1 80 80

6

120 120 6

6 160 160

Pile No 7 6

200 200 s

[mm ] s

[mm]

0 2 3 4 5 6 p [MR] 0 2 3 4 5 p [MPa] 0 0

40 40 6

6

80 80

6

120 120

160 160 Pile No9 Pile No 10

200 200

s [mm] [msml I

0 2 3 4 5 6p[MR] 0 2 3 4 5 p [MPa]04--___ ____ ___ ___ ____

0+-=---------------~-~- shy

40 40 c 6 c - measured

0--0-0 shy calculated

80 80

120 120

160 160 Pile No11 Pi le No12

200 200

s [mm]

s [mm]

Fig 1415 Base resistance vs settlement proposed method pile No 7-12

91

0 2 3 4 5 p [MPal 0 2 3 4 5 p [MPa)

40 40

80 80

120

16 Pile No 13 Pile No 14

200 s

tnml [mm]

0 2 3 4 5 p [ MPa] 0 2 3 4 5 p [MPa)

40 40

80 80

120 120

160 1fD

Pi le No 15200 axJ s s

[mm] [mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 6 plMPa ]

A A A measured40 0---0-0 calculated

80

120 120

160 1ED Pile No 17 Pi le No 18

200 200

s s [mm] [mm]

Fig 1 4 16 Base resistance vs settlement proposed method pile No 13- 18

92

0 2 3 4 5 p [MFb] 0 2 3 4 5 p[MPa]

0 6 o -measured40 40 0 0 o -calculated

80 80

120 120

160 160 Pile No 19 Pile No 20

200 200 s s

[mm] [mnil

Fig 1 4 17 Base resistance vs settlement proposed method pile No 19-20

p(s~Psf

15 20

ean

-C 5 w u L Lower ~ confidence

linea 0

a IJl 10

o---o proposed

method I I I

15

Fig 1 4 17a Design curves for estimating developed base resistance in sand (Wr ight and Reese 1979)

93

n (number)

30

28

26

24

22

20

18

16

14

12

10

8

6

4

2

0 02 04

Fig 1 4 18

I= 126

Between 1] = 0 7 - 1 3--- I= 106 ( 84 frac34)

Average ~ = 098 Standard sd =023 deviation

Standard sv =023 veriation

1] (Coefficient Calculated Measured

06 08 10 12 14 16 18

Calculated pressur e divided by the measured pr essure for all pressure - settlement curves pr oposed method pile No 1- 20

94

a) b) Total load

Total load curve

---- _____-- shy- -- -Base load ~- Base load

-0-0 ~

00 00 J

ldeoli zed shaft load J

Shaft sesistanc1---------- 0=0middot30 a= 0 middot 30

025 Settlement IN 025 Settlement IN

Fig 1 419 Proposed method of synthesizing design loadsettlement curve (a) conservative design prodiction b) design prediction- peak in shaft loadsettlement curve (Burland et al 1966)

Cf

-0 0 0

J

0

~-----~--~-~ amp- 2 3 4 5 6 (cm)

a~middotltii -0 lt) cco2 41 -~ -0 1)

vi ~ llloli=----------- ---c~0 1 2 3 4 5 6 7 ( of diameter)1 1 1 1

05 10 15 20 ( in) for 30 in Pile Movemen~ ( 75cm pile)

Fig 1 4 20 Approximate load settlement curves for 30 in bored piles (AB and C represent failure load at 1 in settlement A B and C represent ultimate failure load) (Touma and Reese 194)

95

Load in MN 0 2 3 4 5

25

50E E C

-C 75

-~ ~

-Z 100 lJ

Shaft resistshy

125 once

15 Fig 1 4 21 Load-settlement relationships for largeshydiameter bored piles in stiff clay (Tomlinson 1977)

SettlementSo

Fig 1 4 22 Diagrams of s1iaft and base resistances versus settleshyment assumed in analysis (Kiosinski 1977)

96

0 0 1 ~ r- 025g ~~ 2

1- -shy3 03Sg 14 5 2

Qls =Qpls+Q5 (sQpls) Qs(s-3E

0

degsis __ -- Qpls) a~ C

4

t Sg l

5 Qu Is)

Q(s)in MN-l T

Ouls Q Is) in MN ---

Fig 1 4 23 Construction of load - settlement curves a) for sand b) for cohesive soil (DIN 4014 Part 2 1977 and Franke 1981)

-

s C 5C

Cl

3 0 00 05 10 15 20 Mean settlement I in)

Fig 1 4 24 Load- settlement curves for test shaft S4 (1 in = 25 4 mm 1 ton= 8 90 kN) (Reese 1978)

97

Relative side resistance

0 05 10 15 20 0E=--t----+---+--~

c QI lt) ~ 2 C

I itaker c

QI amp Cooke3E QI-j

c-en 4

C QI

E us 59o

5 QI gt

SA0 w 0 6

Fig 1425a Relative side resistance for clay vesus relative midlength settlement (Reese 1978)

degs (Osl u l t 0 05 10 15 2 0

Mean

2 Lower ~ C QI u

confidence line

~ 3 a

0

~4 E

()

5

6 __ _ ______ ________ __1

Fig 1 4 25b Design curves for esti mating developed side resistance (~Jy1nht ReertP- 1987 J

98 Load Q

8 - 15 mm

1- 2 of p ile diameter

100-200 10-15 of pile Os Ot diameter Shaft Total

Settlement S Resistshy Resist- Load ance once

Fig 1426 Dependence of total load base resistance and shaft resistance on settlement of lar-ge diameter pile (Tejchman Gwizdala 1979)

6

5 Shaft load

4

3

2

z ~

-0

g Pile EF- 56 J 0

0 0 20 30 Butt settlement (mm)

Fig 1 4 27 Deveiopment of shaft and base resistance with settiement (Promboon Brenner 1981)

99

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 0 r-=-1---J__-----------------------~----_shy

Load [ k N l5

10

20

( I

Skin friction ----1 I I

~ 40 QI E

fQI

50 I

Q) I () ICOntinuos fost deolading

Fig 1428 Load-Settlement-Diagram Testelement III (Diaphragm-Wall 0515 m 244 m deep) Portion of Skin Friction and Base Resistance (Prodinger Veder 1981)

Qs (QJ max

0 05 10

Upper Limit of Data

Farr and Aurora (1981J C

~ 2 - shy -+shy - Mean of Data

I QI

Lower Limit of Data a

0 - 3 E

Vl

4

Smid = Approximate shaft buff movement ignoring the elastic compression of upper halt of the shaft

D = Shaft diameter

Q Mobi Ii zed shaft resistance

Qs1max = Maximum shaft resistance

Fig 1 4 29 Relative shaft resistance vs relative movement (Farr and Aurora 1981)

100 Load Q (s) [ MN]

Su5 s s 20 mm for non- cohesive soil u

s s 10 mm f or cohesive soil u

s s 15 mm for claysand u

Q (s) + Q (s)s p

Qs(s)

-C ltII E s ~- [mm]-ltII IJ)

Fig 1 430 Dependence of total load Q(s) point res i stance Q (s) and shaft resistance Q (s) versus settlement p s

~ 3 Usu Qpu Qu Q(s) [ MN]

Sus= 20

1J

60

80

100

120

degs (s ) 140

5 P=Ol Op

1EO

C -ltII E 180 ~ ] 200

s [mm]

Approximative dependence of total load point resistance and shaft resistance versus settlement fny non-cohesive soil

Fig 1 4 31

101

113 3 ~fic0P Ye hY

1 Ground water

D

I y

yh C

Fig 1 5 1 Determination of 01 and 03 for settlement analysis of lar ge diameter bored piles

102

I

E=Et [MPa]

160 0

140

120 0

100

80

6

40

--- --shy 0

0

8 0

0

0

20

2 3 4

I 0 15

Fig 1 5 2

E = Et [MPa]

120

100

80

60

40

I I 0 35 065 085

0

Et= 17 81 qcp0844

( r = 0 128)

5

100

6 qcplMPo]

Calculated values of Young s modulus for piles No 1shy24 according to equation 1 5 2 and 1 56

0

0 0

E =898qcp127 (r= 0314)

E = 9 middot qcp 13 0

20 shy 0

0 0

0 1 2

loJ

I 0 35

3 I

065

4

I 085

5

100

6 qcp [MPo]

Fig 1 5 3 Calculated valueBof Young s modulus for piles No 1shy24 according to equation 1 5 4 and 1 5 6

I K 10 3

( 1 ] 1832

1400 0

1200 0

0

1000 0

800 0

m=2821 qcp0621

600 0

(r=0057)

400 0 0 0 0 0

200

2 3 4 5 6 qcp (MPa]

I 035

I 065

I 085 100 Io

Fig 15 4 Calculated valuesof the dimensionless compress ion modulus K for piles No 1- 24 according to equation 1 5 2 and 1 56

K ( 1 ]

0

1400

1200 0 0

1000

800

600

0

0 0

0

0 0

0 K= 1422 qcpl05

(r=0181)

0 K= 150 qcp

400 0

3)0 0 0

2 3 4 5 6 qcp(MPa)

I I -J 035 065 085 100 Io

Fig 1 5 5 Calculated values of the dimensionless compression modulus K for pile~ No 1-24 according to equation 1 5 2 and 1 5 6

104

120

100

2 3 4 5

I I I rv 0 15 035 065 085 100 lo

Bergdahl (1982) for shallow foundation

o----o Bozant Masopust (1981) D= 1 0 rn h=10 rn large diameter bored piles in noncohesive so il

0----0 Proposal according to current anal ysis

Klosinski (1977) D=090 to 125 rn large diameter bored piles in sand and sandy grave l

Mitchell Gardner (1976) very dense sand E=(35)q (it depends on sand density and stress history) c

Fig 1 5 6 Composision of Young s moduius

105

TABLES

0 Tab 1 11 Methods for detemination of the bearing capacity of bored piles (Ro llberg 1977)

Cl

Nol -- I Soil Areas of Q) Q) Editor Determination of Coefficients 5 type influenceqP qs p ~ C C 11 12 fP I fs

1 all Lab f Soil Mech (1936) l qp at the elevashy 1 0

2 all Huizinga (1951) ~ t~on of the pile 14 point

3 all Van der Veen (1953) ) 18 1 h+l14 all Van der Veen 1 0 Dpl375 D~ 15-- J qcmiddotdhBoersma (1957)

~ 11 +12 h - 12

5 12 all Menzenbach ( 1961) qc at the elevashy~ tion of pile point

6 18 all Mohan Jain Kuman (1963)1 average of qc over 1 h Q) h ~qcmiddotdhl 10 Dpj 3 75 Dj 15 50_micro

and 1 2C 11

7 I amp all de Beer ( 1964) graphically from 10 Q) qc 0 1 h+l18 u C

sand Soviet norm SNIP II 9ct9cp I4 bull O Dp I10 DP l66-1 083shyu clay B5- 67 Trofimenkov (1969) 2 50 1 251 +l J qc middotdh micro middot h middot-l l 2h-~ _micro

9 _micro u all Paproth (1972) at the elevation 3 5 I shy

) of pile point (Dpgt0 5 m 7 D8DpE

E-lt p 1 h+l1 1 h Dplt 5 m u l+l J qcmiddotdh h f qcmiddotd~ 30 Dpl 50 Dp 2 0 100shy10 sand Norwegian method

0l 2 h-12 200Senneseth (1974)

11 lall Soviet method h+l (20-0lqgl - 101 1 q middotdhTrofimenkov (1974) -- f C UpUsmiddotQct

l1+l2 h - 1212 Qct-Qcp 40 D~ 10 Dp 1 33- 0 67shyUsbullh 4 00 2 50

13 English method 10 DFJ 375Dp 10 I

Rodin Corbett Shershywood Thorburn (1974)

3 7 5 Dcl 8 0 DP 10h+l1 _1_ J qcmiddotdh 1 h

qcmiddotdh 20011 +12 h - 12 hb

1 h qcmiddotdh 150hf

0

Observations

fp I f (qp)fs C

Dp E = 1 cm Qbu = 2 Qpa (approx )

s fs=f (qc)

q=~g Us 0 h

fp=f(q~)

fs=f(qgl

bull fine grained non- cohesive soil loosely packed

bull fine grained non- cohesive soil medium dense comp

fine grained non- cohesive soil

Tab 111 (cont)

h+h bE 14 non-cohe- Meyerhof ( 1956 poundti J N 3o middot dh CtME fN3 o dh 1 0 DP 4 0 DP 10 100 etM= l 2

sive soil 1976) lJ +12 h - li hE o hgp taken into consi der ~ Ul (I)

E-lt

C 0

~E = 1 kgbull 30 cm

(statistical limit depth of the pile) hE - clamping length of

pile micro rrJ l-l micro (I)

15 C (I) p

sand Norwegian method

- irm - - - 10 IT

m = diagram O l-l Senneset (1 974) rrJO C

16 rrJ micro gravel English meth it 3 middot N30 - - - 10 - Jf 3 + diagram U) ~

E-lt p U)

iiouiu Coruett Sherwood Thorshyburn (1974 )

(NJQat the elevashytion of pile point1

0 -i

108

Tab 11 2

Results of calculati o n of p i le point load pile shaft load and total pile load from static con e penetration test (Rol l berg 1977)

~ gt

~ gt Ultima te Ultimate Ult imate

No Method micro micro poi nt skin bearing 080lt17nlt1 50 Q) -l

-l middot-i resistanceuro resistance r esistancE

middot-i p 0

(J n1 n n2 n n3 n n1 n2 n3

1

2

Lab fSoil Mech

Hu izinga (1951)

(1936 ) 430

307 i 3 Van der Veen (1953) 239

49

4

5

Van der VeenBoersma

Menzenbach (1961)

(1957) -l middot-i 0

2 4 7

1 57 1-CJ)

6

7

8

Mohan Jain Kumen

de Beer (1964)

Sovi et Norm (1969)

(1963) CJ) Q)

-l middot-i 0

lJ Q)

Q)

gt- CJ) Q)

c 0

2 44

1 37

183

47

t I

49

487

0 18

47

16

3 02

0 85 1

47

16

137

08

9

10

Paproth ( 1972)

Norw Method (1974)

~ 0

0

u I

C 0 C

1 8 1

180 l 46

1- - -_L~ 46 167 46 1 19

1 1 Soviet Method ( 1974) [1 1 41 46 1 62 13 083 13 1 14 0 8

12 Engl Method (1974) 2 66 35 128 35 2 30 35 1 28

Note

cal Q a) n = --- mean value of the rat i o between calculat ed pile loads and those n Q determined f r om loading test

b) n = number of piles

109

Tab 113

Point resistance of large diameter piles (DIN 4014 Part 2 1977)

Settlement Point pressure 1 Factor -fshy

(cm) (MPa) cf=lOMPa I i=15 MPa C C

Piles without enlarged base

1 05 005 003 2 08 008 005 3 11 0 11 007

15 34 034 023

Piles with enlarged base

1 035 0 04 002 2 065 0 07 004 3 0 90 009 006

15 2 40 0 24 0 16

Note 10 lt qp lt 15 (MPa)C

Tab 114

Skin friction resistance of large diameter piles (DIN 4014 1977)

Strength Static cone pen- Depth below Skin frict ion Factor of sand etration resist surface

(MPa) (m) (MPa) fs

Very small lt 5 - 0

Small 5 to 10 0 to 2 0 2 to 5 003 ln6 to 333

gt 5 005 100 to 200

Medium I I 10 to 15 0 to 2 0 I

I 2 to 7 5

gt 75 I 0045 0075

222 to 133 to

333 200

High I I

i

l

gt 15 0 2

to 2 to 10 gt 10

I I I

I

i

0 006 0 10

gt gt

250 150

Note Skin friction is assumpted as linear until s =2 cm and constant for s gt 2 cm

11 0

Tab 115

Values of the inverse of the point resistance factor (Bustamante 1982) fp

Soil type qPC I 1

Factor - shyfp(MPa)

for piles group

a) Silt and loose sand lt 5 0 40 -b) Moderately compact

5 - 12 040sand and gravel

c) Compact to very gt 12 i 030compact sand and gravel I

Tab 116

Values of the shaft resistance factor fs (Bustamante 1982)

Factor fs

Soil type qs

C Category I(MPa) I A I B I II A III BI

I a) Silt and loose lt 5 60

i 150 I 60 I 120-

sand

b) Moderately corn- I pact sand and 5 - 12 100 200 100 200 gravel i

Icl Compact to very

compact sand gt 12 150 i I 300 150 I 200I

I I and gravel i

I

111

Tab 117

Point resistance factor (proposal)

-

1-fp

qc (MPa)

Gravel

Coarse sand Medium sand

Fine sand Silty sand

25

080

0 70

060

5 0

0 65

055

047

75

054

045

039

10 0

045

036

031

150

035

027

022

200

030

0 23

018

Tab 118

Shaf t r e sistance factor (proposal)

fs

qc (MPa)

Gravel

Coarse sand Medium sand

Fine sand Silty sand

25

80

100

130

10 0

120

150

190

I 200

180

230

300

11 2

Tab 119

Calculated values qcp

for large diameter piles

Pile Literature Length Diameter (m) Measured p Cr1 lcul Settlement Note Authcr(year) No (ml D Dp (MPa)

(s=0 10Dp) (MPa)p ~~JL__

s s ()(mm) Dp

1 Franke (1977) 1 13 11 36 38 117 106 Garbrecht

2

3

2

3

13

14

11

15

1 58 36

37

38

40

215

185

136

123

) qg accord to Franke

4 4 13 15 204 3 2 33 220 108 and Garshy

5 5 6 11 33 35 127 11 5 brecht (1977)

6 6 6 11 153 36 35 146 9 5

7 7 6 1 5 34 35 158 105

8 -shy 8 6 15 2 1 41 3 0 109 52

9 10 9 11 39 52 47

10 11 95 11 43 35 77 70

11 12 9 11 49 66 60

12 13 10 11 15 5 1 4 0 77 5 1

13 14 9 11 1 5 4 8 46 115 77--shy14 Pranke ( 1973) 15 115 18 4 9

) ) average 88

15 13$ 13 5 1 3 19 -2 5 3 2 sd=3 0

16 - - 165 16 5 13 19 30 sv=0 34

17

18

Spang (1972)

llXJ

V90

6 6

6 75

0 7

09

3 2

4 2

32X

42X

x) s =0 10 D p

19 VlaJ 720 1 2 39 3 9X

20 - - VlsJ 6 5 1 5 3 0 3 ox

21 Touma and US59 9 9 o 76 8 0 Reese ( 1977)

22 HH 75 0 61 8 0

23 Gl 180 091 - 2 5

24 BB 137 o 76

sd = standard deviation

sv = standard variation

Tab 1 2 1

Ultimate point resistance coarse and medium sand psf (MPal (Pol ish Specification 1975)

Depth h

Medium sand r = 0 40 N = 200 30 Base diam (Op) and depthbase diam (hDp)

Dense sand r 0 Base diam (Op)

= 0 80 = 50N30 and dpethbase diam (hDp)

(ml Dp = 0 6 m Dp = 1 0 m Dp =12 m Dp = 1 5 m Dp = 0 6 m DP = 10 m DP = 12 m DP = 15 m

Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp

5 10 83 0 85 5 0 075 42 07 33 20 8 3 16 50 14 42 13 3 3

7 14 11 7 1 2 70 11 5 8 10 4 7 2 8 11 7 22 70 2 0 5 8 1 8 47

10 18 16 7 15 10 0 14 8 3 1 3 67 35 167 28 100 2 5 83 2 2 67

15 18 250 18 15 0 16 12 5 15 100 4 2 25 0 3 4 15 0 30 125 27 100

20 2 4 333 2 0 200 185 167 1 7 133 4 7 333 3 8 200 33 167 30 13 3

25 26 41 7 2 2 25 0 20 208 19 167 5 0 41 7 4 0 250 3 5 20 8 3 2 167

w

11 4

Tab 131

Partial safety factors for resistance to axial load for bored piles (Wright Reese 1979)

Partial safety Normal Poor factor for control control

Unit skin resistance 1 70 185

(no load test)

Unit skin resistance 160 1 70

(from load test)

End bearing 165 180

Tab 1 3 2

Probability of failure of bored piles under normal design conditions (Wright Reese 1979)

Probability of Factor of Structure failure safety classification

5 10-3 25 monumental

210shy 22 permanent- 2

5 middot 10 2 0 110shy 1 85

temporary 5 bull 10-l 165

11 5

Tab 133 Results of field tests (Tejchman Gwizdara 1979)

L

II C C C 0 0 0

micro micro

micro micro micro For universal safe~y F2u u CUNo micro C C ~ ~g~ middot- C

~ Permisible micro micro i ~c -i micro

cmiddot-~ micro~ L

micro oo ~ load ~t~ ~~ omicro micro ~ ~ 3Z~ ~ ~ micro

-~~

~ e ~ --middot--

middot- ~ obull 0

~ g ~~ ~~ ~

~ L

o Jl i5 sect~ =gt L Q~ = yen t p Qp Qp

D h Q~ Srrx s tm p s E~ iQ~lQ~cm ~~ KN X ll1l kPa kPa kN kN kN Jl ~e ~ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 70 6 60 4081 1550 2531 38 0 1182 10 4040 175 2041 245 1796 632 141 120

2 90 6 75 5082 3041 2041 598 1785 10 4782 107 2541 1079 1462 282 140 42 5

3 120 720 7259 4041 3218 557 1035 10 3576 119 3630 2158 1472 187 2 19 594

4 150 650 8643 4454 4189 51 5 928 20 2521 136 4326 2158 2168 3 10 166 253

5 130190 195 7750 3011 4709 392 805 10 1075 - 3875 981 2894 3 10 166 253

6 130190 165 9516 5101 4415 536 522 20 1800 - 4758 1962 2796 260 158 412

7 130190 135 8044 5199 2845 646 114 4 15 1834 - 4022 2109 1913 2 47 149 524

8 180 115 11380 4415 6965 388 792 15 1735 - 5690 2747 2943 161 2 37 483

9 76 980 6867 4316 2551 628 110 13 9529 109 3534 1128 2306 383 111 32 8

10 61 7 60 7161 2747 44 14 383 67 15 9404 303 3581 392 3188 700 169 109

11 92 180 4807 883 3924 184 20 8 1329 76 2404 196 2207 450 178 82

12 76 24 5 6769 736 6033 109 20 8 1623 103 3385 147 3238 500 186 43

13 76 137 5396 2060 3336 38 2 63 8 4535 102 2698 589 1109 350 t 58 218

14 120 23 5297 1854 3443 35 0 960 10 1640 39 2649 196 2453 945 130 7 4

15 135 16 7 13489 7554 5935 560 181 10 5260 83 6749 2060 4689 367 127 305

16 170 46 0 8829 2943 5886 333 17 10 3466 39 4415 1373 3042 2 14 1 94 31 1

Average Fi 387 166 Standard deviation Sd 2 1 5 034 Standard variation sv= 0 56 0 20

1234 Spang1972 567 8 Franke 1976 9 10 111 2 1 3 Touma Reese 1974

14 Colombo 1971 15 Kerisel Simons 1962 16 Appendino 1973

11 6

Tab 134

Results of model

SafetyScheme factor

medium F ssand

F p

loose F s

samd Fp

F 3 55 sd _P F 1 32 sd

s

tests (Tejchman Gwizdara 1979)

Diameter D (mm)

30 60 90 133

145 129 108 112

280 3 08 307 294

140 154 153 112

594 3 04 324 426

107 sv 030

0 19 sv 0 14

117

Tab 135

Individual safety factors according to literature

Literature proposal ofLiterature individual safety factor

Fs Fb

Polish Specification (1974) 100 250

Tejchman Gwizdala (1979) 150 400

Bustamante Gianeselli 200 300 (1982)

Decourt ( 1982) 130 400

average 145 3 38

TAB 141 0)

Load settlement curves - measured

Pile No

Settlement 1 c 3 4 5 6 7 8 9 10 11 12

s p s p p s

p p s P

p s P

p s p p s

P p s

P p s

p p s p p S

p I i p s

p p s p

mm MPa rrrn lifl5a MPa mm

lifl5a MPa

mm lifl5a MPa mm

RPa mmMPa nwa MPa mm

RPa MPa mm RPa MPa mm

RPa MPa mm RPa MPa mm

RPa MPa mm RPa MPa mm

RPa 10 045 222 09 1 1 05 20 07 143 06 167 08 125 0 5 20 08 125 10 100 08 12 5 15 67 16 63 20 092 21 7 14 43 08 25 10 20 0 1 1 182 12 167 0 9 22 2 12 167 18 111 14 143 24 83 22 9 1 30 125 240 1 7 I 7 6 1 1 273 1 2 250 14 214 15 200 1 2 250 15 200 25 12 0 19 15 8 30 100 26 11 5 40 1ti 250 20 10 0 14 28 6 14 286 1 7 235 18 222 1 4 286 18 22 2 3 2 12 5 23 174 36 111 3 0 133 50 20 250 22 ~27 1 7 294 1 5 333 20 250 2 1 ~38 1 7 294 1 9 263 37 135 27 18 5 4 2 11 9 33 152 60 2 2 273 24 ~5o 20 300 1 7 353 23 61 22 ~73 18 333 21 286 43 140 30 20 0 46 13 0 36 16 7 80 271 295 27 796 24 333 20 400 27 ~96 25 1320 22 364 25 32 0 53 15 1 36 222 41 195

100 322 31 1 30 333 28 357 22 454 31 1323 29 345 26 385 28 357 60 16 7 40 25 0 45 22 2 125 38 329 32 391 32 391 25 500 32 139 1 30 41 7 32 39 1 4 6 272 48 ~6 0 150 14 2 357 34 1441 36 41 7 27 555 36 ~1 7 34 44 1 36 41 7 175 36 486 39 449 30 583 38 ~61 38 461 200 38 526 42 476 32 625 225 39 577 33 682

(mmMPa) ( 1 MPa)

1

1=2074

t 1=O ~01 =0 98S

a1=1132

b1 =0 212 V =0994

a1=2217

b1=O 131

V =Q 978

a1=1860 b1=0233

V =Q966

a1=1562

b1=0174 V =Q983

a1=1382

b1=O195

V =0975

a1 =20 37

b1 =C 174

V =0957

a1=1443

b1=(l 193 v =O 961

a1=965

b1= 0071 V =0 990

a1=1 91

b1 =o 128

V =0 993

a1=5 83

b1=C124

v =O 981

a1=6 1 4

b1=01 64 v =U 985

li(MPa) ~9 4 7 76 43 57 middot5 1 57 5 2 141 78 81 61 cp (MPa) B8 39 40 33 35 35 35 3 0 39 3 5 49 40 __Ef ~-6 1 2 1 9 1 3 16 15 16 1 7 36 22 16 15 qcp

TAB 141 (continue) Load settlement curves - measured

Pi le No 3ettlement 13 14 15 1 17 18 19 20 21 22 23 24

s p s T5

p s T5

p s T5

p s P

p s P

p s P

p s P

p s P

p s T5

p s T5

p s p p s

p mm MPa lll1l

HPa MPa mm HPa MPa mm

fWa MPa mm fWa MPa lll1l

HPa MPa mm HPa MPa mm

MPa MPa lll1l NT5a MPa HPa MPa 111111

HPa MPa 111111

HPa MPa 1)1111

mra 10 1 7 59 075 133 06 167 075 133 ~95 105 09 11 1 07 143 3 76 1 7 59 08 133 10 100 20 2 4 83 130 154 095 21 1 1 15 17 4 1 75 114 16 125 12 167 ~7 74 33 6 2 1 3 15 3 1 9 103 30 29 103 1 7 176 1 2 250 15 200 r55 118 22 136 16 18 8 38 79 46 66 1 7 182 27 110 40 33 12 1 20 200 1 35 29 6 1 75 229 ~O 133 26 154 175 229 49 82 58 6 9 1 9 21 1 35 115 50 36 139 235 21 3 145 34 5 1 95 256 24 208 ~-4 147 28 17 9 20 250 gt8 86 6 9 72 2 2 233 4 2 11 8 60 39 154 265 22 6 1 55 387 2 15 279 28 214 ~6 16 7 30 120 0 2 2 27 3 o 8 89 80 7 5 2 3 262 80 43 186 31 258 1 7 47 1 36 222 14 05 198 33 124 2 25 320 B 1 98 25 327

100 45 222 18 556 39~ 253 ~-5 222 36 1278 27 370 ~8 113 125 47 26 6 20 625 42 29 8 149 255 28 1446 t50 22 682 3 0 500 175 200 225

(mmMPa) a1=479 a1=1206 a1=14 51 a1=1113 a1=1406 ~=836 a1=843 a1=1176 ~=64 a =561 a1=10 0 a1=9 5 (1MPa) b1=0175 b1=0 178 b1=0 382 b=0287 b1=O 119 p 1=0 137 h1 =o 193 b=0258 p1=0 049 b1=0032 b1=0 276 b1 =0 048

hf (MPa)

v =0998 57

v =0-987 5 6

v =0989 26

v =0992 35

v =0933 Iv =0991 84 73

v =0993 5 2

v =0998 tJ

3 9 =0944 v =0998 v =0996 v =0981

qcp (MPa) 46 39 32 30 32 14 2 39 30

lL 12 1 1 08 12 26 1 7 1 3 13 qcp

lD

N 0

TAB 142

Calculated point resistance curves

Setlement (mm) p(s)

1

n p(s)

Calculated value of the p(s) for pile No

2 3 4 5

n p(s) n p(s) n p(s) n p(s) 6

(MPa)

n p(s)

7

n p(s) 8

n p(s) 9

n p(s)

10 20 30 50 80

100

150 200 225

070 128 177 253 335

375 446 493

157 140 141

127

123

1 16 106

070 1 25 168 232

297

327 378 410

422

078 089 099 1 06

1 10

109 1 11 108

108

073 1 30 176 246

315 349

405 441

146 163

160 145

1 32 125

113 105

056 096

1 26

167 205 222

249 265

271

0 80 096

105

1 11 100 101

092 0 83

082

065

118 162 233

308 345

412 456

108 108

1 16 116 114 111

064

1 12 151 2 10 2 69

298

346 3 76

078 P63 093 tt 13 101 tt 53 100 I 13

108 ~75

103 ~04 096 ~ 55

~ 87

1 26 125 127 126

125

1 17 1 04

052 088

1 15 153

188 2 03 227 242

065 0 74

o 77 0 81 0 75

0 73

063

072 122

1 83 262 347 388

463 5 11

073

0 74

073 0 71 0 65 065

064 1 18

162 233 309

3 46

41 3 4 57

Dp (m) 1 1 Qcp (MPa) 38 (mmMPa) h2 8 1 1 9 Qcpbullv1(MPa) 72

158

39

124 14 55

15

40

n20 15 60

204

33 148 10 33

1 1

35

tt 4o 1 9 67

1 53 3 5

tt 4 0 1 5 51

15

13 5

114 0 15 i-gt 3

2 1

30

tt 6 0 10 3 0

1 1

3 9

12 4 1 9 74

1 1

3 5 h40

1 9 67

Note n = condition coefficient calculated p(s) measured p(s)

10

n

081

084 0 85 0 86 0 85

087

TAB 142 (continue)

Calculated point resistance curves

Calculated value of the p(s) for pile No (MPa) Setlement 11 12 13 14 15 16 17 18 19 20

(mm) p(s) ll p(s) n p(s) ll p(s) n p(s) n p(s) n p(s) n p(s) n p(s n p(s) n

10 106 070 0 71 045 091 054 099 1 32 055 092 053 070 060 081 085 0 72 080 055 078

20 1 90 079 130 059 160 067 1 70 1 30 096 101 091 079 1 12 148 085 1 31 082 098 082

30 258 086 1 76 068 2 15 074 222 1 31 1 26 105 120 080 156 205 081 180 082 132 083

50 363 086 246 075 297 082 296 1 26 1 70 117 161 082 228 095 295 087 256 0 91 184 092

80 471 316 o 77 3 77 088 364 1 18 2 1 o 1 24 199 308 085 393 097 336 1 02 237 095

100 522 349 078 415 092 394 228 1 27 2 16 348 088 442 098 375 104 262 097

150 611 405 479 443 258 117 244 423 529 443 304 101

200 669 441 518 473 276 261 474 587 488 331

Dp (MPa) 1 1 1 5 1 5 18 1 9 19 070 090 12 15

qcp (MPa) 49 4 0 46 49 32 30 32 42 39 30 12 a1 mmMPa) 84 h20 96 84 152 160 152 124 160

IV1 1 9 1 5 15 12 11 1 1 23 21 18 15

qcpmiddotv1 (MPa) 93 60 69 59 35 33 74 88 70 45

- 12287 average = ~ = 098

standard deviation sd = 023 standard variation sv = 023

N

122

TAB 143 Ultimate settlement for shaft resistance - summing up

Ultimate settlements (mm)Literature sand cohesive claysand

soil

Burland Butler Dunican (1966) 7

Touma Reese (1974) 10 Tomlinson (1977) 10 Klosinski (1977) 8

Francke Gerbrecht (1977) 20-30 DIN 4014 part 2 (1977) 20 10 Francke (1981) Reese (1978) (1979) 05-2 of 05-2 of Farr Aurora (1981) shaft dia~ shaft diam

5-20 mm 5-20 mm Tejchman Gwizdala (1979) - Spang (1972) 10

10 10 20

- Francke (1976) 10 20 15 15

- Touma Reese (1974) 13 8 15 8

8 - Colombo (1971) 10

- Kerisel Simons (1962) 20 - Appendino (1973) 10 Promboon Brenner (1981) 10 Prodinger Veder (1981) 12 Decourt (1982) 10-15 10-15

-average s = 14 1 10 126

standard deviation sd = 53 2 1 47

standard variation sv = 038 021 037

123

TABLE 14 4 Al l owab l e base resistance versus sett lement

Pile Li terature ength Diameter (m) Calculated qcp=qcp Settl ement Fp-3- sa (mm)No Aut hor No (m) D DP qcp (MPa) for qcp3(MPa)

1 Francke ( 1977) 1 13 11 38 127 25 Garbrecht

II2 2 13 11 158 39 130 19

II3 3 14 15 40 133 33

II4 4 13 15 204 33 110 23

II5 5 6 11 35 117 22

II6 6 6 11 153 35 117 19

II

8

7 7 6 15 35 1 17 25

II 8 6 15 21 30 100 21

II9 10 9 11 39 130 13

II10 11 95 11 35 117 15

II11 12 9 11 39 163 11

II12 13 10 11 15 40 133 7

II13 14 9 11 15 46 153 9

14 Francke ( 1973) 115 11 5 18 30 100 15

II15 135 135 13 19 32 107 29

II16 165 165 13 19 49 163 35

17 Spang (1972) V70 660 070 32 107 28

18 II V90 675 0 90 42 140 16

II19 V120 720 1 20 3 9 130 16

II20 V15C 650 150 30 100 16 average for pi les 198

standard dev sd = 78

standard var sv = 039

)assumed qc = p for s = 010 Op sonding meRsurement were not availab le

IV

TA~LE 15 1

Comparison of the initial sl ope of the pile point resistance - settlement curve

Accardi ng to 1 2 3 4

In i t i ~l 5

slope a1 for the pile No

6 7 8 9

(mmMPa)

10 11 12 13 14 15 Note

a 1 for s=10 mm 222 11 1 a1 for s=20 mm 21 7 14 3 calculated 207 113see Tab 14 1 Bo Berggren (198 )230s=20 mm

Schmertmann s method (see 202B Berggren 1981)s=20 mm

No 1 _ llNo - 6 1 97 098

202 250

22 2

400

30 8

090

14 3

200

186

076

167

182 156

286

18 2

107

125

167 138

091

20 0

222

204

426

263

098

125

167

144

087

100

11 1 9 7

182

23 5

1 03

12 5

14 3

11 9

174

164

105

67 83

58

14 6

125

1 16

63

9 1

61

103

59

8 3 48

123

13 3

15 4 12 1

1 10

167 21 1

aceto hypershy14 5 bola type curve

1 15

No 2 NQj = n1

No 4Noz ~ na No 5Naz= T]g

105 1 27

106

093

1 13

160

1 23

108 1 17

157

100

121 109

1 92

118

1 16 1 14

164

2 12

120

122

1 15

143

1 76

151

149 1 73 1 27 146

TAllLE 151 (continue)

Compa ri son of the initial slope of the pile point resistance - settl ement curve

Initial slope a1 for the pile No (mmMPa)According Note to 16 17 18 19 20 21 22 23 24 -a1 for s=10 mm 133 - 105 11 1 143 76 59 133 100 a1 for s=20 mm 174 - 114 125 167 74 62 153 10 3 calculated see 11 1 146 84 84 118 64 56 100 95Tab 141

Bo Berggren 198 67 78 25 0 114s=20 mm Schmertmann s method (see B 136 67 250 146 Berggren 1981) s = 20 mm

nG = 108 No 1NoJ = n 1 20 125 1 32 121 1 19 105 1 33 105 sd = 0 14

SY= 013 No 2 i) = 1 29ro1 = n1 157 136 149 142 1 16 1 11 1 53 108 sd = 019

SY= 015 No 4 iis = 143 INo2 = ns 091 126 1 63 111 sd = 033

SY= 0 23 No 5 ii9 = 1 37183 108 163 142INoz = n9 sd = 0 37

SY = 027

N Vl

126

TABLE 152

Measured and calculated pile point resistance

Pile Calculated Measured Measured No qcp P for

s=10 mm P for s=20 mm

~ 10 mm ~ 20 mm

- (MPa) (MPa) (MPa) - -

1 38 045 092 84 41 2 39 09 14 43 28

3 40 05 08 80 50 4 33 07 10 47 33 5 35 06 11 58 30 6 35 08 12 44 29 7 35 05 09 70 39 8 30 08 12 38 25 9 39 10 18 39 22

10 35 08 14 44 25 11 49 15 24 33 20 12 40 16 22 25 18 13 46 1 7 2 4 27 19 14 30 075 13 40 23 15 32 06 095 53 34 16 49 075 115 65 43 17 32 - - - -18 42 095 1 75 44 24 19 39 09 160 4 3 23 20 3 0 07 12 43 25

average= 484 291

sd 163 088 sv 034 030

Tab 153 Results of calculation for piles No 1-24

Pile No

Length (m)

Overburden pressure 0 vs

0hs (kPa)

0ve (kPa)

0 nc (kPa)

- -ov=o1 (kPa)

- -OV=03 ( kPa)

00 (kPa)

p(a il ( kPa)

s (a 1) (mm)

A2 ( 1 )

E t

(kPa)

Md ( 1 )

K (1)

E I

t (kPa)

( kPa) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

l 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

13 12 14 13 6 6 6 6 9 95 9

10 95

11 5 135 165 66 675 72 65 99 75

180 137

l 33 133 123 116

70 70 70 70

104 102 95

102 95 94

106 139 95

101 106 97

180 137 221 215

53 53 49 46 28 28 28 28 42 41 38 41 38 38 42 56 38 40 42 39 72 55 88 86

202 202 216 202 1114 104 104 104 146 153 146 160 153 181 209 251 120 128 134 123 238 180 305 277

202 202 216 202 104 104 104 104 146 153 146 160 153 181 209 251 120 128 134 123 238 180 305 277

168 Hi8 170 159 87 87 87 87

125 128 121 131 124 138 158 195 108 115 120 110 209 159 263 246

128 128 133 124 66 66 66 66 94 97 92

101 96

110 126 154 79 84 88 81

155 118 197 182

141 141 145 136

73 73 73 73

104 107 104 111 105 119 137 117 89 94 99 91

173 132 219 203

950 975

1000 825 875 875 875 750 975 875

1225 1000 1150 750 800

1225 800

1050 975 750

2000 2000 625

1500

218 139 255 190 16 1 146 210 12 7 10 1 11 7 84 73 69

104 167 210 124 103 10 1 109 142 120 76

153

0802 0802 0822 0820 0798 0798 0798 0798 0791 0798 0800 0811 0814 0837 0837 0830 0769 0 768 0771 0 775 0 780 0 781 0 788 o 779

35296 81603 43312 65222 44019 67515 4609 91313 78186 60572

118115 15129 5 184075 95577 67017 81607 33252 67554 85294 75994 78816 74857 55101 54862

075 075 0 77 075 084 084 084 081 079 078 084 080 083 076 076 078 0 77 081 079 076 082 087 064 0 74

278 643 337 512 542 832 567

1085 766 572

1216 1417 1832

796 520 709 353 735 878 781 630 726 302 366

26472 61202 33350 48917 36976 56713 38656 73964 61767 47246 99217

121036 152782

72639 51932 63653 25604 54719 67382 57755 64629 65126 35265 40598

a=282l a =l781 y=axs S=0621 B=0 844

V=0 057 V=0 128 _ Iv -J

~

N co

Tab l53 Results of calculation for piles No 7-24

Pile No

17

1 2 3 4 5 6 7 8 9

70 11 72 13 74 75 16 17 78 79 20 27 22 23 24

Ground water

18

-20 m b s

-28 m -335 m -330 m -3 15 m dry dry -53 m -85 m

E t (kPa)

19

33653 64979 35364 45664 47969 54583 37574 63072 74548 57753

71 2618 123531 150297

71239 48619 59204 39744 77208 77863 62049 90407 95844 57762 62937

vxEt=E Md (kPa)

20

25240 48689 27230 34248 35254 45849 31562 51040 58893 45047 94599 98825

724747 54142 36950 46179 30603 57678 61572 47157 47734 83384 36968 46569

a=898 S=l 27 =0314

K (l )

21

265 511 275 358 517 672 463 749 730 546

1160 1157 7496

593 377 514 422 775 802 638 723 929 377 420

a=l422 S=l 05 =0187

E=E = t1 3

g-gcp (kPa)

22

51046 52799 54566 42492 45870 45870 45870 37547 52799 45870 77039 54566 65438 52799 40826 71039 40926 58739 52799 37541 82549 82549 40826 59945

Calculated s

(mm)

23

708 128 72 7 15 3 724 146 144 17 3 71 3 11 5 11 2 732 13 2 707 1 5 1 13 7 93

102 118 137 728 12 l 69

11 9

s__caL n=smeos

() 24

050 092 050 087 0 77 7 00 069 l36 l 12 098 133 l81 l97 103 090 065 0 75 099 117 126 090 101 097 078

ri=l00 sd=035 sv=035

K = l50gcp

25

570 585 600 495 525 525 525 450 585 525 735 600 690 450 480 735 480 630 585 450 825 825 1180 645

E l

(kPa)

26

67684 69465 72250 57726 44856 44856 44856 38448 59659 54306 74956 63214 70704 49089 56783 79502 45283 61081 58207 42927

708572 94785 71033 91898

E = t E middotA2

l

(kPa)

27

54283 5571 l 59389 47336 35795 35795 35795 30682 47790 43336 59964 51266 57553 47088 47024 65987 34823 46970 44877 33269 84639 74027 55974 71589

Calculated s

(mm)

28

l O l 12 l 11 7 737 15 9 18 7 185 21 1 12 6 12 2 133 14 l 150 13 7 13 l 14 7 709 12 7 738 755 12 4 735 50

100

- -

Tab l53 Results of calculation for piles No l-24

Pile

29

l 2 3 4 5 6 7 8 9

10 ll 12 13 14 15 76 17 78 19 20 21 22 23 24

sea l n= middotshy

smeas

28 TT

30

0 46 087 046 0 72 099 l 28 088 l 66 l 25 l 04 l 58 l 93 2 17 l 32 078 0 70 088 l 23 l 37 l42 087 l l 3 066 065

n=l 10 sd=0 44 sv=040

s seal for p n=s=lOrnn ac cording to s = 70mm

(mm)

37 32

5 l 0 51 ll 8 l18 64 064

13 0 l30 85 0 85

13 3 l 33 83 0 83

184 l84 ll6 l l 6 105 l05 137 l 37 21 3 2 12 19 4 l94 107 l06 l l 3 l l 3 84 084

92 092 l 0 9 l09 128 l28 83 083

l 0 3 l03 88 088 79 0 79

n=1 73 sd=025 sv=027

s for p according to s = 20mm

(mm)

33

10 4 184 102 18 6 15 6 200 14 9 276 209 18 4 219 292 274 185 17 9 12 9 -

169 194 219 172 200 143 15 0

seal n=s=20rnn

34

052 092 051 093 078 l00 075 l 38 l 05 092 l l 0 l46 l 37 093 090 065

-085 097 l1 0 086 l00 072 075

n=093 sd=025 sv=0 27

s for p according to s = 30rnn

(mm)

35

142 223 14 l 22 3 198 249 142 34 5 290 249 274 345 33 l 243 22 6 168 -

24 7 26 6 293 24 3 279 187 213

seal n=s=30rnn

36

047 0 74 047 0 74 066 083 047 l 15 0 97 083 091 l 15 l10 0 81 075 056 -

082 089 098 081 093 062 0 71

n=o80 sd=020 _ sv=0 25 N

IO

APPENDIXES

APPENDIX 1 1 1

Pi le No 1 Length 13 m D 10 m

Areas of influence

-

qe

(MPa)

1 fp

___9c_ f

(MPR) zyen

(MPf) qcp (MPa)

Soil type

22 20 18 16 14 1 2

l 2 (m)

10

1 0 08 06

16 15 16

026 027 026

42 41 42 Sand

04 14 U28 39 02 14 028 39 41

02 16 0 26 42 04 16 026 42 06 16 026 42 08 14 028 39 Sand 1 0 13 030 39 12 15 027 4 1 38 14 13 030 39 16 12 032 38 18 12 032 38

40 20 10 036 36 22 10 036 36 24 9 U39 35 2 6 8 043 34 28 10 036 36 30 10 036 36 3 2 10 036 36 34 10 0 36 36 36 11 0 34 37 38 11 034 37

l 1 (m)

40

42 44

11 0 34 37 15 1

46 48 50 52 54 56 58 60 62 64 66 68 70 7 2 74 76 78 8 0

APPENDIX 112

Pile No 2

to little depth of sounding

q~ = middle values for 11 = 2 Op

q~ = 145 MAa (Francke Garbrecht 1977 Tab 2 p 50) (Fi g No 2)

for sand

qcp = 0275middot145 = 40 MPa q~p =V ~~s) middot 40 = 097middot40 = 39 MPa

Pile No 4

q~ = 120 MPa sand (Fig No 4)

q = 0 315middot12 = 3 8 MPa q bull 38 = 086middot38 = 33 MPa=V Jmiddot54

1

cp middot bull cp

Pile No 12

qg = 155 MPa sand (Fig No 13)

qcp = 026middot155 = 4 03 MPa

Pile No 13

q~ = 200 MPa sand (Fig No 14)

q = 0 23middot20 = 46 MPacp

APPENDIX 113

PileNo3 Length 14 m D 15 m

Areas of influence

-

qe

(MPa)

1 Tp

----9cf

(t-1Pf) r~

(MPf) qcp (MPa)

Soil type

22 2D 18 16 17 025 43 14 17 II II

L 2 17 II II

12 (m)

16 10 08 06

17 17 17

o

II

II

II

II

Sand 04 17 II II

02 19 024 46 b9

02 19 024 46 04 17 025 43 06 15 027 41 08 13 030 48 1 0 12 032 38 12 11 033 36 14 13 0 30 39 16 14 028 39 18 12 032 38 40 20 16 026 42 2 2 16 026 42 24 11 033 36 26 11 033 36

60 28 30

10 10

036 036

36 36

Sand

32 10 036 36 34 12 032 3 8 3 6 12 032 38 38 12 032 38

1 1 (m)

40

4 2 4 4

13

14 16

030

028 026

39

39 42

46 13 030 39 48 12 032 38 50 14 028 39 52 10 036 36 54 13 030 39 56 14 028 39 58 15 027 41 60 15 027 ~-1 236 62 64 66 68 70 72 74 76 7 8 80

APPENDIX 114

Pi l e No 5 Length 6 0m D 11 m Dp 11 m

Area s of i nfluence

-

qc

(MPa)

1 Tp

-3Lf

( MPf) l ~

(MP~) qcp (MPa)

Soil type

2 2 2 0 18 1 6 14 1 2 155 U i1 33

l 2 (m)

1 2 10 08 06

15 14 12

022 023 0 27

3 3 32 32

Fine sand

+ silt

04 125 026 33 02 16 0 21 34 39

02 16 021 34 04 13 025 33 06 08 10

15 5 17 20

022 0 20 018

34 34 36

35 Fi ne sand

1 2 20 0 18 36 14 20 018 36 + s ilt 16 20 0 18 36 18 165 020 32 20 165 0 20 32 22 17 0 20 34 24 26 2 8 30 32 3 36 38 4 0

19 21 5 21 5 21 5 20 19 5 19 5 20 215

01 9 ---

018 018 0 18 0 18 -

3 6 40 40 40 36 35 3 5 36 4 0

l 1 (m) 4 2

44 20 19

018 01 9

36 3 6 157

46 48 50 5 2 54 56 58 6 0 62 64 66 68 70 7 2 74 76 7 8 8 0

APPENDIX 1 15

Pi le No 6 Lengt h6 0 m D 11 m

Areas of qc 1 __9_c_ qcp Soil typei nfluence fp f 1 yen (MPa) (MPf ) (MPf) (MPa)

-2 2 20 18 16 t 4---0 14 75 038 29 L2 20 018 36 Fi ne sand

1ti 10 30 40 + s i lt12 08 19 0 19 36(m) 06 17 020 34 04 14 023 32 02 9 034 31 56

02 6 043 26 04 12 026 3 1 06 17 020 34 08 11 028 3 1 1 0 14 023 32 35 1 2 17 020 34 Fi ne sand14 19 019 35 16 20 018 36 + silt18 18 0 19 34 20 14 023 32

46 22 12 026 31 24 12 026 31 26 15 022 33 28 18 019 34 30 20 018 36 3 20 0 18 36 34 20 018 36 3G 20 018 36 38 20 018 36 4 0 20 018 36

l 1 42 22 40

(m) 44 22 40 46 L2 4 0 158 48 50 52 54 56 q =V ~ - 3 b =0 99middot35 = 35 MPp cp 53 58 6 0 62 64 66 68 70 72 74 76 78 80

APPENDIX 116

Pi leNo7 Length 60 m 0 15 m

Areas of influence

-

qe

(MPa)

1 Tp ~

(MPg) r~

(MPf) qcp (MPa)

Soil type

22 20 18 16 9 U33 30 14 10 031 31 12 135 024 32

l 2 (m)

16 10 08 06 04 02

13 12 6

10 175

025 026 043 0 31 020

33 31 26 3 1 35 50

Fine sand

+ silt

02 04 06

17 10 115

0 20 0 31 027

34 31 3 1

08 10

145 185

023 019

33 35 3 5

1 2 14

20 19

018 0 19

36 36 Fine sand

l 1 (m)

60

16 18 20 22 24 26 28 30 3 2 34 36 38 40

42 44 46 48 50 52 54 56 58 6 0

185 125 125 165 17 19 21 215 205 20 21 20 20

24 22 20 215 22 22 21 19 18 22

0 19 026 0 26 020 020 019 --

018 018 -

018 01 8 --

018 ----

0 19 0 19

35 33 33 33 34 36 40 40 37 36 40 36 36

40 40 36 40 40 40 40 36 34 40 219

+ silt

62 64 66 68 70 72 74 76 78 80

APPENDIX 117

Pile No 8 Length60 m D 15 m Dp 2 1 m

Areas of influence

-

qe

(MPa)

1 r +

(MPg) r~

(MPf) qcp (MPa)

Soil type

22 18 019 34 20 16 021 34 18 125 026 3 3 16 115 027 31 14 11 028 3 1 12 11 028 3 1

l 2 (m)

10 08 06

105 11 145

D29 028 023

30 31 33

Fine sand

+ silt

04 18 0 19 34 02 18 019 34 71

02 15 022 33 04 11 0 28 31 06 13 0 25 33 08 20 0 18 36 10 15 022 33 12 13 025 33 14 175 020 35 16 18 20 22

20 21 20 15

018 -

018 0 22

36 40 36 33

35 Fine sand

+ s i lt

24 26 28 30 3 =

13 16 175 19 20 20

025 021 020 0 18 018 018

33 34 3 5 34 36 36

36 38 4 0

20 20 21

018 0 18 -

36 36 40

11 (m)

4 2 4 4 4 6 48 50 5 2 5 4 56 5 8 60 6 2 6 4

20 20 21 22 21 20 19 175 19 20 25 28

018 0 18 ---

01 8 01 9 0 20 0 19 018

36 36 40 40 40 36 36 35 36 36 40 4 0 23 0

6 6 68 70 72 74 76 78

qcp 1f5=v 2T middot35 = b85 middot35 = 30 MPa

80

APPENDIX 118

Pi le No 9 Le ngth 90 m D 11 m m

Areas of 1Qe -9c qcp Soil typeinfluence Tp f ryen (MPa) (MPg) (MPf) (MPa)

-

2 2 2 0 18 16 14 lc 11 034 37

12 10 10 036 36 12 08 9 039 35 Medium(m) 06 10 036 36 sand04 10 036 36

02 11 034 37 43

02 12 032 38 04 12 0 32 38 06 12 0 32 38 08 13 030 39 10 13 030 39 12 13 030 39 14 14 028 39 16 14 028 39

44 18 14 028 39 20 14 028 39 39 Med ium 22 15 027 4 1 sand 24 16 026 4 2 26 17 025 43 28 13 0 30 39 3 0 9 039 35 32 13 030 39 34 16 026 42 36 17 025 43 38 17 025 43 40 19 024 4 6

11 42 17 025 43

(m) 44 15 027 41 17 7 46 48 50 52 54 56 58 60 6 2 64 66 68 7 0 7 2 74 76 78 80

APPENDIX 119

Pi 1 e No 10 Length 95m D 11 m m

Areas of influence

-

qe

(MPa)

1 fp

-9c f

(t-1Pf) [~

(MPf)

qcp

(MPa)

Soil type

22 20 1 8 16 14 L 2 13 Uti 3J

l 2 (m) 12

10 08 06 04

18 18 28 19

0 19 019 0 19 019

34 34 34 34

Fine

sand

02 21 40 42

02 20 4 0 04 17 020 34 06 21 40 0 8 10

23 22

40 40 Fine

1 2 14 16 18

21 20 16 15

0 21 022

4 0 4 0 34 33

sand

44

20 2 2 24 26 28 30 32 34 36 38 40

14 14 13 11 11 14 17 14 12 13 12

023 023 025 0 28 028 023 020 023 027 025 027

32 32 33 31 31 32 34 3 2 32 3 3 32

l 1 (m) 42

44 12 13

0 27 025

32 33 15 2

46 48 50 5 2 5 4 56 5 8 6 0 6 2 6 4 66 6 8 70 72 74 76 78 80

APPENDIX 11 10

Pi 1 e No 11 Lengt h 9 0m D 11 m m

Area s of influence

-

Qe

(MPa)

1 fp

__k_ f

(MP~) ryen

(MPf) qcp (MPa)

Soi l type

22 20 18 16 14 12 lb 55

12 (m)

1 0 08 06 04

23 19 20 21

024 023

55 46 46 55

Medium

sand

02 22 55 62

0 2 04

24 25

55 55

06 08

27 28

55 55

10 12 14

28 28 28

55 55 55 49

16 26 55

44

18 20 22 24 26 28 30 3 34 36 38 40

24 19 18 17 22 21 17 11 13 12 11 9

024 024 025

025 0 34 030 032 034 039

55 46 43 43 55 55 4 3 37 39 38 3 7 35

1 1 (m) 42

Ll Ll

12 16

032 0 26

38 4 2 209

46 48 50 5 2 54 56 58 60 62 64 66 68 70 72 74 76 78 80

APPENDIX 141

0 2 3 4 p [MPa)

PILES WITH 40 ENLARGED BASES

80

120

160 C----0

200 IN4014 s (1977)

[mm]

P s calculateds P p(s)(mm) (MPa)(mmMPa)(MPa) ()

10 035 286 046 20 065 308 080 30 090 333 104

150 24 625 214 200 229

ai = 2605 (mmMPa) b1 = 0243 1MPa V 1000 bi = 1b = 411 MPa

_ 411 MP Vi - 24 a

() assumed

average Dp = 18 m

qcp = 24 MPa ai = 184 (mmMPa) (28-4middot24)

Vi = 1 2 (3-18)

qcpmiddotvi = 29 MPa

40

80

120

160

200 s

[mm]

DIN 4014 Part 2 ( 1977)

0 1 2 3 4 5 p [MPal

PILES WITHOUT ENLARGED BASES

C----0

DIN 4014 ( 1977

s calculated s p -p- p(s)

(mm) (MPa)mmMPa)(MPa) ()

10 05 20 062 20 08 25 113 30 11 27 3 155

150 34 441 385 200 424

ai = 2085 (mmMPa) bi= 0 157 1MPa V = 0970

bi= 1s = 637 MPa

Vi 187=3f =

() assumed

average Dp = 12 m

qcp = 34 MPa a1 = 144 (mmMPa)

Vi = 18

qcpmiddotvi = 61 MPa

Range qc = 10-15 MPa

(28-4bull34)

(3-12)

1 1 q = r -r- = 036 for qc = 10 MPaCp p Ip+= 027 for qc = 15 MPa

qcp = 36-405 MPa P

APPENDIX 142

Touma F and Reese L (1974)

Soil parameters pile parameters and base resistance see fig bullbullbullbull

TAB

Measured load settlement curves

Settlement s

mm

10 20 30 40 50 60 80

100 120

a 1 (mmMPa) bi(MPa) V

N3u

q =04 -N30 (cMPa) ()

1 qCp=--rpbullqC

Pile No 21 (US 59) 22 (HH) 23 (G1) 24 (BB) Notep Sp p S p p S p f Sp MPa mmMPa MPa mmMPa MPa mmMPa Mla mmMPa

131 76 169 59 075 133 100 100 269 74 325 62 131 153 1 94 103 381 79 456 66 165 182 273 11 0 488 82 581 69 1 90 21 1 349 115 581 86 694 72 2 15 233 424 118 675 89 800 75 229 262 813 98 245 327 884 113 925 130

64 56 100 95 U049 0032 0276 0048 0944 0998 0996 0981

80 gt100 30 60 32 gt 40 12 24 ()

Bergdahl (1982)

gt5 5 gt55 32 4 3

(0 18middot32) (018middot40) (0265middot12) (018middot24)

CONTACT PRESSURE p [ MPa]

0 2 4 6 8 100 N-------r---------------(us 59) ( HH) ( BBi

E E SQ-------lt+-----+--------------lt

VI

1shyz UJ

~ 100 1---------i----+----+----+------l------I -J I shyI shyUJ V)

so~----~--~-- ~--~

APPENDIX 143

us 59 fYJo 0 50 00

ff-t r-=-~c~=~-r~c_---_---l-~e-J-C~ 0 ------

CLAY

FINE SANO

J lD- 760 mm

f5m~--~--~

Pile US 59 and results from penetration test

HH IV_l() so 100 r=-=-==-==-r-~--=-=- 0 0 II 15- flf ~ II~ Ibull If t f

CLAY SAND

Sm

)

= -middotl lo - GtOmm

~ JI

SILTY SANO tOm

Pile HH and results from penetration t est

APPENDIX 14 4

61 NJO 50 --------00

11 1 =f J - 1 -- 0

CLAYSILT

E ~ Sm ltrj

SILTY SAND

q I lDmiddot 910 mrn tom

I) t bull

Pile G1 and results from penetration test

88

0 50 too ~1-e I q 111bull - Q

CLAY

SIL TY SAND 5m

]

l lDmiddot760mrn

Om

Pile BB and results from penetration test

APPENDIX 145

Klosinski B (1977)

Loading tests 50 bored piles 09-125 m diameter average Op= 11 m On t he sett l ement of rigid pla te the settlement of t he pi le base is given by

PmiddotOSp = T-K b

where Mb - equivalent deformability modu lus

1) Sand and sandy gravel of medium density

Mb = 25-50 MPa

According to Bergdahl (1979) medium sand is between

q(l) 5 MPa (Io=035)c2)

ql = 10 MPa (Io=065)C

from fig 117 rp1 = 055 for qc = 5 MPa 1Tp = 036 for qc = 10 MPa

q(l)= 0 55middot5 = 2 75 MPacp bull

q(2= 0 36middot10 = 360 MPacp

allowable p~ 1)= ~p = yen = 092 MPa and p~2) = ~ = 120 MPa

settlement of the pi l e base

5(1)= o 92 middot 1bull1 = O 0135 m = 13 5 mm p 325 middot middot

5( 2)= 1bull2bull1middot 1 = O 0088 m = 8 8 m p 350 bull bull

1) _ s _ 135 _ 14 7 (mm) a(2) _ 88 _ a 1 - p - o---92 - bull NPa bull 1 - T-7 - 733 (Wa)

2) Loose sand lo= 030-040

Mb = 12- 25 MPa

q~l) = 44 MPa q~2)= 58 MPa

1Tp = 058 and 052

q(3) = 0 58middot4 4 = 2 55 MPa middot q( 4) = 0 52middot5 8 = 3 02 MPa cp bull middot bull cp bull middot middot

allowable p~ 3)= 4i = 085 MPa p~4)= yenl = 101 MPa

s(3)_ 085-11 = 26 mmmiddot s(4)_ 101middot11 = 148 mm p - 312 p - 3 25

STATENS GEOTEKNISKA INSTITUT Swedish Geotechnical Institute S-581 01 Linkoping Tel 01311 51 00

Serien Rapport ersatter vara tidigare serier Proceedings (27 nr) Sartryck och Preliminara rapporter (60 nr) samt Meddelanden (10 nr)

The series Report supersedes the previous series Proceedings (27 Nos) Reprints and Preliminary Reports (60 Nos) and Meddelanden (10 Nos)

RAPPORT REPORT Pris kr

No Ar (Swcrs)

1 Grundvattensankning till foljd av 1977 50shytunnelsprangning P Ahlberg T Lundgren

2 Pahangskrafter pa langa betongpalar 1977 50shyL Bjerin

3 Methods for reducing undrained 1977 30shyshear strength of soft clay K V Helenelund

4 Basic behaviour of Scandinavian soft 1977 40shyclays R Larsson

5 Snabba odometerforsok 1978 25 shyR Karlsson L Viberg

6 Skredriskbedomningar med hjalp av 1978 40shyelektromagnetisk faltstyrkematning - provning av ny metod J Ingands

7 Forebyggande av sattningar i 1979 40shyledningsgravar - en forstudie U Bergdahl R Fogelstrom K - G Larsson P Liljekvist

8 Grundlaggningskostnadernas fordelning 1979 25 shyB Carlsson

9 Horisontalarmerade fyllningar pa los 1981 50 shyjord J Belfrage

RAPPORTREPORT

No

10 Tuveskredet 1977-11-30 Inlagg om skredets orsaker

11a Tuveskredet geoteknik

l1b Tuveskredet geologi

11 c Tuveskredet hydrogeologi

12 Drained behaviour of Swedish clays

R Larsson

13 Long term consolidation beneath the test fills at Vasby Sweden YCE Chang

14 Bentonittatning mot lakvatten T Lundgren L Karlqvist U Qvarfort

15 Kartering och klassificering av leromradens stabilitetsforutshysattningar L Viberg

16 Geotekniska faltundersokningar Metoder - Erfarenheter - FoU-behov E Ottosson (red)

17 Symposium on Slopes on Soft Clays

18 The Landslide at Tuve November 30 1 977 R Larsson M Jansson

19 Slantstabilitetsberakningar i lera Skall man anvanda total spanningsanalys effektivspanningsanalys eller kombinerad analys R Larsson

20 Portrycksvariationer i leror i Gateshyborgsregionen J Berntson

21 Tekniska egenskaper hos restproshydukter fran kolforbranning shyen laboratoriestudie B Moller G Nilson

Ar

1981

1981

1981

1981

1981

1982

1982

1982

1983

1982

1983

1983

1983

Pris kr (Swcrs)

50shy

50shy

40shy

50shy

100shy

60shy

80shy

60shy

190shy

75shy

60shy

150shy

65shy

RAPPORTREPORT

No Ar Pri s kr (Sw crs)

22 Bestamning av jordegenskaper med sondering - en litteraturstudie U Bergdahl U Eriksson

1983 75 shy

23 Geobildtolkn ing L Vi berg

av grova moraner 1984 70 -

24 Radon i jord -Exhal ation- vatten kvot -Arstidsvariationer - Permeabilitet A Lindmar k B Rosen

1984 75 shy

25 Geoteknisk terrangklassificering for fysisk planering L Viber g

1984 120shy

26 Large diameter bored piles in nonshycohesive soils Determination of the bearing capacity and settlement from results of static penetration tests (CPT) and standard penetration test (SPT) K Gwizdala

1984 85shy

7

16 Summary

The work contains a study of the behaviour of l arge diameter

bored piles in non- cohesive soil The mai n attention was

paid to the determination of the bearin g capacity a nd

sett lement from results of Cone Penetration Test (CPT)

and Standard Penetration Test (SPT)

A new met hod to calculate bearing capacity on large bored

piles based on the in situ measurement is proposect taking

into account investigations made during the last years in

all the world The values based on the proposed method

are compar ed to field test results

The analysis of bearing capacity safety factors and loadshy

settlement curve allows to assume values individual safety

factors for resistance of pile point and shaft respectively

Based on a detailed investigation the pile point pressure

settlement curve and shaft resistance dependance during

loading a new method to predict the pile point pressure shy

displacement and load- settlement relationship is proposed

The initial slope of the point pressure- displacement curve

can be determined from in situ tests or laboratory test

based on the hyperbolic stress- strain parameters

9

Notations and symbols

Roman letters

a 1 Initial slope of the pile point resistance shysettlement curve

Ap Cross-sectional area of a pile

As Area of the pile shaft

CPT Static Penetration Test

D Diameter of pile shaft

Op Diameter of pile point

E Youngs modulus

fp Point resistance factor

fs Shaft resistance factor

F Universal safety factor

Fp Individual safety factor for ultimate resistance of pile point

Fs individual safety factor for ultimate resistance of pile shaft

K Dimensionless compression modulus

K At rest soil lateral stress coefficient0

Koc Lateral stress coefficient for fluid fresh concrete

Mo Constrained (oedometric) modulus

N30 Numbe r of blows for 030 m penetration in SPT

p Unit point resistance (contact pressure)

p (s) Unit point resistance versus settlement

Unit point resistance at failurePsf

Allowable unit point resistancePa

Sounding resistance

Average static cone penetrometer resistance close to tne pile point

qs Average static cone penetrometer resistance C along the pile

10

Ultimate point resistance of large diameter piles based on static sounding results

Ultimate skin friction resistance of large diameter piles based on static sounding results

Qa Allowable pile load

Qcp Point load of the static cone penetrometer

Qct Total load of the static cone penetrometer

Qpa Allowable point resistance of the pile

Qpu Ultimate point resistance of a pile

0 sa Allowable skin resistance of the pile

0su Ultimate bearing resistance of a pile

Qu Ultimate bearing resistance of a pile

s Settlement

sd Standard deviation

ss u Ultimate settlement for pile shaft

sv Standard variation

SPT Standard Penetration Test

t Unit shaft resistance

Ultimate unit shaft resistance

Circumference of the pile shaft

Circumference of the static penetrometer shaft

Greek letters

a Constant

B Constant

A Coefficient

microd Depth factor

v Poissonbulls ratio

v 1 Correction factor for hyperbola point resistance shysettlemen~ relationship

n Correlation coefficient

ahc Radial (horizontal stress in the concrete

ohs Radial (horizontal) stress in the soil

Ovc Vertical stress in the concrete

Ovs Vertical stress in the soil

11

1 LARGE DIAMETER BORED PILES IN NON-COHESIVE SOILS

11 peterminati on of bearing capacity of bored piles

from results of Cone Penetration Test (CPTl

The methods published in available literature up to 1976

were compiled by D Rollberg (1976 1977) It contains

totally 25 methods

- 22 use the results of static soundings (CPT)

3 use the results of standard soundings (SPT)

The failure load Qu of the pile is evaluated as the sum

of the pile point resistance Q and the pile skin reshypu sistance Qsu

(111)

Pile point resistance Q based on static soundina reshypu shysults can be expressed as

1- bull qP A ( 1 1 2)f C p

p

where

fp = point resistance factor

qP mean sounding resistance of static cone C

penetrometer in the area of the pile point

A cross-sectional area of the pilep

The pile skin resistance is expressed as

1 s -- bullq bullU middot Lih (113) fS C p

where

fs = shaft friction factor

sqc mean sounding resistance along the depth h

and skin surface area U middotLih p

1 2

The methods differ in

- the calculation of qPC

(074 to 40) Db below the pile base (Fig 11 1)

(10 to 80) Db above the pile base (Fig 1 11)

- the evaluation of the point resistance factor usually

values off gt 10 are used p

- the calculation of qsC

- the evaluation of the shaft friction factor

fs = 50-300 is applied

In Table 111 methods for determination of the bearing

capacity of bored piles are listed Rollberg 1977 The

point load the skin friction load and the ultimate total

load are evaluated for bored piles (shaft diameter D ~

03-090 m) from static sounding results in non-cohesive

soil

Calculation results based on static sounding measurements

are shown in Table 112 for pile point pile shaft and

total pile load respectively

The table shows that

- a ll methods overestimate the ultimate point resistance

- the best correlation for ultimate point resistance is

obtained with the Soviet method Trofimenkov 1974

n1 = 114

- there a re only five methods for evaluation of the ultimate

skin resistance

- all methods with exception of the Soviet norm Trofimenkov

1969 method overestimate the ultimate shaft resistance

- the Norwegian method Senneset 1974 gives the best

correlation for the ultimate shaft resistance =119n 2

- with exception of the Soviet methods the total ultimate

load is on the average overestimated by all methods

1 3

Taking into account the above results the Soviet and

the Norwegi an methods are presented below

The Soviet method JG TrofimenkgtV 1974

1 qP bullA + qsbullA (114a)Qu = Qpu+Qsu fp C p f C s s

where

11 40 DP 12 1 0 D p h+l1 qp r dhqcC l1+l2 h-12

0ct-0ceqs C u middoth s

f(qp) -+ see Fig 1 bull 1 2 fp C

f f ( qcs) -+ see Fig 1 1 3 s

The Norwegian methon K Senneset 1974

1 p A 1 s bullA ( 1 bull 1 bull 4b)-f-middotqcmiddot p + -f-q s p S C

where

11 30 D p

12 50 D p h+l11 f dhqP l1+l 2 qc

C h-12 h s 1

= f dhqc qch 0

f 20 p

f = f (q~ ) + see Fig 114 s

Note a ) The total skin friction -f-middotq~ is assumed to be

no less than 10 kPa even~ith a very little

cone penetrometer resistance

b) The poin t resistance -f-middotq~ is assumed to be

maximum 10 MPa even iJl case of very dense sand

14

It must be underlined that the best correlation for

the pile point is obtained with the Soviet method

101 for 94 driven piles in non-cohesive soil

- 172 114 for 46 bored piles in non-cohesive soil

Trofimenkov 19731974 showed the results of comparison

of the ultimate loads determined by formula (114a)

Q~ and by pile load tests Q~ for 153 driven friction

piles at the 57 various sites see Fig 115

In Germany a lot of investigations were made before

establishing the DIN 4014 part 2 (1977) on large diameter

piles

In Table 113 and 114 the results from these investigashy

tions are generalized

The data in the tables were obtained from 35 test loadings

(4 of which were published by Franke 1973 The diameter

of the piles was from 08 to 25 m the length from 5 m

to 34 m and the cone penetrometer resistance varied from

10 MPa to 15 MPa

Bustamente and Gianeselli 1982 proposed a prediction

of the pile bearing capacity by means of the static

penetrometer Their proposal was based on the intershy

pretation of a series of 197 full scale static loading

tests In this paper the results from tests of 55 bored

piles are chosen The diameter of the piles varies from

042 m to 150 m and the length from 6 m to 44 m The

equivalent cone resistance was determined as showed in

Fig 116 The authors have noticed that the point

resistance factor f depends on the nature of the soil p and its compactness but also on the different pile placeshy

ment techniques (see Tab 115)

Piles of category group I

- Plain bored piles - Cased bored piles

- Mud bored piles - Hollow auger bored piles

- Type I micropiles - Piers (grouted under low - Barrettespressure)

15

In Tab 116 values of the shaft resistance factor

fs are given

Category IA

- Plain bored piles - Mud bored piles

- Hollow auger bored piles - Cast screwed piles

- Type I micropiles - Piers

- Barrettes

Category IB

- Cased bored piles - Driven cast piles (concrete or metal shaft)

Category IIA

- Driven precast piles - Prestressed tubular piles

- Jacked concrete piles

Category IIB

- Driven metal piles - Jacked metal piles

It can be noted that the values in Tab 116 are in

genera l of the same range for the driven and the

bored piles

According to the Polish Specification 1979 the point

and shaft resistance factor are given by

1-f- = kmiddota

p p

where

ap 035 for sand

k coefficent of unhomogeneity k qcp min

qcp

= 0065 for sandfrac12

1

16

Similar results can be observed in Fig 116a and

Fig 116b It was showed by Kerisel (1965) and Franke

(1973) that the harder soil the more loosening at

excavation and thus relatively smaller bearing capacity

Taking into account the Franke diagrams we will have

for D = 125mand settlements= 2 cm p

Cone resistance qc (MPa) 1 5 50 1 0 15 22

qc p for s=2 cm 3 6 8 12 14

(see Fia 1 1 6b )

taking safety factor for pile base F = 3 the point resis~ance

33-10 ~-05

380375 lo 212 bull lo 2114 bull

factors- shy are p

The above anal ysis shows that it is possible to determine

ultimate point and shaft resistance of bored piles from

static cone sounding But it is very important and must

be taken into account type of pile kind of soil and

degree of compaction

Bel ow calculation method for large diameter bored piles

based on the static cone penetrometer resistance (CPT)

is proposed Equation (117) can be used directly for

the base diameter D lt 15 m For larger diameters p shyD gt 15 m the values should be multiplied by the

p ff t ITscoe icen Y~ as pi

( 1 1 5 )

where

qcp = according to equation (117)

D = diameter of the pile base D gt 15 mpi pi

17

This value q~p should be put into equation 116

The value qc s in equation 118 is independent on the

pile diameter

Proposed calculation method

(116)

where)

1 1 40 ~ 11 3 for piles wit h a nd enlarged bases12 10 12 = ~

h+h

q (h) dh (117)qcp l1+l2 f -f- Ch-li p

h 1 f 1

qcs = o -f- qc (h) dh (118)h s

1 -f- = f(q kind of soil ) -+- see Fig 11 7 and Tab 1 1 7

C p

f (q kind of soil ) -+- see Fig 1 1 8 and Tab 1 1 8 fs C

Note

a) the point resistance q for qc gt 20 MPa is assumed cp to be maximum as

- Gravel 70 MPa - Coarse sand medium sand 55 MPa - Fine sand s il ty sand 40 MPa

b ) The shaft resistance qcs for qc gt 20 MPa is assumed to

be maximum as

- Gravel 110 kPa - Coarse sand medium sand 90 kPa - Fine sand s ilty sand 70 kPa

These proposed values are compared with results by

Bustamente (1 982) and the Polish Specification (1978)

Fig 11 9 and F i g 1110 A similar comparison for DIN

4014 1 977 is shown in Fig 1111 and Fig 1112

) In this paper was used the above values 1 1 and l z But it can be used in practice 11 =30 D and h =2Dp respectively The results shall be very simi l ar to the above onPs

18

The proposed method has been examined with field test

results This is shown in Fig 1113 to Fig 1128

and Appendix 1 11 to 1110 and Tab 119

The comparison shows that the value of q in equationcp (117) corresponds to the settlement -10 of the base

diameter (s=010 DP) see Fig 1113 and Tab 119

(average sDp=88 and standard deviation sd=3)

Later in this paper the allowable load and dependence of

the load versus settlement will be determined

12 Determination of bearing capacity of the large

diameter bored piles from results of the Standard

Penetration Tests (SPT)

There are little published on pile tests coupled with

results from Standard Penetration Test (SPT) Among the

authors who have published material in the subject are

- Meyerhof 1956 1976

- Senneset 1974 (Norwegian method)

- Rodin Corbett Sherwood Thorburn 1974 (English method)

- Polish Specification 1975

- Weltman Healy 197 8

- Reese 1978

- Japanese Society 1981

- Decourt 1978 1982

The Norwegian method is valid o nly for concrete andor

wooden piles the English method only for gravel It is

very important to underline that the Norwegian a nd the

English methods use of the SPT resul ts intermediate by

the static cone penetrometer resistance (q ) as well C

Below methods are presented that are using the results of

SPT directly Meyerhof s method in total can also be used

on driven piles in non-cohesive soil Although we could

have found some proposes for bored piles Eqs (121 and

122) see Fig 121 and Fig 1 22 as well

19

Ultimate point resistance (psf)

12 N 3 omiddotH lt 120 N 30

(kPa) (1 2 1)Psf D

where

N30 the average standard penetration resistance

in blows per 03 m

H depth in bearing stratum

Ultimate skin friction tu

for bored piles tu N~ o (kPa) (1 22a)

for driven pil estu 2N30 (kPa) (1 2 2b)

where

N30 the average standard penetration resistance

in blows per 03 m within embedded length

of pile

Weltman and Healy (1978) taking into account Meherhofs

proposition for driven piles have introduced two coefshy

ficents for bored piles in gravels (glacial soil) Equ

123 and Fig 1 23

t = a 2 N30 (kPa ) (1 2 3)U 1

where

ai a 1 for impermeable gravels see Fig 123a

ai a 2 for permeable gravels see Fig 123b

The Polish Specification ( Specification for Design and

Construction of Large Diameter Bored Piles in Bridges

1975 Ministry of Transport) gives the ultimat e point

resistance in dependence of N30 base diameter and depth

see Tab 12 1 The Tab 121 contains values for coarse

and medium sand For other non-cohesive soils the following

coefficients are proposed

p f = S bull p f (medium sand) ( 1 2 4)S 1 S

20

where

S1 1 20 for grave lSi

f 132 080 for fine sand

13 3 070 for silty sand13i

In Fig 124 values of psf are shown for h = 10 m DP

06 m DP= 15 m and h = 20 m DP= 06 m DP 1 5 m

respectively

A few of the instrumented piles were tested and analyzed

by Wright and Reese (1979) The ultimate point and shaft

resistance in the fine and silty sand as a function of

blow count from SPT is shown in Fig 125 Results from

two additional tests reported by Koizumi (1971) are also

introduced in the figure The ultimate point resistance

is assumed to exist at a settlement equal to 5 of the

base diameter

Methods of prediction of the bearing capacity of piles

based exclusively on N30 values were presented by Decourt

1982 Below a proposition for high capacity piles excavated

and cast under bentoni te is presented

The ultimate skin friction is determined by the expression

(see Fig 126)

t = 33 N30 + 1 0 (kPa) ( 1 bull 2 5 ) u

where

N30 average value of N30 along the shaft

- for N30 lt 3 must be taken as = 3N30 - for N3o gt 5 0 must be taken as NJo= 50

The allowable point resistance can be obtained in a n

expedite way as

Psa = 33 N30 (kPa) (1 2 6)

where

N30 = average of Nat point level one metre above

and one metre below

Psa allowable point resistance

21

Decourt proposed a safety factor for the point of F = p

40 Therefore the ultimate point resistance can be

determined by the expression

(kPa) (1 2 7)

In Fig 12 7 and Fig 1 28 the above values for base

and skin friction resistance are compared respectively

Taking into account the type of soil thereis a good

correlation for ultimate point resistance The result for

ultimate skin friction is scattered but only apparently

The values for large diameter bored piles are between

the line 1a and 1b in Fig 128 Large diameter piles

have a high ultimate skin friction in relation to driven

piles (see points for bored piles in Fig 122 and DIN

4014 Part 2 1977 as well) The high values for piles

excavated and cast under bentonite have had a strong base

on the load tests (Decourt 1978 1982 and Wright and

Reese 1979)

Below the proposals are given for determination of the

values of the ultimate point resistance and the ultimate

skin friction Eqs 128 to 1214 and Fig129 1210

The ultimate point resistance

- gravel psf = 140 N30 (kPa) ( 1 bull 2 8)

for N~ 0 gt 50 blows3O cm Psf 7 MPa

- coarse sand and medium sand

(kPa) ( 1 2 9)

for N30 gt 50 blows3O cm Psf 55 MPa

- fine sand and silty sand

psf = 80 Nio (kPa ) (1210)

for N30 gt 50 blows3O cm p f = 40 MPa 5

where N3 o the average of N value near the point level as

22

h+l1

f N3o(h)dh ( 1 2 11 ) h-12

3DP see Fig 1 1 1 D

p

The ultimate skin friction for coarse sand and medium sand

tu = 1 8 N 3 o (kPa) (1212)

t (kPa) (excavated and cast (1213)u under bentonite)

where

N30= the average value of N along the shaft as h

N -

3 o = h1 f N 3 o ( h) dh ( 1 bull 2 bull 1 4 ) 0

The ultimate skin friction for N30 gt 50 blows30 cm is

assumed to be maximum as tu = 90 kPa and t = 150 kPa u

13 Allowable load of large diameter bored piles

The allowable load Qa of large diameter piles has been

expressed as

OuQa ( 1 3 1)Ft

Qa Q(s)=Qb(s) + Os(s) ( 1 3 2)

Opu + Osu (1 3 3)Qa Fp Fs

Qr lt mmiddotQf ( 1 bull 3 4)-

= universal safety factor

individual safety factor for ultimate resistance of the pile point

individual safety factor for ultimate resistance of the pile shaft

= load according to the allowable settlement

calculated load

m coefficient

calculated ultimate bearing load of the pile

23

The equations from (131) to (134) are used as

1) equation (131)

a) DIN 4014 - 1977 Ft= 2 175 15 (depending on the kind of load)

b) Polish Specification 1975 Ft = 18 16 ( -- )

1c) Trofimenkov 1974 Ft = 14307

2) equation (132)

a) DIN 4014-1977 i Q(s) = Qb(s) + Q (s) = A middotp(s) + E tAsmiddott(s)

s p 0

where Qbs) and Qs(s) are described in Fig 1423

3) equation (133)

a) Polish Specification 1974

F 25 22 depending on the kind of load p

F 1 bull 0 s

b) Wright SJ Reese LC 1979

The ultimate capacity or resistance is considered as a

random value and represented by a frequency distribution

The distribution can be described by a mean value and a

variance The distribution of the load applied to the

foundation can be described similarly The coefshy

ficients used to factor resistance and loads are called

partial safety factors Some recommended partial safety

factors for resistance under normal conditions of design

and construction are given in Tab 131 Normal control

is defined as a condition where the coefficient of variation

is less than about 035

Typical values for partial safety factors for loads are

in the range 1 to 2 depending on the type of load and

how it is applied The overall factor of safety Ft can

then be calculated from the equation

Ft = y RbullY S

24

where

YR the par tial sa f ety fac t or for resistance and

Ys the partial safety factor fo r load

The probability of fa i lur e of the foundation can be r eshy

lat ed to the factor of safety for a parti cular degree of

uncert ainty (see Tab 13 2)

c ) Tejchman Gwizdala 1979

The authors discuss adequate safety factors based on fie l d

test s by Spang (1 972) Franke (1976) Touma and Reese (1974)

Colombo (1971) Kerisel and Simons (1962) Appendirno (1973)

see Tab 1 33 Taking into account the universal safety

factor Ft= 2 0 for the tota l load settlement curves it

was estimated

i) F in the range of 111 to 237 with the average value s F = 166 and standard deviation sd = 034 s (see column 16 Tab 133)

ii) Fb in the range of 161 to 945 with the average

value Fb = 387 and standard deviation sd = 2 15

For model core d piles in laboratory conditions values of

Fs = 108 to 154 (average Fs = 132 s~ = 019) and

values of F = 280 to 5 94 (average F = 3 55 sd = 1 07)p p

see Tab 1 3 4

As a conclusion it was assumed that Fb = 40 and F 1 5 s

for l arge diameter bored piles

The investi gation has shown that for the above safety

factors settlements of piles under permissibl e loads are

10 to 20 mm There was assumed a maximum load on large

diameter piles corresponding to a settlement of 010

diameter of the piles

25

d) Bustamente Gianeselli 1 982

e) 0ecourt 1982

The safety factor is given by

F = FgmiddotFfmiddotFamiddotFw where

F 11 - skin friction g F 135 - point bearing capacity

g

Ff safety factor related to the formulation adapted

Ff= 10 for Decourts method

Fd safety factor related to excessive deformation

Fd = 10 for skin friction

As for the point Fa= 2 to 3 depending on the

pile diameter For usual cases 25 is suggested

Fw safety factor related to working load

Decourt recommends 12

Thus we will have

- for skin friction

Fs = 11bull10middot10middot12 132 - 13

- for the point

F = 135bull10bull25middot 1 2 = 405 = 40 p

4) equation (134)

a ) Polish Code 1983

Q lt mbullN r shy

where

total load coefficient (depending on the kind of load For foundation we can assume Yf = 12 )= code load

correction coeffic i ent

09 for pile foundations

m 08 for two piles

m 07 for single pile

26

N ymmiddotQu

ym material (soil) coefficient

ym 08 to 09 (Polish Code 1981)

Thus we will have

QnmiddotYf lt mmiddotym middotQu-

Yf9uFt = On m bull Ym

1 2 max = 2 14Ft 0 7 bull 0 8

1 2min = 1 48Ft 0909

The above analysis has shown different ways to determine

the allowable load The analysis is in direct connection

with mobilization of the load (versus settlement) The

dependence of total load point resistance and shaft reshy

sistance will be discussed in detail in Chapter 14

In the authors opinion taking into account the above

analysis the allowable load should be determined based

on the equation 133 ie based on individual safety

factors for ultimate point and shaft resistance Proposed

values of F and F in literature are shown in Tab 135 s p The average values are Fs = 145 and Fp = 3 38 respectively

Taking into account that the bearing capacity is determined

based on the results from sounding measurements direct from

a place near the piling without a ny indirect correlation

the allowable load of large diameter bored piles is given

by the equation (133a)

( 1 3 3a)

where F = 30 and F 13 are proposedp s

27

14 Determination of settlement of larqe diameter bored

piles based on static cone penetration tests CPT

Determination of ultimate point and skin friction resistance

based on static cone penetration tests has been discussed

in Chapter 11 above Based on the results of this calcushy

lation and on Chapter 13 we can establish an approximate

relation between point resistance shaft resistance and

total load on one hand and settlement on the other However

the approximation gives a wide scatter especially for base

resistance as can be observed in Fig 141 to Fig 144

Only the first part of the point resistance - settlement

curves are in good agreement with measured values It can

be observed in Fig 145 that the average correlation

coefficient n = 098 and standard deviation sd= 029

This way of calculation can be used only for rough calcushy

lation (see Chapter 13)

In Chapter 11 also measured point resistance - settlement

curves were shown The base resistance increases gradually

with increasing pressure and settlement Below the cur7

vature of the point resistance - settl ement curve will be

examined It is assumed that this curve can be described

as a part of the hyperbola curve Thus if the ratio of

the measured settlement (s ) to the point resistance (p)

is plotted against the measured settlement the result

will fall closely to a straight line with the equation

( 1 4 1)

where a 1 and b 1 are constants (see Fig 1 46a and Fig

14 6b)

Then the point resistance - settlement realtionship can be

expressed as a hyperbola

s p = ( 1 bull 4 2)

The constant is the initial s lope of the point resistanceshya 1

settlement curve ie a 1 = t~a The inverse of the constant

28

b 1 is the vertical tangent (asymptote) to the curve 1ie for s = 00

bf= ~ If the ultimate point reshy1

sistance psf is equal to bf (psf=bf) the whole point

resistance settlement curve will be a hyperbola type

Now the Eq 1 4 2 can be written as

s s ( 1 4 3)a) p s or b) p = a+__sect_a1 + 1 Psfbf

If the ultimate point resistance is smaller than bf only

a part of the hyperbola curve ought to be considered

Further the Eq 14 3 will be written as

p ( 1 4 4)

where

poundf_ correction factor for hyperbola point Psf resistance-settlement relationship

Taking into account the discussion in Chapter 11 the

ultimate point resistance psf = qcp based on the CPT measurements

Therefore the relationship between the point resistance

the sett l ement and the CPT result can be expressed as

s p (1 4 5)s

The correction coefficient v 1 will cause a change of the

position of the vertical asymptote bf in r elation to the

ultimate point resistance q bull This means that we take cp into account a different part of the hyperbola curve for

the description of the point resistance-settlement relationshy

ship

Now if we want to use the equation (145) in practice

we must determine the constant and the coefficienta 1 v 1 (assumed that q is determined ear l ier Chapter 11)cp

29

The constant a 1 and t h e coefficient Vi have been detershy

mined based on fi e ld tests according to pi l es No 1 - 20

see Tab 14 1 and Tab 1 1 9 as wel l The values of

a 1 versus the point diameter D and the ul timate pointp

resistance respectively are shown in F i g 147 and Fig

148 Fig 1 47 shows that a 1 is independent of the

point diameter D Based on Fig 148 it can be assumed p

that

28-4bullq (1 4 6)cp

This correlation has been examined with data of the

literature see Fig 1 49 and Appendix 141 to 1 45

(Note there were no static penetration tests and qcp was determined based on a correlation made by Bergdahl

(1982))

A good correlation with equation 146 can be seen taking

into account the safety factor in the DIN 4014 Part 2

(1977) bull

The correction factor v 1 versus the poi nt diameter is shown

in Fig 1410 I t is assumed that the correlation is

V1 = 3 0 - D ( 1 4 7)p

where D is in m p

The above equations ie 146 and 147 were assumed for

a later analyses see Fig 14 11 and Fig 1412 The

piles No 1 to 20 were examined taking into account Eqs

14 5 14 6 and 1 4 7 The result of this cal cul ation is

presented in Fig 1 413 to Fig 1 4 18 and in Tab 1 4 2

respectively In Fig 1413 the calculation way for pile

No 2 is shown as an example

In Fig 1414 to Fig 1 417 measured and calculated

values of the point resistance versus settl ement can be

compared In tota l good correlation exists for all the

30

pressure-settlement curves Values of q from static cp

cone penetration tests and generalized values of anda 1

v 1 were considered Only for piles No 17-20 qcp was

assumed as the point resistance for s = 010 D because p

the static penetration test results were inaccessible

The similar comparison is shown in Fig 1417a for piles

in sand based on experimental results (Tuoma Reese 1972

and Wright Reese 1979) where the ultimate case resistance

was assumed as the resistance at a base settlement of 005

D The relative base resistance is the mobilized base p resistance divided by the ultinate base resistance The

curvature of the proposed point resistance settlement shy

curve to mean value proposed by Wright and Reese is excellent

However the constant a 1 and the coefficient v 1 were

determined for sand only In the future they should be

examined especially for gravel and silty sand based on

field tests Until then in the authors opinion the

values of v 1 can be chosen from Eq 147 for all nonshy

cohesive soils But for a 1 there is proposed

at = gt bulla (1 4 8)1

where

gt- 1 = 080 for gravel

gt 2 120 for silty sand

This proposal is shown in Fig 14 11 as dashed lines

A good correlation can be seen with the investigation by I

Kiosimiddotnski for sandy gravel and on the safety side with

the investigation by Tuoma and Reese for silty sand (see

Fig 149)

In Fig 1418 all calcul ations for pile No 1 to 20 are

summarize d The correlation coefficient n is defined as

the calculated point resistance p(s) divided by measured

point resistance p(s) For totally 126 points from 20

curves an average of n = 098 with standard deviation

31

al= 023 was obtained see Fig 1418 A similar result

can be observed for the range usually assumed of the

allowable settlement for sinqle large diameter bored

piles as

for

- for

- for

s

s

s =

10

20

30

mm a

mm

mm

verage n10 II

II

mm 089

095

099

and sd =

and sd

and sd

031

027

026

It can be questioned whether the sonstant a 1 can be deshy

termined in different ways The constant a 1 is the initial

slope of the point resistance-settlement curve as menshy

tioned above Then we can use all methods for determination

of settlement of a pile point The range of validity of

these methods then must be determined This will be shown

later

In order to be able to design the total load settlement

curve the skin friction resistance-settlement relationshy

ship must be determined The ultimate skin resistance of

large diameter bored piles was determined in Chapter 11

(based on static penetration tests) and in Chapter 12

(based on standard penetration tests)

In the past a lot of field tests have been done on the

mobilization of the shaft resistance versus pile settleshy

ment In this subject there is a rather good agreement

in the whole investigation for cohesive and non-cohesive

soil

Some results and opinions on thispresented in the literashy

ture during the last few years are shown below

Ultimate shaft resistance versus settlement

1) BurlandJB Butler FG Duncan P (1969)

-The shaft l oadsettlement curve is derived using a=0 3

with 90 ultimate load being mobilized at 025 in

settlement(~65 mm)

- soil London clay

- see Fig 1 419

32

2) Touma FT Reese LC (1974)

- The failure of the sides of the shaft takes place

at a downward movement of about 04 in (10 mm)

- soil sand

- see Fig 1420

3) Tomlinson HJ (1977)

- The maximum shaft resistance is mobilized at a

settlement of only 10 mm (or j in)

- soil stiff clay

- see Fig 1421

4) Klosinski B ( 1977)

- It was assumed that skin friction increased proshy

portionally to pile settlement up to the limit value

s bull This value depends on soil conditions and pile0 diameter and is usually from 3 to 8 mm For soft

compressible soil it may be grater than 10 mm

- soil cohesive soils

- see Fig 1422

5) Franke E Garbrecht D (1977)

- At settlement of 2 to 3 cm which are normally

allowed in Germany under working loads for buildings

not very sensitive to differential settlementsthe

skin friction is almost always fully mobilized

- soil sand

6) DIN 4014 part 2 (1977) and Franke E (1981)

- The skin friction Tm is approximated as diameter

independent having failure settlements of smf = 2 cm

in sand and 1 cm in clay

- soil sand and clay

- see Fig 1423

33

7) Reese By L (1978) Reese By L Wright SJ (1979)

(1978) The maximum skin friction being developed at

an average downward movement ranging from about 05shy

2 of the shaft diameter The average of six load tests

reported by Whitaker and Cooke (1966) are a lso plotted

for comparison

- soil stiff clays

- see Fig 1424 and Fig 1425a

(1979) The relative settlement is the average settleshy

ment of the butt and base devided by the shaft diameter

The mean curve maximises at a relative settlement of

about 002 D

- soil sand and clay

- see Fig 1425b

8) Tejchman A Gwizda3a K (1979)

- A clear differentiation of the distribution of shaft

and base resistances is observed for changing settleshy

ment For fairly small settlements the shaft resist shy

ance increases quite fast and the ultimate values

are reached soon while the base resistance increases

gradually with increasing loads and settlements withshy

out clearout ultimate values it can be assumed that

complete mobilization of shaft resistance corresponds

to settlements equal to 001 or 002 diameter of pile

- soil cohesive and non-cohesive soils

- see Tab 131 and Fig 1 426

9) Promboon S Brenner R P (1981)

- Load distribution and load transfer curves disclose

that most of the load is carried by shaft friction

which is developed at small displacements in the order

of 10 mm

- soil Bangkok clay

- see Fig 1427

34

10) Prodinger w Veder Ch (1981)

- The maximum value of skin friction resistance

occurred for a total settlement of 12 mm

- soil silty clay and sand

- see Fig 1428

11) Farr JS Aurora RP (1981)

- Ultimate load transfer was recehed (or nearly reached)

at a relative settlement of about 04 in (10 mm)

- soil gravelly sand

- see Fig 1429

12) Decourt (1982)

The skin friction resistance is totally mobilized

with deformations of about 10 mm or at the most 15

mm regardless of shaft dimensions This observation

of ours seems to clash with the opinions of other

authors who seek to relate the deformation necessary

for full skin friction mobilization with the shaft

diameter

- soil cohesive and non-cohesive soil

In Tab 143 all these results are shown Depending on

the kind of soil the following v a lue s of ultimate settleshy

ment for shaft can be assumed

- averages 142 mm (sd 5 3 mm) for sand

- averages 100 mm (sd = 21 mm) for cohesive soil

averages 726 mm (sd 67 mm) for claysand

It can be observed (see Fig 1419 to 1428) that the

shaft friction resistance increases proportionally to

the pile settlement up to the above limit value and

thereafter becomes constant

35

Taking into account what was mentioned earlier on point

resistance settlement relationship and the above results

a relationship between total load point resistance and

shaft resistance on one hand and settlement on the other

can be made see Fig 1430

It is assumed on the safety side that the following

ultimate settlement (S~) exists for the shaft resistance

of large diameter bored piles

SS1 ) 200 mm for non-cohesive soil u SS2) = 100 mm for cohesive soil u SS3) 15 0 mm for claysandu

In Fig 1 430 the curve Q (s) is calculated based on p

the equation 14 5 or 144

The values of psf in equation 144 can be calculated

based on other methods as well

The total load-settlement relationship is obtained by

summing up point and s haft resistance as

Q (s) = Q (s) + Q (s) (149)s p

for each point

Now the allowable load can be determined from equation

133a and versus the allowabl e settlement as

Q (s) = Q (s) + Q (s) (1410)s p

where s lt Sa

Sa= the allowable settlement of the pile

The analysis allows determination of the approximative

load settlement dependence without calculating the settleshy

ment for non-cohesive soil In Fig 1431 it is shown

36

In Tab 144 the settlement for allowable point reshy

sistance q5P according to equation 133a is shown

as well The average settlements= 198 mm (sd=78 mm)

is obtained This value is similar to the assumed ultimate

settlement of shaft for non-cohesive soil The ultimate

settlement for point resistance is assumed s = 010 Dp as mentioned earlier

37

15 Initial slope of pile point resistance shy

settlement curve

Settlement of piles and pile foundations can be cal culated

based on

- empirical correlations

load-transfer methods using measured relationships

between pile resistance and pile movement at various

points along the pile

- theory of elasticity that employs the equations of

Mindlin for subsurface loading within a semi-infinite

mass

- numerical methods and in particular the finite element

method

- use of in-situ tests (Cone Penetration Test Standard

Penetration Test Pressuremeter Test)

The critical slope of the pile point resistance-settlement

curve is important for calculation in chapter 14 The

constant a1 can be determined from all the above mentioned

methods

Comparison is made to Berggrens and Schmertmanns methods

below (see Berggren 1981 as well)

6sIn Tab 151 (No 1 2 3) the values of a 1 =~p for s =

10 mm and s = 20 mm (measured for large diameter bored

piles No 1 to 24) are compared to the calculated values

according to the modified hyperbola method (see Fig 14 6)

It can be seen that these calculated values are between

s = 1U-2u mm but rather closer the measured values for

the settlements= 10 mm see correlation coefficient n 6

and n 7 in Tab 151 respectively The average correlat i on

coefficent for the settlements= 10 mm is n9 = 108 and

the standard deviation is sct = 014 The comparison to

Berggrens and Schmertmanns methods for s = 20 mm ( see

Berggren 1~81 and Tab 151 as well) shows that the

results based om these methods give too high values of a 1 bull

38

The average values are ne= 143 sd = OJ3 and ng= 137

sd = 037 for Berggrens and Schmertmanns methods

respectively A bit better agreement can be observed

for Schmertmanns method

Taking into account the results in Tab 151 ana Tab

15l it must be assumed that for the determination of

a 1 the pile point contact pressure p(a1) should be

assumed as the ultimate point bearing capacity devided

by about 4

p(ai) - ( 1 bull 5 1 )

Most of the methods for determination of settlement are

based on the theory of elasticity The settlement ot the

pile point can be expressed as the average settlement of

a rigid circular foundation from the equation

11-Dp 1-v 2

s = p -4- -E-bull microd (1 ~ 2 J

where

p pile point contact pressure

E Youngs modulus

D diameter ot pile pointp ) = Poissons ratio

microd = depth factor

The range of validity of the pile point contact pressure

was determined in equation 151 Youngs modulus has an

important meaning lt can be determined from triaxial

tests or oedometer tests The relationship between the

constrained (oedometric) modulus Mo and Young s modulus

Eis dependent on Poissons ratio v as expressed by the

equation

E = l 1 + V ) ( 1 - 2 V ) Mo ( 1 bull 1 bull 1)- 1-v

39

TaKing into account the analyses made ny Chaplin (19b1a

1 961bJ Janbu (1 963 1970 1973J Andreassen (1973)

Duncan and Cheng (1970) Tejchman anct Gwizdala (1979)

Gwizdala (1978) Franke (1981) Berggren (1981) Withiam

and Kulhawy (7981) and the present investigation the

calculation of settlement is proposed to be

s = 24 bull p bull ~ D bull 1-v 2 bull micro d (154)Do o E

where s (r1)

p (kPa)

Dp (m)

E (kPa)

D0 =10 m

micro = 05 + 01 vfrac34E (1 5 5)d vs

but 05 lt microd lt 10-tip= p - (J (ovs see Fig 151)vs

E =Et= Kbullpat (Oo )n [1- Rf(1-sinltj) 101 - 03 ) 12 (1 5 6)2 c cosltP + 2o 3 sinltP 1Pat

in which K n and Rf= hyperbolic stress-strain parameters

Pa= atmosferic pressure ando 1 o 3 and o0 are determined by

averaging the concrete and soil vertical and radial stresses

near the pile point according to Fig 151 Then the

stresses at the pile point level are h

(J vs = L

0 Yi h

l vertical stress in the soil

0 hs Ko h

0 vs radial (horizontal) stress in the soil

0 vc L ye h -l

vertical stress in the concrete 0

0 hc K oc a vc radial (horizontal)

concrete stress in the

40

K at rest soil lateral stress coefficient 0

K c lateral stress coefficient for fluid fresh concrete0

K 1 0 oc

and average values

a 05(a +a)V vc vs

1 1 - shy~ = -(a +a+a I = -3 (av+2ahJ the applied mean normal stress0 j Z X y

Assuming this model calculation results for piles No 1-24

(see Tab 11~ as well) are shown in Tab 153

The piles are embedded mainly in medium sand to fine sand

For this kind of soil it can be assumed (soil parameters

from field or laboratory tests were inaccessible)

~ = 35deg c = 0 R~ = 09 n 05 v = 025 K c 10l 0

K = 04 Pat= 1UO kPa ye 24 kNrn 3 y = 14 kNm 3 bull0 C

Moreover in Tab 153 the following symbols are used

p(a1 ) - pile point contact pressure according to equation

1 bull 5 1

s(a1) - settl ement of pi l e point according to equation

143 and Tab 141

pound TT ( 2E = s bull Dp bull i 1-v ) according to equa~ion 152t

E~ Et bull microltl

EI

K = ro~ - according to equation 1 bull 5 6 p bullO middotA2

a~ o

E = E voD middot D middot ~4 ( 1 - v 2 ) according to equationt S p O 0

1 5 4

Et= E microd

K = according to equation 156 V PatmiddotaomiddotA2

41

The calculation results of Youngs modulus E = Et and

dimensionless canpressionrro1ulus for piles to 1-24 are shown

in Fig 152 to 155 using equation 152 and 15b

or equation 1~4 and 156 respectively lt can be obshy

served that the scatter in Fig 153 and Fig 155

where the influence of tne pile diameter is reduced

compare equation 154 is less than in the other figures

The reduced influence was made after observations from

field and laboratory tests while the equation 152 is

taken direct from theory of elasticity These values of

E and K are in good correlation with published values in

literature The values of Youngs modulus versus the

relative density of soil are compared to literature values

see Fig 15b Based on the analysis in this chapter it

can be assumed that

E = 9-ql 3 ( 1 bull 5 7)cp

where qcp is in accordance with equation 117

The calculation results based on this proposal are incluced

in Tab 1 5 3

The c a lculate d s e ttlements based on e q ua tion 154 and

157 are shown in column 23 and the values of the

correlation coef f icie nt (n= Seal ) in column 24 respectshyimeas

ively

The dimensionless canpression modulus can be d e termined as

K = 15Ubullq (qcp in MPa) (1 5 8)cp

see column 25 Tab 153

The calculation results based on the K compression modulus

according to equation 158 156 and 1 5 4 are shown in

columns 25 26 2 7 28 and 29 in Tab 153

42

For comparison and for determination of the range of

validity of this method the caLculation results of

pile point pressure for settlements s = 10 mm s = 20 mm

s = 30 mm (see Tab 141) according to equation 157

and 154 are shown in columns 30 to 35

The results obtained in Tab 153 confirm the possibility

to use the proposed method to calculate the initial part

of the pile point resistance settlement curve of large

diameter bored piles in non-cohesive soil and the initial

slope of this curve as well

A simple model has been proposed based on the theory of

elasticity ana the tangent modulus defined by Janbu (1963)

and Duncan amp Chang (1970)

A new approach according to the pile diameter depth factor

and principal stress is proposed

The settlement of the pile point can be made up to a point

pressure according to equation 151 on up to a settlement

of about s ~ 20 mm (30 mm)

-- The application of v Op in equation 1 5 4 a llows us ing

Youngs modulus as independent of the pile diameter

opposed to Bazants a nd Mosopusts (1981) proposal where

Youngs modulus wa s determined versus the pile diameter

The equation 1 5 6 takes into account the dependence of

Youngs modulus on depth (or overburden pressure) as

well

In the method field test (Cone Penetration Test) or

laboratory tests (hyperbolic stress-strain parameters

can be used

Comparison of the method to 24 availa ble load test r e sults

or large diameter bored piles in sand shows good a greement

to calculated and measured values

43

REFERE~CES

Adamczyk J (1978) Okreslanie udzwigu pali wierconych

za pomoca sondy statycznej (Bearing capacity of bored

piles based on the static sounding) Inz i Bud No 7

pp 253-257

Andreasson L (1973) The compressibility of cohesionless

soils Thesis Chalmers University of Technology

G6teborg (in Swedish)

Appendino M (1973) Comportamento di un palo di grande

diametro strumentato Rivista Italiano di Geotechnica

No 3 pp 115-118

Butterfield R Banerjee P (1971) A rigid disc embedded

in an elastic half space Geotechnical Engineering

Vol 2 pp 35-49

Bozant z Mosopust J (1981) Drilled pier design based

on load settlement curve X ICSMFE Stockholm Vol 2

pp 615-619

Begemann HK (1982) Cone penetration tests pile bearing

capacity and the thesis of Rollberg Proc of the Second

European Symposium on Penetration Testing Amsterdam

pp 433-438

Berggren B (1981) Bored piles on non-cohesive soils shy

settlement and bearing capacity (in Sweden) Thesis

Department of Geotechnical Engineering Chalmers

University of Technology G6teborg

Bergdahl UB (1979 1982) Sonderingen und in situ Messungen

Wien 18-19 Juni 1979 - Private information 19821983

Bustamante M Giane selli L(1982) Pile bearing capacity

prediction by means of static penetrometer CPT Proc

of the Second Europ Symp on PenTest Amsterdam

Vol 2 pp 493-500

Chaplin TK (1961a) An experimental study of the settleshy

ment of footings in sand PhD Thesis Univ of

Birmingham

44

Chaplin TK (1961b) Compressibility of sands and settleshy

ments of model footings and piles in sand 5th Int

Conf on Soil Mech a Found Engng Vol 2 p 33 Paris

Colombo P (1971) Observazoni sul comportamento ltli pali

a grande diametro Rivista Italiana di Geotechnika

No 3 pp 163-172

Dahlberg R (1975) Settlement characteristics of preconshy

solidated natural sands Swedish Council for Building

Research D11975

De Beer EE (1964) Some considerations concerning the

point bearing capacity of piles Proc Syrop Bearing

Capacity of Piles Boorkee I pp 178-204

Decourt L Quaresma AR (1978) Capacidade de Carga de

Carga de Estacas a partir de Valores de SPT VI Conshy

gresso Brasilerio de Mecanica dos Solos e Engenharia

de Fundacoes - Rio de Janerio - ABNS

Decourt L (1982) Prediction of the bearing capacity of

piles based exclusively on N values of the SPT Proc

of the Second Europ Syrop on Penetration Testing

Amsterdam Vol 1 pp 29-34

Duncan MJ Chang CV (1970) Non-linear analysis of stress

and strain in soils Journal Soil Mech Found Div Vol

96 SM5 pp 1629-1651

Durgunoglu HT (1979) Effect of foundation embedment on

stress and deformation distributions Third Int Conf

on Num Meth in Geomechanics Aachen pp 925-928

Farr JS Aurora RP (1981) Behaviour of an instrumented

pier in gravelly sand Proc of a session Drived Piers

and Caissons sponsored by the Geotech Eng Div of the

ASCE Nat Convention St Louis Missouri pp 53-65

Franke E (1981) Point pressure versus length and diameter

of piles X ICSMFE Stockholm Vol 2 pp 717-722

45

Gregersen os Aas G and Dibiagio E (1973) Load tests

on friction piles in loose sand Proc of the Eigth

International Conference on Soil Mech Moscow USSR

Vol 21 pp 109-117

Gwizda1a K (1978) Behaviour of large diameter bored piles

in non-cohesive soil (in Polish) Archiwum Hydrotechniki

Vol XXV No 2 pp 183-217 (English summary)

Huizinga TK (1951) Application of Results of Deep

Penetration Tests to Foundation Piles Building Research

Congress Vol 1 p 173

Janbu N (1963) Soil compressibility as determined by

oedometer and triaxial tests Proc Europ Conf Soil

Mech and Found Eng Vol 1 p 19 Vol 2 (Discussion)

p 17 Wiesbaden

Janbu N (1970) Grunlung i geoteknikk Tapir Forlag NTH

Trondheim

Janbu N Bjerrum L Kjaernsli B (1973) Soil Mechanics

applied to some engineering problems Norw Inst Publ

No 16 Oslo

Japanese Society SMFE (1981) Present state and future trend

of penetration testing in Japan Separate report at

X ICSMFE Stockholm

Kjekstad O Lunne T (1979) Soil parameters used for design

of gravity platforms in the north sea Second Int Conf

on Behaviour of Off-shore structures London Vol 1

pp 175-192

Klosinski B (1977) Bearing capacity of large diameter bored

piles IX ICSMFE Tokyo Vol 1 pp 609-612

Laboratory for soil mechanics Delft (1936) The predetershy

mination of the required and the prediction of the

resistance of piles Proc 1 Int Conf on Soil Mech

and Found Engng Cambridge (Mass) I p 181

46

Matich M and Stermac A (1971) Settlement performance of

the Burlington Bay Skyway Canadian Geotechnical Journal

Val 8 pp 252-271

Mccammon NR and Golder HQ (1970) Some loading tests

on long pipe piles Geotechnique London England

Val 20 pp 171-184

Meigh AC (1971) Some driving and loading tests on piles

in gravel and chalk Proc of the conference on beshy

haviour of piles London England pp 9-16

Mitchell JK Gardner WS (1976) In situ measurement

of volume change characteristics American Society of

Civil Engineers Specialty Conference on In-situ

Measurements of Soil Properties Raleigh 1975 Proc

Val II pp 279-345

Mezenbach E (1961) The determination of the permissible

pointload of piles by means of static penetration tests

Proc 5 Int Conf on Soil Mech and Found Engng

Paris II pp 99-104

Meyerhof CG (1956) Penetration tests and bearing capacity

of cohesionless soils Proc Amer Society of Civ Engng

SM 1 Pap 866 pp 1-19

Meyherhof GG (1 976) Bearing capacity and settlement of

pile foundations Proc Amer Society of Civ Engng

Journal Geotechnical Engineering Division Val 102

No GT3 pp 197-227

Mohan D Jain GS and Kumar V (196 3 ) Load bearing capacity

of piles Geotechn Val XIII pp 76-86

Nixon I (1982) Standard penetration test State of the

art report Proc of the Second Europ Symp on Pen

Test Amsterdam Val 1 pp 3-20

47

Nunes A Vargas M (1953) Computed bearing capacity of

piles in residual soil compared with laboratory and

load tests Proc of the Third International Conference

on Soil Mechanics Zlirich Switzerland Vol 2 pp 75-79

Nordal S Grande L Janbu N (1982) Prediction of offshy

shore pile behaviour The Norwegian Institute of

Technology Trondheim

Ohde J (1939) Zur Theorie der Druckverteilung im Baugrund

Der Bauingenieur Vol 20 No 3334 p 451

Parroth E (1972) Einfache Formel zur Vorausbestimmung der

Tragfahigkeit von Standpfahlen mit Hilfe der Sande

Bautechn 9 pp 312-314

Poulos HG Davis EH (1980) Pile foundation analysis

and design New York - J Wiley and sons

Prodinger W Veder Ch (1981) Bearing capacity of floating

groups of diaphragm walls Proc X ICSMFE Stockholm

Vol 2 pp 809-814

Promboon S Brenner R (1981) Large diameter bored piles

in Bangkok Clay Proc X ICSMFE Stockholm Vol 2 pp

815-818

Reese L (1978) Design and construction of drilled shafts

ASCE JSMFD Vol 104 No OT1 pp 95-116

Rodin s Corbett BO et al (1974) Penetration testing in

United Kingdom state-of-the-art-report Proc Europ

Symp on Penetration Testing 1 Stockholm pp 139-146

Rollberg D (1976) Bestimmung des verhaltens von Pfahlen

aus sandier und rammengebnissen Heft 4 FBG Technische

Hochschule Aachen

Rollberg D (1977) Determination of the bearing capacity

and pile driving resistance of piles using soundings

Publications of the Institute for Found Eng Soil Mech

Rock Mech and Water Ways Construction Aachen Vol 3

48

Schmertmann J (1970) Static cone to compute static

settlement over sand Journal of the Soil Mech and

Found Division ASCE SM3 pp 1011-1043

Schmertmann J Hartman JP Brown PR (1978) Improved

strain influence factor diagrams Journal of the Soil

Mech and Found Division ASCE GT8 pp 1131-1135

Shibata T Hijikuro K and Fominerga M (1973) Settlement

of a blast furnace foundation Proc of the Eighth Int

Conf on Soil Mech Moscow USSR Vol 13 pp 239-242

Spang J (1972) Die Bestimmung der Tragfahigkeit von Grossshy

borhpfahlen (I) Strassen und Tiefbau No 2 pp 339-355

Senneset K (1974) Penetration testing in Norway State-ofshy

the-art-report Proc Europ Symp on Penetration Testing

Stockholm I pp 85-95

Tejchman A Gwizdala K (1979) Analysis of safety factors

of bearing capacity for large diameter piles Proc VII

ECSMFE Brighton Vol 1 pp 293-296

Thorburn s and Mac Vicar R (1971) Pile load tests to

f a ilure in the clyde alluvium Proc of the conference

on behaviour of pile s London England pp 1-7

Trof imenkov JG (1969) Accuracy of determining the bearing

capacity of piles based on results of static penetration

sounding of soils Osnovaniya Fundamenty i Mekhanika

Gruntov 4 (Translation Soil Mechanics and Foundation

Engineering 4 p 248)

Trofimenkov JG (1974) Penetration testing in USSR Stateshy

of-the-art report Proc Europ Symp on Penetration

Testing Stockholm I pp 147-154

Tuoma F and Reese L (1974) Behaviour of bored piles in

sand JSMFD ASCE Vol 100 No GT 7 Proc Paper 10651

July pp 749-761

49

Van der Veen C (1953) The bearing capacity of a pile

Proc 3 Int Conf on Soil Mech and Found Engng

Zlirich II pp 84-90

Van der Veen C and Boersma L (1957) The bearing capacity

of a pile predetermined by a cone penetration test

Proc 4 Int Conf on Soil Mech and Found Engng

London II pp 72-75

Weltrnan AJ Healy PR (1978) Piling in boulder clay

and other glacial tills Construction Industry Research

and Information Association UK-Report PG 5

Withiam J Kulhawy F (1981) Analysis prodecure for

drilled shaft uplift capacity Proc of a session

Drilled piers and caissons ASCE St Louis Missouri

pp 82-97

Woodward R Lundgren R Boitano J (1961) Pile loading

tests in stiff clays Proc of the Fifth International

Conference on Soil Mechanics Paris France Vol 2

pp 177-184

Wright SJ Reese LC (1979) Design of large diameter

bored piles Ground Engineering Vol 12 No 8 pp

17-22

DIN 4014 Cods Teil 2 (1977) Bohrpfahle Grossbohrpfahle

Herstellung Bemessung und zulassige Belastung

Polish Specification (1975) Specification for design and

construction of large diameter bored piles in bridges

Ministry of Transport Warsaw (in Polish)

Polish Specification (1979) Specification for prevision

bearing capacity of the piles on the presiometer test

and static sounding ENERGOPOL Warsaw (In Polish)

Polish Code (1983) Foundations Bearing capacity of piles

and pile foundations

5 1

FIGURES

bull bull

53

Ou

+ sect raquo iir 1

4 + D

h + +Osu

bull + t2 =n- Dp

LDpl r f 1

Opu

Fig 1 1 1 Bearing pi le in the soil

J_

fp

080

070

060

050

0 40

030

020

010

q~ [MPa ]000 -+--~-~-~-~------------------------=-shy

00 20 4fJ 60 80 10 0 120 14fJ 160 180 200

Fig 1 1 2 The point resistance factor fp

(Trofimenkov 1974)

54

ts

160

140

120

100

080

060

040

020

q~5 [ kPa)

0Q0--1------~-~-~-~-~-~ - - ---=- -- shy000 10 20 30 40 50 60 70 80 90 100

Fig 1 1 3 The shaft resistance factor fs middot (TYofimenkov 1974)

f s

200

180

160

140

120

100 2 3 4 5 6 7 8 9

Fig 1 1 4 Shaft friction factor f depenshys

ding of the soil density (Senneset 1974)

55

Q~ [kN]

1500

1000

500

0-r-----------r----~- Q~ [kN] 0 500 1000 1500

Fig 1 1 5 Comparison of the pile resisshytance determined by the results of static sounding and load tests (TYofimenkov 1974)

D f f

0

Fig 1 16 Equivalent cone resisshytance (Bustamante 1982)

56

E u shy0 ~

QI I ltII ltII

~ a C QI

O C

D

w gt

0

Cone res istance Point resistance

80 160 240 320

05

10

15

e d

20

ver y dense Cone resistance 300 kgcm2

Dpcm

a =45 b = 30 C 60 d = 100 e = 150

Fig 1 16a

Cone resistance _ qc

80 160 80 160 qc [ k g cm2 ]p

05

10 10

15 15 e d a

e d20

Dense Medium2 2200 kgcm 100 kgcm

Cone resistance and point resistance of piles versus overburden pressure (Kerisel 1965)

Point resi stance - p(for s=2cm) of the pi le for

15 sett Iement s = 2 cm

10

5

E u

uJ1 o-~----shya er O 804 2500

32 56

I 1

L oose50 -I =25 Very loose L

----~--shy5000 7500 80 98

~-----lmiddotI1--------2 10000 12500 31400 =Flcn)

112 123 200 =Dplcm)

Fig 1 1 6b Point resistance versus cone resistance and pile diameter (Franke 193)

57

1

fp

080 (D Gravel

0 Coarse sand Medium sand 070

reg Fine sond Silty sand

060

050

040

030

020

010

qc [MPa]000-+----r--~-~-~--------r----r----r-~-~-- -shy

oo 20 40 60 80 100 120 140 160 180 200

Fig 1 1 7 Point resistance factor f (proposal) p

58

300

250

200

150

100

qc [MPa I50-+---------------r---r---r---r----r------------- shy

oo 20 40 60 80 100 120 140 160 180 200

Fig 1 1 8 Shaft resistance factor fs (pr oposal)

59

Bustamante (seetab 115 I

l fp

G)

0 Gravel

Coarse sand Medium sand

cl

b)

t-----l

1----1

080 reg Fine sand Silty sand a) D

070 Polish

060 Specification

( 1979) 050

040

030 CD 020 0

reg 010

qc [MPa]0 00 -+-------------------------------------=--shy

oo 20 4o 5o 80 100 120 14o 15o 180 200

Fig 1 19 Point resistance factor f comparisonp

Bustamente ( see tab 116 I 300

a) ~

250 b)~

cl~

200 Polish Specification ( 1979 l

150

100

q [ MPa]504---~--~--~----- ---___

00 20 40 60 80 100 120 140 150 180 200

Fig 1 1 10 Shaft resistance factor fs comparison

60

1 fp

~

080 CD CD Gravel

070 0 reg Coarse sand Medium sand

060 0 Q) Fine sand Silty sand

05

040 Franke (1973)___

030 DIN 4014

020 Part 2 1977

( see tab113 l 0shy

--shy --a - 010 C---0 Piles without enlarged bases

D---0 Piles with enlarged bases qc [MPa ] 000

00 20 4JJ 60 80 90 100 120 140 160 200

Fig 11 11 Point resistance factor f comparison p

fs

DIN 4014 Part 2 1977 ( see tab 114 l

300

~ 5 lt qc lt 10 MPa 50

~ 10 lt qclt 15 MPa

~qcgt15MPa

200

150

CD

100 0 0

qc [ 1Pa] 50-t-----T-~----T-r-~----------------shy

OO 20 40 6JJ 80 100 120 14JJ 160 180 200

Fig 1 1 12 Shaft resistance factor fs comparison

61

Measured p [ MPa]

( s=010 Dp) 10

9

8

7

6

5 0

4 0 61

3

I 2

Calculated qcp [MPa]

0 0 2 3 4 5 6 7 8 9 10

Fig 1 1 13 Comparison of experimental and aomputed values of the pile point resistanae

62

Contact pressure ( MPa ]

2 I 6

50

100

E E 150 Ill

c QI

E Sett lement for QI

calculated qcpai V) 200

Fig 1114 Results from load tests on piles No 1 and 5

Contact pressure [ MPa I 0 2 I 6

01---------------------1

50

E E 100 Ill

Settlement forc QI calculated qcp E ~ ai

I V) 150

Fig 1 1 15 Results from load test on piles No 7 and 5

63

Contact pressure p [ MPa] 0 2 3 4 6

0-t=-----~-~-----

E E

100 1)

c CU E 2 QI V) 150

Fig 1 1 16 Results from load test on piles No 9 10 and 11

Contact pressured p [MPa] 0 1 2 3 4 5

o~~~=------------___-~-shy

50

100

E E

i 150

CU E CU

-a V) 200 2

Fig 1 1 17 Results from load test on piles No 12 and 13

c

-------------- -

64

Contact pressured

0 1 2 3 4 p [ MPo] ~o __L____1_____J_____L___

50

100

150

E

E

IJ) 200

c a

E a

~ 250

Fig 1 1 18 Results f Pom load tests on piles No 2 4 6 and 8

p [MPa]

60

50

tO

30

~

Pile Pile Pile Pile

Pile No18

------+ Pile No17 + ~_ ---0 Pile No 19

bullbull - --bull Pile No 20

- ~middot -shy-shy -(y I Settlement for

20 tO 60

No17 +-middotmiddot- V 70 No 18 bull--- V 9o No19-middot- V 120 No20bull---- V150

qcp 3

80 100 120 140 160 s (mm)

Bose resistance

Fig 1 1 lBa Point Pesistance vePsus settlement (Spang 1972J

65 Cone resistance qc [ MPa]

0 10 20 30

mud

5 ~ lll

0 c 0

c CD

peat

10 sand

Ill N

10=10

D=lOOOmm

1540=40

20__________________

[ml

Fig 1 119 Pile No 1 and results from static cone penetration test

Cone resistance qc [MPa l 0 10 20 30

7N V degW = 0+--------------------i

mud

5

lll

~ C 0

c peat~

10

sand lll N 1D15

15l lD=1500mm

40=60

20l---------=-------__J

[ml

Fig 1 1 20 Pile No 3 and results from static cone penetration test

66 Cone resistance qc [MPa]

10 20 II 3 igt pound ~

mud+peat

fine sand+ silt

50=11

l lo-11oomm

40= 44

10

15l____________c

[ml

Fig 1 1 21 Pile No 5 and results from static cone penetration test

Section Cone resistance Pile

0 0

5 10 15 20 25 30 qc [MPa] -----~-~shy~

Silt

[7r_ ___~ Medium Sand_~-----l

0 ltD

+shy4

0=11

9=

Fine sand + Silt t

30p=

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot1~11+-----E-----

[ml

Fig 1 1 22 Pile No 6 and results from static cone penetration test

Cone resistance qcmiddot 1MPuJ

0 10 20 30 67 01-+-------l--------------i

mud+ peat

fine sand

l1)

N

40=60

15L_____________

[ml Fig 1 1 23 PiZe No 7 and resuZts from static

cone penetr ation test

Section Cone resistance Pi le

0 5 10 15 20 25 30 qc [MPa 1 --~----Y-~-----~

Silt

Fine sand

Medium Sand Bentonite2----1~i

t 3

4

0

0=15

Fine iii ~~= 5

sand t ltD

6 +

Silt 7

3Dp=

63 g

10

11

12

13+------=~---l

[ml

Fig 1 1 24 PiZe No 8 and resuZts f rom static cone penetration test

68

I =3

Cone resistance qc [MPa]

0 10 20 30

C 0 C Cl

(I)

Said

Peat

Sand

l 0=110

D = 11

4 D = 44

Fig 1 125 Pile No 9 and results form static cone penetration test

69

Cone resistance qc[MPa)

0 10 20 30 I ~ II JE Ill= II=E IS

Fine sand QI

U) I

[- I C 0 + C Peat QI

CD

Fine sand 0

Ci D = 1 1

L l D= 110

4D= 4 4

Fig 1 1 25 Pile No 10 and results f rom static cone penetr ation test

70

Cone resistance 9c[MPa]

0 10 20 30

Sand

C 0 Mud peat

+shyc 5 ltII

co

Sand Op= 11

u 10 D= 110 4Dp=44

Fig 1 1 26 Pile No 11 and results foIm static cone penetration test

71

00 a_ N ~

middotu rr QI 0 u ~ C 0

QI ui C iij 0 QI U - 0

0 EN

d 2

Sll 1lOl

C

u (rr

C 0 u~

0

QI - C middot 0 C

U - O 0 EN

~ 0 2

E

ltD a---==-lr---___--~---6-l_-0_012 ~ Lr- - --1---------J J

S9l ls= apound QI -0 gtcc _gmiddot- 0 1) ui I

Fi g 1 1 2 Piles No 14 and 15 and results f r om stat i c cone penetr ation tests

72

Contact pressure p [ MPa] 2 4 6

01lt---------------~

50

E E

111 100 ~ (qcp=30 MPa for No16

~ iqcp =49 MPa for No14

~ 1so~--~~- _ _ __

I _ _

11 I lf--q = 32 MPa for No15

cp

Fig 1 1 28 Results f r om load tests on piles No 14 15 and 16

73

0300--------------~---~--~--shyE

Driven piles in ~ 0 bull Gravel

amp250 bull Sand L QJ X Silt a 1l o Bored piles in

sand -sect 200 0=-- shyC ~ ~ 10 unless ~~ middot D shown 1

ii O

~ ~ o 3 a 1501-----+-------I- --+---laquo-+-- -+------lt

~ sect 5 - 6 6middot 100t----+----+-----_-1---4--__co_--J~__j

-_

~ 0 t7

C

a 50 2 shyg ~ gt

0 20 30 40 50 60

Standard penetration resistanceN in blows per foot

(N 30

Fig 12 1 Emperical relation between ultimate point resistance of piles and standard penetrashytion test in cohesionless soil (Meyerhof 1976)

14 r-------------------r-------b-----q

References and symbols given in Fig121

121-----+---+----+----+------ll------j

- _sect ~ 10t----+----+-_--1-----+---lt~--~H---- 0 lt-~5- _-)0 I() l- I Q---+-----I[08 ~

H -(l () ltj-~C X bulls pound 061------lt----+-----i~- --+-- shy

- bull

-gt Q1pound--I---L---L---L---L--~ 0 10 20 30 40 50 60

Mean standard penetration resistance N in blows per foot ( N30 l

Fig 122 Empirical relation between ultimate skin friction of piles and standard penetration resistance in cohesionless soil (Meyerhof 1976)

74

a) b)0(1 0lt2

10 10

05 05

1 N30OD-+---------__ OD--t-----r-----r----------------ll--Nbull30~ 10 20 30 10 20 30 40 50

Fig 1 2 3 Reduction coefficient a) for impermeable gravels b) form permeablr gravels (Weltman and Healy 1978)

psf [MPo)

Fig 1 2 4 Relation between ultimate point resistance and SPT in cohesionless soil (Polish specification 1975)

75

30 35 40 45 Loo Med Dense Ver dense

50

40

~ E

l)

g 8 1)

middotu

1 ~

QI- bull Touma ~ bull Koizumi

(183)-depth base middotameter5

20 40 60 00 100 N30

30 35 40 45

OG2(294) bull G1 (183)

300 bull us 59 ( 102) bull 88(180)

bull 075 a GT (467)

150

~ 200-+--------+-- t--- --t-----i 130i 0 094 081

014 _- --- -- shy~ E 066bull bull 063 Note -~ ~m~r~s~ ~ 1001---1-r--t---1point is xh QI Ratio ~ Number in ( ) middotn key is h c Ratio s ~

0 20 40 60 00 100

~ig 1 2 5 Ultimate point and shaft resistance versus N30

(Wr ight and Reese 1979)

-----

76

tu Psa

[kPa] [MPa]

200 tu

------ shy150 Psa

1 1

1100 10 1 1

1 50

0+----------T----~---~-N-3J~shy0 20 40 60 80

Relation between ultimate skin friction and SPT (Decourt 1982)

Fig 1 2 6

Psa

[MPa]

8

0----Meyerhof 1976) 0 7

--- - --~ - copy Polish Specifcoti on 1975)6 ~-

~

reg- middot - Reese (1978) middot 5

f41- -- Decourt (1982) -I bull 4 2

----==---______z__ h25m Dp=12m

3 ---shybull

2 7

--shy ----shy~----shy0-t----i----------r-- ----------------------N3l~shy

0 10 20 30 40 so 60 70

Fig 1 2 7 Relation between ultimate point re~istance of large diameter piles and standard peneshytration test (SPT) in cohesionless soil

------

77

tu [kPa)

200 17 Cast under -J bentonite

~----Meyerhof (1976) ~copy -=middotmiddotmiddotmiddot== middotmiddot150 ~------- Wei tman (1978 ) middot Healy middotmiddot ___ Japanese ) 119810 Society

(0 -middotmiddot- Decourt (1982)middot Wright

100

- -middotmiddot -- 11979]reg Reesemiddot Bored piles

~shy50 1 -- shy

-- shy middotmiddot s-shy - --~ ------reg~~ ---~E_==---- ------- shy

N_ ---shy0-+--C--------------r---- ---------~---~-~shyo 10 20 30 40 50 60 70

Fig 12 8 Relation between ultimate skin friction of piles and standard penetration test (SPT)

78

Pst [MPa]

8

7 ---------ist=7MPa

6

5

4

3

2

I N30o~------------------------------+---------__=-shyo 10 20 30 40 50 60 70

Fig 12 9 Relation between ultimate point resistance of large diamter piles and standard peneshytration test (SPT) in cohesionless soil (proposal)

tu [MPa ]

( excavanted and cast

150 under bentonite ) tu=150 kPa

100 tu=90 kPa

I I

50 I I I I I N30

10 20 30 40 50 60 70

Fig 1 2 10 Relation between ultimate skin friction of large diameter piles and standard penetrashytion test (SPT) in sand (proposal)

79

2 3 4 5 p[MPa] 0 2 3 4 5 p[MPa]0

40 40 Cl

80 c 80

c 120 120

Pile No 1 PileNo216 160

200 2

s s c [mm] (mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MPa]

40 40

00 80

120 120

16 160 Pile No 3 Pile No 4

200 200

s s [mm] (mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MAJ]

tgt11 tgt- measured40 40

80 80

120 120

Pile No 5 Pile No 6 160 160

20 200 s s

[mm) [mm)

Fig 1 4 1 Base resistance vs settlement appoximative method piZe No 1- 6

80

0 2 3 6 5 p[MPa) 0 2 3 4 5 p[MPa]

40 40

80 80 6

120 120 6

6160 160

Pi le No 7 Pile No 8 6

200 3J s s

[mm] (mm]

0 2 3 4 5 4 p [ MPo)

6 6 40

6 6

6 80

6 6

6

Pi le No 9 Pile No 10

XJO s s

[mm] [mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MPa)

6 6

40 40 6 6

6

00 80 6

6

12 1Xl 6

160 Pile No 11 160 Pile No 12

200 200 s s

[mm ] [mm]

Fig 1 4 2 Base resistance vs settlement approximative method pile No - 12

81

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MPa]

6 6

40 6 40 6

6

80 6 80 6

120 6 120

Pile No 13 Pile No 141fO 160

200 200 s s

[mm] [mm]

0 2 3 4 5 p [MPa) 0 2 3 4 5 p [MPa)

40 40

80 80

120 120

HiO 160

200 200Pile No 15 Pile No 16

s s (mm) [rrrn 1

0 2 3 4 5 p[MPa] 0 2 3 4 5 p[MPa)

40 40 A A A-measured

680 80 t t

120 c 120 c

1fil Pi le No 17 160 Pile No 18

200 200 s s

[mm] [mm]

Fig 1 4 3 Base r esistance vs settlement approximative method pile No 13- 18

82

0 2 3 4 5 p[MPal 0 2 3 4 5 p (MPa]

D D40 40 c c

80 c 80 c

120 120

160 160

Pile No 19 Pile No 20 200 200

~ml (mm]

Fig 1 4 4 Base resistance vs settlement approximative method pile No 19- 20

LlJ QI

0 average lJ = 098 E sd = 029 C

6 SY = 030

4

2

lJ calculated ________________________ _______ measu red

06 08 10 12 14 16

Fig 1 4 5 Calculated pressure divided by the measured pressure at 20 mn settlement for aZZowabZe

q Zoad Pa= ~p approximative method pile

No 1- 20

8 3

Point resistance p [ MPaJ

a)

p(s) = s a +--sshy1 y qcp

1

SQ100p -- --- ---shy

~ s

[mml

I- 01 s rmm]-l p LMPa b)

f~]

c Cll E ~ i s

[mm)

Fig 146 Definition of the point resistance - settlement curve according to the modified hyperbolic method

84

01 ~ 0

20 0 0

0

16 0

medium 0 value a1 = 905-+ 256 Op 0 0

12 (r=039)

0 0

----0 0

8 0

0 0

0 0

4 0

05 06 07 08 09 10 11 12 f3 14 15 16 17 18 19 20 2 1 Op (ml

Fig 1 4 Initial slope of the base resistance curve vs pile diameter

a1 [p] 0

0020

16 assumed a 1= 28 - 4 qcp

12 0

0 Ct) 0 a = 2659 - 369 qcp8 1

0 0 (r = 0188)0

4

2 3 4 5 (MPa]qcp

Fig 1 4 8 Initial slope of the point resistance curve vs ultimate point resistance on the static cone resistance for pile tests No 1 20

85

a [~ 28

24

20

16

12

8

4

0 2 3 4 5 6 Qcp [MPa]

~ Kiosinski (1977) sand and sandy gravel of mediwn density

~ Klosinski (1977) loose sand ID= 0 3 0 4

o US59 ] t HH Touma p and Reese L (1974) fine sand and silty sand OGl (US59 HH BB - very dense Cl - mediwn dense) 1 BB

DIN 4014 Part 2 (1977)

Fig 1 4 9 Initial s lope of the point res istance curve vs ultimate point resis tance

86

assumed [il =30 -10 Op but )1~ 10 )1 [1 I

u 311-10 Op ( r =0 368)4 1 0

3 0 0

02 0

0 0co 0 8 0 0

0

0

05 06 07 08 09 10 11 12 13 14 15 16 17 19 20 21 Dp [ ml

Fig 14 10 Correction factor for hyperbolic base resistance shysettlement relationship

87

a [~] 28

24

20

16

12

8

4

2 3 4 5 qcp [ MPa]

Fig 14 11 Initial slope of the base resistance curve vs ultimate base resistance (proposal)

v [ 1 ]

3

2 -----G- DP J l 1J I Op lm] J

for Dp ~ 2 0 m ~ u = 1 01

0 --------r----r---r----r-----------------r-------------------------r------r-~-~--shy

05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 Dp[m)

Fig 1 4 12 Correction facto r for hyperbolic base resisshytance - settlement relationship (proposal)

s P ( s)

s +

u qcp

88

a) b)1

bt=o212= 47 MPa a1=1~32 tMWJ s 2 3 4 5 O 1 10 20 30 40 50 60 p [~a]0

0p [ MPa] 40 40

80 80

120 ~

160 b1 = ~ajtg ~= 0 212

~=1132 + 0212middot s

mJ 240 r=0994t t t measured s __ according to Jl s

o o o according to p (bull ll l[mm] [mm]

Pile No 2

slmm) 10 20 30 40 50 60 80 100 125 150 175 2)0 225 Note

p [ MPa] 09 14 17 20 22 24 27 30 32 34 36 38 39

measured

pibull) [ MPa] 074 128 169 202 228 249 282 307 330 347 360 371 380calculated

plbullbull1[MPal 070 125 168 203 233 257 297 327 356 378 396 410 422calculated

1) (bull) ij l099082 091 099 101 104 104 104 102 103 102 100 098 097 sd = 006

ij (HJ1041) (bull10) 078 089 099 102 106 107 110 109 111 111 110 10B 10B sd = 010

plbulll-according to a =1132 [ Jp(s) = s s for pile No21 0 1132 12 39

plbullbulll-according toa =1241 lmiddotGcp=39MPa1 0

~=14 see fig 1411 and fig 14 12 sp(S)=

124+ _ s_ 14middot39

11lbulll11l-J - correlation coefficient calculat~d P5 for

measure p s p(bull) and p(bull) respectively

Fig 1 41 3 Modified hyperboZic point resistance - settZement reZationship for piZe No 2

89

0 2 3 4 5 p(MA1] 0 2 3 4 5 p[MPa)

40 40

80 A 80 A

120 120

160 16 Pile No 1 Pile No 2

20 200 s s

[mm] rnm

0 2 3 4 5 0 2 3 4 5p [MPa] p [MPo]

40 40

80 80

120 1ZJ

lfpound) Pi le No 3 Pile No 4 A

200 A

s s A

[mm) [mm

0 2 3 4 5 p [MPa] 0 2 3 4 5 p [MPa]

40 40 A A A measured ~ calculated

80 80

12

160 160 Pi le No 5 Pile No 6

200 Z)Q

Fig 1 4 14 l3ase resmiddotistance vs settlement pr oposed method pile No 1- 6

90

2 3 4 5 p [MPa] 2 3 4 5 p [ MPa]

40 6

6 40

1 80 80

6

120 120 6

6 160 160

Pile No 7 6

200 200 s

[mm ] s

[mm]

0 2 3 4 5 6 p [MR] 0 2 3 4 5 p [MPa] 0 0

40 40 6

6

80 80

6

120 120

160 160 Pile No9 Pile No 10

200 200

s [mm] [msml I

0 2 3 4 5 6p[MR] 0 2 3 4 5 p [MPa]04--___ ____ ___ ___ ____

0+-=---------------~-~- shy

40 40 c 6 c - measured

0--0-0 shy calculated

80 80

120 120

160 160 Pile No11 Pi le No12

200 200

s [mm]

s [mm]

Fig 1415 Base resistance vs settlement proposed method pile No 7-12

91

0 2 3 4 5 p [MPal 0 2 3 4 5 p [MPa)

40 40

80 80

120

16 Pile No 13 Pile No 14

200 s

tnml [mm]

0 2 3 4 5 p [ MPa] 0 2 3 4 5 p [MPa)

40 40

80 80

120 120

160 1fD

Pi le No 15200 axJ s s

[mm] [mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 6 plMPa ]

A A A measured40 0---0-0 calculated

80

120 120

160 1ED Pile No 17 Pi le No 18

200 200

s s [mm] [mm]

Fig 1 4 16 Base resistance vs settlement proposed method pile No 13- 18

92

0 2 3 4 5 p [MFb] 0 2 3 4 5 p[MPa]

0 6 o -measured40 40 0 0 o -calculated

80 80

120 120

160 160 Pile No 19 Pile No 20

200 200 s s

[mm] [mnil

Fig 1 4 17 Base resistance vs settlement proposed method pile No 19-20

p(s~Psf

15 20

ean

-C 5 w u L Lower ~ confidence

linea 0

a IJl 10

o---o proposed

method I I I

15

Fig 1 4 17a Design curves for estimating developed base resistance in sand (Wr ight and Reese 1979)

93

n (number)

30

28

26

24

22

20

18

16

14

12

10

8

6

4

2

0 02 04

Fig 1 4 18

I= 126

Between 1] = 0 7 - 1 3--- I= 106 ( 84 frac34)

Average ~ = 098 Standard sd =023 deviation

Standard sv =023 veriation

1] (Coefficient Calculated Measured

06 08 10 12 14 16 18

Calculated pressur e divided by the measured pr essure for all pressure - settlement curves pr oposed method pile No 1- 20

94

a) b) Total load

Total load curve

---- _____-- shy- -- -Base load ~- Base load

-0-0 ~

00 00 J

ldeoli zed shaft load J

Shaft sesistanc1---------- 0=0middot30 a= 0 middot 30

025 Settlement IN 025 Settlement IN

Fig 1 419 Proposed method of synthesizing design loadsettlement curve (a) conservative design prodiction b) design prediction- peak in shaft loadsettlement curve (Burland et al 1966)

Cf

-0 0 0

J

0

~-----~--~-~ amp- 2 3 4 5 6 (cm)

a~middotltii -0 lt) cco2 41 -~ -0 1)

vi ~ llloli=----------- ---c~0 1 2 3 4 5 6 7 ( of diameter)1 1 1 1

05 10 15 20 ( in) for 30 in Pile Movemen~ ( 75cm pile)

Fig 1 4 20 Approximate load settlement curves for 30 in bored piles (AB and C represent failure load at 1 in settlement A B and C represent ultimate failure load) (Touma and Reese 194)

95

Load in MN 0 2 3 4 5

25

50E E C

-C 75

-~ ~

-Z 100 lJ

Shaft resistshy

125 once

15 Fig 1 4 21 Load-settlement relationships for largeshydiameter bored piles in stiff clay (Tomlinson 1977)

SettlementSo

Fig 1 4 22 Diagrams of s1iaft and base resistances versus settleshyment assumed in analysis (Kiosinski 1977)

96

0 0 1 ~ r- 025g ~~ 2

1- -shy3 03Sg 14 5 2

Qls =Qpls+Q5 (sQpls) Qs(s-3E

0

degsis __ -- Qpls) a~ C

4

t Sg l

5 Qu Is)

Q(s)in MN-l T

Ouls Q Is) in MN ---

Fig 1 4 23 Construction of load - settlement curves a) for sand b) for cohesive soil (DIN 4014 Part 2 1977 and Franke 1981)

-

s C 5C

Cl

3 0 00 05 10 15 20 Mean settlement I in)

Fig 1 4 24 Load- settlement curves for test shaft S4 (1 in = 25 4 mm 1 ton= 8 90 kN) (Reese 1978)

97

Relative side resistance

0 05 10 15 20 0E=--t----+---+--~

c QI lt) ~ 2 C

I itaker c

QI amp Cooke3E QI-j

c-en 4

C QI

E us 59o

5 QI gt

SA0 w 0 6

Fig 1425a Relative side resistance for clay vesus relative midlength settlement (Reese 1978)

degs (Osl u l t 0 05 10 15 2 0

Mean

2 Lower ~ C QI u

confidence line

~ 3 a

0

~4 E

()

5

6 __ _ ______ ________ __1

Fig 1 4 25b Design curves for esti mating developed side resistance (~Jy1nht ReertP- 1987 J

98 Load Q

8 - 15 mm

1- 2 of p ile diameter

100-200 10-15 of pile Os Ot diameter Shaft Total

Settlement S Resistshy Resist- Load ance once

Fig 1426 Dependence of total load base resistance and shaft resistance on settlement of lar-ge diameter pile (Tejchman Gwizdala 1979)

6

5 Shaft load

4

3

2

z ~

-0

g Pile EF- 56 J 0

0 0 20 30 Butt settlement (mm)

Fig 1 4 27 Deveiopment of shaft and base resistance with settiement (Promboon Brenner 1981)

99

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 0 r-=-1---J__-----------------------~----_shy

Load [ k N l5

10

20

( I

Skin friction ----1 I I

~ 40 QI E

fQI

50 I

Q) I () ICOntinuos fost deolading

Fig 1428 Load-Settlement-Diagram Testelement III (Diaphragm-Wall 0515 m 244 m deep) Portion of Skin Friction and Base Resistance (Prodinger Veder 1981)

Qs (QJ max

0 05 10

Upper Limit of Data

Farr and Aurora (1981J C

~ 2 - shy -+shy - Mean of Data

I QI

Lower Limit of Data a

0 - 3 E

Vl

4

Smid = Approximate shaft buff movement ignoring the elastic compression of upper halt of the shaft

D = Shaft diameter

Q Mobi Ii zed shaft resistance

Qs1max = Maximum shaft resistance

Fig 1 4 29 Relative shaft resistance vs relative movement (Farr and Aurora 1981)

100 Load Q (s) [ MN]

Su5 s s 20 mm for non- cohesive soil u

s s 10 mm f or cohesive soil u

s s 15 mm for claysand u

Q (s) + Q (s)s p

Qs(s)

-C ltII E s ~- [mm]-ltII IJ)

Fig 1 430 Dependence of total load Q(s) point res i stance Q (s) and shaft resistance Q (s) versus settlement p s

~ 3 Usu Qpu Qu Q(s) [ MN]

Sus= 20

1J

60

80

100

120

degs (s ) 140

5 P=Ol Op

1EO

C -ltII E 180 ~ ] 200

s [mm]

Approximative dependence of total load point resistance and shaft resistance versus settlement fny non-cohesive soil

Fig 1 4 31

101

113 3 ~fic0P Ye hY

1 Ground water

D

I y

yh C

Fig 1 5 1 Determination of 01 and 03 for settlement analysis of lar ge diameter bored piles

102

I

E=Et [MPa]

160 0

140

120 0

100

80

6

40

--- --shy 0

0

8 0

0

0

20

2 3 4

I 0 15

Fig 1 5 2

E = Et [MPa]

120

100

80

60

40

I I 0 35 065 085

0

Et= 17 81 qcp0844

( r = 0 128)

5

100

6 qcplMPo]

Calculated values of Young s modulus for piles No 1shy24 according to equation 1 5 2 and 1 56

0

0 0

E =898qcp127 (r= 0314)

E = 9 middot qcp 13 0

20 shy 0

0 0

0 1 2

loJ

I 0 35

3 I

065

4

I 085

5

100

6 qcp [MPo]

Fig 1 5 3 Calculated valueBof Young s modulus for piles No 1shy24 according to equation 1 5 4 and 1 5 6

I K 10 3

( 1 ] 1832

1400 0

1200 0

0

1000 0

800 0

m=2821 qcp0621

600 0

(r=0057)

400 0 0 0 0 0

200

2 3 4 5 6 qcp (MPa]

I 035

I 065

I 085 100 Io

Fig 15 4 Calculated valuesof the dimensionless compress ion modulus K for piles No 1- 24 according to equation 1 5 2 and 1 56

K ( 1 ]

0

1400

1200 0 0

1000

800

600

0

0 0

0

0 0

0 K= 1422 qcpl05

(r=0181)

0 K= 150 qcp

400 0

3)0 0 0

2 3 4 5 6 qcp(MPa)

I I -J 035 065 085 100 Io

Fig 1 5 5 Calculated values of the dimensionless compression modulus K for pile~ No 1-24 according to equation 1 5 2 and 1 5 6

104

120

100

2 3 4 5

I I I rv 0 15 035 065 085 100 lo

Bergdahl (1982) for shallow foundation

o----o Bozant Masopust (1981) D= 1 0 rn h=10 rn large diameter bored piles in noncohesive so il

0----0 Proposal according to current anal ysis

Klosinski (1977) D=090 to 125 rn large diameter bored piles in sand and sandy grave l

Mitchell Gardner (1976) very dense sand E=(35)q (it depends on sand density and stress history) c

Fig 1 5 6 Composision of Young s moduius

105

TABLES

0 Tab 1 11 Methods for detemination of the bearing capacity of bored piles (Ro llberg 1977)

Cl

Nol -- I Soil Areas of Q) Q) Editor Determination of Coefficients 5 type influenceqP qs p ~ C C 11 12 fP I fs

1 all Lab f Soil Mech (1936) l qp at the elevashy 1 0

2 all Huizinga (1951) ~ t~on of the pile 14 point

3 all Van der Veen (1953) ) 18 1 h+l14 all Van der Veen 1 0 Dpl375 D~ 15-- J qcmiddotdhBoersma (1957)

~ 11 +12 h - 12

5 12 all Menzenbach ( 1961) qc at the elevashy~ tion of pile point

6 18 all Mohan Jain Kuman (1963)1 average of qc over 1 h Q) h ~qcmiddotdhl 10 Dpj 3 75 Dj 15 50_micro

and 1 2C 11

7 I amp all de Beer ( 1964) graphically from 10 Q) qc 0 1 h+l18 u C

sand Soviet norm SNIP II 9ct9cp I4 bull O Dp I10 DP l66-1 083shyu clay B5- 67 Trofimenkov (1969) 2 50 1 251 +l J qc middotdh micro middot h middot-l l 2h-~ _micro

9 _micro u all Paproth (1972) at the elevation 3 5 I shy

) of pile point (Dpgt0 5 m 7 D8DpE

E-lt p 1 h+l1 1 h Dplt 5 m u l+l J qcmiddotdh h f qcmiddotd~ 30 Dpl 50 Dp 2 0 100shy10 sand Norwegian method

0l 2 h-12 200Senneseth (1974)

11 lall Soviet method h+l (20-0lqgl - 101 1 q middotdhTrofimenkov (1974) -- f C UpUsmiddotQct

l1+l2 h - 1212 Qct-Qcp 40 D~ 10 Dp 1 33- 0 67shyUsbullh 4 00 2 50

13 English method 10 DFJ 375Dp 10 I

Rodin Corbett Shershywood Thorburn (1974)

3 7 5 Dcl 8 0 DP 10h+l1 _1_ J qcmiddotdh 1 h

qcmiddotdh 20011 +12 h - 12 hb

1 h qcmiddotdh 150hf

0

Observations

fp I f (qp)fs C

Dp E = 1 cm Qbu = 2 Qpa (approx )

s fs=f (qc)

q=~g Us 0 h

fp=f(q~)

fs=f(qgl

bull fine grained non- cohesive soil loosely packed

bull fine grained non- cohesive soil medium dense comp

fine grained non- cohesive soil

Tab 111 (cont)

h+h bE 14 non-cohe- Meyerhof ( 1956 poundti J N 3o middot dh CtME fN3 o dh 1 0 DP 4 0 DP 10 100 etM= l 2

sive soil 1976) lJ +12 h - li hE o hgp taken into consi der ~ Ul (I)

E-lt

C 0

~E = 1 kgbull 30 cm

(statistical limit depth of the pile) hE - clamping length of

pile micro rrJ l-l micro (I)

15 C (I) p

sand Norwegian method

- irm - - - 10 IT

m = diagram O l-l Senneset (1 974) rrJO C

16 rrJ micro gravel English meth it 3 middot N30 - - - 10 - Jf 3 + diagram U) ~

E-lt p U)

iiouiu Coruett Sherwood Thorshyburn (1974 )

(NJQat the elevashytion of pile point1

0 -i

108

Tab 11 2

Results of calculati o n of p i le point load pile shaft load and total pile load from static con e penetration test (Rol l berg 1977)

~ gt

~ gt Ultima te Ultimate Ult imate

No Method micro micro poi nt skin bearing 080lt17nlt1 50 Q) -l

-l middot-i resistanceuro resistance r esistancE

middot-i p 0

(J n1 n n2 n n3 n n1 n2 n3

1

2

Lab fSoil Mech

Hu izinga (1951)

(1936 ) 430

307 i 3 Van der Veen (1953) 239

49

4

5

Van der VeenBoersma

Menzenbach (1961)

(1957) -l middot-i 0

2 4 7

1 57 1-CJ)

6

7

8

Mohan Jain Kumen

de Beer (1964)

Sovi et Norm (1969)

(1963) CJ) Q)

-l middot-i 0

lJ Q)

Q)

gt- CJ) Q)

c 0

2 44

1 37

183

47

t I

49

487

0 18

47

16

3 02

0 85 1

47

16

137

08

9

10

Paproth ( 1972)

Norw Method (1974)

~ 0

0

u I

C 0 C

1 8 1

180 l 46

1- - -_L~ 46 167 46 1 19

1 1 Soviet Method ( 1974) [1 1 41 46 1 62 13 083 13 1 14 0 8

12 Engl Method (1974) 2 66 35 128 35 2 30 35 1 28

Note

cal Q a) n = --- mean value of the rat i o between calculat ed pile loads and those n Q determined f r om loading test

b) n = number of piles

109

Tab 113

Point resistance of large diameter piles (DIN 4014 Part 2 1977)

Settlement Point pressure 1 Factor -fshy

(cm) (MPa) cf=lOMPa I i=15 MPa C C

Piles without enlarged base

1 05 005 003 2 08 008 005 3 11 0 11 007

15 34 034 023

Piles with enlarged base

1 035 0 04 002 2 065 0 07 004 3 0 90 009 006

15 2 40 0 24 0 16

Note 10 lt qp lt 15 (MPa)C

Tab 114

Skin friction resistance of large diameter piles (DIN 4014 1977)

Strength Static cone pen- Depth below Skin frict ion Factor of sand etration resist surface

(MPa) (m) (MPa) fs

Very small lt 5 - 0

Small 5 to 10 0 to 2 0 2 to 5 003 ln6 to 333

gt 5 005 100 to 200

Medium I I 10 to 15 0 to 2 0 I

I 2 to 7 5

gt 75 I 0045 0075

222 to 133 to

333 200

High I I

i

l

gt 15 0 2

to 2 to 10 gt 10

I I I

I

i

0 006 0 10

gt gt

250 150

Note Skin friction is assumpted as linear until s =2 cm and constant for s gt 2 cm

11 0

Tab 115

Values of the inverse of the point resistance factor (Bustamante 1982) fp

Soil type qPC I 1

Factor - shyfp(MPa)

for piles group

a) Silt and loose sand lt 5 0 40 -b) Moderately compact

5 - 12 040sand and gravel

c) Compact to very gt 12 i 030compact sand and gravel I

Tab 116

Values of the shaft resistance factor fs (Bustamante 1982)

Factor fs

Soil type qs

C Category I(MPa) I A I B I II A III BI

I a) Silt and loose lt 5 60

i 150 I 60 I 120-

sand

b) Moderately corn- I pact sand and 5 - 12 100 200 100 200 gravel i

Icl Compact to very

compact sand gt 12 150 i I 300 150 I 200I

I I and gravel i

I

111

Tab 117

Point resistance factor (proposal)

-

1-fp

qc (MPa)

Gravel

Coarse sand Medium sand

Fine sand Silty sand

25

080

0 70

060

5 0

0 65

055

047

75

054

045

039

10 0

045

036

031

150

035

027

022

200

030

0 23

018

Tab 118

Shaf t r e sistance factor (proposal)

fs

qc (MPa)

Gravel

Coarse sand Medium sand

Fine sand Silty sand

25

80

100

130

10 0

120

150

190

I 200

180

230

300

11 2

Tab 119

Calculated values qcp

for large diameter piles

Pile Literature Length Diameter (m) Measured p Cr1 lcul Settlement Note Authcr(year) No (ml D Dp (MPa)

(s=0 10Dp) (MPa)p ~~JL__

s s ()(mm) Dp

1 Franke (1977) 1 13 11 36 38 117 106 Garbrecht

2

3

2

3

13

14

11

15

1 58 36

37

38

40

215

185

136

123

) qg accord to Franke

4 4 13 15 204 3 2 33 220 108 and Garshy

5 5 6 11 33 35 127 11 5 brecht (1977)

6 6 6 11 153 36 35 146 9 5

7 7 6 1 5 34 35 158 105

8 -shy 8 6 15 2 1 41 3 0 109 52

9 10 9 11 39 52 47

10 11 95 11 43 35 77 70

11 12 9 11 49 66 60

12 13 10 11 15 5 1 4 0 77 5 1

13 14 9 11 1 5 4 8 46 115 77--shy14 Pranke ( 1973) 15 115 18 4 9

) ) average 88

15 13$ 13 5 1 3 19 -2 5 3 2 sd=3 0

16 - - 165 16 5 13 19 30 sv=0 34

17

18

Spang (1972)

llXJ

V90

6 6

6 75

0 7

09

3 2

4 2

32X

42X

x) s =0 10 D p

19 VlaJ 720 1 2 39 3 9X

20 - - VlsJ 6 5 1 5 3 0 3 ox

21 Touma and US59 9 9 o 76 8 0 Reese ( 1977)

22 HH 75 0 61 8 0

23 Gl 180 091 - 2 5

24 BB 137 o 76

sd = standard deviation

sv = standard variation

Tab 1 2 1

Ultimate point resistance coarse and medium sand psf (MPal (Pol ish Specification 1975)

Depth h

Medium sand r = 0 40 N = 200 30 Base diam (Op) and depthbase diam (hDp)

Dense sand r 0 Base diam (Op)

= 0 80 = 50N30 and dpethbase diam (hDp)

(ml Dp = 0 6 m Dp = 1 0 m Dp =12 m Dp = 1 5 m Dp = 0 6 m DP = 10 m DP = 12 m DP = 15 m

Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp

5 10 83 0 85 5 0 075 42 07 33 20 8 3 16 50 14 42 13 3 3

7 14 11 7 1 2 70 11 5 8 10 4 7 2 8 11 7 22 70 2 0 5 8 1 8 47

10 18 16 7 15 10 0 14 8 3 1 3 67 35 167 28 100 2 5 83 2 2 67

15 18 250 18 15 0 16 12 5 15 100 4 2 25 0 3 4 15 0 30 125 27 100

20 2 4 333 2 0 200 185 167 1 7 133 4 7 333 3 8 200 33 167 30 13 3

25 26 41 7 2 2 25 0 20 208 19 167 5 0 41 7 4 0 250 3 5 20 8 3 2 167

w

11 4

Tab 131

Partial safety factors for resistance to axial load for bored piles (Wright Reese 1979)

Partial safety Normal Poor factor for control control

Unit skin resistance 1 70 185

(no load test)

Unit skin resistance 160 1 70

(from load test)

End bearing 165 180

Tab 1 3 2

Probability of failure of bored piles under normal design conditions (Wright Reese 1979)

Probability of Factor of Structure failure safety classification

5 10-3 25 monumental

210shy 22 permanent- 2

5 middot 10 2 0 110shy 1 85

temporary 5 bull 10-l 165

11 5

Tab 133 Results of field tests (Tejchman Gwizdara 1979)

L

II C C C 0 0 0

micro micro

micro micro micro For universal safe~y F2u u CUNo micro C C ~ ~g~ middot- C

~ Permisible micro micro i ~c -i micro

cmiddot-~ micro~ L

micro oo ~ load ~t~ ~~ omicro micro ~ ~ 3Z~ ~ ~ micro

-~~

~ e ~ --middot--

middot- ~ obull 0

~ g ~~ ~~ ~

~ L

o Jl i5 sect~ =gt L Q~ = yen t p Qp Qp

D h Q~ Srrx s tm p s E~ iQ~lQ~cm ~~ KN X ll1l kPa kPa kN kN kN Jl ~e ~ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 70 6 60 4081 1550 2531 38 0 1182 10 4040 175 2041 245 1796 632 141 120

2 90 6 75 5082 3041 2041 598 1785 10 4782 107 2541 1079 1462 282 140 42 5

3 120 720 7259 4041 3218 557 1035 10 3576 119 3630 2158 1472 187 2 19 594

4 150 650 8643 4454 4189 51 5 928 20 2521 136 4326 2158 2168 3 10 166 253

5 130190 195 7750 3011 4709 392 805 10 1075 - 3875 981 2894 3 10 166 253

6 130190 165 9516 5101 4415 536 522 20 1800 - 4758 1962 2796 260 158 412

7 130190 135 8044 5199 2845 646 114 4 15 1834 - 4022 2109 1913 2 47 149 524

8 180 115 11380 4415 6965 388 792 15 1735 - 5690 2747 2943 161 2 37 483

9 76 980 6867 4316 2551 628 110 13 9529 109 3534 1128 2306 383 111 32 8

10 61 7 60 7161 2747 44 14 383 67 15 9404 303 3581 392 3188 700 169 109

11 92 180 4807 883 3924 184 20 8 1329 76 2404 196 2207 450 178 82

12 76 24 5 6769 736 6033 109 20 8 1623 103 3385 147 3238 500 186 43

13 76 137 5396 2060 3336 38 2 63 8 4535 102 2698 589 1109 350 t 58 218

14 120 23 5297 1854 3443 35 0 960 10 1640 39 2649 196 2453 945 130 7 4

15 135 16 7 13489 7554 5935 560 181 10 5260 83 6749 2060 4689 367 127 305

16 170 46 0 8829 2943 5886 333 17 10 3466 39 4415 1373 3042 2 14 1 94 31 1

Average Fi 387 166 Standard deviation Sd 2 1 5 034 Standard variation sv= 0 56 0 20

1234 Spang1972 567 8 Franke 1976 9 10 111 2 1 3 Touma Reese 1974

14 Colombo 1971 15 Kerisel Simons 1962 16 Appendino 1973

11 6

Tab 134

Results of model

SafetyScheme factor

medium F ssand

F p

loose F s

samd Fp

F 3 55 sd _P F 1 32 sd

s

tests (Tejchman Gwizdara 1979)

Diameter D (mm)

30 60 90 133

145 129 108 112

280 3 08 307 294

140 154 153 112

594 3 04 324 426

107 sv 030

0 19 sv 0 14

117

Tab 135

Individual safety factors according to literature

Literature proposal ofLiterature individual safety factor

Fs Fb

Polish Specification (1974) 100 250

Tejchman Gwizdala (1979) 150 400

Bustamante Gianeselli 200 300 (1982)

Decourt ( 1982) 130 400

average 145 3 38

TAB 141 0)

Load settlement curves - measured

Pile No

Settlement 1 c 3 4 5 6 7 8 9 10 11 12

s p s p p s

p p s P

p s P

p s p p s

P p s

P p s

p p s p p S

p I i p s

p p s p

mm MPa rrrn lifl5a MPa mm

lifl5a MPa

mm lifl5a MPa mm

RPa mmMPa nwa MPa mm

RPa MPa mm RPa MPa mm

RPa MPa mm RPa MPa mm

RPa MPa mm RPa MPa mm

RPa 10 045 222 09 1 1 05 20 07 143 06 167 08 125 0 5 20 08 125 10 100 08 12 5 15 67 16 63 20 092 21 7 14 43 08 25 10 20 0 1 1 182 12 167 0 9 22 2 12 167 18 111 14 143 24 83 22 9 1 30 125 240 1 7 I 7 6 1 1 273 1 2 250 14 214 15 200 1 2 250 15 200 25 12 0 19 15 8 30 100 26 11 5 40 1ti 250 20 10 0 14 28 6 14 286 1 7 235 18 222 1 4 286 18 22 2 3 2 12 5 23 174 36 111 3 0 133 50 20 250 22 ~27 1 7 294 1 5 333 20 250 2 1 ~38 1 7 294 1 9 263 37 135 27 18 5 4 2 11 9 33 152 60 2 2 273 24 ~5o 20 300 1 7 353 23 61 22 ~73 18 333 21 286 43 140 30 20 0 46 13 0 36 16 7 80 271 295 27 796 24 333 20 400 27 ~96 25 1320 22 364 25 32 0 53 15 1 36 222 41 195

100 322 31 1 30 333 28 357 22 454 31 1323 29 345 26 385 28 357 60 16 7 40 25 0 45 22 2 125 38 329 32 391 32 391 25 500 32 139 1 30 41 7 32 39 1 4 6 272 48 ~6 0 150 14 2 357 34 1441 36 41 7 27 555 36 ~1 7 34 44 1 36 41 7 175 36 486 39 449 30 583 38 ~61 38 461 200 38 526 42 476 32 625 225 39 577 33 682

(mmMPa) ( 1 MPa)

1

1=2074

t 1=O ~01 =0 98S

a1=1132

b1 =0 212 V =0994

a1=2217

b1=O 131

V =Q 978

a1=1860 b1=0233

V =Q966

a1=1562

b1=0174 V =Q983

a1=1382

b1=O195

V =0975

a1 =20 37

b1 =C 174

V =0957

a1=1443

b1=(l 193 v =O 961

a1=965

b1= 0071 V =0 990

a1=1 91

b1 =o 128

V =0 993

a1=5 83

b1=C124

v =O 981

a1=6 1 4

b1=01 64 v =U 985

li(MPa) ~9 4 7 76 43 57 middot5 1 57 5 2 141 78 81 61 cp (MPa) B8 39 40 33 35 35 35 3 0 39 3 5 49 40 __Ef ~-6 1 2 1 9 1 3 16 15 16 1 7 36 22 16 15 qcp

TAB 141 (continue) Load settlement curves - measured

Pi le No 3ettlement 13 14 15 1 17 18 19 20 21 22 23 24

s p s T5

p s T5

p s T5

p s P

p s P

p s P

p s P

p s P

p s T5

p s T5

p s p p s

p mm MPa lll1l

HPa MPa mm HPa MPa mm

fWa MPa mm fWa MPa lll1l

HPa MPa mm HPa MPa mm

MPa MPa lll1l NT5a MPa HPa MPa 111111

HPa MPa 111111

HPa MPa 1)1111

mra 10 1 7 59 075 133 06 167 075 133 ~95 105 09 11 1 07 143 3 76 1 7 59 08 133 10 100 20 2 4 83 130 154 095 21 1 1 15 17 4 1 75 114 16 125 12 167 ~7 74 33 6 2 1 3 15 3 1 9 103 30 29 103 1 7 176 1 2 250 15 200 r55 118 22 136 16 18 8 38 79 46 66 1 7 182 27 110 40 33 12 1 20 200 1 35 29 6 1 75 229 ~O 133 26 154 175 229 49 82 58 6 9 1 9 21 1 35 115 50 36 139 235 21 3 145 34 5 1 95 256 24 208 ~-4 147 28 17 9 20 250 gt8 86 6 9 72 2 2 233 4 2 11 8 60 39 154 265 22 6 1 55 387 2 15 279 28 214 ~6 16 7 30 120 0 2 2 27 3 o 8 89 80 7 5 2 3 262 80 43 186 31 258 1 7 47 1 36 222 14 05 198 33 124 2 25 320 B 1 98 25 327

100 45 222 18 556 39~ 253 ~-5 222 36 1278 27 370 ~8 113 125 47 26 6 20 625 42 29 8 149 255 28 1446 t50 22 682 3 0 500 175 200 225

(mmMPa) a1=479 a1=1206 a1=14 51 a1=1113 a1=1406 ~=836 a1=843 a1=1176 ~=64 a =561 a1=10 0 a1=9 5 (1MPa) b1=0175 b1=0 178 b1=0 382 b=0287 b1=O 119 p 1=0 137 h1 =o 193 b=0258 p1=0 049 b1=0032 b1=0 276 b1 =0 048

hf (MPa)

v =0998 57

v =0-987 5 6

v =0989 26

v =0992 35

v =0933 Iv =0991 84 73

v =0993 5 2

v =0998 tJ

3 9 =0944 v =0998 v =0996 v =0981

qcp (MPa) 46 39 32 30 32 14 2 39 30

lL 12 1 1 08 12 26 1 7 1 3 13 qcp

lD

N 0

TAB 142

Calculated point resistance curves

Setlement (mm) p(s)

1

n p(s)

Calculated value of the p(s) for pile No

2 3 4 5

n p(s) n p(s) n p(s) n p(s) 6

(MPa)

n p(s)

7

n p(s) 8

n p(s) 9

n p(s)

10 20 30 50 80

100

150 200 225

070 128 177 253 335

375 446 493

157 140 141

127

123

1 16 106

070 1 25 168 232

297

327 378 410

422

078 089 099 1 06

1 10

109 1 11 108

108

073 1 30 176 246

315 349

405 441

146 163

160 145

1 32 125

113 105

056 096

1 26

167 205 222

249 265

271

0 80 096

105

1 11 100 101

092 0 83

082

065

118 162 233

308 345

412 456

108 108

1 16 116 114 111

064

1 12 151 2 10 2 69

298

346 3 76

078 P63 093 tt 13 101 tt 53 100 I 13

108 ~75

103 ~04 096 ~ 55

~ 87

1 26 125 127 126

125

1 17 1 04

052 088

1 15 153

188 2 03 227 242

065 0 74

o 77 0 81 0 75

0 73

063

072 122

1 83 262 347 388

463 5 11

073

0 74

073 0 71 0 65 065

064 1 18

162 233 309

3 46

41 3 4 57

Dp (m) 1 1 Qcp (MPa) 38 (mmMPa) h2 8 1 1 9 Qcpbullv1(MPa) 72

158

39

124 14 55

15

40

n20 15 60

204

33 148 10 33

1 1

35

tt 4o 1 9 67

1 53 3 5

tt 4 0 1 5 51

15

13 5

114 0 15 i-gt 3

2 1

30

tt 6 0 10 3 0

1 1

3 9

12 4 1 9 74

1 1

3 5 h40

1 9 67

Note n = condition coefficient calculated p(s) measured p(s)

10

n

081

084 0 85 0 86 0 85

087

TAB 142 (continue)

Calculated point resistance curves

Calculated value of the p(s) for pile No (MPa) Setlement 11 12 13 14 15 16 17 18 19 20

(mm) p(s) ll p(s) n p(s) ll p(s) n p(s) n p(s) n p(s) n p(s) n p(s n p(s) n

10 106 070 0 71 045 091 054 099 1 32 055 092 053 070 060 081 085 0 72 080 055 078

20 1 90 079 130 059 160 067 1 70 1 30 096 101 091 079 1 12 148 085 1 31 082 098 082

30 258 086 1 76 068 2 15 074 222 1 31 1 26 105 120 080 156 205 081 180 082 132 083

50 363 086 246 075 297 082 296 1 26 1 70 117 161 082 228 095 295 087 256 0 91 184 092

80 471 316 o 77 3 77 088 364 1 18 2 1 o 1 24 199 308 085 393 097 336 1 02 237 095

100 522 349 078 415 092 394 228 1 27 2 16 348 088 442 098 375 104 262 097

150 611 405 479 443 258 117 244 423 529 443 304 101

200 669 441 518 473 276 261 474 587 488 331

Dp (MPa) 1 1 1 5 1 5 18 1 9 19 070 090 12 15

qcp (MPa) 49 4 0 46 49 32 30 32 42 39 30 12 a1 mmMPa) 84 h20 96 84 152 160 152 124 160

IV1 1 9 1 5 15 12 11 1 1 23 21 18 15

qcpmiddotv1 (MPa) 93 60 69 59 35 33 74 88 70 45

- 12287 average = ~ = 098

standard deviation sd = 023 standard variation sv = 023

N

122

TAB 143 Ultimate settlement for shaft resistance - summing up

Ultimate settlements (mm)Literature sand cohesive claysand

soil

Burland Butler Dunican (1966) 7

Touma Reese (1974) 10 Tomlinson (1977) 10 Klosinski (1977) 8

Francke Gerbrecht (1977) 20-30 DIN 4014 part 2 (1977) 20 10 Francke (1981) Reese (1978) (1979) 05-2 of 05-2 of Farr Aurora (1981) shaft dia~ shaft diam

5-20 mm 5-20 mm Tejchman Gwizdala (1979) - Spang (1972) 10

10 10 20

- Francke (1976) 10 20 15 15

- Touma Reese (1974) 13 8 15 8

8 - Colombo (1971) 10

- Kerisel Simons (1962) 20 - Appendino (1973) 10 Promboon Brenner (1981) 10 Prodinger Veder (1981) 12 Decourt (1982) 10-15 10-15

-average s = 14 1 10 126

standard deviation sd = 53 2 1 47

standard variation sv = 038 021 037

123

TABLE 14 4 Al l owab l e base resistance versus sett lement

Pile Li terature ength Diameter (m) Calculated qcp=qcp Settl ement Fp-3- sa (mm)No Aut hor No (m) D DP qcp (MPa) for qcp3(MPa)

1 Francke ( 1977) 1 13 11 38 127 25 Garbrecht

II2 2 13 11 158 39 130 19

II3 3 14 15 40 133 33

II4 4 13 15 204 33 110 23

II5 5 6 11 35 117 22

II6 6 6 11 153 35 117 19

II

8

7 7 6 15 35 1 17 25

II 8 6 15 21 30 100 21

II9 10 9 11 39 130 13

II10 11 95 11 35 117 15

II11 12 9 11 39 163 11

II12 13 10 11 15 40 133 7

II13 14 9 11 15 46 153 9

14 Francke ( 1973) 115 11 5 18 30 100 15

II15 135 135 13 19 32 107 29

II16 165 165 13 19 49 163 35

17 Spang (1972) V70 660 070 32 107 28

18 II V90 675 0 90 42 140 16

II19 V120 720 1 20 3 9 130 16

II20 V15C 650 150 30 100 16 average for pi les 198

standard dev sd = 78

standard var sv = 039

)assumed qc = p for s = 010 Op sonding meRsurement were not availab le

IV

TA~LE 15 1

Comparison of the initial sl ope of the pile point resistance - settlement curve

Accardi ng to 1 2 3 4

In i t i ~l 5

slope a1 for the pile No

6 7 8 9

(mmMPa)

10 11 12 13 14 15 Note

a 1 for s=10 mm 222 11 1 a1 for s=20 mm 21 7 14 3 calculated 207 113see Tab 14 1 Bo Berggren (198 )230s=20 mm

Schmertmann s method (see 202B Berggren 1981)s=20 mm

No 1 _ llNo - 6 1 97 098

202 250

22 2

400

30 8

090

14 3

200

186

076

167

182 156

286

18 2

107

125

167 138

091

20 0

222

204

426

263

098

125

167

144

087

100

11 1 9 7

182

23 5

1 03

12 5

14 3

11 9

174

164

105

67 83

58

14 6

125

1 16

63

9 1

61

103

59

8 3 48

123

13 3

15 4 12 1

1 10

167 21 1

aceto hypershy14 5 bola type curve

1 15

No 2 NQj = n1

No 4Noz ~ na No 5Naz= T]g

105 1 27

106

093

1 13

160

1 23

108 1 17

157

100

121 109

1 92

118

1 16 1 14

164

2 12

120

122

1 15

143

1 76

151

149 1 73 1 27 146

TAllLE 151 (continue)

Compa ri son of the initial slope of the pile point resistance - settl ement curve

Initial slope a1 for the pile No (mmMPa)According Note to 16 17 18 19 20 21 22 23 24 -a1 for s=10 mm 133 - 105 11 1 143 76 59 133 100 a1 for s=20 mm 174 - 114 125 167 74 62 153 10 3 calculated see 11 1 146 84 84 118 64 56 100 95Tab 141

Bo Berggren 198 67 78 25 0 114s=20 mm Schmertmann s method (see B 136 67 250 146 Berggren 1981) s = 20 mm

nG = 108 No 1NoJ = n 1 20 125 1 32 121 1 19 105 1 33 105 sd = 0 14

SY= 013 No 2 i) = 1 29ro1 = n1 157 136 149 142 1 16 1 11 1 53 108 sd = 019

SY= 015 No 4 iis = 143 INo2 = ns 091 126 1 63 111 sd = 033

SY= 0 23 No 5 ii9 = 1 37183 108 163 142INoz = n9 sd = 0 37

SY = 027

N Vl

126

TABLE 152

Measured and calculated pile point resistance

Pile Calculated Measured Measured No qcp P for

s=10 mm P for s=20 mm

~ 10 mm ~ 20 mm

- (MPa) (MPa) (MPa) - -

1 38 045 092 84 41 2 39 09 14 43 28

3 40 05 08 80 50 4 33 07 10 47 33 5 35 06 11 58 30 6 35 08 12 44 29 7 35 05 09 70 39 8 30 08 12 38 25 9 39 10 18 39 22

10 35 08 14 44 25 11 49 15 24 33 20 12 40 16 22 25 18 13 46 1 7 2 4 27 19 14 30 075 13 40 23 15 32 06 095 53 34 16 49 075 115 65 43 17 32 - - - -18 42 095 1 75 44 24 19 39 09 160 4 3 23 20 3 0 07 12 43 25

average= 484 291

sd 163 088 sv 034 030

Tab 153 Results of calculation for piles No 1-24

Pile No

Length (m)

Overburden pressure 0 vs

0hs (kPa)

0ve (kPa)

0 nc (kPa)

- -ov=o1 (kPa)

- -OV=03 ( kPa)

00 (kPa)

p(a il ( kPa)

s (a 1) (mm)

A2 ( 1 )

E t

(kPa)

Md ( 1 )

K (1)

E I

t (kPa)

( kPa) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

l 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

13 12 14 13 6 6 6 6 9 95 9

10 95

11 5 135 165 66 675 72 65 99 75

180 137

l 33 133 123 116

70 70 70 70

104 102 95

102 95 94

106 139 95

101 106 97

180 137 221 215

53 53 49 46 28 28 28 28 42 41 38 41 38 38 42 56 38 40 42 39 72 55 88 86

202 202 216 202 1114 104 104 104 146 153 146 160 153 181 209 251 120 128 134 123 238 180 305 277

202 202 216 202 104 104 104 104 146 153 146 160 153 181 209 251 120 128 134 123 238 180 305 277

168 Hi8 170 159 87 87 87 87

125 128 121 131 124 138 158 195 108 115 120 110 209 159 263 246

128 128 133 124 66 66 66 66 94 97 92

101 96

110 126 154 79 84 88 81

155 118 197 182

141 141 145 136

73 73 73 73

104 107 104 111 105 119 137 117 89 94 99 91

173 132 219 203

950 975

1000 825 875 875 875 750 975 875

1225 1000 1150 750 800

1225 800

1050 975 750

2000 2000 625

1500

218 139 255 190 16 1 146 210 12 7 10 1 11 7 84 73 69

104 167 210 124 103 10 1 109 142 120 76

153

0802 0802 0822 0820 0798 0798 0798 0798 0791 0798 0800 0811 0814 0837 0837 0830 0769 0 768 0771 0 775 0 780 0 781 0 788 o 779

35296 81603 43312 65222 44019 67515 4609 91313 78186 60572

118115 15129 5 184075 95577 67017 81607 33252 67554 85294 75994 78816 74857 55101 54862

075 075 0 77 075 084 084 084 081 079 078 084 080 083 076 076 078 0 77 081 079 076 082 087 064 0 74

278 643 337 512 542 832 567

1085 766 572

1216 1417 1832

796 520 709 353 735 878 781 630 726 302 366

26472 61202 33350 48917 36976 56713 38656 73964 61767 47246 99217

121036 152782

72639 51932 63653 25604 54719 67382 57755 64629 65126 35265 40598

a=282l a =l781 y=axs S=0621 B=0 844

V=0 057 V=0 128 _ Iv -J

~

N co

Tab l53 Results of calculation for piles No 7-24

Pile No

17

1 2 3 4 5 6 7 8 9

70 11 72 13 74 75 16 17 78 79 20 27 22 23 24

Ground water

18

-20 m b s

-28 m -335 m -330 m -3 15 m dry dry -53 m -85 m

E t (kPa)

19

33653 64979 35364 45664 47969 54583 37574 63072 74548 57753

71 2618 123531 150297

71239 48619 59204 39744 77208 77863 62049 90407 95844 57762 62937

vxEt=E Md (kPa)

20

25240 48689 27230 34248 35254 45849 31562 51040 58893 45047 94599 98825

724747 54142 36950 46179 30603 57678 61572 47157 47734 83384 36968 46569

a=898 S=l 27 =0314

K (l )

21

265 511 275 358 517 672 463 749 730 546

1160 1157 7496

593 377 514 422 775 802 638 723 929 377 420

a=l422 S=l 05 =0187

E=E = t1 3

g-gcp (kPa)

22

51046 52799 54566 42492 45870 45870 45870 37547 52799 45870 77039 54566 65438 52799 40826 71039 40926 58739 52799 37541 82549 82549 40826 59945

Calculated s

(mm)

23

708 128 72 7 15 3 724 146 144 17 3 71 3 11 5 11 2 732 13 2 707 1 5 1 13 7 93

102 118 137 728 12 l 69

11 9

s__caL n=smeos

() 24

050 092 050 087 0 77 7 00 069 l36 l 12 098 133 l81 l97 103 090 065 0 75 099 117 126 090 101 097 078

ri=l00 sd=035 sv=035

K = l50gcp

25

570 585 600 495 525 525 525 450 585 525 735 600 690 450 480 735 480 630 585 450 825 825 1180 645

E l

(kPa)

26

67684 69465 72250 57726 44856 44856 44856 38448 59659 54306 74956 63214 70704 49089 56783 79502 45283 61081 58207 42927

708572 94785 71033 91898

E = t E middotA2

l

(kPa)

27

54283 5571 l 59389 47336 35795 35795 35795 30682 47790 43336 59964 51266 57553 47088 47024 65987 34823 46970 44877 33269 84639 74027 55974 71589

Calculated s

(mm)

28

l O l 12 l 11 7 737 15 9 18 7 185 21 1 12 6 12 2 133 14 l 150 13 7 13 l 14 7 709 12 7 738 755 12 4 735 50

100

- -

Tab l53 Results of calculation for piles No l-24

Pile

29

l 2 3 4 5 6 7 8 9

10 ll 12 13 14 15 76 17 78 19 20 21 22 23 24

sea l n= middotshy

smeas

28 TT

30

0 46 087 046 0 72 099 l 28 088 l 66 l 25 l 04 l 58 l 93 2 17 l 32 078 0 70 088 l 23 l 37 l42 087 l l 3 066 065

n=l 10 sd=0 44 sv=040

s seal for p n=s=lOrnn ac cording to s = 70mm

(mm)

37 32

5 l 0 51 ll 8 l18 64 064

13 0 l30 85 0 85

13 3 l 33 83 0 83

184 l84 ll6 l l 6 105 l05 137 l 37 21 3 2 12 19 4 l94 107 l06 l l 3 l l 3 84 084

92 092 l 0 9 l09 128 l28 83 083

l 0 3 l03 88 088 79 0 79

n=1 73 sd=025 sv=027

s for p according to s = 20mm

(mm)

33

10 4 184 102 18 6 15 6 200 14 9 276 209 18 4 219 292 274 185 17 9 12 9 -

169 194 219 172 200 143 15 0

seal n=s=20rnn

34

052 092 051 093 078 l00 075 l 38 l 05 092 l l 0 l46 l 37 093 090 065

-085 097 l1 0 086 l00 072 075

n=093 sd=025 sv=0 27

s for p according to s = 30rnn

(mm)

35

142 223 14 l 22 3 198 249 142 34 5 290 249 274 345 33 l 243 22 6 168 -

24 7 26 6 293 24 3 279 187 213

seal n=s=30rnn

36

047 0 74 047 0 74 066 083 047 l 15 0 97 083 091 l 15 l10 0 81 075 056 -

082 089 098 081 093 062 0 71

n=o80 sd=020 _ sv=0 25 N

IO

APPENDIXES

APPENDIX 1 1 1

Pi le No 1 Length 13 m D 10 m

Areas of influence

-

qe

(MPa)

1 fp

___9c_ f

(MPR) zyen

(MPf) qcp (MPa)

Soil type

22 20 18 16 14 1 2

l 2 (m)

10

1 0 08 06

16 15 16

026 027 026

42 41 42 Sand

04 14 U28 39 02 14 028 39 41

02 16 0 26 42 04 16 026 42 06 16 026 42 08 14 028 39 Sand 1 0 13 030 39 12 15 027 4 1 38 14 13 030 39 16 12 032 38 18 12 032 38

40 20 10 036 36 22 10 036 36 24 9 U39 35 2 6 8 043 34 28 10 036 36 30 10 036 36 3 2 10 036 36 34 10 0 36 36 36 11 0 34 37 38 11 034 37

l 1 (m)

40

42 44

11 0 34 37 15 1

46 48 50 52 54 56 58 60 62 64 66 68 70 7 2 74 76 78 8 0

APPENDIX 112

Pile No 2

to little depth of sounding

q~ = middle values for 11 = 2 Op

q~ = 145 MAa (Francke Garbrecht 1977 Tab 2 p 50) (Fi g No 2)

for sand

qcp = 0275middot145 = 40 MPa q~p =V ~~s) middot 40 = 097middot40 = 39 MPa

Pile No 4

q~ = 120 MPa sand (Fig No 4)

q = 0 315middot12 = 3 8 MPa q bull 38 = 086middot38 = 33 MPa=V Jmiddot54

1

cp middot bull cp

Pile No 12

qg = 155 MPa sand (Fig No 13)

qcp = 026middot155 = 4 03 MPa

Pile No 13

q~ = 200 MPa sand (Fig No 14)

q = 0 23middot20 = 46 MPacp

APPENDIX 113

PileNo3 Length 14 m D 15 m

Areas of influence

-

qe

(MPa)

1 Tp

----9cf

(t-1Pf) r~

(MPf) qcp (MPa)

Soil type

22 2D 18 16 17 025 43 14 17 II II

L 2 17 II II

12 (m)

16 10 08 06

17 17 17

o

II

II

II

II

Sand 04 17 II II

02 19 024 46 b9

02 19 024 46 04 17 025 43 06 15 027 41 08 13 030 48 1 0 12 032 38 12 11 033 36 14 13 0 30 39 16 14 028 39 18 12 032 38 40 20 16 026 42 2 2 16 026 42 24 11 033 36 26 11 033 36

60 28 30

10 10

036 036

36 36

Sand

32 10 036 36 34 12 032 3 8 3 6 12 032 38 38 12 032 38

1 1 (m)

40

4 2 4 4

13

14 16

030

028 026

39

39 42

46 13 030 39 48 12 032 38 50 14 028 39 52 10 036 36 54 13 030 39 56 14 028 39 58 15 027 41 60 15 027 ~-1 236 62 64 66 68 70 72 74 76 7 8 80

APPENDIX 114

Pi l e No 5 Length 6 0m D 11 m Dp 11 m

Area s of i nfluence

-

qc

(MPa)

1 Tp

-3Lf

( MPf) l ~

(MP~) qcp (MPa)

Soil type

2 2 2 0 18 1 6 14 1 2 155 U i1 33

l 2 (m)

1 2 10 08 06

15 14 12

022 023 0 27

3 3 32 32

Fine sand

+ silt

04 125 026 33 02 16 0 21 34 39

02 16 021 34 04 13 025 33 06 08 10

15 5 17 20

022 0 20 018

34 34 36

35 Fi ne sand

1 2 20 0 18 36 14 20 018 36 + s ilt 16 20 0 18 36 18 165 020 32 20 165 0 20 32 22 17 0 20 34 24 26 2 8 30 32 3 36 38 4 0

19 21 5 21 5 21 5 20 19 5 19 5 20 215

01 9 ---

018 018 0 18 0 18 -

3 6 40 40 40 36 35 3 5 36 4 0

l 1 (m) 4 2

44 20 19

018 01 9

36 3 6 157

46 48 50 5 2 54 56 58 6 0 62 64 66 68 70 7 2 74 76 7 8 8 0

APPENDIX 1 15

Pi le No 6 Lengt h6 0 m D 11 m

Areas of qc 1 __9_c_ qcp Soil typei nfluence fp f 1 yen (MPa) (MPf ) (MPf) (MPa)

-2 2 20 18 16 t 4---0 14 75 038 29 L2 20 018 36 Fi ne sand

1ti 10 30 40 + s i lt12 08 19 0 19 36(m) 06 17 020 34 04 14 023 32 02 9 034 31 56

02 6 043 26 04 12 026 3 1 06 17 020 34 08 11 028 3 1 1 0 14 023 32 35 1 2 17 020 34 Fi ne sand14 19 019 35 16 20 018 36 + silt18 18 0 19 34 20 14 023 32

46 22 12 026 31 24 12 026 31 26 15 022 33 28 18 019 34 30 20 018 36 3 20 0 18 36 34 20 018 36 3G 20 018 36 38 20 018 36 4 0 20 018 36

l 1 42 22 40

(m) 44 22 40 46 L2 4 0 158 48 50 52 54 56 q =V ~ - 3 b =0 99middot35 = 35 MPp cp 53 58 6 0 62 64 66 68 70 72 74 76 78 80

APPENDIX 116

Pi leNo7 Length 60 m 0 15 m

Areas of influence

-

qe

(MPa)

1 Tp ~

(MPg) r~

(MPf) qcp (MPa)

Soil type

22 20 18 16 9 U33 30 14 10 031 31 12 135 024 32

l 2 (m)

16 10 08 06 04 02

13 12 6

10 175

025 026 043 0 31 020

33 31 26 3 1 35 50

Fine sand

+ silt

02 04 06

17 10 115

0 20 0 31 027

34 31 3 1

08 10

145 185

023 019

33 35 3 5

1 2 14

20 19

018 0 19

36 36 Fine sand

l 1 (m)

60

16 18 20 22 24 26 28 30 3 2 34 36 38 40

42 44 46 48 50 52 54 56 58 6 0

185 125 125 165 17 19 21 215 205 20 21 20 20

24 22 20 215 22 22 21 19 18 22

0 19 026 0 26 020 020 019 --

018 018 -

018 01 8 --

018 ----

0 19 0 19

35 33 33 33 34 36 40 40 37 36 40 36 36

40 40 36 40 40 40 40 36 34 40 219

+ silt

62 64 66 68 70 72 74 76 78 80

APPENDIX 117

Pile No 8 Length60 m D 15 m Dp 2 1 m

Areas of influence

-

qe

(MPa)

1 r +

(MPg) r~

(MPf) qcp (MPa)

Soil type

22 18 019 34 20 16 021 34 18 125 026 3 3 16 115 027 31 14 11 028 3 1 12 11 028 3 1

l 2 (m)

10 08 06

105 11 145

D29 028 023

30 31 33

Fine sand

+ silt

04 18 0 19 34 02 18 019 34 71

02 15 022 33 04 11 0 28 31 06 13 0 25 33 08 20 0 18 36 10 15 022 33 12 13 025 33 14 175 020 35 16 18 20 22

20 21 20 15

018 -

018 0 22

36 40 36 33

35 Fine sand

+ s i lt

24 26 28 30 3 =

13 16 175 19 20 20

025 021 020 0 18 018 018

33 34 3 5 34 36 36

36 38 4 0

20 20 21

018 0 18 -

36 36 40

11 (m)

4 2 4 4 4 6 48 50 5 2 5 4 56 5 8 60 6 2 6 4

20 20 21 22 21 20 19 175 19 20 25 28

018 0 18 ---

01 8 01 9 0 20 0 19 018

36 36 40 40 40 36 36 35 36 36 40 4 0 23 0

6 6 68 70 72 74 76 78

qcp 1f5=v 2T middot35 = b85 middot35 = 30 MPa

80

APPENDIX 118

Pi le No 9 Le ngth 90 m D 11 m m

Areas of 1Qe -9c qcp Soil typeinfluence Tp f ryen (MPa) (MPg) (MPf) (MPa)

-

2 2 2 0 18 16 14 lc 11 034 37

12 10 10 036 36 12 08 9 039 35 Medium(m) 06 10 036 36 sand04 10 036 36

02 11 034 37 43

02 12 032 38 04 12 0 32 38 06 12 0 32 38 08 13 030 39 10 13 030 39 12 13 030 39 14 14 028 39 16 14 028 39

44 18 14 028 39 20 14 028 39 39 Med ium 22 15 027 4 1 sand 24 16 026 4 2 26 17 025 43 28 13 0 30 39 3 0 9 039 35 32 13 030 39 34 16 026 42 36 17 025 43 38 17 025 43 40 19 024 4 6

11 42 17 025 43

(m) 44 15 027 41 17 7 46 48 50 52 54 56 58 60 6 2 64 66 68 7 0 7 2 74 76 78 80

APPENDIX 119

Pi 1 e No 10 Length 95m D 11 m m

Areas of influence

-

qe

(MPa)

1 fp

-9c f

(t-1Pf) [~

(MPf)

qcp

(MPa)

Soil type

22 20 1 8 16 14 L 2 13 Uti 3J

l 2 (m) 12

10 08 06 04

18 18 28 19

0 19 019 0 19 019

34 34 34 34

Fine

sand

02 21 40 42

02 20 4 0 04 17 020 34 06 21 40 0 8 10

23 22

40 40 Fine

1 2 14 16 18

21 20 16 15

0 21 022

4 0 4 0 34 33

sand

44

20 2 2 24 26 28 30 32 34 36 38 40

14 14 13 11 11 14 17 14 12 13 12

023 023 025 0 28 028 023 020 023 027 025 027

32 32 33 31 31 32 34 3 2 32 3 3 32

l 1 (m) 42

44 12 13

0 27 025

32 33 15 2

46 48 50 5 2 5 4 56 5 8 6 0 6 2 6 4 66 6 8 70 72 74 76 78 80

APPENDIX 11 10

Pi 1 e No 11 Lengt h 9 0m D 11 m m

Area s of influence

-

Qe

(MPa)

1 fp

__k_ f

(MP~) ryen

(MPf) qcp (MPa)

Soi l type

22 20 18 16 14 12 lb 55

12 (m)

1 0 08 06 04

23 19 20 21

024 023

55 46 46 55

Medium

sand

02 22 55 62

0 2 04

24 25

55 55

06 08

27 28

55 55

10 12 14

28 28 28

55 55 55 49

16 26 55

44

18 20 22 24 26 28 30 3 34 36 38 40

24 19 18 17 22 21 17 11 13 12 11 9

024 024 025

025 0 34 030 032 034 039

55 46 43 43 55 55 4 3 37 39 38 3 7 35

1 1 (m) 42

Ll Ll

12 16

032 0 26

38 4 2 209

46 48 50 5 2 54 56 58 60 62 64 66 68 70 72 74 76 78 80

APPENDIX 141

0 2 3 4 p [MPa)

PILES WITH 40 ENLARGED BASES

80

120

160 C----0

200 IN4014 s (1977)

[mm]

P s calculateds P p(s)(mm) (MPa)(mmMPa)(MPa) ()

10 035 286 046 20 065 308 080 30 090 333 104

150 24 625 214 200 229

ai = 2605 (mmMPa) b1 = 0243 1MPa V 1000 bi = 1b = 411 MPa

_ 411 MP Vi - 24 a

() assumed

average Dp = 18 m

qcp = 24 MPa ai = 184 (mmMPa) (28-4middot24)

Vi = 1 2 (3-18)

qcpmiddotvi = 29 MPa

40

80

120

160

200 s

[mm]

DIN 4014 Part 2 ( 1977)

0 1 2 3 4 5 p [MPal

PILES WITHOUT ENLARGED BASES

C----0

DIN 4014 ( 1977

s calculated s p -p- p(s)

(mm) (MPa)mmMPa)(MPa) ()

10 05 20 062 20 08 25 113 30 11 27 3 155

150 34 441 385 200 424

ai = 2085 (mmMPa) bi= 0 157 1MPa V = 0970

bi= 1s = 637 MPa

Vi 187=3f =

() assumed

average Dp = 12 m

qcp = 34 MPa a1 = 144 (mmMPa)

Vi = 18

qcpmiddotvi = 61 MPa

Range qc = 10-15 MPa

(28-4bull34)

(3-12)

1 1 q = r -r- = 036 for qc = 10 MPaCp p Ip+= 027 for qc = 15 MPa

qcp = 36-405 MPa P

APPENDIX 142

Touma F and Reese L (1974)

Soil parameters pile parameters and base resistance see fig bullbullbullbull

TAB

Measured load settlement curves

Settlement s

mm

10 20 30 40 50 60 80

100 120

a 1 (mmMPa) bi(MPa) V

N3u

q =04 -N30 (cMPa) ()

1 qCp=--rpbullqC

Pile No 21 (US 59) 22 (HH) 23 (G1) 24 (BB) Notep Sp p S p p S p f Sp MPa mmMPa MPa mmMPa MPa mmMPa Mla mmMPa

131 76 169 59 075 133 100 100 269 74 325 62 131 153 1 94 103 381 79 456 66 165 182 273 11 0 488 82 581 69 1 90 21 1 349 115 581 86 694 72 2 15 233 424 118 675 89 800 75 229 262 813 98 245 327 884 113 925 130

64 56 100 95 U049 0032 0276 0048 0944 0998 0996 0981

80 gt100 30 60 32 gt 40 12 24 ()

Bergdahl (1982)

gt5 5 gt55 32 4 3

(0 18middot32) (018middot40) (0265middot12) (018middot24)

CONTACT PRESSURE p [ MPa]

0 2 4 6 8 100 N-------r---------------(us 59) ( HH) ( BBi

E E SQ-------lt+-----+--------------lt

VI

1shyz UJ

~ 100 1---------i----+----+----+------l------I -J I shyI shyUJ V)

so~----~--~-- ~--~

APPENDIX 143

us 59 fYJo 0 50 00

ff-t r-=-~c~=~-r~c_---_---l-~e-J-C~ 0 ------

CLAY

FINE SANO

J lD- 760 mm

f5m~--~--~

Pile US 59 and results from penetration test

HH IV_l() so 100 r=-=-==-==-r-~--=-=- 0 0 II 15- flf ~ II~ Ibull If t f

CLAY SAND

Sm

)

= -middotl lo - GtOmm

~ JI

SILTY SANO tOm

Pile HH and results from penetration t est

APPENDIX 14 4

61 NJO 50 --------00

11 1 =f J - 1 -- 0

CLAYSILT

E ~ Sm ltrj

SILTY SAND

q I lDmiddot 910 mrn tom

I) t bull

Pile G1 and results from penetration test

88

0 50 too ~1-e I q 111bull - Q

CLAY

SIL TY SAND 5m

]

l lDmiddot760mrn

Om

Pile BB and results from penetration test

APPENDIX 145

Klosinski B (1977)

Loading tests 50 bored piles 09-125 m diameter average Op= 11 m On t he sett l ement of rigid pla te the settlement of t he pi le base is given by

PmiddotOSp = T-K b

where Mb - equivalent deformability modu lus

1) Sand and sandy gravel of medium density

Mb = 25-50 MPa

According to Bergdahl (1979) medium sand is between

q(l) 5 MPa (Io=035)c2)

ql = 10 MPa (Io=065)C

from fig 117 rp1 = 055 for qc = 5 MPa 1Tp = 036 for qc = 10 MPa

q(l)= 0 55middot5 = 2 75 MPacp bull

q(2= 0 36middot10 = 360 MPacp

allowable p~ 1)= ~p = yen = 092 MPa and p~2) = ~ = 120 MPa

settlement of the pi l e base

5(1)= o 92 middot 1bull1 = O 0135 m = 13 5 mm p 325 middot middot

5( 2)= 1bull2bull1middot 1 = O 0088 m = 8 8 m p 350 bull bull

1) _ s _ 135 _ 14 7 (mm) a(2) _ 88 _ a 1 - p - o---92 - bull NPa bull 1 - T-7 - 733 (Wa)

2) Loose sand lo= 030-040

Mb = 12- 25 MPa

q~l) = 44 MPa q~2)= 58 MPa

1Tp = 058 and 052

q(3) = 0 58middot4 4 = 2 55 MPa middot q( 4) = 0 52middot5 8 = 3 02 MPa cp bull middot bull cp bull middot middot

allowable p~ 3)= 4i = 085 MPa p~4)= yenl = 101 MPa

s(3)_ 085-11 = 26 mmmiddot s(4)_ 101middot11 = 148 mm p - 312 p - 3 25

STATENS GEOTEKNISKA INSTITUT Swedish Geotechnical Institute S-581 01 Linkoping Tel 01311 51 00

Serien Rapport ersatter vara tidigare serier Proceedings (27 nr) Sartryck och Preliminara rapporter (60 nr) samt Meddelanden (10 nr)

The series Report supersedes the previous series Proceedings (27 Nos) Reprints and Preliminary Reports (60 Nos) and Meddelanden (10 Nos)

RAPPORT REPORT Pris kr

No Ar (Swcrs)

1 Grundvattensankning till foljd av 1977 50shytunnelsprangning P Ahlberg T Lundgren

2 Pahangskrafter pa langa betongpalar 1977 50shyL Bjerin

3 Methods for reducing undrained 1977 30shyshear strength of soft clay K V Helenelund

4 Basic behaviour of Scandinavian soft 1977 40shyclays R Larsson

5 Snabba odometerforsok 1978 25 shyR Karlsson L Viberg

6 Skredriskbedomningar med hjalp av 1978 40shyelektromagnetisk faltstyrkematning - provning av ny metod J Ingands

7 Forebyggande av sattningar i 1979 40shyledningsgravar - en forstudie U Bergdahl R Fogelstrom K - G Larsson P Liljekvist

8 Grundlaggningskostnadernas fordelning 1979 25 shyB Carlsson

9 Horisontalarmerade fyllningar pa los 1981 50 shyjord J Belfrage

RAPPORTREPORT

No

10 Tuveskredet 1977-11-30 Inlagg om skredets orsaker

11a Tuveskredet geoteknik

l1b Tuveskredet geologi

11 c Tuveskredet hydrogeologi

12 Drained behaviour of Swedish clays

R Larsson

13 Long term consolidation beneath the test fills at Vasby Sweden YCE Chang

14 Bentonittatning mot lakvatten T Lundgren L Karlqvist U Qvarfort

15 Kartering och klassificering av leromradens stabilitetsforutshysattningar L Viberg

16 Geotekniska faltundersokningar Metoder - Erfarenheter - FoU-behov E Ottosson (red)

17 Symposium on Slopes on Soft Clays

18 The Landslide at Tuve November 30 1 977 R Larsson M Jansson

19 Slantstabilitetsberakningar i lera Skall man anvanda total spanningsanalys effektivspanningsanalys eller kombinerad analys R Larsson

20 Portrycksvariationer i leror i Gateshyborgsregionen J Berntson

21 Tekniska egenskaper hos restproshydukter fran kolforbranning shyen laboratoriestudie B Moller G Nilson

Ar

1981

1981

1981

1981

1981

1982

1982

1982

1983

1982

1983

1983

1983

Pris kr (Swcrs)

50shy

50shy

40shy

50shy

100shy

60shy

80shy

60shy

190shy

75shy

60shy

150shy

65shy

RAPPORTREPORT

No Ar Pri s kr (Sw crs)

22 Bestamning av jordegenskaper med sondering - en litteraturstudie U Bergdahl U Eriksson

1983 75 shy

23 Geobildtolkn ing L Vi berg

av grova moraner 1984 70 -

24 Radon i jord -Exhal ation- vatten kvot -Arstidsvariationer - Permeabilitet A Lindmar k B Rosen

1984 75 shy

25 Geoteknisk terrangklassificering for fysisk planering L Viber g

1984 120shy

26 Large diameter bored piles in nonshycohesive soils Determination of the bearing capacity and settlement from results of static penetration tests (CPT) and standard penetration test (SPT) K Gwizdala

1984 85shy

9

Notations and symbols

Roman letters

a 1 Initial slope of the pile point resistance shysettlement curve

Ap Cross-sectional area of a pile

As Area of the pile shaft

CPT Static Penetration Test

D Diameter of pile shaft

Op Diameter of pile point

E Youngs modulus

fp Point resistance factor

fs Shaft resistance factor

F Universal safety factor

Fp Individual safety factor for ultimate resistance of pile point

Fs individual safety factor for ultimate resistance of pile shaft

K Dimensionless compression modulus

K At rest soil lateral stress coefficient0

Koc Lateral stress coefficient for fluid fresh concrete

Mo Constrained (oedometric) modulus

N30 Numbe r of blows for 030 m penetration in SPT

p Unit point resistance (contact pressure)

p (s) Unit point resistance versus settlement

Unit point resistance at failurePsf

Allowable unit point resistancePa

Sounding resistance

Average static cone penetrometer resistance close to tne pile point

qs Average static cone penetrometer resistance C along the pile

10

Ultimate point resistance of large diameter piles based on static sounding results

Ultimate skin friction resistance of large diameter piles based on static sounding results

Qa Allowable pile load

Qcp Point load of the static cone penetrometer

Qct Total load of the static cone penetrometer

Qpa Allowable point resistance of the pile

Qpu Ultimate point resistance of a pile

0 sa Allowable skin resistance of the pile

0su Ultimate bearing resistance of a pile

Qu Ultimate bearing resistance of a pile

s Settlement

sd Standard deviation

ss u Ultimate settlement for pile shaft

sv Standard variation

SPT Standard Penetration Test

t Unit shaft resistance

Ultimate unit shaft resistance

Circumference of the pile shaft

Circumference of the static penetrometer shaft

Greek letters

a Constant

B Constant

A Coefficient

microd Depth factor

v Poissonbulls ratio

v 1 Correction factor for hyperbola point resistance shysettlemen~ relationship

n Correlation coefficient

ahc Radial (horizontal stress in the concrete

ohs Radial (horizontal) stress in the soil

Ovc Vertical stress in the concrete

Ovs Vertical stress in the soil

11

1 LARGE DIAMETER BORED PILES IN NON-COHESIVE SOILS

11 peterminati on of bearing capacity of bored piles

from results of Cone Penetration Test (CPTl

The methods published in available literature up to 1976

were compiled by D Rollberg (1976 1977) It contains

totally 25 methods

- 22 use the results of static soundings (CPT)

3 use the results of standard soundings (SPT)

The failure load Qu of the pile is evaluated as the sum

of the pile point resistance Q and the pile skin reshypu sistance Qsu

(111)

Pile point resistance Q based on static soundina reshypu shysults can be expressed as

1- bull qP A ( 1 1 2)f C p

p

where

fp = point resistance factor

qP mean sounding resistance of static cone C

penetrometer in the area of the pile point

A cross-sectional area of the pilep

The pile skin resistance is expressed as

1 s -- bullq bullU middot Lih (113) fS C p

where

fs = shaft friction factor

sqc mean sounding resistance along the depth h

and skin surface area U middotLih p

1 2

The methods differ in

- the calculation of qPC

(074 to 40) Db below the pile base (Fig 11 1)

(10 to 80) Db above the pile base (Fig 1 11)

- the evaluation of the point resistance factor usually

values off gt 10 are used p

- the calculation of qsC

- the evaluation of the shaft friction factor

fs = 50-300 is applied

In Table 111 methods for determination of the bearing

capacity of bored piles are listed Rollberg 1977 The

point load the skin friction load and the ultimate total

load are evaluated for bored piles (shaft diameter D ~

03-090 m) from static sounding results in non-cohesive

soil

Calculation results based on static sounding measurements

are shown in Table 112 for pile point pile shaft and

total pile load respectively

The table shows that

- a ll methods overestimate the ultimate point resistance

- the best correlation for ultimate point resistance is

obtained with the Soviet method Trofimenkov 1974

n1 = 114

- there a re only five methods for evaluation of the ultimate

skin resistance

- all methods with exception of the Soviet norm Trofimenkov

1969 method overestimate the ultimate shaft resistance

- the Norwegian method Senneset 1974 gives the best

correlation for the ultimate shaft resistance =119n 2

- with exception of the Soviet methods the total ultimate

load is on the average overestimated by all methods

1 3

Taking into account the above results the Soviet and

the Norwegi an methods are presented below

The Soviet method JG TrofimenkgtV 1974

1 qP bullA + qsbullA (114a)Qu = Qpu+Qsu fp C p f C s s

where

11 40 DP 12 1 0 D p h+l1 qp r dhqcC l1+l2 h-12

0ct-0ceqs C u middoth s

f(qp) -+ see Fig 1 bull 1 2 fp C

f f ( qcs) -+ see Fig 1 1 3 s

The Norwegian methon K Senneset 1974

1 p A 1 s bullA ( 1 bull 1 bull 4b)-f-middotqcmiddot p + -f-q s p S C

where

11 30 D p

12 50 D p h+l11 f dhqP l1+l 2 qc

C h-12 h s 1

= f dhqc qch 0

f 20 p

f = f (q~ ) + see Fig 114 s

Note a ) The total skin friction -f-middotq~ is assumed to be

no less than 10 kPa even~ith a very little

cone penetrometer resistance

b) The poin t resistance -f-middotq~ is assumed to be

maximum 10 MPa even iJl case of very dense sand

14

It must be underlined that the best correlation for

the pile point is obtained with the Soviet method

101 for 94 driven piles in non-cohesive soil

- 172 114 for 46 bored piles in non-cohesive soil

Trofimenkov 19731974 showed the results of comparison

of the ultimate loads determined by formula (114a)

Q~ and by pile load tests Q~ for 153 driven friction

piles at the 57 various sites see Fig 115

In Germany a lot of investigations were made before

establishing the DIN 4014 part 2 (1977) on large diameter

piles

In Table 113 and 114 the results from these investigashy

tions are generalized

The data in the tables were obtained from 35 test loadings

(4 of which were published by Franke 1973 The diameter

of the piles was from 08 to 25 m the length from 5 m

to 34 m and the cone penetrometer resistance varied from

10 MPa to 15 MPa

Bustamente and Gianeselli 1982 proposed a prediction

of the pile bearing capacity by means of the static

penetrometer Their proposal was based on the intershy

pretation of a series of 197 full scale static loading

tests In this paper the results from tests of 55 bored

piles are chosen The diameter of the piles varies from

042 m to 150 m and the length from 6 m to 44 m The

equivalent cone resistance was determined as showed in

Fig 116 The authors have noticed that the point

resistance factor f depends on the nature of the soil p and its compactness but also on the different pile placeshy

ment techniques (see Tab 115)

Piles of category group I

- Plain bored piles - Cased bored piles

- Mud bored piles - Hollow auger bored piles

- Type I micropiles - Piers (grouted under low - Barrettespressure)

15

In Tab 116 values of the shaft resistance factor

fs are given

Category IA

- Plain bored piles - Mud bored piles

- Hollow auger bored piles - Cast screwed piles

- Type I micropiles - Piers

- Barrettes

Category IB

- Cased bored piles - Driven cast piles (concrete or metal shaft)

Category IIA

- Driven precast piles - Prestressed tubular piles

- Jacked concrete piles

Category IIB

- Driven metal piles - Jacked metal piles

It can be noted that the values in Tab 116 are in

genera l of the same range for the driven and the

bored piles

According to the Polish Specification 1979 the point

and shaft resistance factor are given by

1-f- = kmiddota

p p

where

ap 035 for sand

k coefficent of unhomogeneity k qcp min

qcp

= 0065 for sandfrac12

1

16

Similar results can be observed in Fig 116a and

Fig 116b It was showed by Kerisel (1965) and Franke

(1973) that the harder soil the more loosening at

excavation and thus relatively smaller bearing capacity

Taking into account the Franke diagrams we will have

for D = 125mand settlements= 2 cm p

Cone resistance qc (MPa) 1 5 50 1 0 15 22

qc p for s=2 cm 3 6 8 12 14

(see Fia 1 1 6b )

taking safety factor for pile base F = 3 the point resis~ance

33-10 ~-05

380375 lo 212 bull lo 2114 bull

factors- shy are p

The above anal ysis shows that it is possible to determine

ultimate point and shaft resistance of bored piles from

static cone sounding But it is very important and must

be taken into account type of pile kind of soil and

degree of compaction

Bel ow calculation method for large diameter bored piles

based on the static cone penetrometer resistance (CPT)

is proposed Equation (117) can be used directly for

the base diameter D lt 15 m For larger diameters p shyD gt 15 m the values should be multiplied by the

p ff t ITscoe icen Y~ as pi

( 1 1 5 )

where

qcp = according to equation (117)

D = diameter of the pile base D gt 15 mpi pi

17

This value q~p should be put into equation 116

The value qc s in equation 118 is independent on the

pile diameter

Proposed calculation method

(116)

where)

1 1 40 ~ 11 3 for piles wit h a nd enlarged bases12 10 12 = ~

h+h

q (h) dh (117)qcp l1+l2 f -f- Ch-li p

h 1 f 1

qcs = o -f- qc (h) dh (118)h s

1 -f- = f(q kind of soil ) -+- see Fig 11 7 and Tab 1 1 7

C p

f (q kind of soil ) -+- see Fig 1 1 8 and Tab 1 1 8 fs C

Note

a) the point resistance q for qc gt 20 MPa is assumed cp to be maximum as

- Gravel 70 MPa - Coarse sand medium sand 55 MPa - Fine sand s il ty sand 40 MPa

b ) The shaft resistance qcs for qc gt 20 MPa is assumed to

be maximum as

- Gravel 110 kPa - Coarse sand medium sand 90 kPa - Fine sand s ilty sand 70 kPa

These proposed values are compared with results by

Bustamente (1 982) and the Polish Specification (1978)

Fig 11 9 and F i g 1110 A similar comparison for DIN

4014 1 977 is shown in Fig 1111 and Fig 1112

) In this paper was used the above values 1 1 and l z But it can be used in practice 11 =30 D and h =2Dp respectively The results shall be very simi l ar to the above onPs

18

The proposed method has been examined with field test

results This is shown in Fig 1113 to Fig 1128

and Appendix 1 11 to 1110 and Tab 119

The comparison shows that the value of q in equationcp (117) corresponds to the settlement -10 of the base

diameter (s=010 DP) see Fig 1113 and Tab 119

(average sDp=88 and standard deviation sd=3)

Later in this paper the allowable load and dependence of

the load versus settlement will be determined

12 Determination of bearing capacity of the large

diameter bored piles from results of the Standard

Penetration Tests (SPT)

There are little published on pile tests coupled with

results from Standard Penetration Test (SPT) Among the

authors who have published material in the subject are

- Meyerhof 1956 1976

- Senneset 1974 (Norwegian method)

- Rodin Corbett Sherwood Thorburn 1974 (English method)

- Polish Specification 1975

- Weltman Healy 197 8

- Reese 1978

- Japanese Society 1981

- Decourt 1978 1982

The Norwegian method is valid o nly for concrete andor

wooden piles the English method only for gravel It is

very important to underline that the Norwegian a nd the

English methods use of the SPT resul ts intermediate by

the static cone penetrometer resistance (q ) as well C

Below methods are presented that are using the results of

SPT directly Meyerhof s method in total can also be used

on driven piles in non-cohesive soil Although we could

have found some proposes for bored piles Eqs (121 and

122) see Fig 121 and Fig 1 22 as well

19

Ultimate point resistance (psf)

12 N 3 omiddotH lt 120 N 30

(kPa) (1 2 1)Psf D

where

N30 the average standard penetration resistance

in blows per 03 m

H depth in bearing stratum

Ultimate skin friction tu

for bored piles tu N~ o (kPa) (1 22a)

for driven pil estu 2N30 (kPa) (1 2 2b)

where

N30 the average standard penetration resistance

in blows per 03 m within embedded length

of pile

Weltman and Healy (1978) taking into account Meherhofs

proposition for driven piles have introduced two coefshy

ficents for bored piles in gravels (glacial soil) Equ

123 and Fig 1 23

t = a 2 N30 (kPa ) (1 2 3)U 1

where

ai a 1 for impermeable gravels see Fig 123a

ai a 2 for permeable gravels see Fig 123b

The Polish Specification ( Specification for Design and

Construction of Large Diameter Bored Piles in Bridges

1975 Ministry of Transport) gives the ultimat e point

resistance in dependence of N30 base diameter and depth

see Tab 12 1 The Tab 121 contains values for coarse

and medium sand For other non-cohesive soils the following

coefficients are proposed

p f = S bull p f (medium sand) ( 1 2 4)S 1 S

20

where

S1 1 20 for grave lSi

f 132 080 for fine sand

13 3 070 for silty sand13i

In Fig 124 values of psf are shown for h = 10 m DP

06 m DP= 15 m and h = 20 m DP= 06 m DP 1 5 m

respectively

A few of the instrumented piles were tested and analyzed

by Wright and Reese (1979) The ultimate point and shaft

resistance in the fine and silty sand as a function of

blow count from SPT is shown in Fig 125 Results from

two additional tests reported by Koizumi (1971) are also

introduced in the figure The ultimate point resistance

is assumed to exist at a settlement equal to 5 of the

base diameter

Methods of prediction of the bearing capacity of piles

based exclusively on N30 values were presented by Decourt

1982 Below a proposition for high capacity piles excavated

and cast under bentoni te is presented

The ultimate skin friction is determined by the expression

(see Fig 126)

t = 33 N30 + 1 0 (kPa) ( 1 bull 2 5 ) u

where

N30 average value of N30 along the shaft

- for N30 lt 3 must be taken as = 3N30 - for N3o gt 5 0 must be taken as NJo= 50

The allowable point resistance can be obtained in a n

expedite way as

Psa = 33 N30 (kPa) (1 2 6)

where

N30 = average of Nat point level one metre above

and one metre below

Psa allowable point resistance

21

Decourt proposed a safety factor for the point of F = p

40 Therefore the ultimate point resistance can be

determined by the expression

(kPa) (1 2 7)

In Fig 12 7 and Fig 1 28 the above values for base

and skin friction resistance are compared respectively

Taking into account the type of soil thereis a good

correlation for ultimate point resistance The result for

ultimate skin friction is scattered but only apparently

The values for large diameter bored piles are between

the line 1a and 1b in Fig 128 Large diameter piles

have a high ultimate skin friction in relation to driven

piles (see points for bored piles in Fig 122 and DIN

4014 Part 2 1977 as well) The high values for piles

excavated and cast under bentonite have had a strong base

on the load tests (Decourt 1978 1982 and Wright and

Reese 1979)

Below the proposals are given for determination of the

values of the ultimate point resistance and the ultimate

skin friction Eqs 128 to 1214 and Fig129 1210

The ultimate point resistance

- gravel psf = 140 N30 (kPa) ( 1 bull 2 8)

for N~ 0 gt 50 blows3O cm Psf 7 MPa

- coarse sand and medium sand

(kPa) ( 1 2 9)

for N30 gt 50 blows3O cm Psf 55 MPa

- fine sand and silty sand

psf = 80 Nio (kPa ) (1210)

for N30 gt 50 blows3O cm p f = 40 MPa 5

where N3 o the average of N value near the point level as

22

h+l1

f N3o(h)dh ( 1 2 11 ) h-12

3DP see Fig 1 1 1 D

p

The ultimate skin friction for coarse sand and medium sand

tu = 1 8 N 3 o (kPa) (1212)

t (kPa) (excavated and cast (1213)u under bentonite)

where

N30= the average value of N along the shaft as h

N -

3 o = h1 f N 3 o ( h) dh ( 1 bull 2 bull 1 4 ) 0

The ultimate skin friction for N30 gt 50 blows30 cm is

assumed to be maximum as tu = 90 kPa and t = 150 kPa u

13 Allowable load of large diameter bored piles

The allowable load Qa of large diameter piles has been

expressed as

OuQa ( 1 3 1)Ft

Qa Q(s)=Qb(s) + Os(s) ( 1 3 2)

Opu + Osu (1 3 3)Qa Fp Fs

Qr lt mmiddotQf ( 1 bull 3 4)-

= universal safety factor

individual safety factor for ultimate resistance of the pile point

individual safety factor for ultimate resistance of the pile shaft

= load according to the allowable settlement

calculated load

m coefficient

calculated ultimate bearing load of the pile

23

The equations from (131) to (134) are used as

1) equation (131)

a) DIN 4014 - 1977 Ft= 2 175 15 (depending on the kind of load)

b) Polish Specification 1975 Ft = 18 16 ( -- )

1c) Trofimenkov 1974 Ft = 14307

2) equation (132)

a) DIN 4014-1977 i Q(s) = Qb(s) + Q (s) = A middotp(s) + E tAsmiddott(s)

s p 0

where Qbs) and Qs(s) are described in Fig 1423

3) equation (133)

a) Polish Specification 1974

F 25 22 depending on the kind of load p

F 1 bull 0 s

b) Wright SJ Reese LC 1979

The ultimate capacity or resistance is considered as a

random value and represented by a frequency distribution

The distribution can be described by a mean value and a

variance The distribution of the load applied to the

foundation can be described similarly The coefshy

ficients used to factor resistance and loads are called

partial safety factors Some recommended partial safety

factors for resistance under normal conditions of design

and construction are given in Tab 131 Normal control

is defined as a condition where the coefficient of variation

is less than about 035

Typical values for partial safety factors for loads are

in the range 1 to 2 depending on the type of load and

how it is applied The overall factor of safety Ft can

then be calculated from the equation

Ft = y RbullY S

24

where

YR the par tial sa f ety fac t or for resistance and

Ys the partial safety factor fo r load

The probability of fa i lur e of the foundation can be r eshy

lat ed to the factor of safety for a parti cular degree of

uncert ainty (see Tab 13 2)

c ) Tejchman Gwizdala 1979

The authors discuss adequate safety factors based on fie l d

test s by Spang (1 972) Franke (1976) Touma and Reese (1974)

Colombo (1971) Kerisel and Simons (1962) Appendirno (1973)

see Tab 1 33 Taking into account the universal safety

factor Ft= 2 0 for the tota l load settlement curves it

was estimated

i) F in the range of 111 to 237 with the average value s F = 166 and standard deviation sd = 034 s (see column 16 Tab 133)

ii) Fb in the range of 161 to 945 with the average

value Fb = 387 and standard deviation sd = 2 15

For model core d piles in laboratory conditions values of

Fs = 108 to 154 (average Fs = 132 s~ = 019) and

values of F = 280 to 5 94 (average F = 3 55 sd = 1 07)p p

see Tab 1 3 4

As a conclusion it was assumed that Fb = 40 and F 1 5 s

for l arge diameter bored piles

The investi gation has shown that for the above safety

factors settlements of piles under permissibl e loads are

10 to 20 mm There was assumed a maximum load on large

diameter piles corresponding to a settlement of 010

diameter of the piles

25

d) Bustamente Gianeselli 1 982

e) 0ecourt 1982

The safety factor is given by

F = FgmiddotFfmiddotFamiddotFw where

F 11 - skin friction g F 135 - point bearing capacity

g

Ff safety factor related to the formulation adapted

Ff= 10 for Decourts method

Fd safety factor related to excessive deformation

Fd = 10 for skin friction

As for the point Fa= 2 to 3 depending on the

pile diameter For usual cases 25 is suggested

Fw safety factor related to working load

Decourt recommends 12

Thus we will have

- for skin friction

Fs = 11bull10middot10middot12 132 - 13

- for the point

F = 135bull10bull25middot 1 2 = 405 = 40 p

4) equation (134)

a ) Polish Code 1983

Q lt mbullN r shy

where

total load coefficient (depending on the kind of load For foundation we can assume Yf = 12 )= code load

correction coeffic i ent

09 for pile foundations

m 08 for two piles

m 07 for single pile

26

N ymmiddotQu

ym material (soil) coefficient

ym 08 to 09 (Polish Code 1981)

Thus we will have

QnmiddotYf lt mmiddotym middotQu-

Yf9uFt = On m bull Ym

1 2 max = 2 14Ft 0 7 bull 0 8

1 2min = 1 48Ft 0909

The above analysis has shown different ways to determine

the allowable load The analysis is in direct connection

with mobilization of the load (versus settlement) The

dependence of total load point resistance and shaft reshy

sistance will be discussed in detail in Chapter 14

In the authors opinion taking into account the above

analysis the allowable load should be determined based

on the equation 133 ie based on individual safety

factors for ultimate point and shaft resistance Proposed

values of F and F in literature are shown in Tab 135 s p The average values are Fs = 145 and Fp = 3 38 respectively

Taking into account that the bearing capacity is determined

based on the results from sounding measurements direct from

a place near the piling without a ny indirect correlation

the allowable load of large diameter bored piles is given

by the equation (133a)

( 1 3 3a)

where F = 30 and F 13 are proposedp s

27

14 Determination of settlement of larqe diameter bored

piles based on static cone penetration tests CPT

Determination of ultimate point and skin friction resistance

based on static cone penetration tests has been discussed

in Chapter 11 above Based on the results of this calcushy

lation and on Chapter 13 we can establish an approximate

relation between point resistance shaft resistance and

total load on one hand and settlement on the other However

the approximation gives a wide scatter especially for base

resistance as can be observed in Fig 141 to Fig 144

Only the first part of the point resistance - settlement

curves are in good agreement with measured values It can

be observed in Fig 145 that the average correlation

coefficient n = 098 and standard deviation sd= 029

This way of calculation can be used only for rough calcushy

lation (see Chapter 13)

In Chapter 11 also measured point resistance - settlement

curves were shown The base resistance increases gradually

with increasing pressure and settlement Below the cur7

vature of the point resistance - settl ement curve will be

examined It is assumed that this curve can be described

as a part of the hyperbola curve Thus if the ratio of

the measured settlement (s ) to the point resistance (p)

is plotted against the measured settlement the result

will fall closely to a straight line with the equation

( 1 4 1)

where a 1 and b 1 are constants (see Fig 1 46a and Fig

14 6b)

Then the point resistance - settlement realtionship can be

expressed as a hyperbola

s p = ( 1 bull 4 2)

The constant is the initial s lope of the point resistanceshya 1

settlement curve ie a 1 = t~a The inverse of the constant

28

b 1 is the vertical tangent (asymptote) to the curve 1ie for s = 00

bf= ~ If the ultimate point reshy1

sistance psf is equal to bf (psf=bf) the whole point

resistance settlement curve will be a hyperbola type

Now the Eq 1 4 2 can be written as

s s ( 1 4 3)a) p s or b) p = a+__sect_a1 + 1 Psfbf

If the ultimate point resistance is smaller than bf only

a part of the hyperbola curve ought to be considered

Further the Eq 14 3 will be written as

p ( 1 4 4)

where

poundf_ correction factor for hyperbola point Psf resistance-settlement relationship

Taking into account the discussion in Chapter 11 the

ultimate point resistance psf = qcp based on the CPT measurements

Therefore the relationship between the point resistance

the sett l ement and the CPT result can be expressed as

s p (1 4 5)s

The correction coefficient v 1 will cause a change of the

position of the vertical asymptote bf in r elation to the

ultimate point resistance q bull This means that we take cp into account a different part of the hyperbola curve for

the description of the point resistance-settlement relationshy

ship

Now if we want to use the equation (145) in practice

we must determine the constant and the coefficienta 1 v 1 (assumed that q is determined ear l ier Chapter 11)cp

29

The constant a 1 and t h e coefficient Vi have been detershy

mined based on fi e ld tests according to pi l es No 1 - 20

see Tab 14 1 and Tab 1 1 9 as wel l The values of

a 1 versus the point diameter D and the ul timate pointp

resistance respectively are shown in F i g 147 and Fig

148 Fig 1 47 shows that a 1 is independent of the

point diameter D Based on Fig 148 it can be assumed p

that

28-4bullq (1 4 6)cp

This correlation has been examined with data of the

literature see Fig 1 49 and Appendix 141 to 1 45

(Note there were no static penetration tests and qcp was determined based on a correlation made by Bergdahl

(1982))

A good correlation with equation 146 can be seen taking

into account the safety factor in the DIN 4014 Part 2

(1977) bull

The correction factor v 1 versus the poi nt diameter is shown

in Fig 1410 I t is assumed that the correlation is

V1 = 3 0 - D ( 1 4 7)p

where D is in m p

The above equations ie 146 and 147 were assumed for

a later analyses see Fig 14 11 and Fig 1412 The

piles No 1 to 20 were examined taking into account Eqs

14 5 14 6 and 1 4 7 The result of this cal cul ation is

presented in Fig 1 413 to Fig 1 4 18 and in Tab 1 4 2

respectively In Fig 1413 the calculation way for pile

No 2 is shown as an example

In Fig 1414 to Fig 1 417 measured and calculated

values of the point resistance versus settl ement can be

compared In tota l good correlation exists for all the

30

pressure-settlement curves Values of q from static cp

cone penetration tests and generalized values of anda 1

v 1 were considered Only for piles No 17-20 qcp was

assumed as the point resistance for s = 010 D because p

the static penetration test results were inaccessible

The similar comparison is shown in Fig 1417a for piles

in sand based on experimental results (Tuoma Reese 1972

and Wright Reese 1979) where the ultimate case resistance

was assumed as the resistance at a base settlement of 005

D The relative base resistance is the mobilized base p resistance divided by the ultinate base resistance The

curvature of the proposed point resistance settlement shy

curve to mean value proposed by Wright and Reese is excellent

However the constant a 1 and the coefficient v 1 were

determined for sand only In the future they should be

examined especially for gravel and silty sand based on

field tests Until then in the authors opinion the

values of v 1 can be chosen from Eq 147 for all nonshy

cohesive soils But for a 1 there is proposed

at = gt bulla (1 4 8)1

where

gt- 1 = 080 for gravel

gt 2 120 for silty sand

This proposal is shown in Fig 14 11 as dashed lines

A good correlation can be seen with the investigation by I

Kiosimiddotnski for sandy gravel and on the safety side with

the investigation by Tuoma and Reese for silty sand (see

Fig 149)

In Fig 1418 all calcul ations for pile No 1 to 20 are

summarize d The correlation coefficient n is defined as

the calculated point resistance p(s) divided by measured

point resistance p(s) For totally 126 points from 20

curves an average of n = 098 with standard deviation

31

al= 023 was obtained see Fig 1418 A similar result

can be observed for the range usually assumed of the

allowable settlement for sinqle large diameter bored

piles as

for

- for

- for

s

s

s =

10

20

30

mm a

mm

mm

verage n10 II

II

mm 089

095

099

and sd =

and sd

and sd

031

027

026

It can be questioned whether the sonstant a 1 can be deshy

termined in different ways The constant a 1 is the initial

slope of the point resistance-settlement curve as menshy

tioned above Then we can use all methods for determination

of settlement of a pile point The range of validity of

these methods then must be determined This will be shown

later

In order to be able to design the total load settlement

curve the skin friction resistance-settlement relationshy

ship must be determined The ultimate skin resistance of

large diameter bored piles was determined in Chapter 11

(based on static penetration tests) and in Chapter 12

(based on standard penetration tests)

In the past a lot of field tests have been done on the

mobilization of the shaft resistance versus pile settleshy

ment In this subject there is a rather good agreement

in the whole investigation for cohesive and non-cohesive

soil

Some results and opinions on thispresented in the literashy

ture during the last few years are shown below

Ultimate shaft resistance versus settlement

1) BurlandJB Butler FG Duncan P (1969)

-The shaft l oadsettlement curve is derived using a=0 3

with 90 ultimate load being mobilized at 025 in

settlement(~65 mm)

- soil London clay

- see Fig 1 419

32

2) Touma FT Reese LC (1974)

- The failure of the sides of the shaft takes place

at a downward movement of about 04 in (10 mm)

- soil sand

- see Fig 1420

3) Tomlinson HJ (1977)

- The maximum shaft resistance is mobilized at a

settlement of only 10 mm (or j in)

- soil stiff clay

- see Fig 1421

4) Klosinski B ( 1977)

- It was assumed that skin friction increased proshy

portionally to pile settlement up to the limit value

s bull This value depends on soil conditions and pile0 diameter and is usually from 3 to 8 mm For soft

compressible soil it may be grater than 10 mm

- soil cohesive soils

- see Fig 1422

5) Franke E Garbrecht D (1977)

- At settlement of 2 to 3 cm which are normally

allowed in Germany under working loads for buildings

not very sensitive to differential settlementsthe

skin friction is almost always fully mobilized

- soil sand

6) DIN 4014 part 2 (1977) and Franke E (1981)

- The skin friction Tm is approximated as diameter

independent having failure settlements of smf = 2 cm

in sand and 1 cm in clay

- soil sand and clay

- see Fig 1423

33

7) Reese By L (1978) Reese By L Wright SJ (1979)

(1978) The maximum skin friction being developed at

an average downward movement ranging from about 05shy

2 of the shaft diameter The average of six load tests

reported by Whitaker and Cooke (1966) are a lso plotted

for comparison

- soil stiff clays

- see Fig 1424 and Fig 1425a

(1979) The relative settlement is the average settleshy

ment of the butt and base devided by the shaft diameter

The mean curve maximises at a relative settlement of

about 002 D

- soil sand and clay

- see Fig 1425b

8) Tejchman A Gwizda3a K (1979)

- A clear differentiation of the distribution of shaft

and base resistances is observed for changing settleshy

ment For fairly small settlements the shaft resist shy

ance increases quite fast and the ultimate values

are reached soon while the base resistance increases

gradually with increasing loads and settlements withshy

out clearout ultimate values it can be assumed that

complete mobilization of shaft resistance corresponds

to settlements equal to 001 or 002 diameter of pile

- soil cohesive and non-cohesive soils

- see Tab 131 and Fig 1 426

9) Promboon S Brenner R P (1981)

- Load distribution and load transfer curves disclose

that most of the load is carried by shaft friction

which is developed at small displacements in the order

of 10 mm

- soil Bangkok clay

- see Fig 1427

34

10) Prodinger w Veder Ch (1981)

- The maximum value of skin friction resistance

occurred for a total settlement of 12 mm

- soil silty clay and sand

- see Fig 1428

11) Farr JS Aurora RP (1981)

- Ultimate load transfer was recehed (or nearly reached)

at a relative settlement of about 04 in (10 mm)

- soil gravelly sand

- see Fig 1429

12) Decourt (1982)

The skin friction resistance is totally mobilized

with deformations of about 10 mm or at the most 15

mm regardless of shaft dimensions This observation

of ours seems to clash with the opinions of other

authors who seek to relate the deformation necessary

for full skin friction mobilization with the shaft

diameter

- soil cohesive and non-cohesive soil

In Tab 143 all these results are shown Depending on

the kind of soil the following v a lue s of ultimate settleshy

ment for shaft can be assumed

- averages 142 mm (sd 5 3 mm) for sand

- averages 100 mm (sd = 21 mm) for cohesive soil

averages 726 mm (sd 67 mm) for claysand

It can be observed (see Fig 1419 to 1428) that the

shaft friction resistance increases proportionally to

the pile settlement up to the above limit value and

thereafter becomes constant

35

Taking into account what was mentioned earlier on point

resistance settlement relationship and the above results

a relationship between total load point resistance and

shaft resistance on one hand and settlement on the other

can be made see Fig 1430

It is assumed on the safety side that the following

ultimate settlement (S~) exists for the shaft resistance

of large diameter bored piles

SS1 ) 200 mm for non-cohesive soil u SS2) = 100 mm for cohesive soil u SS3) 15 0 mm for claysandu

In Fig 1 430 the curve Q (s) is calculated based on p

the equation 14 5 or 144

The values of psf in equation 144 can be calculated

based on other methods as well

The total load-settlement relationship is obtained by

summing up point and s haft resistance as

Q (s) = Q (s) + Q (s) (149)s p

for each point

Now the allowable load can be determined from equation

133a and versus the allowabl e settlement as

Q (s) = Q (s) + Q (s) (1410)s p

where s lt Sa

Sa= the allowable settlement of the pile

The analysis allows determination of the approximative

load settlement dependence without calculating the settleshy

ment for non-cohesive soil In Fig 1431 it is shown

36

In Tab 144 the settlement for allowable point reshy

sistance q5P according to equation 133a is shown

as well The average settlements= 198 mm (sd=78 mm)

is obtained This value is similar to the assumed ultimate

settlement of shaft for non-cohesive soil The ultimate

settlement for point resistance is assumed s = 010 Dp as mentioned earlier

37

15 Initial slope of pile point resistance shy

settlement curve

Settlement of piles and pile foundations can be cal culated

based on

- empirical correlations

load-transfer methods using measured relationships

between pile resistance and pile movement at various

points along the pile

- theory of elasticity that employs the equations of

Mindlin for subsurface loading within a semi-infinite

mass

- numerical methods and in particular the finite element

method

- use of in-situ tests (Cone Penetration Test Standard

Penetration Test Pressuremeter Test)

The critical slope of the pile point resistance-settlement

curve is important for calculation in chapter 14 The

constant a1 can be determined from all the above mentioned

methods

Comparison is made to Berggrens and Schmertmanns methods

below (see Berggren 1981 as well)

6sIn Tab 151 (No 1 2 3) the values of a 1 =~p for s =

10 mm and s = 20 mm (measured for large diameter bored

piles No 1 to 24) are compared to the calculated values

according to the modified hyperbola method (see Fig 14 6)

It can be seen that these calculated values are between

s = 1U-2u mm but rather closer the measured values for

the settlements= 10 mm see correlation coefficient n 6

and n 7 in Tab 151 respectively The average correlat i on

coefficent for the settlements= 10 mm is n9 = 108 and

the standard deviation is sct = 014 The comparison to

Berggrens and Schmertmanns methods for s = 20 mm ( see

Berggren 1~81 and Tab 151 as well) shows that the

results based om these methods give too high values of a 1 bull

38

The average values are ne= 143 sd = OJ3 and ng= 137

sd = 037 for Berggrens and Schmertmanns methods

respectively A bit better agreement can be observed

for Schmertmanns method

Taking into account the results in Tab 151 ana Tab

15l it must be assumed that for the determination of

a 1 the pile point contact pressure p(a1) should be

assumed as the ultimate point bearing capacity devided

by about 4

p(ai) - ( 1 bull 5 1 )

Most of the methods for determination of settlement are

based on the theory of elasticity The settlement ot the

pile point can be expressed as the average settlement of

a rigid circular foundation from the equation

11-Dp 1-v 2

s = p -4- -E-bull microd (1 ~ 2 J

where

p pile point contact pressure

E Youngs modulus

D diameter ot pile pointp ) = Poissons ratio

microd = depth factor

The range of validity of the pile point contact pressure

was determined in equation 151 Youngs modulus has an

important meaning lt can be determined from triaxial

tests or oedometer tests The relationship between the

constrained (oedometric) modulus Mo and Young s modulus

Eis dependent on Poissons ratio v as expressed by the

equation

E = l 1 + V ) ( 1 - 2 V ) Mo ( 1 bull 1 bull 1)- 1-v

39

TaKing into account the analyses made ny Chaplin (19b1a

1 961bJ Janbu (1 963 1970 1973J Andreassen (1973)

Duncan and Cheng (1970) Tejchman anct Gwizdala (1979)

Gwizdala (1978) Franke (1981) Berggren (1981) Withiam

and Kulhawy (7981) and the present investigation the

calculation of settlement is proposed to be

s = 24 bull p bull ~ D bull 1-v 2 bull micro d (154)Do o E

where s (r1)

p (kPa)

Dp (m)

E (kPa)

D0 =10 m

micro = 05 + 01 vfrac34E (1 5 5)d vs

but 05 lt microd lt 10-tip= p - (J (ovs see Fig 151)vs

E =Et= Kbullpat (Oo )n [1- Rf(1-sinltj) 101 - 03 ) 12 (1 5 6)2 c cosltP + 2o 3 sinltP 1Pat

in which K n and Rf= hyperbolic stress-strain parameters

Pa= atmosferic pressure ando 1 o 3 and o0 are determined by

averaging the concrete and soil vertical and radial stresses

near the pile point according to Fig 151 Then the

stresses at the pile point level are h

(J vs = L

0 Yi h

l vertical stress in the soil

0 hs Ko h

0 vs radial (horizontal) stress in the soil

0 vc L ye h -l

vertical stress in the concrete 0

0 hc K oc a vc radial (horizontal)

concrete stress in the

40

K at rest soil lateral stress coefficient 0

K c lateral stress coefficient for fluid fresh concrete0

K 1 0 oc

and average values

a 05(a +a)V vc vs

1 1 - shy~ = -(a +a+a I = -3 (av+2ahJ the applied mean normal stress0 j Z X y

Assuming this model calculation results for piles No 1-24

(see Tab 11~ as well) are shown in Tab 153

The piles are embedded mainly in medium sand to fine sand

For this kind of soil it can be assumed (soil parameters

from field or laboratory tests were inaccessible)

~ = 35deg c = 0 R~ = 09 n 05 v = 025 K c 10l 0

K = 04 Pat= 1UO kPa ye 24 kNrn 3 y = 14 kNm 3 bull0 C

Moreover in Tab 153 the following symbols are used

p(a1 ) - pile point contact pressure according to equation

1 bull 5 1

s(a1) - settl ement of pi l e point according to equation

143 and Tab 141

pound TT ( 2E = s bull Dp bull i 1-v ) according to equa~ion 152t

E~ Et bull microltl

EI

K = ro~ - according to equation 1 bull 5 6 p bullO middotA2

a~ o

E = E voD middot D middot ~4 ( 1 - v 2 ) according to equationt S p O 0

1 5 4

Et= E microd

K = according to equation 156 V PatmiddotaomiddotA2

41

The calculation results of Youngs modulus E = Et and

dimensionless canpressionrro1ulus for piles to 1-24 are shown

in Fig 152 to 155 using equation 152 and 15b

or equation 1~4 and 156 respectively lt can be obshy

served that the scatter in Fig 153 and Fig 155

where the influence of tne pile diameter is reduced

compare equation 154 is less than in the other figures

The reduced influence was made after observations from

field and laboratory tests while the equation 152 is

taken direct from theory of elasticity These values of

E and K are in good correlation with published values in

literature The values of Youngs modulus versus the

relative density of soil are compared to literature values

see Fig 15b Based on the analysis in this chapter it

can be assumed that

E = 9-ql 3 ( 1 bull 5 7)cp

where qcp is in accordance with equation 117

The calculation results based on this proposal are incluced

in Tab 1 5 3

The c a lculate d s e ttlements based on e q ua tion 154 and

157 are shown in column 23 and the values of the

correlation coef f icie nt (n= Seal ) in column 24 respectshyimeas

ively

The dimensionless canpression modulus can be d e termined as

K = 15Ubullq (qcp in MPa) (1 5 8)cp

see column 25 Tab 153

The calculation results based on the K compression modulus

according to equation 158 156 and 1 5 4 are shown in

columns 25 26 2 7 28 and 29 in Tab 153

42

For comparison and for determination of the range of

validity of this method the caLculation results of

pile point pressure for settlements s = 10 mm s = 20 mm

s = 30 mm (see Tab 141) according to equation 157

and 154 are shown in columns 30 to 35

The results obtained in Tab 153 confirm the possibility

to use the proposed method to calculate the initial part

of the pile point resistance settlement curve of large

diameter bored piles in non-cohesive soil and the initial

slope of this curve as well

A simple model has been proposed based on the theory of

elasticity ana the tangent modulus defined by Janbu (1963)

and Duncan amp Chang (1970)

A new approach according to the pile diameter depth factor

and principal stress is proposed

The settlement of the pile point can be made up to a point

pressure according to equation 151 on up to a settlement

of about s ~ 20 mm (30 mm)

-- The application of v Op in equation 1 5 4 a llows us ing

Youngs modulus as independent of the pile diameter

opposed to Bazants a nd Mosopusts (1981) proposal where

Youngs modulus wa s determined versus the pile diameter

The equation 1 5 6 takes into account the dependence of

Youngs modulus on depth (or overburden pressure) as

well

In the method field test (Cone Penetration Test) or

laboratory tests (hyperbolic stress-strain parameters

can be used

Comparison of the method to 24 availa ble load test r e sults

or large diameter bored piles in sand shows good a greement

to calculated and measured values

43

REFERE~CES

Adamczyk J (1978) Okreslanie udzwigu pali wierconych

za pomoca sondy statycznej (Bearing capacity of bored

piles based on the static sounding) Inz i Bud No 7

pp 253-257

Andreasson L (1973) The compressibility of cohesionless

soils Thesis Chalmers University of Technology

G6teborg (in Swedish)

Appendino M (1973) Comportamento di un palo di grande

diametro strumentato Rivista Italiano di Geotechnica

No 3 pp 115-118

Butterfield R Banerjee P (1971) A rigid disc embedded

in an elastic half space Geotechnical Engineering

Vol 2 pp 35-49

Bozant z Mosopust J (1981) Drilled pier design based

on load settlement curve X ICSMFE Stockholm Vol 2

pp 615-619

Begemann HK (1982) Cone penetration tests pile bearing

capacity and the thesis of Rollberg Proc of the Second

European Symposium on Penetration Testing Amsterdam

pp 433-438

Berggren B (1981) Bored piles on non-cohesive soils shy

settlement and bearing capacity (in Sweden) Thesis

Department of Geotechnical Engineering Chalmers

University of Technology G6teborg

Bergdahl UB (1979 1982) Sonderingen und in situ Messungen

Wien 18-19 Juni 1979 - Private information 19821983

Bustamante M Giane selli L(1982) Pile bearing capacity

prediction by means of static penetrometer CPT Proc

of the Second Europ Symp on PenTest Amsterdam

Vol 2 pp 493-500

Chaplin TK (1961a) An experimental study of the settleshy

ment of footings in sand PhD Thesis Univ of

Birmingham

44

Chaplin TK (1961b) Compressibility of sands and settleshy

ments of model footings and piles in sand 5th Int

Conf on Soil Mech a Found Engng Vol 2 p 33 Paris

Colombo P (1971) Observazoni sul comportamento ltli pali

a grande diametro Rivista Italiana di Geotechnika

No 3 pp 163-172

Dahlberg R (1975) Settlement characteristics of preconshy

solidated natural sands Swedish Council for Building

Research D11975

De Beer EE (1964) Some considerations concerning the

point bearing capacity of piles Proc Syrop Bearing

Capacity of Piles Boorkee I pp 178-204

Decourt L Quaresma AR (1978) Capacidade de Carga de

Carga de Estacas a partir de Valores de SPT VI Conshy

gresso Brasilerio de Mecanica dos Solos e Engenharia

de Fundacoes - Rio de Janerio - ABNS

Decourt L (1982) Prediction of the bearing capacity of

piles based exclusively on N values of the SPT Proc

of the Second Europ Syrop on Penetration Testing

Amsterdam Vol 1 pp 29-34

Duncan MJ Chang CV (1970) Non-linear analysis of stress

and strain in soils Journal Soil Mech Found Div Vol

96 SM5 pp 1629-1651

Durgunoglu HT (1979) Effect of foundation embedment on

stress and deformation distributions Third Int Conf

on Num Meth in Geomechanics Aachen pp 925-928

Farr JS Aurora RP (1981) Behaviour of an instrumented

pier in gravelly sand Proc of a session Drived Piers

and Caissons sponsored by the Geotech Eng Div of the

ASCE Nat Convention St Louis Missouri pp 53-65

Franke E (1981) Point pressure versus length and diameter

of piles X ICSMFE Stockholm Vol 2 pp 717-722

45

Gregersen os Aas G and Dibiagio E (1973) Load tests

on friction piles in loose sand Proc of the Eigth

International Conference on Soil Mech Moscow USSR

Vol 21 pp 109-117

Gwizda1a K (1978) Behaviour of large diameter bored piles

in non-cohesive soil (in Polish) Archiwum Hydrotechniki

Vol XXV No 2 pp 183-217 (English summary)

Huizinga TK (1951) Application of Results of Deep

Penetration Tests to Foundation Piles Building Research

Congress Vol 1 p 173

Janbu N (1963) Soil compressibility as determined by

oedometer and triaxial tests Proc Europ Conf Soil

Mech and Found Eng Vol 1 p 19 Vol 2 (Discussion)

p 17 Wiesbaden

Janbu N (1970) Grunlung i geoteknikk Tapir Forlag NTH

Trondheim

Janbu N Bjerrum L Kjaernsli B (1973) Soil Mechanics

applied to some engineering problems Norw Inst Publ

No 16 Oslo

Japanese Society SMFE (1981) Present state and future trend

of penetration testing in Japan Separate report at

X ICSMFE Stockholm

Kjekstad O Lunne T (1979) Soil parameters used for design

of gravity platforms in the north sea Second Int Conf

on Behaviour of Off-shore structures London Vol 1

pp 175-192

Klosinski B (1977) Bearing capacity of large diameter bored

piles IX ICSMFE Tokyo Vol 1 pp 609-612

Laboratory for soil mechanics Delft (1936) The predetershy

mination of the required and the prediction of the

resistance of piles Proc 1 Int Conf on Soil Mech

and Found Engng Cambridge (Mass) I p 181

46

Matich M and Stermac A (1971) Settlement performance of

the Burlington Bay Skyway Canadian Geotechnical Journal

Val 8 pp 252-271

Mccammon NR and Golder HQ (1970) Some loading tests

on long pipe piles Geotechnique London England

Val 20 pp 171-184

Meigh AC (1971) Some driving and loading tests on piles

in gravel and chalk Proc of the conference on beshy

haviour of piles London England pp 9-16

Mitchell JK Gardner WS (1976) In situ measurement

of volume change characteristics American Society of

Civil Engineers Specialty Conference on In-situ

Measurements of Soil Properties Raleigh 1975 Proc

Val II pp 279-345

Mezenbach E (1961) The determination of the permissible

pointload of piles by means of static penetration tests

Proc 5 Int Conf on Soil Mech and Found Engng

Paris II pp 99-104

Meyerhof CG (1956) Penetration tests and bearing capacity

of cohesionless soils Proc Amer Society of Civ Engng

SM 1 Pap 866 pp 1-19

Meyherhof GG (1 976) Bearing capacity and settlement of

pile foundations Proc Amer Society of Civ Engng

Journal Geotechnical Engineering Division Val 102

No GT3 pp 197-227

Mohan D Jain GS and Kumar V (196 3 ) Load bearing capacity

of piles Geotechn Val XIII pp 76-86

Nixon I (1982) Standard penetration test State of the

art report Proc of the Second Europ Symp on Pen

Test Amsterdam Val 1 pp 3-20

47

Nunes A Vargas M (1953) Computed bearing capacity of

piles in residual soil compared with laboratory and

load tests Proc of the Third International Conference

on Soil Mechanics Zlirich Switzerland Vol 2 pp 75-79

Nordal S Grande L Janbu N (1982) Prediction of offshy

shore pile behaviour The Norwegian Institute of

Technology Trondheim

Ohde J (1939) Zur Theorie der Druckverteilung im Baugrund

Der Bauingenieur Vol 20 No 3334 p 451

Parroth E (1972) Einfache Formel zur Vorausbestimmung der

Tragfahigkeit von Standpfahlen mit Hilfe der Sande

Bautechn 9 pp 312-314

Poulos HG Davis EH (1980) Pile foundation analysis

and design New York - J Wiley and sons

Prodinger W Veder Ch (1981) Bearing capacity of floating

groups of diaphragm walls Proc X ICSMFE Stockholm

Vol 2 pp 809-814

Promboon S Brenner R (1981) Large diameter bored piles

in Bangkok Clay Proc X ICSMFE Stockholm Vol 2 pp

815-818

Reese L (1978) Design and construction of drilled shafts

ASCE JSMFD Vol 104 No OT1 pp 95-116

Rodin s Corbett BO et al (1974) Penetration testing in

United Kingdom state-of-the-art-report Proc Europ

Symp on Penetration Testing 1 Stockholm pp 139-146

Rollberg D (1976) Bestimmung des verhaltens von Pfahlen

aus sandier und rammengebnissen Heft 4 FBG Technische

Hochschule Aachen

Rollberg D (1977) Determination of the bearing capacity

and pile driving resistance of piles using soundings

Publications of the Institute for Found Eng Soil Mech

Rock Mech and Water Ways Construction Aachen Vol 3

48

Schmertmann J (1970) Static cone to compute static

settlement over sand Journal of the Soil Mech and

Found Division ASCE SM3 pp 1011-1043

Schmertmann J Hartman JP Brown PR (1978) Improved

strain influence factor diagrams Journal of the Soil

Mech and Found Division ASCE GT8 pp 1131-1135

Shibata T Hijikuro K and Fominerga M (1973) Settlement

of a blast furnace foundation Proc of the Eighth Int

Conf on Soil Mech Moscow USSR Vol 13 pp 239-242

Spang J (1972) Die Bestimmung der Tragfahigkeit von Grossshy

borhpfahlen (I) Strassen und Tiefbau No 2 pp 339-355

Senneset K (1974) Penetration testing in Norway State-ofshy

the-art-report Proc Europ Symp on Penetration Testing

Stockholm I pp 85-95

Tejchman A Gwizdala K (1979) Analysis of safety factors

of bearing capacity for large diameter piles Proc VII

ECSMFE Brighton Vol 1 pp 293-296

Thorburn s and Mac Vicar R (1971) Pile load tests to

f a ilure in the clyde alluvium Proc of the conference

on behaviour of pile s London England pp 1-7

Trof imenkov JG (1969) Accuracy of determining the bearing

capacity of piles based on results of static penetration

sounding of soils Osnovaniya Fundamenty i Mekhanika

Gruntov 4 (Translation Soil Mechanics and Foundation

Engineering 4 p 248)

Trofimenkov JG (1974) Penetration testing in USSR Stateshy

of-the-art report Proc Europ Symp on Penetration

Testing Stockholm I pp 147-154

Tuoma F and Reese L (1974) Behaviour of bored piles in

sand JSMFD ASCE Vol 100 No GT 7 Proc Paper 10651

July pp 749-761

49

Van der Veen C (1953) The bearing capacity of a pile

Proc 3 Int Conf on Soil Mech and Found Engng

Zlirich II pp 84-90

Van der Veen C and Boersma L (1957) The bearing capacity

of a pile predetermined by a cone penetration test

Proc 4 Int Conf on Soil Mech and Found Engng

London II pp 72-75

Weltrnan AJ Healy PR (1978) Piling in boulder clay

and other glacial tills Construction Industry Research

and Information Association UK-Report PG 5

Withiam J Kulhawy F (1981) Analysis prodecure for

drilled shaft uplift capacity Proc of a session

Drilled piers and caissons ASCE St Louis Missouri

pp 82-97

Woodward R Lundgren R Boitano J (1961) Pile loading

tests in stiff clays Proc of the Fifth International

Conference on Soil Mechanics Paris France Vol 2

pp 177-184

Wright SJ Reese LC (1979) Design of large diameter

bored piles Ground Engineering Vol 12 No 8 pp

17-22

DIN 4014 Cods Teil 2 (1977) Bohrpfahle Grossbohrpfahle

Herstellung Bemessung und zulassige Belastung

Polish Specification (1975) Specification for design and

construction of large diameter bored piles in bridges

Ministry of Transport Warsaw (in Polish)

Polish Specification (1979) Specification for prevision

bearing capacity of the piles on the presiometer test

and static sounding ENERGOPOL Warsaw (In Polish)

Polish Code (1983) Foundations Bearing capacity of piles

and pile foundations

5 1

FIGURES

bull bull

53

Ou

+ sect raquo iir 1

4 + D

h + +Osu

bull + t2 =n- Dp

LDpl r f 1

Opu

Fig 1 1 1 Bearing pi le in the soil

J_

fp

080

070

060

050

0 40

030

020

010

q~ [MPa ]000 -+--~-~-~-~------------------------=-shy

00 20 4fJ 60 80 10 0 120 14fJ 160 180 200

Fig 1 1 2 The point resistance factor fp

(Trofimenkov 1974)

54

ts

160

140

120

100

080

060

040

020

q~5 [ kPa)

0Q0--1------~-~-~-~-~-~ - - ---=- -- shy000 10 20 30 40 50 60 70 80 90 100

Fig 1 1 3 The shaft resistance factor fs middot (TYofimenkov 1974)

f s

200

180

160

140

120

100 2 3 4 5 6 7 8 9

Fig 1 1 4 Shaft friction factor f depenshys

ding of the soil density (Senneset 1974)

55

Q~ [kN]

1500

1000

500

0-r-----------r----~- Q~ [kN] 0 500 1000 1500

Fig 1 1 5 Comparison of the pile resisshytance determined by the results of static sounding and load tests (TYofimenkov 1974)

D f f

0

Fig 1 16 Equivalent cone resisshytance (Bustamante 1982)

56

E u shy0 ~

QI I ltII ltII

~ a C QI

O C

D

w gt

0

Cone res istance Point resistance

80 160 240 320

05

10

15

e d

20

ver y dense Cone resistance 300 kgcm2

Dpcm

a =45 b = 30 C 60 d = 100 e = 150

Fig 1 16a

Cone resistance _ qc

80 160 80 160 qc [ k g cm2 ]p

05

10 10

15 15 e d a

e d20

Dense Medium2 2200 kgcm 100 kgcm

Cone resistance and point resistance of piles versus overburden pressure (Kerisel 1965)

Point resi stance - p(for s=2cm) of the pi le for

15 sett Iement s = 2 cm

10

5

E u

uJ1 o-~----shya er O 804 2500

32 56

I 1

L oose50 -I =25 Very loose L

----~--shy5000 7500 80 98

~-----lmiddotI1--------2 10000 12500 31400 =Flcn)

112 123 200 =Dplcm)

Fig 1 1 6b Point resistance versus cone resistance and pile diameter (Franke 193)

57

1

fp

080 (D Gravel

0 Coarse sand Medium sand 070

reg Fine sond Silty sand

060

050

040

030

020

010

qc [MPa]000-+----r--~-~-~--------r----r----r-~-~-- -shy

oo 20 40 60 80 100 120 140 160 180 200

Fig 1 1 7 Point resistance factor f (proposal) p

58

300

250

200

150

100

qc [MPa I50-+---------------r---r---r---r----r------------- shy

oo 20 40 60 80 100 120 140 160 180 200

Fig 1 1 8 Shaft resistance factor fs (pr oposal)

59

Bustamante (seetab 115 I

l fp

G)

0 Gravel

Coarse sand Medium sand

cl

b)

t-----l

1----1

080 reg Fine sand Silty sand a) D

070 Polish

060 Specification

( 1979) 050

040

030 CD 020 0

reg 010

qc [MPa]0 00 -+-------------------------------------=--shy

oo 20 4o 5o 80 100 120 14o 15o 180 200

Fig 1 19 Point resistance factor f comparisonp

Bustamente ( see tab 116 I 300

a) ~

250 b)~

cl~

200 Polish Specification ( 1979 l

150

100

q [ MPa]504---~--~--~----- ---___

00 20 40 60 80 100 120 140 150 180 200

Fig 1 1 10 Shaft resistance factor fs comparison

60

1 fp

~

080 CD CD Gravel

070 0 reg Coarse sand Medium sand

060 0 Q) Fine sand Silty sand

05

040 Franke (1973)___

030 DIN 4014

020 Part 2 1977

( see tab113 l 0shy

--shy --a - 010 C---0 Piles without enlarged bases

D---0 Piles with enlarged bases qc [MPa ] 000

00 20 4JJ 60 80 90 100 120 140 160 200

Fig 11 11 Point resistance factor f comparison p

fs

DIN 4014 Part 2 1977 ( see tab 114 l

300

~ 5 lt qc lt 10 MPa 50

~ 10 lt qclt 15 MPa

~qcgt15MPa

200

150

CD

100 0 0

qc [ 1Pa] 50-t-----T-~----T-r-~----------------shy

OO 20 40 6JJ 80 100 120 14JJ 160 180 200

Fig 1 1 12 Shaft resistance factor fs comparison

61

Measured p [ MPa]

( s=010 Dp) 10

9

8

7

6

5 0

4 0 61

3

I 2

Calculated qcp [MPa]

0 0 2 3 4 5 6 7 8 9 10

Fig 1 1 13 Comparison of experimental and aomputed values of the pile point resistanae

62

Contact pressure ( MPa ]

2 I 6

50

100

E E 150 Ill

c QI

E Sett lement for QI

calculated qcpai V) 200

Fig 1114 Results from load tests on piles No 1 and 5

Contact pressure [ MPa I 0 2 I 6

01---------------------1

50

E E 100 Ill

Settlement forc QI calculated qcp E ~ ai

I V) 150

Fig 1 1 15 Results from load test on piles No 7 and 5

63

Contact pressure p [ MPa] 0 2 3 4 6

0-t=-----~-~-----

E E

100 1)

c CU E 2 QI V) 150

Fig 1 1 16 Results from load test on piles No 9 10 and 11

Contact pressured p [MPa] 0 1 2 3 4 5

o~~~=------------___-~-shy

50

100

E E

i 150

CU E CU

-a V) 200 2

Fig 1 1 17 Results from load test on piles No 12 and 13

c

-------------- -

64

Contact pressured

0 1 2 3 4 p [ MPo] ~o __L____1_____J_____L___

50

100

150

E

E

IJ) 200

c a

E a

~ 250

Fig 1 1 18 Results f Pom load tests on piles No 2 4 6 and 8

p [MPa]

60

50

tO

30

~

Pile Pile Pile Pile

Pile No18

------+ Pile No17 + ~_ ---0 Pile No 19

bullbull - --bull Pile No 20

- ~middot -shy-shy -(y I Settlement for

20 tO 60

No17 +-middotmiddot- V 70 No 18 bull--- V 9o No19-middot- V 120 No20bull---- V150

qcp 3

80 100 120 140 160 s (mm)

Bose resistance

Fig 1 1 lBa Point Pesistance vePsus settlement (Spang 1972J

65 Cone resistance qc [ MPa]

0 10 20 30

mud

5 ~ lll

0 c 0

c CD

peat

10 sand

Ill N

10=10

D=lOOOmm

1540=40

20__________________

[ml

Fig 1 119 Pile No 1 and results from static cone penetration test

Cone resistance qc [MPa l 0 10 20 30

7N V degW = 0+--------------------i

mud

5

lll

~ C 0

c peat~

10

sand lll N 1D15

15l lD=1500mm

40=60

20l---------=-------__J

[ml

Fig 1 1 20 Pile No 3 and results from static cone penetration test

66 Cone resistance qc [MPa]

10 20 II 3 igt pound ~

mud+peat

fine sand+ silt

50=11

l lo-11oomm

40= 44

10

15l____________c

[ml

Fig 1 1 21 Pile No 5 and results from static cone penetration test

Section Cone resistance Pile

0 0

5 10 15 20 25 30 qc [MPa] -----~-~shy~

Silt

[7r_ ___~ Medium Sand_~-----l

0 ltD

+shy4

0=11

9=

Fine sand + Silt t

30p=

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot1~11+-----E-----

[ml

Fig 1 1 22 Pile No 6 and results from static cone penetration test

Cone resistance qcmiddot 1MPuJ

0 10 20 30 67 01-+-------l--------------i

mud+ peat

fine sand

l1)

N

40=60

15L_____________

[ml Fig 1 1 23 PiZe No 7 and resuZts from static

cone penetr ation test

Section Cone resistance Pi le

0 5 10 15 20 25 30 qc [MPa 1 --~----Y-~-----~

Silt

Fine sand

Medium Sand Bentonite2----1~i

t 3

4

0

0=15

Fine iii ~~= 5

sand t ltD

6 +

Silt 7

3Dp=

63 g

10

11

12

13+------=~---l

[ml

Fig 1 1 24 PiZe No 8 and resuZts f rom static cone penetration test

68

I =3

Cone resistance qc [MPa]

0 10 20 30

C 0 C Cl

(I)

Said

Peat

Sand

l 0=110

D = 11

4 D = 44

Fig 1 125 Pile No 9 and results form static cone penetration test

69

Cone resistance qc[MPa)

0 10 20 30 I ~ II JE Ill= II=E IS

Fine sand QI

U) I

[- I C 0 + C Peat QI

CD

Fine sand 0

Ci D = 1 1

L l D= 110

4D= 4 4

Fig 1 1 25 Pile No 10 and results f rom static cone penetr ation test

70

Cone resistance 9c[MPa]

0 10 20 30

Sand

C 0 Mud peat

+shyc 5 ltII

co

Sand Op= 11

u 10 D= 110 4Dp=44

Fig 1 1 26 Pile No 11 and results foIm static cone penetration test

71

00 a_ N ~

middotu rr QI 0 u ~ C 0

QI ui C iij 0 QI U - 0

0 EN

d 2

Sll 1lOl

C

u (rr

C 0 u~

0

QI - C middot 0 C

U - O 0 EN

~ 0 2

E

ltD a---==-lr---___--~---6-l_-0_012 ~ Lr- - --1---------J J

S9l ls= apound QI -0 gtcc _gmiddot- 0 1) ui I

Fi g 1 1 2 Piles No 14 and 15 and results f r om stat i c cone penetr ation tests

72

Contact pressure p [ MPa] 2 4 6

01lt---------------~

50

E E

111 100 ~ (qcp=30 MPa for No16

~ iqcp =49 MPa for No14

~ 1so~--~~- _ _ __

I _ _

11 I lf--q = 32 MPa for No15

cp

Fig 1 1 28 Results f r om load tests on piles No 14 15 and 16

73

0300--------------~---~--~--shyE

Driven piles in ~ 0 bull Gravel

amp250 bull Sand L QJ X Silt a 1l o Bored piles in

sand -sect 200 0=-- shyC ~ ~ 10 unless ~~ middot D shown 1

ii O

~ ~ o 3 a 1501-----+-------I- --+---laquo-+-- -+------lt

~ sect 5 - 6 6middot 100t----+----+-----_-1---4--__co_--J~__j

-_

~ 0 t7

C

a 50 2 shyg ~ gt

0 20 30 40 50 60

Standard penetration resistanceN in blows per foot

(N 30

Fig 12 1 Emperical relation between ultimate point resistance of piles and standard penetrashytion test in cohesionless soil (Meyerhof 1976)

14 r-------------------r-------b-----q

References and symbols given in Fig121

121-----+---+----+----+------ll------j

- _sect ~ 10t----+----+-_--1-----+---lt~--~H---- 0 lt-~5- _-)0 I() l- I Q---+-----I[08 ~

H -(l () ltj-~C X bulls pound 061------lt----+-----i~- --+-- shy

- bull

-gt Q1pound--I---L---L---L---L--~ 0 10 20 30 40 50 60

Mean standard penetration resistance N in blows per foot ( N30 l

Fig 122 Empirical relation between ultimate skin friction of piles and standard penetration resistance in cohesionless soil (Meyerhof 1976)

74

a) b)0(1 0lt2

10 10

05 05

1 N30OD-+---------__ OD--t-----r-----r----------------ll--Nbull30~ 10 20 30 10 20 30 40 50

Fig 1 2 3 Reduction coefficient a) for impermeable gravels b) form permeablr gravels (Weltman and Healy 1978)

psf [MPo)

Fig 1 2 4 Relation between ultimate point resistance and SPT in cohesionless soil (Polish specification 1975)

75

30 35 40 45 Loo Med Dense Ver dense

50

40

~ E

l)

g 8 1)

middotu

1 ~

QI- bull Touma ~ bull Koizumi

(183)-depth base middotameter5

20 40 60 00 100 N30

30 35 40 45

OG2(294) bull G1 (183)

300 bull us 59 ( 102) bull 88(180)

bull 075 a GT (467)

150

~ 200-+--------+-- t--- --t-----i 130i 0 094 081

014 _- --- -- shy~ E 066bull bull 063 Note -~ ~m~r~s~ ~ 1001---1-r--t---1point is xh QI Ratio ~ Number in ( ) middotn key is h c Ratio s ~

0 20 40 60 00 100

~ig 1 2 5 Ultimate point and shaft resistance versus N30

(Wr ight and Reese 1979)

-----

76

tu Psa

[kPa] [MPa]

200 tu

------ shy150 Psa

1 1

1100 10 1 1

1 50

0+----------T----~---~-N-3J~shy0 20 40 60 80

Relation between ultimate skin friction and SPT (Decourt 1982)

Fig 1 2 6

Psa

[MPa]

8

0----Meyerhof 1976) 0 7

--- - --~ - copy Polish Specifcoti on 1975)6 ~-

~

reg- middot - Reese (1978) middot 5

f41- -- Decourt (1982) -I bull 4 2

----==---______z__ h25m Dp=12m

3 ---shybull

2 7

--shy ----shy~----shy0-t----i----------r-- ----------------------N3l~shy

0 10 20 30 40 so 60 70

Fig 1 2 7 Relation between ultimate point re~istance of large diameter piles and standard peneshytration test (SPT) in cohesionless soil

------

77

tu [kPa)

200 17 Cast under -J bentonite

~----Meyerhof (1976) ~copy -=middotmiddotmiddotmiddot== middotmiddot150 ~------- Wei tman (1978 ) middot Healy middotmiddot ___ Japanese ) 119810 Society

(0 -middotmiddot- Decourt (1982)middot Wright

100

- -middotmiddot -- 11979]reg Reesemiddot Bored piles

~shy50 1 -- shy

-- shy middotmiddot s-shy - --~ ------reg~~ ---~E_==---- ------- shy

N_ ---shy0-+--C--------------r---- ---------~---~-~shyo 10 20 30 40 50 60 70

Fig 12 8 Relation between ultimate skin friction of piles and standard penetration test (SPT)

78

Pst [MPa]

8

7 ---------ist=7MPa

6

5

4

3

2

I N30o~------------------------------+---------__=-shyo 10 20 30 40 50 60 70

Fig 12 9 Relation between ultimate point resistance of large diamter piles and standard peneshytration test (SPT) in cohesionless soil (proposal)

tu [MPa ]

( excavanted and cast

150 under bentonite ) tu=150 kPa

100 tu=90 kPa

I I

50 I I I I I N30

10 20 30 40 50 60 70

Fig 1 2 10 Relation between ultimate skin friction of large diameter piles and standard penetrashytion test (SPT) in sand (proposal)

79

2 3 4 5 p[MPa] 0 2 3 4 5 p[MPa]0

40 40 Cl

80 c 80

c 120 120

Pile No 1 PileNo216 160

200 2

s s c [mm] (mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MPa]

40 40

00 80

120 120

16 160 Pile No 3 Pile No 4

200 200

s s [mm] (mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MAJ]

tgt11 tgt- measured40 40

80 80

120 120

Pile No 5 Pile No 6 160 160

20 200 s s

[mm) [mm)

Fig 1 4 1 Base resistance vs settlement appoximative method piZe No 1- 6

80

0 2 3 6 5 p[MPa) 0 2 3 4 5 p[MPa]

40 40

80 80 6

120 120 6

6160 160

Pi le No 7 Pile No 8 6

200 3J s s

[mm] (mm]

0 2 3 4 5 4 p [ MPo)

6 6 40

6 6

6 80

6 6

6

Pi le No 9 Pile No 10

XJO s s

[mm] [mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MPa)

6 6

40 40 6 6

6

00 80 6

6

12 1Xl 6

160 Pile No 11 160 Pile No 12

200 200 s s

[mm ] [mm]

Fig 1 4 2 Base resistance vs settlement approximative method pile No - 12

81

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MPa]

6 6

40 6 40 6

6

80 6 80 6

120 6 120

Pile No 13 Pile No 141fO 160

200 200 s s

[mm] [mm]

0 2 3 4 5 p [MPa) 0 2 3 4 5 p [MPa)

40 40

80 80

120 120

HiO 160

200 200Pile No 15 Pile No 16

s s (mm) [rrrn 1

0 2 3 4 5 p[MPa] 0 2 3 4 5 p[MPa)

40 40 A A A-measured

680 80 t t

120 c 120 c

1fil Pi le No 17 160 Pile No 18

200 200 s s

[mm] [mm]

Fig 1 4 3 Base r esistance vs settlement approximative method pile No 13- 18

82

0 2 3 4 5 p[MPal 0 2 3 4 5 p (MPa]

D D40 40 c c

80 c 80 c

120 120

160 160

Pile No 19 Pile No 20 200 200

~ml (mm]

Fig 1 4 4 Base resistance vs settlement approximative method pile No 19- 20

LlJ QI

0 average lJ = 098 E sd = 029 C

6 SY = 030

4

2

lJ calculated ________________________ _______ measu red

06 08 10 12 14 16

Fig 1 4 5 Calculated pressure divided by the measured pressure at 20 mn settlement for aZZowabZe

q Zoad Pa= ~p approximative method pile

No 1- 20

8 3

Point resistance p [ MPaJ

a)

p(s) = s a +--sshy1 y qcp

1

SQ100p -- --- ---shy

~ s

[mml

I- 01 s rmm]-l p LMPa b)

f~]

c Cll E ~ i s

[mm)

Fig 146 Definition of the point resistance - settlement curve according to the modified hyperbolic method

84

01 ~ 0

20 0 0

0

16 0

medium 0 value a1 = 905-+ 256 Op 0 0

12 (r=039)

0 0

----0 0

8 0

0 0

0 0

4 0

05 06 07 08 09 10 11 12 f3 14 15 16 17 18 19 20 2 1 Op (ml

Fig 1 4 Initial slope of the base resistance curve vs pile diameter

a1 [p] 0

0020

16 assumed a 1= 28 - 4 qcp

12 0

0 Ct) 0 a = 2659 - 369 qcp8 1

0 0 (r = 0188)0

4

2 3 4 5 (MPa]qcp

Fig 1 4 8 Initial slope of the point resistance curve vs ultimate point resistance on the static cone resistance for pile tests No 1 20

85

a [~ 28

24

20

16

12

8

4

0 2 3 4 5 6 Qcp [MPa]

~ Kiosinski (1977) sand and sandy gravel of mediwn density

~ Klosinski (1977) loose sand ID= 0 3 0 4

o US59 ] t HH Touma p and Reese L (1974) fine sand and silty sand OGl (US59 HH BB - very dense Cl - mediwn dense) 1 BB

DIN 4014 Part 2 (1977)

Fig 1 4 9 Initial s lope of the point res istance curve vs ultimate point resis tance

86

assumed [il =30 -10 Op but )1~ 10 )1 [1 I

u 311-10 Op ( r =0 368)4 1 0

3 0 0

02 0

0 0co 0 8 0 0

0

0

05 06 07 08 09 10 11 12 13 14 15 16 17 19 20 21 Dp [ ml

Fig 14 10 Correction factor for hyperbolic base resistance shysettlement relationship

87

a [~] 28

24

20

16

12

8

4

2 3 4 5 qcp [ MPa]

Fig 14 11 Initial slope of the base resistance curve vs ultimate base resistance (proposal)

v [ 1 ]

3

2 -----G- DP J l 1J I Op lm] J

for Dp ~ 2 0 m ~ u = 1 01

0 --------r----r---r----r-----------------r-------------------------r------r-~-~--shy

05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 Dp[m)

Fig 1 4 12 Correction facto r for hyperbolic base resisshytance - settlement relationship (proposal)

s P ( s)

s +

u qcp

88

a) b)1

bt=o212= 47 MPa a1=1~32 tMWJ s 2 3 4 5 O 1 10 20 30 40 50 60 p [~a]0

0p [ MPa] 40 40

80 80

120 ~

160 b1 = ~ajtg ~= 0 212

~=1132 + 0212middot s

mJ 240 r=0994t t t measured s __ according to Jl s

o o o according to p (bull ll l[mm] [mm]

Pile No 2

slmm) 10 20 30 40 50 60 80 100 125 150 175 2)0 225 Note

p [ MPa] 09 14 17 20 22 24 27 30 32 34 36 38 39

measured

pibull) [ MPa] 074 128 169 202 228 249 282 307 330 347 360 371 380calculated

plbullbull1[MPal 070 125 168 203 233 257 297 327 356 378 396 410 422calculated

1) (bull) ij l099082 091 099 101 104 104 104 102 103 102 100 098 097 sd = 006

ij (HJ1041) (bull10) 078 089 099 102 106 107 110 109 111 111 110 10B 10B sd = 010

plbulll-according to a =1132 [ Jp(s) = s s for pile No21 0 1132 12 39

plbullbulll-according toa =1241 lmiddotGcp=39MPa1 0

~=14 see fig 1411 and fig 14 12 sp(S)=

124+ _ s_ 14middot39

11lbulll11l-J - correlation coefficient calculat~d P5 for

measure p s p(bull) and p(bull) respectively

Fig 1 41 3 Modified hyperboZic point resistance - settZement reZationship for piZe No 2

89

0 2 3 4 5 p(MA1] 0 2 3 4 5 p[MPa)

40 40

80 A 80 A

120 120

160 16 Pile No 1 Pile No 2

20 200 s s

[mm] rnm

0 2 3 4 5 0 2 3 4 5p [MPa] p [MPo]

40 40

80 80

120 1ZJ

lfpound) Pi le No 3 Pile No 4 A

200 A

s s A

[mm) [mm

0 2 3 4 5 p [MPa] 0 2 3 4 5 p [MPa]

40 40 A A A measured ~ calculated

80 80

12

160 160 Pi le No 5 Pile No 6

200 Z)Q

Fig 1 4 14 l3ase resmiddotistance vs settlement pr oposed method pile No 1- 6

90

2 3 4 5 p [MPa] 2 3 4 5 p [ MPa]

40 6

6 40

1 80 80

6

120 120 6

6 160 160

Pile No 7 6

200 200 s

[mm ] s

[mm]

0 2 3 4 5 6 p [MR] 0 2 3 4 5 p [MPa] 0 0

40 40 6

6

80 80

6

120 120

160 160 Pile No9 Pile No 10

200 200

s [mm] [msml I

0 2 3 4 5 6p[MR] 0 2 3 4 5 p [MPa]04--___ ____ ___ ___ ____

0+-=---------------~-~- shy

40 40 c 6 c - measured

0--0-0 shy calculated

80 80

120 120

160 160 Pile No11 Pi le No12

200 200

s [mm]

s [mm]

Fig 1415 Base resistance vs settlement proposed method pile No 7-12

91

0 2 3 4 5 p [MPal 0 2 3 4 5 p [MPa)

40 40

80 80

120

16 Pile No 13 Pile No 14

200 s

tnml [mm]

0 2 3 4 5 p [ MPa] 0 2 3 4 5 p [MPa)

40 40

80 80

120 120

160 1fD

Pi le No 15200 axJ s s

[mm] [mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 6 plMPa ]

A A A measured40 0---0-0 calculated

80

120 120

160 1ED Pile No 17 Pi le No 18

200 200

s s [mm] [mm]

Fig 1 4 16 Base resistance vs settlement proposed method pile No 13- 18

92

0 2 3 4 5 p [MFb] 0 2 3 4 5 p[MPa]

0 6 o -measured40 40 0 0 o -calculated

80 80

120 120

160 160 Pile No 19 Pile No 20

200 200 s s

[mm] [mnil

Fig 1 4 17 Base resistance vs settlement proposed method pile No 19-20

p(s~Psf

15 20

ean

-C 5 w u L Lower ~ confidence

linea 0

a IJl 10

o---o proposed

method I I I

15

Fig 1 4 17a Design curves for estimating developed base resistance in sand (Wr ight and Reese 1979)

93

n (number)

30

28

26

24

22

20

18

16

14

12

10

8

6

4

2

0 02 04

Fig 1 4 18

I= 126

Between 1] = 0 7 - 1 3--- I= 106 ( 84 frac34)

Average ~ = 098 Standard sd =023 deviation

Standard sv =023 veriation

1] (Coefficient Calculated Measured

06 08 10 12 14 16 18

Calculated pressur e divided by the measured pr essure for all pressure - settlement curves pr oposed method pile No 1- 20

94

a) b) Total load

Total load curve

---- _____-- shy- -- -Base load ~- Base load

-0-0 ~

00 00 J

ldeoli zed shaft load J

Shaft sesistanc1---------- 0=0middot30 a= 0 middot 30

025 Settlement IN 025 Settlement IN

Fig 1 419 Proposed method of synthesizing design loadsettlement curve (a) conservative design prodiction b) design prediction- peak in shaft loadsettlement curve (Burland et al 1966)

Cf

-0 0 0

J

0

~-----~--~-~ amp- 2 3 4 5 6 (cm)

a~middotltii -0 lt) cco2 41 -~ -0 1)

vi ~ llloli=----------- ---c~0 1 2 3 4 5 6 7 ( of diameter)1 1 1 1

05 10 15 20 ( in) for 30 in Pile Movemen~ ( 75cm pile)

Fig 1 4 20 Approximate load settlement curves for 30 in bored piles (AB and C represent failure load at 1 in settlement A B and C represent ultimate failure load) (Touma and Reese 194)

95

Load in MN 0 2 3 4 5

25

50E E C

-C 75

-~ ~

-Z 100 lJ

Shaft resistshy

125 once

15 Fig 1 4 21 Load-settlement relationships for largeshydiameter bored piles in stiff clay (Tomlinson 1977)

SettlementSo

Fig 1 4 22 Diagrams of s1iaft and base resistances versus settleshyment assumed in analysis (Kiosinski 1977)

96

0 0 1 ~ r- 025g ~~ 2

1- -shy3 03Sg 14 5 2

Qls =Qpls+Q5 (sQpls) Qs(s-3E

0

degsis __ -- Qpls) a~ C

4

t Sg l

5 Qu Is)

Q(s)in MN-l T

Ouls Q Is) in MN ---

Fig 1 4 23 Construction of load - settlement curves a) for sand b) for cohesive soil (DIN 4014 Part 2 1977 and Franke 1981)

-

s C 5C

Cl

3 0 00 05 10 15 20 Mean settlement I in)

Fig 1 4 24 Load- settlement curves for test shaft S4 (1 in = 25 4 mm 1 ton= 8 90 kN) (Reese 1978)

97

Relative side resistance

0 05 10 15 20 0E=--t----+---+--~

c QI lt) ~ 2 C

I itaker c

QI amp Cooke3E QI-j

c-en 4

C QI

E us 59o

5 QI gt

SA0 w 0 6

Fig 1425a Relative side resistance for clay vesus relative midlength settlement (Reese 1978)

degs (Osl u l t 0 05 10 15 2 0

Mean

2 Lower ~ C QI u

confidence line

~ 3 a

0

~4 E

()

5

6 __ _ ______ ________ __1

Fig 1 4 25b Design curves for esti mating developed side resistance (~Jy1nht ReertP- 1987 J

98 Load Q

8 - 15 mm

1- 2 of p ile diameter

100-200 10-15 of pile Os Ot diameter Shaft Total

Settlement S Resistshy Resist- Load ance once

Fig 1426 Dependence of total load base resistance and shaft resistance on settlement of lar-ge diameter pile (Tejchman Gwizdala 1979)

6

5 Shaft load

4

3

2

z ~

-0

g Pile EF- 56 J 0

0 0 20 30 Butt settlement (mm)

Fig 1 4 27 Deveiopment of shaft and base resistance with settiement (Promboon Brenner 1981)

99

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 0 r-=-1---J__-----------------------~----_shy

Load [ k N l5

10

20

( I

Skin friction ----1 I I

~ 40 QI E

fQI

50 I

Q) I () ICOntinuos fost deolading

Fig 1428 Load-Settlement-Diagram Testelement III (Diaphragm-Wall 0515 m 244 m deep) Portion of Skin Friction and Base Resistance (Prodinger Veder 1981)

Qs (QJ max

0 05 10

Upper Limit of Data

Farr and Aurora (1981J C

~ 2 - shy -+shy - Mean of Data

I QI

Lower Limit of Data a

0 - 3 E

Vl

4

Smid = Approximate shaft buff movement ignoring the elastic compression of upper halt of the shaft

D = Shaft diameter

Q Mobi Ii zed shaft resistance

Qs1max = Maximum shaft resistance

Fig 1 4 29 Relative shaft resistance vs relative movement (Farr and Aurora 1981)

100 Load Q (s) [ MN]

Su5 s s 20 mm for non- cohesive soil u

s s 10 mm f or cohesive soil u

s s 15 mm for claysand u

Q (s) + Q (s)s p

Qs(s)

-C ltII E s ~- [mm]-ltII IJ)

Fig 1 430 Dependence of total load Q(s) point res i stance Q (s) and shaft resistance Q (s) versus settlement p s

~ 3 Usu Qpu Qu Q(s) [ MN]

Sus= 20

1J

60

80

100

120

degs (s ) 140

5 P=Ol Op

1EO

C -ltII E 180 ~ ] 200

s [mm]

Approximative dependence of total load point resistance and shaft resistance versus settlement fny non-cohesive soil

Fig 1 4 31

101

113 3 ~fic0P Ye hY

1 Ground water

D

I y

yh C

Fig 1 5 1 Determination of 01 and 03 for settlement analysis of lar ge diameter bored piles

102

I

E=Et [MPa]

160 0

140

120 0

100

80

6

40

--- --shy 0

0

8 0

0

0

20

2 3 4

I 0 15

Fig 1 5 2

E = Et [MPa]

120

100

80

60

40

I I 0 35 065 085

0

Et= 17 81 qcp0844

( r = 0 128)

5

100

6 qcplMPo]

Calculated values of Young s modulus for piles No 1shy24 according to equation 1 5 2 and 1 56

0

0 0

E =898qcp127 (r= 0314)

E = 9 middot qcp 13 0

20 shy 0

0 0

0 1 2

loJ

I 0 35

3 I

065

4

I 085

5

100

6 qcp [MPo]

Fig 1 5 3 Calculated valueBof Young s modulus for piles No 1shy24 according to equation 1 5 4 and 1 5 6

I K 10 3

( 1 ] 1832

1400 0

1200 0

0

1000 0

800 0

m=2821 qcp0621

600 0

(r=0057)

400 0 0 0 0 0

200

2 3 4 5 6 qcp (MPa]

I 035

I 065

I 085 100 Io

Fig 15 4 Calculated valuesof the dimensionless compress ion modulus K for piles No 1- 24 according to equation 1 5 2 and 1 56

K ( 1 ]

0

1400

1200 0 0

1000

800

600

0

0 0

0

0 0

0 K= 1422 qcpl05

(r=0181)

0 K= 150 qcp

400 0

3)0 0 0

2 3 4 5 6 qcp(MPa)

I I -J 035 065 085 100 Io

Fig 1 5 5 Calculated values of the dimensionless compression modulus K for pile~ No 1-24 according to equation 1 5 2 and 1 5 6

104

120

100

2 3 4 5

I I I rv 0 15 035 065 085 100 lo

Bergdahl (1982) for shallow foundation

o----o Bozant Masopust (1981) D= 1 0 rn h=10 rn large diameter bored piles in noncohesive so il

0----0 Proposal according to current anal ysis

Klosinski (1977) D=090 to 125 rn large diameter bored piles in sand and sandy grave l

Mitchell Gardner (1976) very dense sand E=(35)q (it depends on sand density and stress history) c

Fig 1 5 6 Composision of Young s moduius

105

TABLES

0 Tab 1 11 Methods for detemination of the bearing capacity of bored piles (Ro llberg 1977)

Cl

Nol -- I Soil Areas of Q) Q) Editor Determination of Coefficients 5 type influenceqP qs p ~ C C 11 12 fP I fs

1 all Lab f Soil Mech (1936) l qp at the elevashy 1 0

2 all Huizinga (1951) ~ t~on of the pile 14 point

3 all Van der Veen (1953) ) 18 1 h+l14 all Van der Veen 1 0 Dpl375 D~ 15-- J qcmiddotdhBoersma (1957)

~ 11 +12 h - 12

5 12 all Menzenbach ( 1961) qc at the elevashy~ tion of pile point

6 18 all Mohan Jain Kuman (1963)1 average of qc over 1 h Q) h ~qcmiddotdhl 10 Dpj 3 75 Dj 15 50_micro

and 1 2C 11

7 I amp all de Beer ( 1964) graphically from 10 Q) qc 0 1 h+l18 u C

sand Soviet norm SNIP II 9ct9cp I4 bull O Dp I10 DP l66-1 083shyu clay B5- 67 Trofimenkov (1969) 2 50 1 251 +l J qc middotdh micro middot h middot-l l 2h-~ _micro

9 _micro u all Paproth (1972) at the elevation 3 5 I shy

) of pile point (Dpgt0 5 m 7 D8DpE

E-lt p 1 h+l1 1 h Dplt 5 m u l+l J qcmiddotdh h f qcmiddotd~ 30 Dpl 50 Dp 2 0 100shy10 sand Norwegian method

0l 2 h-12 200Senneseth (1974)

11 lall Soviet method h+l (20-0lqgl - 101 1 q middotdhTrofimenkov (1974) -- f C UpUsmiddotQct

l1+l2 h - 1212 Qct-Qcp 40 D~ 10 Dp 1 33- 0 67shyUsbullh 4 00 2 50

13 English method 10 DFJ 375Dp 10 I

Rodin Corbett Shershywood Thorburn (1974)

3 7 5 Dcl 8 0 DP 10h+l1 _1_ J qcmiddotdh 1 h

qcmiddotdh 20011 +12 h - 12 hb

1 h qcmiddotdh 150hf

0

Observations

fp I f (qp)fs C

Dp E = 1 cm Qbu = 2 Qpa (approx )

s fs=f (qc)

q=~g Us 0 h

fp=f(q~)

fs=f(qgl

bull fine grained non- cohesive soil loosely packed

bull fine grained non- cohesive soil medium dense comp

fine grained non- cohesive soil

Tab 111 (cont)

h+h bE 14 non-cohe- Meyerhof ( 1956 poundti J N 3o middot dh CtME fN3 o dh 1 0 DP 4 0 DP 10 100 etM= l 2

sive soil 1976) lJ +12 h - li hE o hgp taken into consi der ~ Ul (I)

E-lt

C 0

~E = 1 kgbull 30 cm

(statistical limit depth of the pile) hE - clamping length of

pile micro rrJ l-l micro (I)

15 C (I) p

sand Norwegian method

- irm - - - 10 IT

m = diagram O l-l Senneset (1 974) rrJO C

16 rrJ micro gravel English meth it 3 middot N30 - - - 10 - Jf 3 + diagram U) ~

E-lt p U)

iiouiu Coruett Sherwood Thorshyburn (1974 )

(NJQat the elevashytion of pile point1

0 -i

108

Tab 11 2

Results of calculati o n of p i le point load pile shaft load and total pile load from static con e penetration test (Rol l berg 1977)

~ gt

~ gt Ultima te Ultimate Ult imate

No Method micro micro poi nt skin bearing 080lt17nlt1 50 Q) -l

-l middot-i resistanceuro resistance r esistancE

middot-i p 0

(J n1 n n2 n n3 n n1 n2 n3

1

2

Lab fSoil Mech

Hu izinga (1951)

(1936 ) 430

307 i 3 Van der Veen (1953) 239

49

4

5

Van der VeenBoersma

Menzenbach (1961)

(1957) -l middot-i 0

2 4 7

1 57 1-CJ)

6

7

8

Mohan Jain Kumen

de Beer (1964)

Sovi et Norm (1969)

(1963) CJ) Q)

-l middot-i 0

lJ Q)

Q)

gt- CJ) Q)

c 0

2 44

1 37

183

47

t I

49

487

0 18

47

16

3 02

0 85 1

47

16

137

08

9

10

Paproth ( 1972)

Norw Method (1974)

~ 0

0

u I

C 0 C

1 8 1

180 l 46

1- - -_L~ 46 167 46 1 19

1 1 Soviet Method ( 1974) [1 1 41 46 1 62 13 083 13 1 14 0 8

12 Engl Method (1974) 2 66 35 128 35 2 30 35 1 28

Note

cal Q a) n = --- mean value of the rat i o between calculat ed pile loads and those n Q determined f r om loading test

b) n = number of piles

109

Tab 113

Point resistance of large diameter piles (DIN 4014 Part 2 1977)

Settlement Point pressure 1 Factor -fshy

(cm) (MPa) cf=lOMPa I i=15 MPa C C

Piles without enlarged base

1 05 005 003 2 08 008 005 3 11 0 11 007

15 34 034 023

Piles with enlarged base

1 035 0 04 002 2 065 0 07 004 3 0 90 009 006

15 2 40 0 24 0 16

Note 10 lt qp lt 15 (MPa)C

Tab 114

Skin friction resistance of large diameter piles (DIN 4014 1977)

Strength Static cone pen- Depth below Skin frict ion Factor of sand etration resist surface

(MPa) (m) (MPa) fs

Very small lt 5 - 0

Small 5 to 10 0 to 2 0 2 to 5 003 ln6 to 333

gt 5 005 100 to 200

Medium I I 10 to 15 0 to 2 0 I

I 2 to 7 5

gt 75 I 0045 0075

222 to 133 to

333 200

High I I

i

l

gt 15 0 2

to 2 to 10 gt 10

I I I

I

i

0 006 0 10

gt gt

250 150

Note Skin friction is assumpted as linear until s =2 cm and constant for s gt 2 cm

11 0

Tab 115

Values of the inverse of the point resistance factor (Bustamante 1982) fp

Soil type qPC I 1

Factor - shyfp(MPa)

for piles group

a) Silt and loose sand lt 5 0 40 -b) Moderately compact

5 - 12 040sand and gravel

c) Compact to very gt 12 i 030compact sand and gravel I

Tab 116

Values of the shaft resistance factor fs (Bustamante 1982)

Factor fs

Soil type qs

C Category I(MPa) I A I B I II A III BI

I a) Silt and loose lt 5 60

i 150 I 60 I 120-

sand

b) Moderately corn- I pact sand and 5 - 12 100 200 100 200 gravel i

Icl Compact to very

compact sand gt 12 150 i I 300 150 I 200I

I I and gravel i

I

111

Tab 117

Point resistance factor (proposal)

-

1-fp

qc (MPa)

Gravel

Coarse sand Medium sand

Fine sand Silty sand

25

080

0 70

060

5 0

0 65

055

047

75

054

045

039

10 0

045

036

031

150

035

027

022

200

030

0 23

018

Tab 118

Shaf t r e sistance factor (proposal)

fs

qc (MPa)

Gravel

Coarse sand Medium sand

Fine sand Silty sand

25

80

100

130

10 0

120

150

190

I 200

180

230

300

11 2

Tab 119

Calculated values qcp

for large diameter piles

Pile Literature Length Diameter (m) Measured p Cr1 lcul Settlement Note Authcr(year) No (ml D Dp (MPa)

(s=0 10Dp) (MPa)p ~~JL__

s s ()(mm) Dp

1 Franke (1977) 1 13 11 36 38 117 106 Garbrecht

2

3

2

3

13

14

11

15

1 58 36

37

38

40

215

185

136

123

) qg accord to Franke

4 4 13 15 204 3 2 33 220 108 and Garshy

5 5 6 11 33 35 127 11 5 brecht (1977)

6 6 6 11 153 36 35 146 9 5

7 7 6 1 5 34 35 158 105

8 -shy 8 6 15 2 1 41 3 0 109 52

9 10 9 11 39 52 47

10 11 95 11 43 35 77 70

11 12 9 11 49 66 60

12 13 10 11 15 5 1 4 0 77 5 1

13 14 9 11 1 5 4 8 46 115 77--shy14 Pranke ( 1973) 15 115 18 4 9

) ) average 88

15 13$ 13 5 1 3 19 -2 5 3 2 sd=3 0

16 - - 165 16 5 13 19 30 sv=0 34

17

18

Spang (1972)

llXJ

V90

6 6

6 75

0 7

09

3 2

4 2

32X

42X

x) s =0 10 D p

19 VlaJ 720 1 2 39 3 9X

20 - - VlsJ 6 5 1 5 3 0 3 ox

21 Touma and US59 9 9 o 76 8 0 Reese ( 1977)

22 HH 75 0 61 8 0

23 Gl 180 091 - 2 5

24 BB 137 o 76

sd = standard deviation

sv = standard variation

Tab 1 2 1

Ultimate point resistance coarse and medium sand psf (MPal (Pol ish Specification 1975)

Depth h

Medium sand r = 0 40 N = 200 30 Base diam (Op) and depthbase diam (hDp)

Dense sand r 0 Base diam (Op)

= 0 80 = 50N30 and dpethbase diam (hDp)

(ml Dp = 0 6 m Dp = 1 0 m Dp =12 m Dp = 1 5 m Dp = 0 6 m DP = 10 m DP = 12 m DP = 15 m

Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp

5 10 83 0 85 5 0 075 42 07 33 20 8 3 16 50 14 42 13 3 3

7 14 11 7 1 2 70 11 5 8 10 4 7 2 8 11 7 22 70 2 0 5 8 1 8 47

10 18 16 7 15 10 0 14 8 3 1 3 67 35 167 28 100 2 5 83 2 2 67

15 18 250 18 15 0 16 12 5 15 100 4 2 25 0 3 4 15 0 30 125 27 100

20 2 4 333 2 0 200 185 167 1 7 133 4 7 333 3 8 200 33 167 30 13 3

25 26 41 7 2 2 25 0 20 208 19 167 5 0 41 7 4 0 250 3 5 20 8 3 2 167

w

11 4

Tab 131

Partial safety factors for resistance to axial load for bored piles (Wright Reese 1979)

Partial safety Normal Poor factor for control control

Unit skin resistance 1 70 185

(no load test)

Unit skin resistance 160 1 70

(from load test)

End bearing 165 180

Tab 1 3 2

Probability of failure of bored piles under normal design conditions (Wright Reese 1979)

Probability of Factor of Structure failure safety classification

5 10-3 25 monumental

210shy 22 permanent- 2

5 middot 10 2 0 110shy 1 85

temporary 5 bull 10-l 165

11 5

Tab 133 Results of field tests (Tejchman Gwizdara 1979)

L

II C C C 0 0 0

micro micro

micro micro micro For universal safe~y F2u u CUNo micro C C ~ ~g~ middot- C

~ Permisible micro micro i ~c -i micro

cmiddot-~ micro~ L

micro oo ~ load ~t~ ~~ omicro micro ~ ~ 3Z~ ~ ~ micro

-~~

~ e ~ --middot--

middot- ~ obull 0

~ g ~~ ~~ ~

~ L

o Jl i5 sect~ =gt L Q~ = yen t p Qp Qp

D h Q~ Srrx s tm p s E~ iQ~lQ~cm ~~ KN X ll1l kPa kPa kN kN kN Jl ~e ~ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 70 6 60 4081 1550 2531 38 0 1182 10 4040 175 2041 245 1796 632 141 120

2 90 6 75 5082 3041 2041 598 1785 10 4782 107 2541 1079 1462 282 140 42 5

3 120 720 7259 4041 3218 557 1035 10 3576 119 3630 2158 1472 187 2 19 594

4 150 650 8643 4454 4189 51 5 928 20 2521 136 4326 2158 2168 3 10 166 253

5 130190 195 7750 3011 4709 392 805 10 1075 - 3875 981 2894 3 10 166 253

6 130190 165 9516 5101 4415 536 522 20 1800 - 4758 1962 2796 260 158 412

7 130190 135 8044 5199 2845 646 114 4 15 1834 - 4022 2109 1913 2 47 149 524

8 180 115 11380 4415 6965 388 792 15 1735 - 5690 2747 2943 161 2 37 483

9 76 980 6867 4316 2551 628 110 13 9529 109 3534 1128 2306 383 111 32 8

10 61 7 60 7161 2747 44 14 383 67 15 9404 303 3581 392 3188 700 169 109

11 92 180 4807 883 3924 184 20 8 1329 76 2404 196 2207 450 178 82

12 76 24 5 6769 736 6033 109 20 8 1623 103 3385 147 3238 500 186 43

13 76 137 5396 2060 3336 38 2 63 8 4535 102 2698 589 1109 350 t 58 218

14 120 23 5297 1854 3443 35 0 960 10 1640 39 2649 196 2453 945 130 7 4

15 135 16 7 13489 7554 5935 560 181 10 5260 83 6749 2060 4689 367 127 305

16 170 46 0 8829 2943 5886 333 17 10 3466 39 4415 1373 3042 2 14 1 94 31 1

Average Fi 387 166 Standard deviation Sd 2 1 5 034 Standard variation sv= 0 56 0 20

1234 Spang1972 567 8 Franke 1976 9 10 111 2 1 3 Touma Reese 1974

14 Colombo 1971 15 Kerisel Simons 1962 16 Appendino 1973

11 6

Tab 134

Results of model

SafetyScheme factor

medium F ssand

F p

loose F s

samd Fp

F 3 55 sd _P F 1 32 sd

s

tests (Tejchman Gwizdara 1979)

Diameter D (mm)

30 60 90 133

145 129 108 112

280 3 08 307 294

140 154 153 112

594 3 04 324 426

107 sv 030

0 19 sv 0 14

117

Tab 135

Individual safety factors according to literature

Literature proposal ofLiterature individual safety factor

Fs Fb

Polish Specification (1974) 100 250

Tejchman Gwizdala (1979) 150 400

Bustamante Gianeselli 200 300 (1982)

Decourt ( 1982) 130 400

average 145 3 38

TAB 141 0)

Load settlement curves - measured

Pile No

Settlement 1 c 3 4 5 6 7 8 9 10 11 12

s p s p p s

p p s P

p s P

p s p p s

P p s

P p s

p p s p p S

p I i p s

p p s p

mm MPa rrrn lifl5a MPa mm

lifl5a MPa

mm lifl5a MPa mm

RPa mmMPa nwa MPa mm

RPa MPa mm RPa MPa mm

RPa MPa mm RPa MPa mm

RPa MPa mm RPa MPa mm

RPa 10 045 222 09 1 1 05 20 07 143 06 167 08 125 0 5 20 08 125 10 100 08 12 5 15 67 16 63 20 092 21 7 14 43 08 25 10 20 0 1 1 182 12 167 0 9 22 2 12 167 18 111 14 143 24 83 22 9 1 30 125 240 1 7 I 7 6 1 1 273 1 2 250 14 214 15 200 1 2 250 15 200 25 12 0 19 15 8 30 100 26 11 5 40 1ti 250 20 10 0 14 28 6 14 286 1 7 235 18 222 1 4 286 18 22 2 3 2 12 5 23 174 36 111 3 0 133 50 20 250 22 ~27 1 7 294 1 5 333 20 250 2 1 ~38 1 7 294 1 9 263 37 135 27 18 5 4 2 11 9 33 152 60 2 2 273 24 ~5o 20 300 1 7 353 23 61 22 ~73 18 333 21 286 43 140 30 20 0 46 13 0 36 16 7 80 271 295 27 796 24 333 20 400 27 ~96 25 1320 22 364 25 32 0 53 15 1 36 222 41 195

100 322 31 1 30 333 28 357 22 454 31 1323 29 345 26 385 28 357 60 16 7 40 25 0 45 22 2 125 38 329 32 391 32 391 25 500 32 139 1 30 41 7 32 39 1 4 6 272 48 ~6 0 150 14 2 357 34 1441 36 41 7 27 555 36 ~1 7 34 44 1 36 41 7 175 36 486 39 449 30 583 38 ~61 38 461 200 38 526 42 476 32 625 225 39 577 33 682

(mmMPa) ( 1 MPa)

1

1=2074

t 1=O ~01 =0 98S

a1=1132

b1 =0 212 V =0994

a1=2217

b1=O 131

V =Q 978

a1=1860 b1=0233

V =Q966

a1=1562

b1=0174 V =Q983

a1=1382

b1=O195

V =0975

a1 =20 37

b1 =C 174

V =0957

a1=1443

b1=(l 193 v =O 961

a1=965

b1= 0071 V =0 990

a1=1 91

b1 =o 128

V =0 993

a1=5 83

b1=C124

v =O 981

a1=6 1 4

b1=01 64 v =U 985

li(MPa) ~9 4 7 76 43 57 middot5 1 57 5 2 141 78 81 61 cp (MPa) B8 39 40 33 35 35 35 3 0 39 3 5 49 40 __Ef ~-6 1 2 1 9 1 3 16 15 16 1 7 36 22 16 15 qcp

TAB 141 (continue) Load settlement curves - measured

Pi le No 3ettlement 13 14 15 1 17 18 19 20 21 22 23 24

s p s T5

p s T5

p s T5

p s P

p s P

p s P

p s P

p s P

p s T5

p s T5

p s p p s

p mm MPa lll1l

HPa MPa mm HPa MPa mm

fWa MPa mm fWa MPa lll1l

HPa MPa mm HPa MPa mm

MPa MPa lll1l NT5a MPa HPa MPa 111111

HPa MPa 111111

HPa MPa 1)1111

mra 10 1 7 59 075 133 06 167 075 133 ~95 105 09 11 1 07 143 3 76 1 7 59 08 133 10 100 20 2 4 83 130 154 095 21 1 1 15 17 4 1 75 114 16 125 12 167 ~7 74 33 6 2 1 3 15 3 1 9 103 30 29 103 1 7 176 1 2 250 15 200 r55 118 22 136 16 18 8 38 79 46 66 1 7 182 27 110 40 33 12 1 20 200 1 35 29 6 1 75 229 ~O 133 26 154 175 229 49 82 58 6 9 1 9 21 1 35 115 50 36 139 235 21 3 145 34 5 1 95 256 24 208 ~-4 147 28 17 9 20 250 gt8 86 6 9 72 2 2 233 4 2 11 8 60 39 154 265 22 6 1 55 387 2 15 279 28 214 ~6 16 7 30 120 0 2 2 27 3 o 8 89 80 7 5 2 3 262 80 43 186 31 258 1 7 47 1 36 222 14 05 198 33 124 2 25 320 B 1 98 25 327

100 45 222 18 556 39~ 253 ~-5 222 36 1278 27 370 ~8 113 125 47 26 6 20 625 42 29 8 149 255 28 1446 t50 22 682 3 0 500 175 200 225

(mmMPa) a1=479 a1=1206 a1=14 51 a1=1113 a1=1406 ~=836 a1=843 a1=1176 ~=64 a =561 a1=10 0 a1=9 5 (1MPa) b1=0175 b1=0 178 b1=0 382 b=0287 b1=O 119 p 1=0 137 h1 =o 193 b=0258 p1=0 049 b1=0032 b1=0 276 b1 =0 048

hf (MPa)

v =0998 57

v =0-987 5 6

v =0989 26

v =0992 35

v =0933 Iv =0991 84 73

v =0993 5 2

v =0998 tJ

3 9 =0944 v =0998 v =0996 v =0981

qcp (MPa) 46 39 32 30 32 14 2 39 30

lL 12 1 1 08 12 26 1 7 1 3 13 qcp

lD

N 0

TAB 142

Calculated point resistance curves

Setlement (mm) p(s)

1

n p(s)

Calculated value of the p(s) for pile No

2 3 4 5

n p(s) n p(s) n p(s) n p(s) 6

(MPa)

n p(s)

7

n p(s) 8

n p(s) 9

n p(s)

10 20 30 50 80

100

150 200 225

070 128 177 253 335

375 446 493

157 140 141

127

123

1 16 106

070 1 25 168 232

297

327 378 410

422

078 089 099 1 06

1 10

109 1 11 108

108

073 1 30 176 246

315 349

405 441

146 163

160 145

1 32 125

113 105

056 096

1 26

167 205 222

249 265

271

0 80 096

105

1 11 100 101

092 0 83

082

065

118 162 233

308 345

412 456

108 108

1 16 116 114 111

064

1 12 151 2 10 2 69

298

346 3 76

078 P63 093 tt 13 101 tt 53 100 I 13

108 ~75

103 ~04 096 ~ 55

~ 87

1 26 125 127 126

125

1 17 1 04

052 088

1 15 153

188 2 03 227 242

065 0 74

o 77 0 81 0 75

0 73

063

072 122

1 83 262 347 388

463 5 11

073

0 74

073 0 71 0 65 065

064 1 18

162 233 309

3 46

41 3 4 57

Dp (m) 1 1 Qcp (MPa) 38 (mmMPa) h2 8 1 1 9 Qcpbullv1(MPa) 72

158

39

124 14 55

15

40

n20 15 60

204

33 148 10 33

1 1

35

tt 4o 1 9 67

1 53 3 5

tt 4 0 1 5 51

15

13 5

114 0 15 i-gt 3

2 1

30

tt 6 0 10 3 0

1 1

3 9

12 4 1 9 74

1 1

3 5 h40

1 9 67

Note n = condition coefficient calculated p(s) measured p(s)

10

n

081

084 0 85 0 86 0 85

087

TAB 142 (continue)

Calculated point resistance curves

Calculated value of the p(s) for pile No (MPa) Setlement 11 12 13 14 15 16 17 18 19 20

(mm) p(s) ll p(s) n p(s) ll p(s) n p(s) n p(s) n p(s) n p(s) n p(s n p(s) n

10 106 070 0 71 045 091 054 099 1 32 055 092 053 070 060 081 085 0 72 080 055 078

20 1 90 079 130 059 160 067 1 70 1 30 096 101 091 079 1 12 148 085 1 31 082 098 082

30 258 086 1 76 068 2 15 074 222 1 31 1 26 105 120 080 156 205 081 180 082 132 083

50 363 086 246 075 297 082 296 1 26 1 70 117 161 082 228 095 295 087 256 0 91 184 092

80 471 316 o 77 3 77 088 364 1 18 2 1 o 1 24 199 308 085 393 097 336 1 02 237 095

100 522 349 078 415 092 394 228 1 27 2 16 348 088 442 098 375 104 262 097

150 611 405 479 443 258 117 244 423 529 443 304 101

200 669 441 518 473 276 261 474 587 488 331

Dp (MPa) 1 1 1 5 1 5 18 1 9 19 070 090 12 15

qcp (MPa) 49 4 0 46 49 32 30 32 42 39 30 12 a1 mmMPa) 84 h20 96 84 152 160 152 124 160

IV1 1 9 1 5 15 12 11 1 1 23 21 18 15

qcpmiddotv1 (MPa) 93 60 69 59 35 33 74 88 70 45

- 12287 average = ~ = 098

standard deviation sd = 023 standard variation sv = 023

N

122

TAB 143 Ultimate settlement for shaft resistance - summing up

Ultimate settlements (mm)Literature sand cohesive claysand

soil

Burland Butler Dunican (1966) 7

Touma Reese (1974) 10 Tomlinson (1977) 10 Klosinski (1977) 8

Francke Gerbrecht (1977) 20-30 DIN 4014 part 2 (1977) 20 10 Francke (1981) Reese (1978) (1979) 05-2 of 05-2 of Farr Aurora (1981) shaft dia~ shaft diam

5-20 mm 5-20 mm Tejchman Gwizdala (1979) - Spang (1972) 10

10 10 20

- Francke (1976) 10 20 15 15

- Touma Reese (1974) 13 8 15 8

8 - Colombo (1971) 10

- Kerisel Simons (1962) 20 - Appendino (1973) 10 Promboon Brenner (1981) 10 Prodinger Veder (1981) 12 Decourt (1982) 10-15 10-15

-average s = 14 1 10 126

standard deviation sd = 53 2 1 47

standard variation sv = 038 021 037

123

TABLE 14 4 Al l owab l e base resistance versus sett lement

Pile Li terature ength Diameter (m) Calculated qcp=qcp Settl ement Fp-3- sa (mm)No Aut hor No (m) D DP qcp (MPa) for qcp3(MPa)

1 Francke ( 1977) 1 13 11 38 127 25 Garbrecht

II2 2 13 11 158 39 130 19

II3 3 14 15 40 133 33

II4 4 13 15 204 33 110 23

II5 5 6 11 35 117 22

II6 6 6 11 153 35 117 19

II

8

7 7 6 15 35 1 17 25

II 8 6 15 21 30 100 21

II9 10 9 11 39 130 13

II10 11 95 11 35 117 15

II11 12 9 11 39 163 11

II12 13 10 11 15 40 133 7

II13 14 9 11 15 46 153 9

14 Francke ( 1973) 115 11 5 18 30 100 15

II15 135 135 13 19 32 107 29

II16 165 165 13 19 49 163 35

17 Spang (1972) V70 660 070 32 107 28

18 II V90 675 0 90 42 140 16

II19 V120 720 1 20 3 9 130 16

II20 V15C 650 150 30 100 16 average for pi les 198

standard dev sd = 78

standard var sv = 039

)assumed qc = p for s = 010 Op sonding meRsurement were not availab le

IV

TA~LE 15 1

Comparison of the initial sl ope of the pile point resistance - settlement curve

Accardi ng to 1 2 3 4

In i t i ~l 5

slope a1 for the pile No

6 7 8 9

(mmMPa)

10 11 12 13 14 15 Note

a 1 for s=10 mm 222 11 1 a1 for s=20 mm 21 7 14 3 calculated 207 113see Tab 14 1 Bo Berggren (198 )230s=20 mm

Schmertmann s method (see 202B Berggren 1981)s=20 mm

No 1 _ llNo - 6 1 97 098

202 250

22 2

400

30 8

090

14 3

200

186

076

167

182 156

286

18 2

107

125

167 138

091

20 0

222

204

426

263

098

125

167

144

087

100

11 1 9 7

182

23 5

1 03

12 5

14 3

11 9

174

164

105

67 83

58

14 6

125

1 16

63

9 1

61

103

59

8 3 48

123

13 3

15 4 12 1

1 10

167 21 1

aceto hypershy14 5 bola type curve

1 15

No 2 NQj = n1

No 4Noz ~ na No 5Naz= T]g

105 1 27

106

093

1 13

160

1 23

108 1 17

157

100

121 109

1 92

118

1 16 1 14

164

2 12

120

122

1 15

143

1 76

151

149 1 73 1 27 146

TAllLE 151 (continue)

Compa ri son of the initial slope of the pile point resistance - settl ement curve

Initial slope a1 for the pile No (mmMPa)According Note to 16 17 18 19 20 21 22 23 24 -a1 for s=10 mm 133 - 105 11 1 143 76 59 133 100 a1 for s=20 mm 174 - 114 125 167 74 62 153 10 3 calculated see 11 1 146 84 84 118 64 56 100 95Tab 141

Bo Berggren 198 67 78 25 0 114s=20 mm Schmertmann s method (see B 136 67 250 146 Berggren 1981) s = 20 mm

nG = 108 No 1NoJ = n 1 20 125 1 32 121 1 19 105 1 33 105 sd = 0 14

SY= 013 No 2 i) = 1 29ro1 = n1 157 136 149 142 1 16 1 11 1 53 108 sd = 019

SY= 015 No 4 iis = 143 INo2 = ns 091 126 1 63 111 sd = 033

SY= 0 23 No 5 ii9 = 1 37183 108 163 142INoz = n9 sd = 0 37

SY = 027

N Vl

126

TABLE 152

Measured and calculated pile point resistance

Pile Calculated Measured Measured No qcp P for

s=10 mm P for s=20 mm

~ 10 mm ~ 20 mm

- (MPa) (MPa) (MPa) - -

1 38 045 092 84 41 2 39 09 14 43 28

3 40 05 08 80 50 4 33 07 10 47 33 5 35 06 11 58 30 6 35 08 12 44 29 7 35 05 09 70 39 8 30 08 12 38 25 9 39 10 18 39 22

10 35 08 14 44 25 11 49 15 24 33 20 12 40 16 22 25 18 13 46 1 7 2 4 27 19 14 30 075 13 40 23 15 32 06 095 53 34 16 49 075 115 65 43 17 32 - - - -18 42 095 1 75 44 24 19 39 09 160 4 3 23 20 3 0 07 12 43 25

average= 484 291

sd 163 088 sv 034 030

Tab 153 Results of calculation for piles No 1-24

Pile No

Length (m)

Overburden pressure 0 vs

0hs (kPa)

0ve (kPa)

0 nc (kPa)

- -ov=o1 (kPa)

- -OV=03 ( kPa)

00 (kPa)

p(a il ( kPa)

s (a 1) (mm)

A2 ( 1 )

E t

(kPa)

Md ( 1 )

K (1)

E I

t (kPa)

( kPa) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

l 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

13 12 14 13 6 6 6 6 9 95 9

10 95

11 5 135 165 66 675 72 65 99 75

180 137

l 33 133 123 116

70 70 70 70

104 102 95

102 95 94

106 139 95

101 106 97

180 137 221 215

53 53 49 46 28 28 28 28 42 41 38 41 38 38 42 56 38 40 42 39 72 55 88 86

202 202 216 202 1114 104 104 104 146 153 146 160 153 181 209 251 120 128 134 123 238 180 305 277

202 202 216 202 104 104 104 104 146 153 146 160 153 181 209 251 120 128 134 123 238 180 305 277

168 Hi8 170 159 87 87 87 87

125 128 121 131 124 138 158 195 108 115 120 110 209 159 263 246

128 128 133 124 66 66 66 66 94 97 92

101 96

110 126 154 79 84 88 81

155 118 197 182

141 141 145 136

73 73 73 73

104 107 104 111 105 119 137 117 89 94 99 91

173 132 219 203

950 975

1000 825 875 875 875 750 975 875

1225 1000 1150 750 800

1225 800

1050 975 750

2000 2000 625

1500

218 139 255 190 16 1 146 210 12 7 10 1 11 7 84 73 69

104 167 210 124 103 10 1 109 142 120 76

153

0802 0802 0822 0820 0798 0798 0798 0798 0791 0798 0800 0811 0814 0837 0837 0830 0769 0 768 0771 0 775 0 780 0 781 0 788 o 779

35296 81603 43312 65222 44019 67515 4609 91313 78186 60572

118115 15129 5 184075 95577 67017 81607 33252 67554 85294 75994 78816 74857 55101 54862

075 075 0 77 075 084 084 084 081 079 078 084 080 083 076 076 078 0 77 081 079 076 082 087 064 0 74

278 643 337 512 542 832 567

1085 766 572

1216 1417 1832

796 520 709 353 735 878 781 630 726 302 366

26472 61202 33350 48917 36976 56713 38656 73964 61767 47246 99217

121036 152782

72639 51932 63653 25604 54719 67382 57755 64629 65126 35265 40598

a=282l a =l781 y=axs S=0621 B=0 844

V=0 057 V=0 128 _ Iv -J

~

N co

Tab l53 Results of calculation for piles No 7-24

Pile No

17

1 2 3 4 5 6 7 8 9

70 11 72 13 74 75 16 17 78 79 20 27 22 23 24

Ground water

18

-20 m b s

-28 m -335 m -330 m -3 15 m dry dry -53 m -85 m

E t (kPa)

19

33653 64979 35364 45664 47969 54583 37574 63072 74548 57753

71 2618 123531 150297

71239 48619 59204 39744 77208 77863 62049 90407 95844 57762 62937

vxEt=E Md (kPa)

20

25240 48689 27230 34248 35254 45849 31562 51040 58893 45047 94599 98825

724747 54142 36950 46179 30603 57678 61572 47157 47734 83384 36968 46569

a=898 S=l 27 =0314

K (l )

21

265 511 275 358 517 672 463 749 730 546

1160 1157 7496

593 377 514 422 775 802 638 723 929 377 420

a=l422 S=l 05 =0187

E=E = t1 3

g-gcp (kPa)

22

51046 52799 54566 42492 45870 45870 45870 37547 52799 45870 77039 54566 65438 52799 40826 71039 40926 58739 52799 37541 82549 82549 40826 59945

Calculated s

(mm)

23

708 128 72 7 15 3 724 146 144 17 3 71 3 11 5 11 2 732 13 2 707 1 5 1 13 7 93

102 118 137 728 12 l 69

11 9

s__caL n=smeos

() 24

050 092 050 087 0 77 7 00 069 l36 l 12 098 133 l81 l97 103 090 065 0 75 099 117 126 090 101 097 078

ri=l00 sd=035 sv=035

K = l50gcp

25

570 585 600 495 525 525 525 450 585 525 735 600 690 450 480 735 480 630 585 450 825 825 1180 645

E l

(kPa)

26

67684 69465 72250 57726 44856 44856 44856 38448 59659 54306 74956 63214 70704 49089 56783 79502 45283 61081 58207 42927

708572 94785 71033 91898

E = t E middotA2

l

(kPa)

27

54283 5571 l 59389 47336 35795 35795 35795 30682 47790 43336 59964 51266 57553 47088 47024 65987 34823 46970 44877 33269 84639 74027 55974 71589

Calculated s

(mm)

28

l O l 12 l 11 7 737 15 9 18 7 185 21 1 12 6 12 2 133 14 l 150 13 7 13 l 14 7 709 12 7 738 755 12 4 735 50

100

- -

Tab l53 Results of calculation for piles No l-24

Pile

29

l 2 3 4 5 6 7 8 9

10 ll 12 13 14 15 76 17 78 19 20 21 22 23 24

sea l n= middotshy

smeas

28 TT

30

0 46 087 046 0 72 099 l 28 088 l 66 l 25 l 04 l 58 l 93 2 17 l 32 078 0 70 088 l 23 l 37 l42 087 l l 3 066 065

n=l 10 sd=0 44 sv=040

s seal for p n=s=lOrnn ac cording to s = 70mm

(mm)

37 32

5 l 0 51 ll 8 l18 64 064

13 0 l30 85 0 85

13 3 l 33 83 0 83

184 l84 ll6 l l 6 105 l05 137 l 37 21 3 2 12 19 4 l94 107 l06 l l 3 l l 3 84 084

92 092 l 0 9 l09 128 l28 83 083

l 0 3 l03 88 088 79 0 79

n=1 73 sd=025 sv=027

s for p according to s = 20mm

(mm)

33

10 4 184 102 18 6 15 6 200 14 9 276 209 18 4 219 292 274 185 17 9 12 9 -

169 194 219 172 200 143 15 0

seal n=s=20rnn

34

052 092 051 093 078 l00 075 l 38 l 05 092 l l 0 l46 l 37 093 090 065

-085 097 l1 0 086 l00 072 075

n=093 sd=025 sv=0 27

s for p according to s = 30rnn

(mm)

35

142 223 14 l 22 3 198 249 142 34 5 290 249 274 345 33 l 243 22 6 168 -

24 7 26 6 293 24 3 279 187 213

seal n=s=30rnn

36

047 0 74 047 0 74 066 083 047 l 15 0 97 083 091 l 15 l10 0 81 075 056 -

082 089 098 081 093 062 0 71

n=o80 sd=020 _ sv=0 25 N

IO

APPENDIXES

APPENDIX 1 1 1

Pi le No 1 Length 13 m D 10 m

Areas of influence

-

qe

(MPa)

1 fp

___9c_ f

(MPR) zyen

(MPf) qcp (MPa)

Soil type

22 20 18 16 14 1 2

l 2 (m)

10

1 0 08 06

16 15 16

026 027 026

42 41 42 Sand

04 14 U28 39 02 14 028 39 41

02 16 0 26 42 04 16 026 42 06 16 026 42 08 14 028 39 Sand 1 0 13 030 39 12 15 027 4 1 38 14 13 030 39 16 12 032 38 18 12 032 38

40 20 10 036 36 22 10 036 36 24 9 U39 35 2 6 8 043 34 28 10 036 36 30 10 036 36 3 2 10 036 36 34 10 0 36 36 36 11 0 34 37 38 11 034 37

l 1 (m)

40

42 44

11 0 34 37 15 1

46 48 50 52 54 56 58 60 62 64 66 68 70 7 2 74 76 78 8 0

APPENDIX 112

Pile No 2

to little depth of sounding

q~ = middle values for 11 = 2 Op

q~ = 145 MAa (Francke Garbrecht 1977 Tab 2 p 50) (Fi g No 2)

for sand

qcp = 0275middot145 = 40 MPa q~p =V ~~s) middot 40 = 097middot40 = 39 MPa

Pile No 4

q~ = 120 MPa sand (Fig No 4)

q = 0 315middot12 = 3 8 MPa q bull 38 = 086middot38 = 33 MPa=V Jmiddot54

1

cp middot bull cp

Pile No 12

qg = 155 MPa sand (Fig No 13)

qcp = 026middot155 = 4 03 MPa

Pile No 13

q~ = 200 MPa sand (Fig No 14)

q = 0 23middot20 = 46 MPacp

APPENDIX 113

PileNo3 Length 14 m D 15 m

Areas of influence

-

qe

(MPa)

1 Tp

----9cf

(t-1Pf) r~

(MPf) qcp (MPa)

Soil type

22 2D 18 16 17 025 43 14 17 II II

L 2 17 II II

12 (m)

16 10 08 06

17 17 17

o

II

II

II

II

Sand 04 17 II II

02 19 024 46 b9

02 19 024 46 04 17 025 43 06 15 027 41 08 13 030 48 1 0 12 032 38 12 11 033 36 14 13 0 30 39 16 14 028 39 18 12 032 38 40 20 16 026 42 2 2 16 026 42 24 11 033 36 26 11 033 36

60 28 30

10 10

036 036

36 36

Sand

32 10 036 36 34 12 032 3 8 3 6 12 032 38 38 12 032 38

1 1 (m)

40

4 2 4 4

13

14 16

030

028 026

39

39 42

46 13 030 39 48 12 032 38 50 14 028 39 52 10 036 36 54 13 030 39 56 14 028 39 58 15 027 41 60 15 027 ~-1 236 62 64 66 68 70 72 74 76 7 8 80

APPENDIX 114

Pi l e No 5 Length 6 0m D 11 m Dp 11 m

Area s of i nfluence

-

qc

(MPa)

1 Tp

-3Lf

( MPf) l ~

(MP~) qcp (MPa)

Soil type

2 2 2 0 18 1 6 14 1 2 155 U i1 33

l 2 (m)

1 2 10 08 06

15 14 12

022 023 0 27

3 3 32 32

Fine sand

+ silt

04 125 026 33 02 16 0 21 34 39

02 16 021 34 04 13 025 33 06 08 10

15 5 17 20

022 0 20 018

34 34 36

35 Fi ne sand

1 2 20 0 18 36 14 20 018 36 + s ilt 16 20 0 18 36 18 165 020 32 20 165 0 20 32 22 17 0 20 34 24 26 2 8 30 32 3 36 38 4 0

19 21 5 21 5 21 5 20 19 5 19 5 20 215

01 9 ---

018 018 0 18 0 18 -

3 6 40 40 40 36 35 3 5 36 4 0

l 1 (m) 4 2

44 20 19

018 01 9

36 3 6 157

46 48 50 5 2 54 56 58 6 0 62 64 66 68 70 7 2 74 76 7 8 8 0

APPENDIX 1 15

Pi le No 6 Lengt h6 0 m D 11 m

Areas of qc 1 __9_c_ qcp Soil typei nfluence fp f 1 yen (MPa) (MPf ) (MPf) (MPa)

-2 2 20 18 16 t 4---0 14 75 038 29 L2 20 018 36 Fi ne sand

1ti 10 30 40 + s i lt12 08 19 0 19 36(m) 06 17 020 34 04 14 023 32 02 9 034 31 56

02 6 043 26 04 12 026 3 1 06 17 020 34 08 11 028 3 1 1 0 14 023 32 35 1 2 17 020 34 Fi ne sand14 19 019 35 16 20 018 36 + silt18 18 0 19 34 20 14 023 32

46 22 12 026 31 24 12 026 31 26 15 022 33 28 18 019 34 30 20 018 36 3 20 0 18 36 34 20 018 36 3G 20 018 36 38 20 018 36 4 0 20 018 36

l 1 42 22 40

(m) 44 22 40 46 L2 4 0 158 48 50 52 54 56 q =V ~ - 3 b =0 99middot35 = 35 MPp cp 53 58 6 0 62 64 66 68 70 72 74 76 78 80

APPENDIX 116

Pi leNo7 Length 60 m 0 15 m

Areas of influence

-

qe

(MPa)

1 Tp ~

(MPg) r~

(MPf) qcp (MPa)

Soil type

22 20 18 16 9 U33 30 14 10 031 31 12 135 024 32

l 2 (m)

16 10 08 06 04 02

13 12 6

10 175

025 026 043 0 31 020

33 31 26 3 1 35 50

Fine sand

+ silt

02 04 06

17 10 115

0 20 0 31 027

34 31 3 1

08 10

145 185

023 019

33 35 3 5

1 2 14

20 19

018 0 19

36 36 Fine sand

l 1 (m)

60

16 18 20 22 24 26 28 30 3 2 34 36 38 40

42 44 46 48 50 52 54 56 58 6 0

185 125 125 165 17 19 21 215 205 20 21 20 20

24 22 20 215 22 22 21 19 18 22

0 19 026 0 26 020 020 019 --

018 018 -

018 01 8 --

018 ----

0 19 0 19

35 33 33 33 34 36 40 40 37 36 40 36 36

40 40 36 40 40 40 40 36 34 40 219

+ silt

62 64 66 68 70 72 74 76 78 80

APPENDIX 117

Pile No 8 Length60 m D 15 m Dp 2 1 m

Areas of influence

-

qe

(MPa)

1 r +

(MPg) r~

(MPf) qcp (MPa)

Soil type

22 18 019 34 20 16 021 34 18 125 026 3 3 16 115 027 31 14 11 028 3 1 12 11 028 3 1

l 2 (m)

10 08 06

105 11 145

D29 028 023

30 31 33

Fine sand

+ silt

04 18 0 19 34 02 18 019 34 71

02 15 022 33 04 11 0 28 31 06 13 0 25 33 08 20 0 18 36 10 15 022 33 12 13 025 33 14 175 020 35 16 18 20 22

20 21 20 15

018 -

018 0 22

36 40 36 33

35 Fine sand

+ s i lt

24 26 28 30 3 =

13 16 175 19 20 20

025 021 020 0 18 018 018

33 34 3 5 34 36 36

36 38 4 0

20 20 21

018 0 18 -

36 36 40

11 (m)

4 2 4 4 4 6 48 50 5 2 5 4 56 5 8 60 6 2 6 4

20 20 21 22 21 20 19 175 19 20 25 28

018 0 18 ---

01 8 01 9 0 20 0 19 018

36 36 40 40 40 36 36 35 36 36 40 4 0 23 0

6 6 68 70 72 74 76 78

qcp 1f5=v 2T middot35 = b85 middot35 = 30 MPa

80

APPENDIX 118

Pi le No 9 Le ngth 90 m D 11 m m

Areas of 1Qe -9c qcp Soil typeinfluence Tp f ryen (MPa) (MPg) (MPf) (MPa)

-

2 2 2 0 18 16 14 lc 11 034 37

12 10 10 036 36 12 08 9 039 35 Medium(m) 06 10 036 36 sand04 10 036 36

02 11 034 37 43

02 12 032 38 04 12 0 32 38 06 12 0 32 38 08 13 030 39 10 13 030 39 12 13 030 39 14 14 028 39 16 14 028 39

44 18 14 028 39 20 14 028 39 39 Med ium 22 15 027 4 1 sand 24 16 026 4 2 26 17 025 43 28 13 0 30 39 3 0 9 039 35 32 13 030 39 34 16 026 42 36 17 025 43 38 17 025 43 40 19 024 4 6

11 42 17 025 43

(m) 44 15 027 41 17 7 46 48 50 52 54 56 58 60 6 2 64 66 68 7 0 7 2 74 76 78 80

APPENDIX 119

Pi 1 e No 10 Length 95m D 11 m m

Areas of influence

-

qe

(MPa)

1 fp

-9c f

(t-1Pf) [~

(MPf)

qcp

(MPa)

Soil type

22 20 1 8 16 14 L 2 13 Uti 3J

l 2 (m) 12

10 08 06 04

18 18 28 19

0 19 019 0 19 019

34 34 34 34

Fine

sand

02 21 40 42

02 20 4 0 04 17 020 34 06 21 40 0 8 10

23 22

40 40 Fine

1 2 14 16 18

21 20 16 15

0 21 022

4 0 4 0 34 33

sand

44

20 2 2 24 26 28 30 32 34 36 38 40

14 14 13 11 11 14 17 14 12 13 12

023 023 025 0 28 028 023 020 023 027 025 027

32 32 33 31 31 32 34 3 2 32 3 3 32

l 1 (m) 42

44 12 13

0 27 025

32 33 15 2

46 48 50 5 2 5 4 56 5 8 6 0 6 2 6 4 66 6 8 70 72 74 76 78 80

APPENDIX 11 10

Pi 1 e No 11 Lengt h 9 0m D 11 m m

Area s of influence

-

Qe

(MPa)

1 fp

__k_ f

(MP~) ryen

(MPf) qcp (MPa)

Soi l type

22 20 18 16 14 12 lb 55

12 (m)

1 0 08 06 04

23 19 20 21

024 023

55 46 46 55

Medium

sand

02 22 55 62

0 2 04

24 25

55 55

06 08

27 28

55 55

10 12 14

28 28 28

55 55 55 49

16 26 55

44

18 20 22 24 26 28 30 3 34 36 38 40

24 19 18 17 22 21 17 11 13 12 11 9

024 024 025

025 0 34 030 032 034 039

55 46 43 43 55 55 4 3 37 39 38 3 7 35

1 1 (m) 42

Ll Ll

12 16

032 0 26

38 4 2 209

46 48 50 5 2 54 56 58 60 62 64 66 68 70 72 74 76 78 80

APPENDIX 141

0 2 3 4 p [MPa)

PILES WITH 40 ENLARGED BASES

80

120

160 C----0

200 IN4014 s (1977)

[mm]

P s calculateds P p(s)(mm) (MPa)(mmMPa)(MPa) ()

10 035 286 046 20 065 308 080 30 090 333 104

150 24 625 214 200 229

ai = 2605 (mmMPa) b1 = 0243 1MPa V 1000 bi = 1b = 411 MPa

_ 411 MP Vi - 24 a

() assumed

average Dp = 18 m

qcp = 24 MPa ai = 184 (mmMPa) (28-4middot24)

Vi = 1 2 (3-18)

qcpmiddotvi = 29 MPa

40

80

120

160

200 s

[mm]

DIN 4014 Part 2 ( 1977)

0 1 2 3 4 5 p [MPal

PILES WITHOUT ENLARGED BASES

C----0

DIN 4014 ( 1977

s calculated s p -p- p(s)

(mm) (MPa)mmMPa)(MPa) ()

10 05 20 062 20 08 25 113 30 11 27 3 155

150 34 441 385 200 424

ai = 2085 (mmMPa) bi= 0 157 1MPa V = 0970

bi= 1s = 637 MPa

Vi 187=3f =

() assumed

average Dp = 12 m

qcp = 34 MPa a1 = 144 (mmMPa)

Vi = 18

qcpmiddotvi = 61 MPa

Range qc = 10-15 MPa

(28-4bull34)

(3-12)

1 1 q = r -r- = 036 for qc = 10 MPaCp p Ip+= 027 for qc = 15 MPa

qcp = 36-405 MPa P

APPENDIX 142

Touma F and Reese L (1974)

Soil parameters pile parameters and base resistance see fig bullbullbullbull

TAB

Measured load settlement curves

Settlement s

mm

10 20 30 40 50 60 80

100 120

a 1 (mmMPa) bi(MPa) V

N3u

q =04 -N30 (cMPa) ()

1 qCp=--rpbullqC

Pile No 21 (US 59) 22 (HH) 23 (G1) 24 (BB) Notep Sp p S p p S p f Sp MPa mmMPa MPa mmMPa MPa mmMPa Mla mmMPa

131 76 169 59 075 133 100 100 269 74 325 62 131 153 1 94 103 381 79 456 66 165 182 273 11 0 488 82 581 69 1 90 21 1 349 115 581 86 694 72 2 15 233 424 118 675 89 800 75 229 262 813 98 245 327 884 113 925 130

64 56 100 95 U049 0032 0276 0048 0944 0998 0996 0981

80 gt100 30 60 32 gt 40 12 24 ()

Bergdahl (1982)

gt5 5 gt55 32 4 3

(0 18middot32) (018middot40) (0265middot12) (018middot24)

CONTACT PRESSURE p [ MPa]

0 2 4 6 8 100 N-------r---------------(us 59) ( HH) ( BBi

E E SQ-------lt+-----+--------------lt

VI

1shyz UJ

~ 100 1---------i----+----+----+------l------I -J I shyI shyUJ V)

so~----~--~-- ~--~

APPENDIX 143

us 59 fYJo 0 50 00

ff-t r-=-~c~=~-r~c_---_---l-~e-J-C~ 0 ------

CLAY

FINE SANO

J lD- 760 mm

f5m~--~--~

Pile US 59 and results from penetration test

HH IV_l() so 100 r=-=-==-==-r-~--=-=- 0 0 II 15- flf ~ II~ Ibull If t f

CLAY SAND

Sm

)

= -middotl lo - GtOmm

~ JI

SILTY SANO tOm

Pile HH and results from penetration t est

APPENDIX 14 4

61 NJO 50 --------00

11 1 =f J - 1 -- 0

CLAYSILT

E ~ Sm ltrj

SILTY SAND

q I lDmiddot 910 mrn tom

I) t bull

Pile G1 and results from penetration test

88

0 50 too ~1-e I q 111bull - Q

CLAY

SIL TY SAND 5m

]

l lDmiddot760mrn

Om

Pile BB and results from penetration test

APPENDIX 145

Klosinski B (1977)

Loading tests 50 bored piles 09-125 m diameter average Op= 11 m On t he sett l ement of rigid pla te the settlement of t he pi le base is given by

PmiddotOSp = T-K b

where Mb - equivalent deformability modu lus

1) Sand and sandy gravel of medium density

Mb = 25-50 MPa

According to Bergdahl (1979) medium sand is between

q(l) 5 MPa (Io=035)c2)

ql = 10 MPa (Io=065)C

from fig 117 rp1 = 055 for qc = 5 MPa 1Tp = 036 for qc = 10 MPa

q(l)= 0 55middot5 = 2 75 MPacp bull

q(2= 0 36middot10 = 360 MPacp

allowable p~ 1)= ~p = yen = 092 MPa and p~2) = ~ = 120 MPa

settlement of the pi l e base

5(1)= o 92 middot 1bull1 = O 0135 m = 13 5 mm p 325 middot middot

5( 2)= 1bull2bull1middot 1 = O 0088 m = 8 8 m p 350 bull bull

1) _ s _ 135 _ 14 7 (mm) a(2) _ 88 _ a 1 - p - o---92 - bull NPa bull 1 - T-7 - 733 (Wa)

2) Loose sand lo= 030-040

Mb = 12- 25 MPa

q~l) = 44 MPa q~2)= 58 MPa

1Tp = 058 and 052

q(3) = 0 58middot4 4 = 2 55 MPa middot q( 4) = 0 52middot5 8 = 3 02 MPa cp bull middot bull cp bull middot middot

allowable p~ 3)= 4i = 085 MPa p~4)= yenl = 101 MPa

s(3)_ 085-11 = 26 mmmiddot s(4)_ 101middot11 = 148 mm p - 312 p - 3 25

STATENS GEOTEKNISKA INSTITUT Swedish Geotechnical Institute S-581 01 Linkoping Tel 01311 51 00

Serien Rapport ersatter vara tidigare serier Proceedings (27 nr) Sartryck och Preliminara rapporter (60 nr) samt Meddelanden (10 nr)

The series Report supersedes the previous series Proceedings (27 Nos) Reprints and Preliminary Reports (60 Nos) and Meddelanden (10 Nos)

RAPPORT REPORT Pris kr

No Ar (Swcrs)

1 Grundvattensankning till foljd av 1977 50shytunnelsprangning P Ahlberg T Lundgren

2 Pahangskrafter pa langa betongpalar 1977 50shyL Bjerin

3 Methods for reducing undrained 1977 30shyshear strength of soft clay K V Helenelund

4 Basic behaviour of Scandinavian soft 1977 40shyclays R Larsson

5 Snabba odometerforsok 1978 25 shyR Karlsson L Viberg

6 Skredriskbedomningar med hjalp av 1978 40shyelektromagnetisk faltstyrkematning - provning av ny metod J Ingands

7 Forebyggande av sattningar i 1979 40shyledningsgravar - en forstudie U Bergdahl R Fogelstrom K - G Larsson P Liljekvist

8 Grundlaggningskostnadernas fordelning 1979 25 shyB Carlsson

9 Horisontalarmerade fyllningar pa los 1981 50 shyjord J Belfrage

RAPPORTREPORT

No

10 Tuveskredet 1977-11-30 Inlagg om skredets orsaker

11a Tuveskredet geoteknik

l1b Tuveskredet geologi

11 c Tuveskredet hydrogeologi

12 Drained behaviour of Swedish clays

R Larsson

13 Long term consolidation beneath the test fills at Vasby Sweden YCE Chang

14 Bentonittatning mot lakvatten T Lundgren L Karlqvist U Qvarfort

15 Kartering och klassificering av leromradens stabilitetsforutshysattningar L Viberg

16 Geotekniska faltundersokningar Metoder - Erfarenheter - FoU-behov E Ottosson (red)

17 Symposium on Slopes on Soft Clays

18 The Landslide at Tuve November 30 1 977 R Larsson M Jansson

19 Slantstabilitetsberakningar i lera Skall man anvanda total spanningsanalys effektivspanningsanalys eller kombinerad analys R Larsson

20 Portrycksvariationer i leror i Gateshyborgsregionen J Berntson

21 Tekniska egenskaper hos restproshydukter fran kolforbranning shyen laboratoriestudie B Moller G Nilson

Ar

1981

1981

1981

1981

1981

1982

1982

1982

1983

1982

1983

1983

1983

Pris kr (Swcrs)

50shy

50shy

40shy

50shy

100shy

60shy

80shy

60shy

190shy

75shy

60shy

150shy

65shy

RAPPORTREPORT

No Ar Pri s kr (Sw crs)

22 Bestamning av jordegenskaper med sondering - en litteraturstudie U Bergdahl U Eriksson

1983 75 shy

23 Geobildtolkn ing L Vi berg

av grova moraner 1984 70 -

24 Radon i jord -Exhal ation- vatten kvot -Arstidsvariationer - Permeabilitet A Lindmar k B Rosen

1984 75 shy

25 Geoteknisk terrangklassificering for fysisk planering L Viber g

1984 120shy

26 Large diameter bored piles in nonshycohesive soils Determination of the bearing capacity and settlement from results of static penetration tests (CPT) and standard penetration test (SPT) K Gwizdala

1984 85shy

10

Ultimate point resistance of large diameter piles based on static sounding results

Ultimate skin friction resistance of large diameter piles based on static sounding results

Qa Allowable pile load

Qcp Point load of the static cone penetrometer

Qct Total load of the static cone penetrometer

Qpa Allowable point resistance of the pile

Qpu Ultimate point resistance of a pile

0 sa Allowable skin resistance of the pile

0su Ultimate bearing resistance of a pile

Qu Ultimate bearing resistance of a pile

s Settlement

sd Standard deviation

ss u Ultimate settlement for pile shaft

sv Standard variation

SPT Standard Penetration Test

t Unit shaft resistance

Ultimate unit shaft resistance

Circumference of the pile shaft

Circumference of the static penetrometer shaft

Greek letters

a Constant

B Constant

A Coefficient

microd Depth factor

v Poissonbulls ratio

v 1 Correction factor for hyperbola point resistance shysettlemen~ relationship

n Correlation coefficient

ahc Radial (horizontal stress in the concrete

ohs Radial (horizontal) stress in the soil

Ovc Vertical stress in the concrete

Ovs Vertical stress in the soil

11

1 LARGE DIAMETER BORED PILES IN NON-COHESIVE SOILS

11 peterminati on of bearing capacity of bored piles

from results of Cone Penetration Test (CPTl

The methods published in available literature up to 1976

were compiled by D Rollberg (1976 1977) It contains

totally 25 methods

- 22 use the results of static soundings (CPT)

3 use the results of standard soundings (SPT)

The failure load Qu of the pile is evaluated as the sum

of the pile point resistance Q and the pile skin reshypu sistance Qsu

(111)

Pile point resistance Q based on static soundina reshypu shysults can be expressed as

1- bull qP A ( 1 1 2)f C p

p

where

fp = point resistance factor

qP mean sounding resistance of static cone C

penetrometer in the area of the pile point

A cross-sectional area of the pilep

The pile skin resistance is expressed as

1 s -- bullq bullU middot Lih (113) fS C p

where

fs = shaft friction factor

sqc mean sounding resistance along the depth h

and skin surface area U middotLih p

1 2

The methods differ in

- the calculation of qPC

(074 to 40) Db below the pile base (Fig 11 1)

(10 to 80) Db above the pile base (Fig 1 11)

- the evaluation of the point resistance factor usually

values off gt 10 are used p

- the calculation of qsC

- the evaluation of the shaft friction factor

fs = 50-300 is applied

In Table 111 methods for determination of the bearing

capacity of bored piles are listed Rollberg 1977 The

point load the skin friction load and the ultimate total

load are evaluated for bored piles (shaft diameter D ~

03-090 m) from static sounding results in non-cohesive

soil

Calculation results based on static sounding measurements

are shown in Table 112 for pile point pile shaft and

total pile load respectively

The table shows that

- a ll methods overestimate the ultimate point resistance

- the best correlation for ultimate point resistance is

obtained with the Soviet method Trofimenkov 1974

n1 = 114

- there a re only five methods for evaluation of the ultimate

skin resistance

- all methods with exception of the Soviet norm Trofimenkov

1969 method overestimate the ultimate shaft resistance

- the Norwegian method Senneset 1974 gives the best

correlation for the ultimate shaft resistance =119n 2

- with exception of the Soviet methods the total ultimate

load is on the average overestimated by all methods

1 3

Taking into account the above results the Soviet and

the Norwegi an methods are presented below

The Soviet method JG TrofimenkgtV 1974

1 qP bullA + qsbullA (114a)Qu = Qpu+Qsu fp C p f C s s

where

11 40 DP 12 1 0 D p h+l1 qp r dhqcC l1+l2 h-12

0ct-0ceqs C u middoth s

f(qp) -+ see Fig 1 bull 1 2 fp C

f f ( qcs) -+ see Fig 1 1 3 s

The Norwegian methon K Senneset 1974

1 p A 1 s bullA ( 1 bull 1 bull 4b)-f-middotqcmiddot p + -f-q s p S C

where

11 30 D p

12 50 D p h+l11 f dhqP l1+l 2 qc

C h-12 h s 1

= f dhqc qch 0

f 20 p

f = f (q~ ) + see Fig 114 s

Note a ) The total skin friction -f-middotq~ is assumed to be

no less than 10 kPa even~ith a very little

cone penetrometer resistance

b) The poin t resistance -f-middotq~ is assumed to be

maximum 10 MPa even iJl case of very dense sand

14

It must be underlined that the best correlation for

the pile point is obtained with the Soviet method

101 for 94 driven piles in non-cohesive soil

- 172 114 for 46 bored piles in non-cohesive soil

Trofimenkov 19731974 showed the results of comparison

of the ultimate loads determined by formula (114a)

Q~ and by pile load tests Q~ for 153 driven friction

piles at the 57 various sites see Fig 115

In Germany a lot of investigations were made before

establishing the DIN 4014 part 2 (1977) on large diameter

piles

In Table 113 and 114 the results from these investigashy

tions are generalized

The data in the tables were obtained from 35 test loadings

(4 of which were published by Franke 1973 The diameter

of the piles was from 08 to 25 m the length from 5 m

to 34 m and the cone penetrometer resistance varied from

10 MPa to 15 MPa

Bustamente and Gianeselli 1982 proposed a prediction

of the pile bearing capacity by means of the static

penetrometer Their proposal was based on the intershy

pretation of a series of 197 full scale static loading

tests In this paper the results from tests of 55 bored

piles are chosen The diameter of the piles varies from

042 m to 150 m and the length from 6 m to 44 m The

equivalent cone resistance was determined as showed in

Fig 116 The authors have noticed that the point

resistance factor f depends on the nature of the soil p and its compactness but also on the different pile placeshy

ment techniques (see Tab 115)

Piles of category group I

- Plain bored piles - Cased bored piles

- Mud bored piles - Hollow auger bored piles

- Type I micropiles - Piers (grouted under low - Barrettespressure)

15

In Tab 116 values of the shaft resistance factor

fs are given

Category IA

- Plain bored piles - Mud bored piles

- Hollow auger bored piles - Cast screwed piles

- Type I micropiles - Piers

- Barrettes

Category IB

- Cased bored piles - Driven cast piles (concrete or metal shaft)

Category IIA

- Driven precast piles - Prestressed tubular piles

- Jacked concrete piles

Category IIB

- Driven metal piles - Jacked metal piles

It can be noted that the values in Tab 116 are in

genera l of the same range for the driven and the

bored piles

According to the Polish Specification 1979 the point

and shaft resistance factor are given by

1-f- = kmiddota

p p

where

ap 035 for sand

k coefficent of unhomogeneity k qcp min

qcp

= 0065 for sandfrac12

1

16

Similar results can be observed in Fig 116a and

Fig 116b It was showed by Kerisel (1965) and Franke

(1973) that the harder soil the more loosening at

excavation and thus relatively smaller bearing capacity

Taking into account the Franke diagrams we will have

for D = 125mand settlements= 2 cm p

Cone resistance qc (MPa) 1 5 50 1 0 15 22

qc p for s=2 cm 3 6 8 12 14

(see Fia 1 1 6b )

taking safety factor for pile base F = 3 the point resis~ance

33-10 ~-05

380375 lo 212 bull lo 2114 bull

factors- shy are p

The above anal ysis shows that it is possible to determine

ultimate point and shaft resistance of bored piles from

static cone sounding But it is very important and must

be taken into account type of pile kind of soil and

degree of compaction

Bel ow calculation method for large diameter bored piles

based on the static cone penetrometer resistance (CPT)

is proposed Equation (117) can be used directly for

the base diameter D lt 15 m For larger diameters p shyD gt 15 m the values should be multiplied by the

p ff t ITscoe icen Y~ as pi

( 1 1 5 )

where

qcp = according to equation (117)

D = diameter of the pile base D gt 15 mpi pi

17

This value q~p should be put into equation 116

The value qc s in equation 118 is independent on the

pile diameter

Proposed calculation method

(116)

where)

1 1 40 ~ 11 3 for piles wit h a nd enlarged bases12 10 12 = ~

h+h

q (h) dh (117)qcp l1+l2 f -f- Ch-li p

h 1 f 1

qcs = o -f- qc (h) dh (118)h s

1 -f- = f(q kind of soil ) -+- see Fig 11 7 and Tab 1 1 7

C p

f (q kind of soil ) -+- see Fig 1 1 8 and Tab 1 1 8 fs C

Note

a) the point resistance q for qc gt 20 MPa is assumed cp to be maximum as

- Gravel 70 MPa - Coarse sand medium sand 55 MPa - Fine sand s il ty sand 40 MPa

b ) The shaft resistance qcs for qc gt 20 MPa is assumed to

be maximum as

- Gravel 110 kPa - Coarse sand medium sand 90 kPa - Fine sand s ilty sand 70 kPa

These proposed values are compared with results by

Bustamente (1 982) and the Polish Specification (1978)

Fig 11 9 and F i g 1110 A similar comparison for DIN

4014 1 977 is shown in Fig 1111 and Fig 1112

) In this paper was used the above values 1 1 and l z But it can be used in practice 11 =30 D and h =2Dp respectively The results shall be very simi l ar to the above onPs

18

The proposed method has been examined with field test

results This is shown in Fig 1113 to Fig 1128

and Appendix 1 11 to 1110 and Tab 119

The comparison shows that the value of q in equationcp (117) corresponds to the settlement -10 of the base

diameter (s=010 DP) see Fig 1113 and Tab 119

(average sDp=88 and standard deviation sd=3)

Later in this paper the allowable load and dependence of

the load versus settlement will be determined

12 Determination of bearing capacity of the large

diameter bored piles from results of the Standard

Penetration Tests (SPT)

There are little published on pile tests coupled with

results from Standard Penetration Test (SPT) Among the

authors who have published material in the subject are

- Meyerhof 1956 1976

- Senneset 1974 (Norwegian method)

- Rodin Corbett Sherwood Thorburn 1974 (English method)

- Polish Specification 1975

- Weltman Healy 197 8

- Reese 1978

- Japanese Society 1981

- Decourt 1978 1982

The Norwegian method is valid o nly for concrete andor

wooden piles the English method only for gravel It is

very important to underline that the Norwegian a nd the

English methods use of the SPT resul ts intermediate by

the static cone penetrometer resistance (q ) as well C

Below methods are presented that are using the results of

SPT directly Meyerhof s method in total can also be used

on driven piles in non-cohesive soil Although we could

have found some proposes for bored piles Eqs (121 and

122) see Fig 121 and Fig 1 22 as well

19

Ultimate point resistance (psf)

12 N 3 omiddotH lt 120 N 30

(kPa) (1 2 1)Psf D

where

N30 the average standard penetration resistance

in blows per 03 m

H depth in bearing stratum

Ultimate skin friction tu

for bored piles tu N~ o (kPa) (1 22a)

for driven pil estu 2N30 (kPa) (1 2 2b)

where

N30 the average standard penetration resistance

in blows per 03 m within embedded length

of pile

Weltman and Healy (1978) taking into account Meherhofs

proposition for driven piles have introduced two coefshy

ficents for bored piles in gravels (glacial soil) Equ

123 and Fig 1 23

t = a 2 N30 (kPa ) (1 2 3)U 1

where

ai a 1 for impermeable gravels see Fig 123a

ai a 2 for permeable gravels see Fig 123b

The Polish Specification ( Specification for Design and

Construction of Large Diameter Bored Piles in Bridges

1975 Ministry of Transport) gives the ultimat e point

resistance in dependence of N30 base diameter and depth

see Tab 12 1 The Tab 121 contains values for coarse

and medium sand For other non-cohesive soils the following

coefficients are proposed

p f = S bull p f (medium sand) ( 1 2 4)S 1 S

20

where

S1 1 20 for grave lSi

f 132 080 for fine sand

13 3 070 for silty sand13i

In Fig 124 values of psf are shown for h = 10 m DP

06 m DP= 15 m and h = 20 m DP= 06 m DP 1 5 m

respectively

A few of the instrumented piles were tested and analyzed

by Wright and Reese (1979) The ultimate point and shaft

resistance in the fine and silty sand as a function of

blow count from SPT is shown in Fig 125 Results from

two additional tests reported by Koizumi (1971) are also

introduced in the figure The ultimate point resistance

is assumed to exist at a settlement equal to 5 of the

base diameter

Methods of prediction of the bearing capacity of piles

based exclusively on N30 values were presented by Decourt

1982 Below a proposition for high capacity piles excavated

and cast under bentoni te is presented

The ultimate skin friction is determined by the expression

(see Fig 126)

t = 33 N30 + 1 0 (kPa) ( 1 bull 2 5 ) u

where

N30 average value of N30 along the shaft

- for N30 lt 3 must be taken as = 3N30 - for N3o gt 5 0 must be taken as NJo= 50

The allowable point resistance can be obtained in a n

expedite way as

Psa = 33 N30 (kPa) (1 2 6)

where

N30 = average of Nat point level one metre above

and one metre below

Psa allowable point resistance

21

Decourt proposed a safety factor for the point of F = p

40 Therefore the ultimate point resistance can be

determined by the expression

(kPa) (1 2 7)

In Fig 12 7 and Fig 1 28 the above values for base

and skin friction resistance are compared respectively

Taking into account the type of soil thereis a good

correlation for ultimate point resistance The result for

ultimate skin friction is scattered but only apparently

The values for large diameter bored piles are between

the line 1a and 1b in Fig 128 Large diameter piles

have a high ultimate skin friction in relation to driven

piles (see points for bored piles in Fig 122 and DIN

4014 Part 2 1977 as well) The high values for piles

excavated and cast under bentonite have had a strong base

on the load tests (Decourt 1978 1982 and Wright and

Reese 1979)

Below the proposals are given for determination of the

values of the ultimate point resistance and the ultimate

skin friction Eqs 128 to 1214 and Fig129 1210

The ultimate point resistance

- gravel psf = 140 N30 (kPa) ( 1 bull 2 8)

for N~ 0 gt 50 blows3O cm Psf 7 MPa

- coarse sand and medium sand

(kPa) ( 1 2 9)

for N30 gt 50 blows3O cm Psf 55 MPa

- fine sand and silty sand

psf = 80 Nio (kPa ) (1210)

for N30 gt 50 blows3O cm p f = 40 MPa 5

where N3 o the average of N value near the point level as

22

h+l1

f N3o(h)dh ( 1 2 11 ) h-12

3DP see Fig 1 1 1 D

p

The ultimate skin friction for coarse sand and medium sand

tu = 1 8 N 3 o (kPa) (1212)

t (kPa) (excavated and cast (1213)u under bentonite)

where

N30= the average value of N along the shaft as h

N -

3 o = h1 f N 3 o ( h) dh ( 1 bull 2 bull 1 4 ) 0

The ultimate skin friction for N30 gt 50 blows30 cm is

assumed to be maximum as tu = 90 kPa and t = 150 kPa u

13 Allowable load of large diameter bored piles

The allowable load Qa of large diameter piles has been

expressed as

OuQa ( 1 3 1)Ft

Qa Q(s)=Qb(s) + Os(s) ( 1 3 2)

Opu + Osu (1 3 3)Qa Fp Fs

Qr lt mmiddotQf ( 1 bull 3 4)-

= universal safety factor

individual safety factor for ultimate resistance of the pile point

individual safety factor for ultimate resistance of the pile shaft

= load according to the allowable settlement

calculated load

m coefficient

calculated ultimate bearing load of the pile

23

The equations from (131) to (134) are used as

1) equation (131)

a) DIN 4014 - 1977 Ft= 2 175 15 (depending on the kind of load)

b) Polish Specification 1975 Ft = 18 16 ( -- )

1c) Trofimenkov 1974 Ft = 14307

2) equation (132)

a) DIN 4014-1977 i Q(s) = Qb(s) + Q (s) = A middotp(s) + E tAsmiddott(s)

s p 0

where Qbs) and Qs(s) are described in Fig 1423

3) equation (133)

a) Polish Specification 1974

F 25 22 depending on the kind of load p

F 1 bull 0 s

b) Wright SJ Reese LC 1979

The ultimate capacity or resistance is considered as a

random value and represented by a frequency distribution

The distribution can be described by a mean value and a

variance The distribution of the load applied to the

foundation can be described similarly The coefshy

ficients used to factor resistance and loads are called

partial safety factors Some recommended partial safety

factors for resistance under normal conditions of design

and construction are given in Tab 131 Normal control

is defined as a condition where the coefficient of variation

is less than about 035

Typical values for partial safety factors for loads are

in the range 1 to 2 depending on the type of load and

how it is applied The overall factor of safety Ft can

then be calculated from the equation

Ft = y RbullY S

24

where

YR the par tial sa f ety fac t or for resistance and

Ys the partial safety factor fo r load

The probability of fa i lur e of the foundation can be r eshy

lat ed to the factor of safety for a parti cular degree of

uncert ainty (see Tab 13 2)

c ) Tejchman Gwizdala 1979

The authors discuss adequate safety factors based on fie l d

test s by Spang (1 972) Franke (1976) Touma and Reese (1974)

Colombo (1971) Kerisel and Simons (1962) Appendirno (1973)

see Tab 1 33 Taking into account the universal safety

factor Ft= 2 0 for the tota l load settlement curves it

was estimated

i) F in the range of 111 to 237 with the average value s F = 166 and standard deviation sd = 034 s (see column 16 Tab 133)

ii) Fb in the range of 161 to 945 with the average

value Fb = 387 and standard deviation sd = 2 15

For model core d piles in laboratory conditions values of

Fs = 108 to 154 (average Fs = 132 s~ = 019) and

values of F = 280 to 5 94 (average F = 3 55 sd = 1 07)p p

see Tab 1 3 4

As a conclusion it was assumed that Fb = 40 and F 1 5 s

for l arge diameter bored piles

The investi gation has shown that for the above safety

factors settlements of piles under permissibl e loads are

10 to 20 mm There was assumed a maximum load on large

diameter piles corresponding to a settlement of 010

diameter of the piles

25

d) Bustamente Gianeselli 1 982

e) 0ecourt 1982

The safety factor is given by

F = FgmiddotFfmiddotFamiddotFw where

F 11 - skin friction g F 135 - point bearing capacity

g

Ff safety factor related to the formulation adapted

Ff= 10 for Decourts method

Fd safety factor related to excessive deformation

Fd = 10 for skin friction

As for the point Fa= 2 to 3 depending on the

pile diameter For usual cases 25 is suggested

Fw safety factor related to working load

Decourt recommends 12

Thus we will have

- for skin friction

Fs = 11bull10middot10middot12 132 - 13

- for the point

F = 135bull10bull25middot 1 2 = 405 = 40 p

4) equation (134)

a ) Polish Code 1983

Q lt mbullN r shy

where

total load coefficient (depending on the kind of load For foundation we can assume Yf = 12 )= code load

correction coeffic i ent

09 for pile foundations

m 08 for two piles

m 07 for single pile

26

N ymmiddotQu

ym material (soil) coefficient

ym 08 to 09 (Polish Code 1981)

Thus we will have

QnmiddotYf lt mmiddotym middotQu-

Yf9uFt = On m bull Ym

1 2 max = 2 14Ft 0 7 bull 0 8

1 2min = 1 48Ft 0909

The above analysis has shown different ways to determine

the allowable load The analysis is in direct connection

with mobilization of the load (versus settlement) The

dependence of total load point resistance and shaft reshy

sistance will be discussed in detail in Chapter 14

In the authors opinion taking into account the above

analysis the allowable load should be determined based

on the equation 133 ie based on individual safety

factors for ultimate point and shaft resistance Proposed

values of F and F in literature are shown in Tab 135 s p The average values are Fs = 145 and Fp = 3 38 respectively

Taking into account that the bearing capacity is determined

based on the results from sounding measurements direct from

a place near the piling without a ny indirect correlation

the allowable load of large diameter bored piles is given

by the equation (133a)

( 1 3 3a)

where F = 30 and F 13 are proposedp s

27

14 Determination of settlement of larqe diameter bored

piles based on static cone penetration tests CPT

Determination of ultimate point and skin friction resistance

based on static cone penetration tests has been discussed

in Chapter 11 above Based on the results of this calcushy

lation and on Chapter 13 we can establish an approximate

relation between point resistance shaft resistance and

total load on one hand and settlement on the other However

the approximation gives a wide scatter especially for base

resistance as can be observed in Fig 141 to Fig 144

Only the first part of the point resistance - settlement

curves are in good agreement with measured values It can

be observed in Fig 145 that the average correlation

coefficient n = 098 and standard deviation sd= 029

This way of calculation can be used only for rough calcushy

lation (see Chapter 13)

In Chapter 11 also measured point resistance - settlement

curves were shown The base resistance increases gradually

with increasing pressure and settlement Below the cur7

vature of the point resistance - settl ement curve will be

examined It is assumed that this curve can be described

as a part of the hyperbola curve Thus if the ratio of

the measured settlement (s ) to the point resistance (p)

is plotted against the measured settlement the result

will fall closely to a straight line with the equation

( 1 4 1)

where a 1 and b 1 are constants (see Fig 1 46a and Fig

14 6b)

Then the point resistance - settlement realtionship can be

expressed as a hyperbola

s p = ( 1 bull 4 2)

The constant is the initial s lope of the point resistanceshya 1

settlement curve ie a 1 = t~a The inverse of the constant

28

b 1 is the vertical tangent (asymptote) to the curve 1ie for s = 00

bf= ~ If the ultimate point reshy1

sistance psf is equal to bf (psf=bf) the whole point

resistance settlement curve will be a hyperbola type

Now the Eq 1 4 2 can be written as

s s ( 1 4 3)a) p s or b) p = a+__sect_a1 + 1 Psfbf

If the ultimate point resistance is smaller than bf only

a part of the hyperbola curve ought to be considered

Further the Eq 14 3 will be written as

p ( 1 4 4)

where

poundf_ correction factor for hyperbola point Psf resistance-settlement relationship

Taking into account the discussion in Chapter 11 the

ultimate point resistance psf = qcp based on the CPT measurements

Therefore the relationship between the point resistance

the sett l ement and the CPT result can be expressed as

s p (1 4 5)s

The correction coefficient v 1 will cause a change of the

position of the vertical asymptote bf in r elation to the

ultimate point resistance q bull This means that we take cp into account a different part of the hyperbola curve for

the description of the point resistance-settlement relationshy

ship

Now if we want to use the equation (145) in practice

we must determine the constant and the coefficienta 1 v 1 (assumed that q is determined ear l ier Chapter 11)cp

29

The constant a 1 and t h e coefficient Vi have been detershy

mined based on fi e ld tests according to pi l es No 1 - 20

see Tab 14 1 and Tab 1 1 9 as wel l The values of

a 1 versus the point diameter D and the ul timate pointp

resistance respectively are shown in F i g 147 and Fig

148 Fig 1 47 shows that a 1 is independent of the

point diameter D Based on Fig 148 it can be assumed p

that

28-4bullq (1 4 6)cp

This correlation has been examined with data of the

literature see Fig 1 49 and Appendix 141 to 1 45

(Note there were no static penetration tests and qcp was determined based on a correlation made by Bergdahl

(1982))

A good correlation with equation 146 can be seen taking

into account the safety factor in the DIN 4014 Part 2

(1977) bull

The correction factor v 1 versus the poi nt diameter is shown

in Fig 1410 I t is assumed that the correlation is

V1 = 3 0 - D ( 1 4 7)p

where D is in m p

The above equations ie 146 and 147 were assumed for

a later analyses see Fig 14 11 and Fig 1412 The

piles No 1 to 20 were examined taking into account Eqs

14 5 14 6 and 1 4 7 The result of this cal cul ation is

presented in Fig 1 413 to Fig 1 4 18 and in Tab 1 4 2

respectively In Fig 1413 the calculation way for pile

No 2 is shown as an example

In Fig 1414 to Fig 1 417 measured and calculated

values of the point resistance versus settl ement can be

compared In tota l good correlation exists for all the

30

pressure-settlement curves Values of q from static cp

cone penetration tests and generalized values of anda 1

v 1 were considered Only for piles No 17-20 qcp was

assumed as the point resistance for s = 010 D because p

the static penetration test results were inaccessible

The similar comparison is shown in Fig 1417a for piles

in sand based on experimental results (Tuoma Reese 1972

and Wright Reese 1979) where the ultimate case resistance

was assumed as the resistance at a base settlement of 005

D The relative base resistance is the mobilized base p resistance divided by the ultinate base resistance The

curvature of the proposed point resistance settlement shy

curve to mean value proposed by Wright and Reese is excellent

However the constant a 1 and the coefficient v 1 were

determined for sand only In the future they should be

examined especially for gravel and silty sand based on

field tests Until then in the authors opinion the

values of v 1 can be chosen from Eq 147 for all nonshy

cohesive soils But for a 1 there is proposed

at = gt bulla (1 4 8)1

where

gt- 1 = 080 for gravel

gt 2 120 for silty sand

This proposal is shown in Fig 14 11 as dashed lines

A good correlation can be seen with the investigation by I

Kiosimiddotnski for sandy gravel and on the safety side with

the investigation by Tuoma and Reese for silty sand (see

Fig 149)

In Fig 1418 all calcul ations for pile No 1 to 20 are

summarize d The correlation coefficient n is defined as

the calculated point resistance p(s) divided by measured

point resistance p(s) For totally 126 points from 20

curves an average of n = 098 with standard deviation

31

al= 023 was obtained see Fig 1418 A similar result

can be observed for the range usually assumed of the

allowable settlement for sinqle large diameter bored

piles as

for

- for

- for

s

s

s =

10

20

30

mm a

mm

mm

verage n10 II

II

mm 089

095

099

and sd =

and sd

and sd

031

027

026

It can be questioned whether the sonstant a 1 can be deshy

termined in different ways The constant a 1 is the initial

slope of the point resistance-settlement curve as menshy

tioned above Then we can use all methods for determination

of settlement of a pile point The range of validity of

these methods then must be determined This will be shown

later

In order to be able to design the total load settlement

curve the skin friction resistance-settlement relationshy

ship must be determined The ultimate skin resistance of

large diameter bored piles was determined in Chapter 11

(based on static penetration tests) and in Chapter 12

(based on standard penetration tests)

In the past a lot of field tests have been done on the

mobilization of the shaft resistance versus pile settleshy

ment In this subject there is a rather good agreement

in the whole investigation for cohesive and non-cohesive

soil

Some results and opinions on thispresented in the literashy

ture during the last few years are shown below

Ultimate shaft resistance versus settlement

1) BurlandJB Butler FG Duncan P (1969)

-The shaft l oadsettlement curve is derived using a=0 3

with 90 ultimate load being mobilized at 025 in

settlement(~65 mm)

- soil London clay

- see Fig 1 419

32

2) Touma FT Reese LC (1974)

- The failure of the sides of the shaft takes place

at a downward movement of about 04 in (10 mm)

- soil sand

- see Fig 1420

3) Tomlinson HJ (1977)

- The maximum shaft resistance is mobilized at a

settlement of only 10 mm (or j in)

- soil stiff clay

- see Fig 1421

4) Klosinski B ( 1977)

- It was assumed that skin friction increased proshy

portionally to pile settlement up to the limit value

s bull This value depends on soil conditions and pile0 diameter and is usually from 3 to 8 mm For soft

compressible soil it may be grater than 10 mm

- soil cohesive soils

- see Fig 1422

5) Franke E Garbrecht D (1977)

- At settlement of 2 to 3 cm which are normally

allowed in Germany under working loads for buildings

not very sensitive to differential settlementsthe

skin friction is almost always fully mobilized

- soil sand

6) DIN 4014 part 2 (1977) and Franke E (1981)

- The skin friction Tm is approximated as diameter

independent having failure settlements of smf = 2 cm

in sand and 1 cm in clay

- soil sand and clay

- see Fig 1423

33

7) Reese By L (1978) Reese By L Wright SJ (1979)

(1978) The maximum skin friction being developed at

an average downward movement ranging from about 05shy

2 of the shaft diameter The average of six load tests

reported by Whitaker and Cooke (1966) are a lso plotted

for comparison

- soil stiff clays

- see Fig 1424 and Fig 1425a

(1979) The relative settlement is the average settleshy

ment of the butt and base devided by the shaft diameter

The mean curve maximises at a relative settlement of

about 002 D

- soil sand and clay

- see Fig 1425b

8) Tejchman A Gwizda3a K (1979)

- A clear differentiation of the distribution of shaft

and base resistances is observed for changing settleshy

ment For fairly small settlements the shaft resist shy

ance increases quite fast and the ultimate values

are reached soon while the base resistance increases

gradually with increasing loads and settlements withshy

out clearout ultimate values it can be assumed that

complete mobilization of shaft resistance corresponds

to settlements equal to 001 or 002 diameter of pile

- soil cohesive and non-cohesive soils

- see Tab 131 and Fig 1 426

9) Promboon S Brenner R P (1981)

- Load distribution and load transfer curves disclose

that most of the load is carried by shaft friction

which is developed at small displacements in the order

of 10 mm

- soil Bangkok clay

- see Fig 1427

34

10) Prodinger w Veder Ch (1981)

- The maximum value of skin friction resistance

occurred for a total settlement of 12 mm

- soil silty clay and sand

- see Fig 1428

11) Farr JS Aurora RP (1981)

- Ultimate load transfer was recehed (or nearly reached)

at a relative settlement of about 04 in (10 mm)

- soil gravelly sand

- see Fig 1429

12) Decourt (1982)

The skin friction resistance is totally mobilized

with deformations of about 10 mm or at the most 15

mm regardless of shaft dimensions This observation

of ours seems to clash with the opinions of other

authors who seek to relate the deformation necessary

for full skin friction mobilization with the shaft

diameter

- soil cohesive and non-cohesive soil

In Tab 143 all these results are shown Depending on

the kind of soil the following v a lue s of ultimate settleshy

ment for shaft can be assumed

- averages 142 mm (sd 5 3 mm) for sand

- averages 100 mm (sd = 21 mm) for cohesive soil

averages 726 mm (sd 67 mm) for claysand

It can be observed (see Fig 1419 to 1428) that the

shaft friction resistance increases proportionally to

the pile settlement up to the above limit value and

thereafter becomes constant

35

Taking into account what was mentioned earlier on point

resistance settlement relationship and the above results

a relationship between total load point resistance and

shaft resistance on one hand and settlement on the other

can be made see Fig 1430

It is assumed on the safety side that the following

ultimate settlement (S~) exists for the shaft resistance

of large diameter bored piles

SS1 ) 200 mm for non-cohesive soil u SS2) = 100 mm for cohesive soil u SS3) 15 0 mm for claysandu

In Fig 1 430 the curve Q (s) is calculated based on p

the equation 14 5 or 144

The values of psf in equation 144 can be calculated

based on other methods as well

The total load-settlement relationship is obtained by

summing up point and s haft resistance as

Q (s) = Q (s) + Q (s) (149)s p

for each point

Now the allowable load can be determined from equation

133a and versus the allowabl e settlement as

Q (s) = Q (s) + Q (s) (1410)s p

where s lt Sa

Sa= the allowable settlement of the pile

The analysis allows determination of the approximative

load settlement dependence without calculating the settleshy

ment for non-cohesive soil In Fig 1431 it is shown

36

In Tab 144 the settlement for allowable point reshy

sistance q5P according to equation 133a is shown

as well The average settlements= 198 mm (sd=78 mm)

is obtained This value is similar to the assumed ultimate

settlement of shaft for non-cohesive soil The ultimate

settlement for point resistance is assumed s = 010 Dp as mentioned earlier

37

15 Initial slope of pile point resistance shy

settlement curve

Settlement of piles and pile foundations can be cal culated

based on

- empirical correlations

load-transfer methods using measured relationships

between pile resistance and pile movement at various

points along the pile

- theory of elasticity that employs the equations of

Mindlin for subsurface loading within a semi-infinite

mass

- numerical methods and in particular the finite element

method

- use of in-situ tests (Cone Penetration Test Standard

Penetration Test Pressuremeter Test)

The critical slope of the pile point resistance-settlement

curve is important for calculation in chapter 14 The

constant a1 can be determined from all the above mentioned

methods

Comparison is made to Berggrens and Schmertmanns methods

below (see Berggren 1981 as well)

6sIn Tab 151 (No 1 2 3) the values of a 1 =~p for s =

10 mm and s = 20 mm (measured for large diameter bored

piles No 1 to 24) are compared to the calculated values

according to the modified hyperbola method (see Fig 14 6)

It can be seen that these calculated values are between

s = 1U-2u mm but rather closer the measured values for

the settlements= 10 mm see correlation coefficient n 6

and n 7 in Tab 151 respectively The average correlat i on

coefficent for the settlements= 10 mm is n9 = 108 and

the standard deviation is sct = 014 The comparison to

Berggrens and Schmertmanns methods for s = 20 mm ( see

Berggren 1~81 and Tab 151 as well) shows that the

results based om these methods give too high values of a 1 bull

38

The average values are ne= 143 sd = OJ3 and ng= 137

sd = 037 for Berggrens and Schmertmanns methods

respectively A bit better agreement can be observed

for Schmertmanns method

Taking into account the results in Tab 151 ana Tab

15l it must be assumed that for the determination of

a 1 the pile point contact pressure p(a1) should be

assumed as the ultimate point bearing capacity devided

by about 4

p(ai) - ( 1 bull 5 1 )

Most of the methods for determination of settlement are

based on the theory of elasticity The settlement ot the

pile point can be expressed as the average settlement of

a rigid circular foundation from the equation

11-Dp 1-v 2

s = p -4- -E-bull microd (1 ~ 2 J

where

p pile point contact pressure

E Youngs modulus

D diameter ot pile pointp ) = Poissons ratio

microd = depth factor

The range of validity of the pile point contact pressure

was determined in equation 151 Youngs modulus has an

important meaning lt can be determined from triaxial

tests or oedometer tests The relationship between the

constrained (oedometric) modulus Mo and Young s modulus

Eis dependent on Poissons ratio v as expressed by the

equation

E = l 1 + V ) ( 1 - 2 V ) Mo ( 1 bull 1 bull 1)- 1-v

39

TaKing into account the analyses made ny Chaplin (19b1a

1 961bJ Janbu (1 963 1970 1973J Andreassen (1973)

Duncan and Cheng (1970) Tejchman anct Gwizdala (1979)

Gwizdala (1978) Franke (1981) Berggren (1981) Withiam

and Kulhawy (7981) and the present investigation the

calculation of settlement is proposed to be

s = 24 bull p bull ~ D bull 1-v 2 bull micro d (154)Do o E

where s (r1)

p (kPa)

Dp (m)

E (kPa)

D0 =10 m

micro = 05 + 01 vfrac34E (1 5 5)d vs

but 05 lt microd lt 10-tip= p - (J (ovs see Fig 151)vs

E =Et= Kbullpat (Oo )n [1- Rf(1-sinltj) 101 - 03 ) 12 (1 5 6)2 c cosltP + 2o 3 sinltP 1Pat

in which K n and Rf= hyperbolic stress-strain parameters

Pa= atmosferic pressure ando 1 o 3 and o0 are determined by

averaging the concrete and soil vertical and radial stresses

near the pile point according to Fig 151 Then the

stresses at the pile point level are h

(J vs = L

0 Yi h

l vertical stress in the soil

0 hs Ko h

0 vs radial (horizontal) stress in the soil

0 vc L ye h -l

vertical stress in the concrete 0

0 hc K oc a vc radial (horizontal)

concrete stress in the

40

K at rest soil lateral stress coefficient 0

K c lateral stress coefficient for fluid fresh concrete0

K 1 0 oc

and average values

a 05(a +a)V vc vs

1 1 - shy~ = -(a +a+a I = -3 (av+2ahJ the applied mean normal stress0 j Z X y

Assuming this model calculation results for piles No 1-24

(see Tab 11~ as well) are shown in Tab 153

The piles are embedded mainly in medium sand to fine sand

For this kind of soil it can be assumed (soil parameters

from field or laboratory tests were inaccessible)

~ = 35deg c = 0 R~ = 09 n 05 v = 025 K c 10l 0

K = 04 Pat= 1UO kPa ye 24 kNrn 3 y = 14 kNm 3 bull0 C

Moreover in Tab 153 the following symbols are used

p(a1 ) - pile point contact pressure according to equation

1 bull 5 1

s(a1) - settl ement of pi l e point according to equation

143 and Tab 141

pound TT ( 2E = s bull Dp bull i 1-v ) according to equa~ion 152t

E~ Et bull microltl

EI

K = ro~ - according to equation 1 bull 5 6 p bullO middotA2

a~ o

E = E voD middot D middot ~4 ( 1 - v 2 ) according to equationt S p O 0

1 5 4

Et= E microd

K = according to equation 156 V PatmiddotaomiddotA2

41

The calculation results of Youngs modulus E = Et and

dimensionless canpressionrro1ulus for piles to 1-24 are shown

in Fig 152 to 155 using equation 152 and 15b

or equation 1~4 and 156 respectively lt can be obshy

served that the scatter in Fig 153 and Fig 155

where the influence of tne pile diameter is reduced

compare equation 154 is less than in the other figures

The reduced influence was made after observations from

field and laboratory tests while the equation 152 is

taken direct from theory of elasticity These values of

E and K are in good correlation with published values in

literature The values of Youngs modulus versus the

relative density of soil are compared to literature values

see Fig 15b Based on the analysis in this chapter it

can be assumed that

E = 9-ql 3 ( 1 bull 5 7)cp

where qcp is in accordance with equation 117

The calculation results based on this proposal are incluced

in Tab 1 5 3

The c a lculate d s e ttlements based on e q ua tion 154 and

157 are shown in column 23 and the values of the

correlation coef f icie nt (n= Seal ) in column 24 respectshyimeas

ively

The dimensionless canpression modulus can be d e termined as

K = 15Ubullq (qcp in MPa) (1 5 8)cp

see column 25 Tab 153

The calculation results based on the K compression modulus

according to equation 158 156 and 1 5 4 are shown in

columns 25 26 2 7 28 and 29 in Tab 153

42

For comparison and for determination of the range of

validity of this method the caLculation results of

pile point pressure for settlements s = 10 mm s = 20 mm

s = 30 mm (see Tab 141) according to equation 157

and 154 are shown in columns 30 to 35

The results obtained in Tab 153 confirm the possibility

to use the proposed method to calculate the initial part

of the pile point resistance settlement curve of large

diameter bored piles in non-cohesive soil and the initial

slope of this curve as well

A simple model has been proposed based on the theory of

elasticity ana the tangent modulus defined by Janbu (1963)

and Duncan amp Chang (1970)

A new approach according to the pile diameter depth factor

and principal stress is proposed

The settlement of the pile point can be made up to a point

pressure according to equation 151 on up to a settlement

of about s ~ 20 mm (30 mm)

-- The application of v Op in equation 1 5 4 a llows us ing

Youngs modulus as independent of the pile diameter

opposed to Bazants a nd Mosopusts (1981) proposal where

Youngs modulus wa s determined versus the pile diameter

The equation 1 5 6 takes into account the dependence of

Youngs modulus on depth (or overburden pressure) as

well

In the method field test (Cone Penetration Test) or

laboratory tests (hyperbolic stress-strain parameters

can be used

Comparison of the method to 24 availa ble load test r e sults

or large diameter bored piles in sand shows good a greement

to calculated and measured values

43

REFERE~CES

Adamczyk J (1978) Okreslanie udzwigu pali wierconych

za pomoca sondy statycznej (Bearing capacity of bored

piles based on the static sounding) Inz i Bud No 7

pp 253-257

Andreasson L (1973) The compressibility of cohesionless

soils Thesis Chalmers University of Technology

G6teborg (in Swedish)

Appendino M (1973) Comportamento di un palo di grande

diametro strumentato Rivista Italiano di Geotechnica

No 3 pp 115-118

Butterfield R Banerjee P (1971) A rigid disc embedded

in an elastic half space Geotechnical Engineering

Vol 2 pp 35-49

Bozant z Mosopust J (1981) Drilled pier design based

on load settlement curve X ICSMFE Stockholm Vol 2

pp 615-619

Begemann HK (1982) Cone penetration tests pile bearing

capacity and the thesis of Rollberg Proc of the Second

European Symposium on Penetration Testing Amsterdam

pp 433-438

Berggren B (1981) Bored piles on non-cohesive soils shy

settlement and bearing capacity (in Sweden) Thesis

Department of Geotechnical Engineering Chalmers

University of Technology G6teborg

Bergdahl UB (1979 1982) Sonderingen und in situ Messungen

Wien 18-19 Juni 1979 - Private information 19821983

Bustamante M Giane selli L(1982) Pile bearing capacity

prediction by means of static penetrometer CPT Proc

of the Second Europ Symp on PenTest Amsterdam

Vol 2 pp 493-500

Chaplin TK (1961a) An experimental study of the settleshy

ment of footings in sand PhD Thesis Univ of

Birmingham

44

Chaplin TK (1961b) Compressibility of sands and settleshy

ments of model footings and piles in sand 5th Int

Conf on Soil Mech a Found Engng Vol 2 p 33 Paris

Colombo P (1971) Observazoni sul comportamento ltli pali

a grande diametro Rivista Italiana di Geotechnika

No 3 pp 163-172

Dahlberg R (1975) Settlement characteristics of preconshy

solidated natural sands Swedish Council for Building

Research D11975

De Beer EE (1964) Some considerations concerning the

point bearing capacity of piles Proc Syrop Bearing

Capacity of Piles Boorkee I pp 178-204

Decourt L Quaresma AR (1978) Capacidade de Carga de

Carga de Estacas a partir de Valores de SPT VI Conshy

gresso Brasilerio de Mecanica dos Solos e Engenharia

de Fundacoes - Rio de Janerio - ABNS

Decourt L (1982) Prediction of the bearing capacity of

piles based exclusively on N values of the SPT Proc

of the Second Europ Syrop on Penetration Testing

Amsterdam Vol 1 pp 29-34

Duncan MJ Chang CV (1970) Non-linear analysis of stress

and strain in soils Journal Soil Mech Found Div Vol

96 SM5 pp 1629-1651

Durgunoglu HT (1979) Effect of foundation embedment on

stress and deformation distributions Third Int Conf

on Num Meth in Geomechanics Aachen pp 925-928

Farr JS Aurora RP (1981) Behaviour of an instrumented

pier in gravelly sand Proc of a session Drived Piers

and Caissons sponsored by the Geotech Eng Div of the

ASCE Nat Convention St Louis Missouri pp 53-65

Franke E (1981) Point pressure versus length and diameter

of piles X ICSMFE Stockholm Vol 2 pp 717-722

45

Gregersen os Aas G and Dibiagio E (1973) Load tests

on friction piles in loose sand Proc of the Eigth

International Conference on Soil Mech Moscow USSR

Vol 21 pp 109-117

Gwizda1a K (1978) Behaviour of large diameter bored piles

in non-cohesive soil (in Polish) Archiwum Hydrotechniki

Vol XXV No 2 pp 183-217 (English summary)

Huizinga TK (1951) Application of Results of Deep

Penetration Tests to Foundation Piles Building Research

Congress Vol 1 p 173

Janbu N (1963) Soil compressibility as determined by

oedometer and triaxial tests Proc Europ Conf Soil

Mech and Found Eng Vol 1 p 19 Vol 2 (Discussion)

p 17 Wiesbaden

Janbu N (1970) Grunlung i geoteknikk Tapir Forlag NTH

Trondheim

Janbu N Bjerrum L Kjaernsli B (1973) Soil Mechanics

applied to some engineering problems Norw Inst Publ

No 16 Oslo

Japanese Society SMFE (1981) Present state and future trend

of penetration testing in Japan Separate report at

X ICSMFE Stockholm

Kjekstad O Lunne T (1979) Soil parameters used for design

of gravity platforms in the north sea Second Int Conf

on Behaviour of Off-shore structures London Vol 1

pp 175-192

Klosinski B (1977) Bearing capacity of large diameter bored

piles IX ICSMFE Tokyo Vol 1 pp 609-612

Laboratory for soil mechanics Delft (1936) The predetershy

mination of the required and the prediction of the

resistance of piles Proc 1 Int Conf on Soil Mech

and Found Engng Cambridge (Mass) I p 181

46

Matich M and Stermac A (1971) Settlement performance of

the Burlington Bay Skyway Canadian Geotechnical Journal

Val 8 pp 252-271

Mccammon NR and Golder HQ (1970) Some loading tests

on long pipe piles Geotechnique London England

Val 20 pp 171-184

Meigh AC (1971) Some driving and loading tests on piles

in gravel and chalk Proc of the conference on beshy

haviour of piles London England pp 9-16

Mitchell JK Gardner WS (1976) In situ measurement

of volume change characteristics American Society of

Civil Engineers Specialty Conference on In-situ

Measurements of Soil Properties Raleigh 1975 Proc

Val II pp 279-345

Mezenbach E (1961) The determination of the permissible

pointload of piles by means of static penetration tests

Proc 5 Int Conf on Soil Mech and Found Engng

Paris II pp 99-104

Meyerhof CG (1956) Penetration tests and bearing capacity

of cohesionless soils Proc Amer Society of Civ Engng

SM 1 Pap 866 pp 1-19

Meyherhof GG (1 976) Bearing capacity and settlement of

pile foundations Proc Amer Society of Civ Engng

Journal Geotechnical Engineering Division Val 102

No GT3 pp 197-227

Mohan D Jain GS and Kumar V (196 3 ) Load bearing capacity

of piles Geotechn Val XIII pp 76-86

Nixon I (1982) Standard penetration test State of the

art report Proc of the Second Europ Symp on Pen

Test Amsterdam Val 1 pp 3-20

47

Nunes A Vargas M (1953) Computed bearing capacity of

piles in residual soil compared with laboratory and

load tests Proc of the Third International Conference

on Soil Mechanics Zlirich Switzerland Vol 2 pp 75-79

Nordal S Grande L Janbu N (1982) Prediction of offshy

shore pile behaviour The Norwegian Institute of

Technology Trondheim

Ohde J (1939) Zur Theorie der Druckverteilung im Baugrund

Der Bauingenieur Vol 20 No 3334 p 451

Parroth E (1972) Einfache Formel zur Vorausbestimmung der

Tragfahigkeit von Standpfahlen mit Hilfe der Sande

Bautechn 9 pp 312-314

Poulos HG Davis EH (1980) Pile foundation analysis

and design New York - J Wiley and sons

Prodinger W Veder Ch (1981) Bearing capacity of floating

groups of diaphragm walls Proc X ICSMFE Stockholm

Vol 2 pp 809-814

Promboon S Brenner R (1981) Large diameter bored piles

in Bangkok Clay Proc X ICSMFE Stockholm Vol 2 pp

815-818

Reese L (1978) Design and construction of drilled shafts

ASCE JSMFD Vol 104 No OT1 pp 95-116

Rodin s Corbett BO et al (1974) Penetration testing in

United Kingdom state-of-the-art-report Proc Europ

Symp on Penetration Testing 1 Stockholm pp 139-146

Rollberg D (1976) Bestimmung des verhaltens von Pfahlen

aus sandier und rammengebnissen Heft 4 FBG Technische

Hochschule Aachen

Rollberg D (1977) Determination of the bearing capacity

and pile driving resistance of piles using soundings

Publications of the Institute for Found Eng Soil Mech

Rock Mech and Water Ways Construction Aachen Vol 3

48

Schmertmann J (1970) Static cone to compute static

settlement over sand Journal of the Soil Mech and

Found Division ASCE SM3 pp 1011-1043

Schmertmann J Hartman JP Brown PR (1978) Improved

strain influence factor diagrams Journal of the Soil

Mech and Found Division ASCE GT8 pp 1131-1135

Shibata T Hijikuro K and Fominerga M (1973) Settlement

of a blast furnace foundation Proc of the Eighth Int

Conf on Soil Mech Moscow USSR Vol 13 pp 239-242

Spang J (1972) Die Bestimmung der Tragfahigkeit von Grossshy

borhpfahlen (I) Strassen und Tiefbau No 2 pp 339-355

Senneset K (1974) Penetration testing in Norway State-ofshy

the-art-report Proc Europ Symp on Penetration Testing

Stockholm I pp 85-95

Tejchman A Gwizdala K (1979) Analysis of safety factors

of bearing capacity for large diameter piles Proc VII

ECSMFE Brighton Vol 1 pp 293-296

Thorburn s and Mac Vicar R (1971) Pile load tests to

f a ilure in the clyde alluvium Proc of the conference

on behaviour of pile s London England pp 1-7

Trof imenkov JG (1969) Accuracy of determining the bearing

capacity of piles based on results of static penetration

sounding of soils Osnovaniya Fundamenty i Mekhanika

Gruntov 4 (Translation Soil Mechanics and Foundation

Engineering 4 p 248)

Trofimenkov JG (1974) Penetration testing in USSR Stateshy

of-the-art report Proc Europ Symp on Penetration

Testing Stockholm I pp 147-154

Tuoma F and Reese L (1974) Behaviour of bored piles in

sand JSMFD ASCE Vol 100 No GT 7 Proc Paper 10651

July pp 749-761

49

Van der Veen C (1953) The bearing capacity of a pile

Proc 3 Int Conf on Soil Mech and Found Engng

Zlirich II pp 84-90

Van der Veen C and Boersma L (1957) The bearing capacity

of a pile predetermined by a cone penetration test

Proc 4 Int Conf on Soil Mech and Found Engng

London II pp 72-75

Weltrnan AJ Healy PR (1978) Piling in boulder clay

and other glacial tills Construction Industry Research

and Information Association UK-Report PG 5

Withiam J Kulhawy F (1981) Analysis prodecure for

drilled shaft uplift capacity Proc of a session

Drilled piers and caissons ASCE St Louis Missouri

pp 82-97

Woodward R Lundgren R Boitano J (1961) Pile loading

tests in stiff clays Proc of the Fifth International

Conference on Soil Mechanics Paris France Vol 2

pp 177-184

Wright SJ Reese LC (1979) Design of large diameter

bored piles Ground Engineering Vol 12 No 8 pp

17-22

DIN 4014 Cods Teil 2 (1977) Bohrpfahle Grossbohrpfahle

Herstellung Bemessung und zulassige Belastung

Polish Specification (1975) Specification for design and

construction of large diameter bored piles in bridges

Ministry of Transport Warsaw (in Polish)

Polish Specification (1979) Specification for prevision

bearing capacity of the piles on the presiometer test

and static sounding ENERGOPOL Warsaw (In Polish)

Polish Code (1983) Foundations Bearing capacity of piles

and pile foundations

5 1

FIGURES

bull bull

53

Ou

+ sect raquo iir 1

4 + D

h + +Osu

bull + t2 =n- Dp

LDpl r f 1

Opu

Fig 1 1 1 Bearing pi le in the soil

J_

fp

080

070

060

050

0 40

030

020

010

q~ [MPa ]000 -+--~-~-~-~------------------------=-shy

00 20 4fJ 60 80 10 0 120 14fJ 160 180 200

Fig 1 1 2 The point resistance factor fp

(Trofimenkov 1974)

54

ts

160

140

120

100

080

060

040

020

q~5 [ kPa)

0Q0--1------~-~-~-~-~-~ - - ---=- -- shy000 10 20 30 40 50 60 70 80 90 100

Fig 1 1 3 The shaft resistance factor fs middot (TYofimenkov 1974)

f s

200

180

160

140

120

100 2 3 4 5 6 7 8 9

Fig 1 1 4 Shaft friction factor f depenshys

ding of the soil density (Senneset 1974)

55

Q~ [kN]

1500

1000

500

0-r-----------r----~- Q~ [kN] 0 500 1000 1500

Fig 1 1 5 Comparison of the pile resisshytance determined by the results of static sounding and load tests (TYofimenkov 1974)

D f f

0

Fig 1 16 Equivalent cone resisshytance (Bustamante 1982)

56

E u shy0 ~

QI I ltII ltII

~ a C QI

O C

D

w gt

0

Cone res istance Point resistance

80 160 240 320

05

10

15

e d

20

ver y dense Cone resistance 300 kgcm2

Dpcm

a =45 b = 30 C 60 d = 100 e = 150

Fig 1 16a

Cone resistance _ qc

80 160 80 160 qc [ k g cm2 ]p

05

10 10

15 15 e d a

e d20

Dense Medium2 2200 kgcm 100 kgcm

Cone resistance and point resistance of piles versus overburden pressure (Kerisel 1965)

Point resi stance - p(for s=2cm) of the pi le for

15 sett Iement s = 2 cm

10

5

E u

uJ1 o-~----shya er O 804 2500

32 56

I 1

L oose50 -I =25 Very loose L

----~--shy5000 7500 80 98

~-----lmiddotI1--------2 10000 12500 31400 =Flcn)

112 123 200 =Dplcm)

Fig 1 1 6b Point resistance versus cone resistance and pile diameter (Franke 193)

57

1

fp

080 (D Gravel

0 Coarse sand Medium sand 070

reg Fine sond Silty sand

060

050

040

030

020

010

qc [MPa]000-+----r--~-~-~--------r----r----r-~-~-- -shy

oo 20 40 60 80 100 120 140 160 180 200

Fig 1 1 7 Point resistance factor f (proposal) p

58

300

250

200

150

100

qc [MPa I50-+---------------r---r---r---r----r------------- shy

oo 20 40 60 80 100 120 140 160 180 200

Fig 1 1 8 Shaft resistance factor fs (pr oposal)

59

Bustamante (seetab 115 I

l fp

G)

0 Gravel

Coarse sand Medium sand

cl

b)

t-----l

1----1

080 reg Fine sand Silty sand a) D

070 Polish

060 Specification

( 1979) 050

040

030 CD 020 0

reg 010

qc [MPa]0 00 -+-------------------------------------=--shy

oo 20 4o 5o 80 100 120 14o 15o 180 200

Fig 1 19 Point resistance factor f comparisonp

Bustamente ( see tab 116 I 300

a) ~

250 b)~

cl~

200 Polish Specification ( 1979 l

150

100

q [ MPa]504---~--~--~----- ---___

00 20 40 60 80 100 120 140 150 180 200

Fig 1 1 10 Shaft resistance factor fs comparison

60

1 fp

~

080 CD CD Gravel

070 0 reg Coarse sand Medium sand

060 0 Q) Fine sand Silty sand

05

040 Franke (1973)___

030 DIN 4014

020 Part 2 1977

( see tab113 l 0shy

--shy --a - 010 C---0 Piles without enlarged bases

D---0 Piles with enlarged bases qc [MPa ] 000

00 20 4JJ 60 80 90 100 120 140 160 200

Fig 11 11 Point resistance factor f comparison p

fs

DIN 4014 Part 2 1977 ( see tab 114 l

300

~ 5 lt qc lt 10 MPa 50

~ 10 lt qclt 15 MPa

~qcgt15MPa

200

150

CD

100 0 0

qc [ 1Pa] 50-t-----T-~----T-r-~----------------shy

OO 20 40 6JJ 80 100 120 14JJ 160 180 200

Fig 1 1 12 Shaft resistance factor fs comparison

61

Measured p [ MPa]

( s=010 Dp) 10

9

8

7

6

5 0

4 0 61

3

I 2

Calculated qcp [MPa]

0 0 2 3 4 5 6 7 8 9 10

Fig 1 1 13 Comparison of experimental and aomputed values of the pile point resistanae

62

Contact pressure ( MPa ]

2 I 6

50

100

E E 150 Ill

c QI

E Sett lement for QI

calculated qcpai V) 200

Fig 1114 Results from load tests on piles No 1 and 5

Contact pressure [ MPa I 0 2 I 6

01---------------------1

50

E E 100 Ill

Settlement forc QI calculated qcp E ~ ai

I V) 150

Fig 1 1 15 Results from load test on piles No 7 and 5

63

Contact pressure p [ MPa] 0 2 3 4 6

0-t=-----~-~-----

E E

100 1)

c CU E 2 QI V) 150

Fig 1 1 16 Results from load test on piles No 9 10 and 11

Contact pressured p [MPa] 0 1 2 3 4 5

o~~~=------------___-~-shy

50

100

E E

i 150

CU E CU

-a V) 200 2

Fig 1 1 17 Results from load test on piles No 12 and 13

c

-------------- -

64

Contact pressured

0 1 2 3 4 p [ MPo] ~o __L____1_____J_____L___

50

100

150

E

E

IJ) 200

c a

E a

~ 250

Fig 1 1 18 Results f Pom load tests on piles No 2 4 6 and 8

p [MPa]

60

50

tO

30

~

Pile Pile Pile Pile

Pile No18

------+ Pile No17 + ~_ ---0 Pile No 19

bullbull - --bull Pile No 20

- ~middot -shy-shy -(y I Settlement for

20 tO 60

No17 +-middotmiddot- V 70 No 18 bull--- V 9o No19-middot- V 120 No20bull---- V150

qcp 3

80 100 120 140 160 s (mm)

Bose resistance

Fig 1 1 lBa Point Pesistance vePsus settlement (Spang 1972J

65 Cone resistance qc [ MPa]

0 10 20 30

mud

5 ~ lll

0 c 0

c CD

peat

10 sand

Ill N

10=10

D=lOOOmm

1540=40

20__________________

[ml

Fig 1 119 Pile No 1 and results from static cone penetration test

Cone resistance qc [MPa l 0 10 20 30

7N V degW = 0+--------------------i

mud

5

lll

~ C 0

c peat~

10

sand lll N 1D15

15l lD=1500mm

40=60

20l---------=-------__J

[ml

Fig 1 1 20 Pile No 3 and results from static cone penetration test

66 Cone resistance qc [MPa]

10 20 II 3 igt pound ~

mud+peat

fine sand+ silt

50=11

l lo-11oomm

40= 44

10

15l____________c

[ml

Fig 1 1 21 Pile No 5 and results from static cone penetration test

Section Cone resistance Pile

0 0

5 10 15 20 25 30 qc [MPa] -----~-~shy~

Silt

[7r_ ___~ Medium Sand_~-----l

0 ltD

+shy4

0=11

9=

Fine sand + Silt t

30p=

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot1~11+-----E-----

[ml

Fig 1 1 22 Pile No 6 and results from static cone penetration test

Cone resistance qcmiddot 1MPuJ

0 10 20 30 67 01-+-------l--------------i

mud+ peat

fine sand

l1)

N

40=60

15L_____________

[ml Fig 1 1 23 PiZe No 7 and resuZts from static

cone penetr ation test

Section Cone resistance Pi le

0 5 10 15 20 25 30 qc [MPa 1 --~----Y-~-----~

Silt

Fine sand

Medium Sand Bentonite2----1~i

t 3

4

0

0=15

Fine iii ~~= 5

sand t ltD

6 +

Silt 7

3Dp=

63 g

10

11

12

13+------=~---l

[ml

Fig 1 1 24 PiZe No 8 and resuZts f rom static cone penetration test

68

I =3

Cone resistance qc [MPa]

0 10 20 30

C 0 C Cl

(I)

Said

Peat

Sand

l 0=110

D = 11

4 D = 44

Fig 1 125 Pile No 9 and results form static cone penetration test

69

Cone resistance qc[MPa)

0 10 20 30 I ~ II JE Ill= II=E IS

Fine sand QI

U) I

[- I C 0 + C Peat QI

CD

Fine sand 0

Ci D = 1 1

L l D= 110

4D= 4 4

Fig 1 1 25 Pile No 10 and results f rom static cone penetr ation test

70

Cone resistance 9c[MPa]

0 10 20 30

Sand

C 0 Mud peat

+shyc 5 ltII

co

Sand Op= 11

u 10 D= 110 4Dp=44

Fig 1 1 26 Pile No 11 and results foIm static cone penetration test

71

00 a_ N ~

middotu rr QI 0 u ~ C 0

QI ui C iij 0 QI U - 0

0 EN

d 2

Sll 1lOl

C

u (rr

C 0 u~

0

QI - C middot 0 C

U - O 0 EN

~ 0 2

E

ltD a---==-lr---___--~---6-l_-0_012 ~ Lr- - --1---------J J

S9l ls= apound QI -0 gtcc _gmiddot- 0 1) ui I

Fi g 1 1 2 Piles No 14 and 15 and results f r om stat i c cone penetr ation tests

72

Contact pressure p [ MPa] 2 4 6

01lt---------------~

50

E E

111 100 ~ (qcp=30 MPa for No16

~ iqcp =49 MPa for No14

~ 1so~--~~- _ _ __

I _ _

11 I lf--q = 32 MPa for No15

cp

Fig 1 1 28 Results f r om load tests on piles No 14 15 and 16

73

0300--------------~---~--~--shyE

Driven piles in ~ 0 bull Gravel

amp250 bull Sand L QJ X Silt a 1l o Bored piles in

sand -sect 200 0=-- shyC ~ ~ 10 unless ~~ middot D shown 1

ii O

~ ~ o 3 a 1501-----+-------I- --+---laquo-+-- -+------lt

~ sect 5 - 6 6middot 100t----+----+-----_-1---4--__co_--J~__j

-_

~ 0 t7

C

a 50 2 shyg ~ gt

0 20 30 40 50 60

Standard penetration resistanceN in blows per foot

(N 30

Fig 12 1 Emperical relation between ultimate point resistance of piles and standard penetrashytion test in cohesionless soil (Meyerhof 1976)

14 r-------------------r-------b-----q

References and symbols given in Fig121

121-----+---+----+----+------ll------j

- _sect ~ 10t----+----+-_--1-----+---lt~--~H---- 0 lt-~5- _-)0 I() l- I Q---+-----I[08 ~

H -(l () ltj-~C X bulls pound 061------lt----+-----i~- --+-- shy

- bull

-gt Q1pound--I---L---L---L---L--~ 0 10 20 30 40 50 60

Mean standard penetration resistance N in blows per foot ( N30 l

Fig 122 Empirical relation between ultimate skin friction of piles and standard penetration resistance in cohesionless soil (Meyerhof 1976)

74

a) b)0(1 0lt2

10 10

05 05

1 N30OD-+---------__ OD--t-----r-----r----------------ll--Nbull30~ 10 20 30 10 20 30 40 50

Fig 1 2 3 Reduction coefficient a) for impermeable gravels b) form permeablr gravels (Weltman and Healy 1978)

psf [MPo)

Fig 1 2 4 Relation between ultimate point resistance and SPT in cohesionless soil (Polish specification 1975)

75

30 35 40 45 Loo Med Dense Ver dense

50

40

~ E

l)

g 8 1)

middotu

1 ~

QI- bull Touma ~ bull Koizumi

(183)-depth base middotameter5

20 40 60 00 100 N30

30 35 40 45

OG2(294) bull G1 (183)

300 bull us 59 ( 102) bull 88(180)

bull 075 a GT (467)

150

~ 200-+--------+-- t--- --t-----i 130i 0 094 081

014 _- --- -- shy~ E 066bull bull 063 Note -~ ~m~r~s~ ~ 1001---1-r--t---1point is xh QI Ratio ~ Number in ( ) middotn key is h c Ratio s ~

0 20 40 60 00 100

~ig 1 2 5 Ultimate point and shaft resistance versus N30

(Wr ight and Reese 1979)

-----

76

tu Psa

[kPa] [MPa]

200 tu

------ shy150 Psa

1 1

1100 10 1 1

1 50

0+----------T----~---~-N-3J~shy0 20 40 60 80

Relation between ultimate skin friction and SPT (Decourt 1982)

Fig 1 2 6

Psa

[MPa]

8

0----Meyerhof 1976) 0 7

--- - --~ - copy Polish Specifcoti on 1975)6 ~-

~

reg- middot - Reese (1978) middot 5

f41- -- Decourt (1982) -I bull 4 2

----==---______z__ h25m Dp=12m

3 ---shybull

2 7

--shy ----shy~----shy0-t----i----------r-- ----------------------N3l~shy

0 10 20 30 40 so 60 70

Fig 1 2 7 Relation between ultimate point re~istance of large diameter piles and standard peneshytration test (SPT) in cohesionless soil

------

77

tu [kPa)

200 17 Cast under -J bentonite

~----Meyerhof (1976) ~copy -=middotmiddotmiddotmiddot== middotmiddot150 ~------- Wei tman (1978 ) middot Healy middotmiddot ___ Japanese ) 119810 Society

(0 -middotmiddot- Decourt (1982)middot Wright

100

- -middotmiddot -- 11979]reg Reesemiddot Bored piles

~shy50 1 -- shy

-- shy middotmiddot s-shy - --~ ------reg~~ ---~E_==---- ------- shy

N_ ---shy0-+--C--------------r---- ---------~---~-~shyo 10 20 30 40 50 60 70

Fig 12 8 Relation between ultimate skin friction of piles and standard penetration test (SPT)

78

Pst [MPa]

8

7 ---------ist=7MPa

6

5

4

3

2

I N30o~------------------------------+---------__=-shyo 10 20 30 40 50 60 70

Fig 12 9 Relation between ultimate point resistance of large diamter piles and standard peneshytration test (SPT) in cohesionless soil (proposal)

tu [MPa ]

( excavanted and cast

150 under bentonite ) tu=150 kPa

100 tu=90 kPa

I I

50 I I I I I N30

10 20 30 40 50 60 70

Fig 1 2 10 Relation between ultimate skin friction of large diameter piles and standard penetrashytion test (SPT) in sand (proposal)

79

2 3 4 5 p[MPa] 0 2 3 4 5 p[MPa]0

40 40 Cl

80 c 80

c 120 120

Pile No 1 PileNo216 160

200 2

s s c [mm] (mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MPa]

40 40

00 80

120 120

16 160 Pile No 3 Pile No 4

200 200

s s [mm] (mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MAJ]

tgt11 tgt- measured40 40

80 80

120 120

Pile No 5 Pile No 6 160 160

20 200 s s

[mm) [mm)

Fig 1 4 1 Base resistance vs settlement appoximative method piZe No 1- 6

80

0 2 3 6 5 p[MPa) 0 2 3 4 5 p[MPa]

40 40

80 80 6

120 120 6

6160 160

Pi le No 7 Pile No 8 6

200 3J s s

[mm] (mm]

0 2 3 4 5 4 p [ MPo)

6 6 40

6 6

6 80

6 6

6

Pi le No 9 Pile No 10

XJO s s

[mm] [mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MPa)

6 6

40 40 6 6

6

00 80 6

6

12 1Xl 6

160 Pile No 11 160 Pile No 12

200 200 s s

[mm ] [mm]

Fig 1 4 2 Base resistance vs settlement approximative method pile No - 12

81

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MPa]

6 6

40 6 40 6

6

80 6 80 6

120 6 120

Pile No 13 Pile No 141fO 160

200 200 s s

[mm] [mm]

0 2 3 4 5 p [MPa) 0 2 3 4 5 p [MPa)

40 40

80 80

120 120

HiO 160

200 200Pile No 15 Pile No 16

s s (mm) [rrrn 1

0 2 3 4 5 p[MPa] 0 2 3 4 5 p[MPa)

40 40 A A A-measured

680 80 t t

120 c 120 c

1fil Pi le No 17 160 Pile No 18

200 200 s s

[mm] [mm]

Fig 1 4 3 Base r esistance vs settlement approximative method pile No 13- 18

82

0 2 3 4 5 p[MPal 0 2 3 4 5 p (MPa]

D D40 40 c c

80 c 80 c

120 120

160 160

Pile No 19 Pile No 20 200 200

~ml (mm]

Fig 1 4 4 Base resistance vs settlement approximative method pile No 19- 20

LlJ QI

0 average lJ = 098 E sd = 029 C

6 SY = 030

4

2

lJ calculated ________________________ _______ measu red

06 08 10 12 14 16

Fig 1 4 5 Calculated pressure divided by the measured pressure at 20 mn settlement for aZZowabZe

q Zoad Pa= ~p approximative method pile

No 1- 20

8 3

Point resistance p [ MPaJ

a)

p(s) = s a +--sshy1 y qcp

1

SQ100p -- --- ---shy

~ s

[mml

I- 01 s rmm]-l p LMPa b)

f~]

c Cll E ~ i s

[mm)

Fig 146 Definition of the point resistance - settlement curve according to the modified hyperbolic method

84

01 ~ 0

20 0 0

0

16 0

medium 0 value a1 = 905-+ 256 Op 0 0

12 (r=039)

0 0

----0 0

8 0

0 0

0 0

4 0

05 06 07 08 09 10 11 12 f3 14 15 16 17 18 19 20 2 1 Op (ml

Fig 1 4 Initial slope of the base resistance curve vs pile diameter

a1 [p] 0

0020

16 assumed a 1= 28 - 4 qcp

12 0

0 Ct) 0 a = 2659 - 369 qcp8 1

0 0 (r = 0188)0

4

2 3 4 5 (MPa]qcp

Fig 1 4 8 Initial slope of the point resistance curve vs ultimate point resistance on the static cone resistance for pile tests No 1 20

85

a [~ 28

24

20

16

12

8

4

0 2 3 4 5 6 Qcp [MPa]

~ Kiosinski (1977) sand and sandy gravel of mediwn density

~ Klosinski (1977) loose sand ID= 0 3 0 4

o US59 ] t HH Touma p and Reese L (1974) fine sand and silty sand OGl (US59 HH BB - very dense Cl - mediwn dense) 1 BB

DIN 4014 Part 2 (1977)

Fig 1 4 9 Initial s lope of the point res istance curve vs ultimate point resis tance

86

assumed [il =30 -10 Op but )1~ 10 )1 [1 I

u 311-10 Op ( r =0 368)4 1 0

3 0 0

02 0

0 0co 0 8 0 0

0

0

05 06 07 08 09 10 11 12 13 14 15 16 17 19 20 21 Dp [ ml

Fig 14 10 Correction factor for hyperbolic base resistance shysettlement relationship

87

a [~] 28

24

20

16

12

8

4

2 3 4 5 qcp [ MPa]

Fig 14 11 Initial slope of the base resistance curve vs ultimate base resistance (proposal)

v [ 1 ]

3

2 -----G- DP J l 1J I Op lm] J

for Dp ~ 2 0 m ~ u = 1 01

0 --------r----r---r----r-----------------r-------------------------r------r-~-~--shy

05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 Dp[m)

Fig 1 4 12 Correction facto r for hyperbolic base resisshytance - settlement relationship (proposal)

s P ( s)

s +

u qcp

88

a) b)1

bt=o212= 47 MPa a1=1~32 tMWJ s 2 3 4 5 O 1 10 20 30 40 50 60 p [~a]0

0p [ MPa] 40 40

80 80

120 ~

160 b1 = ~ajtg ~= 0 212

~=1132 + 0212middot s

mJ 240 r=0994t t t measured s __ according to Jl s

o o o according to p (bull ll l[mm] [mm]

Pile No 2

slmm) 10 20 30 40 50 60 80 100 125 150 175 2)0 225 Note

p [ MPa] 09 14 17 20 22 24 27 30 32 34 36 38 39

measured

pibull) [ MPa] 074 128 169 202 228 249 282 307 330 347 360 371 380calculated

plbullbull1[MPal 070 125 168 203 233 257 297 327 356 378 396 410 422calculated

1) (bull) ij l099082 091 099 101 104 104 104 102 103 102 100 098 097 sd = 006

ij (HJ1041) (bull10) 078 089 099 102 106 107 110 109 111 111 110 10B 10B sd = 010

plbulll-according to a =1132 [ Jp(s) = s s for pile No21 0 1132 12 39

plbullbulll-according toa =1241 lmiddotGcp=39MPa1 0

~=14 see fig 1411 and fig 14 12 sp(S)=

124+ _ s_ 14middot39

11lbulll11l-J - correlation coefficient calculat~d P5 for

measure p s p(bull) and p(bull) respectively

Fig 1 41 3 Modified hyperboZic point resistance - settZement reZationship for piZe No 2

89

0 2 3 4 5 p(MA1] 0 2 3 4 5 p[MPa)

40 40

80 A 80 A

120 120

160 16 Pile No 1 Pile No 2

20 200 s s

[mm] rnm

0 2 3 4 5 0 2 3 4 5p [MPa] p [MPo]

40 40

80 80

120 1ZJ

lfpound) Pi le No 3 Pile No 4 A

200 A

s s A

[mm) [mm

0 2 3 4 5 p [MPa] 0 2 3 4 5 p [MPa]

40 40 A A A measured ~ calculated

80 80

12

160 160 Pi le No 5 Pile No 6

200 Z)Q

Fig 1 4 14 l3ase resmiddotistance vs settlement pr oposed method pile No 1- 6

90

2 3 4 5 p [MPa] 2 3 4 5 p [ MPa]

40 6

6 40

1 80 80

6

120 120 6

6 160 160

Pile No 7 6

200 200 s

[mm ] s

[mm]

0 2 3 4 5 6 p [MR] 0 2 3 4 5 p [MPa] 0 0

40 40 6

6

80 80

6

120 120

160 160 Pile No9 Pile No 10

200 200

s [mm] [msml I

0 2 3 4 5 6p[MR] 0 2 3 4 5 p [MPa]04--___ ____ ___ ___ ____

0+-=---------------~-~- shy

40 40 c 6 c - measured

0--0-0 shy calculated

80 80

120 120

160 160 Pile No11 Pi le No12

200 200

s [mm]

s [mm]

Fig 1415 Base resistance vs settlement proposed method pile No 7-12

91

0 2 3 4 5 p [MPal 0 2 3 4 5 p [MPa)

40 40

80 80

120

16 Pile No 13 Pile No 14

200 s

tnml [mm]

0 2 3 4 5 p [ MPa] 0 2 3 4 5 p [MPa)

40 40

80 80

120 120

160 1fD

Pi le No 15200 axJ s s

[mm] [mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 6 plMPa ]

A A A measured40 0---0-0 calculated

80

120 120

160 1ED Pile No 17 Pi le No 18

200 200

s s [mm] [mm]

Fig 1 4 16 Base resistance vs settlement proposed method pile No 13- 18

92

0 2 3 4 5 p [MFb] 0 2 3 4 5 p[MPa]

0 6 o -measured40 40 0 0 o -calculated

80 80

120 120

160 160 Pile No 19 Pile No 20

200 200 s s

[mm] [mnil

Fig 1 4 17 Base resistance vs settlement proposed method pile No 19-20

p(s~Psf

15 20

ean

-C 5 w u L Lower ~ confidence

linea 0

a IJl 10

o---o proposed

method I I I

15

Fig 1 4 17a Design curves for estimating developed base resistance in sand (Wr ight and Reese 1979)

93

n (number)

30

28

26

24

22

20

18

16

14

12

10

8

6

4

2

0 02 04

Fig 1 4 18

I= 126

Between 1] = 0 7 - 1 3--- I= 106 ( 84 frac34)

Average ~ = 098 Standard sd =023 deviation

Standard sv =023 veriation

1] (Coefficient Calculated Measured

06 08 10 12 14 16 18

Calculated pressur e divided by the measured pr essure for all pressure - settlement curves pr oposed method pile No 1- 20

94

a) b) Total load

Total load curve

---- _____-- shy- -- -Base load ~- Base load

-0-0 ~

00 00 J

ldeoli zed shaft load J

Shaft sesistanc1---------- 0=0middot30 a= 0 middot 30

025 Settlement IN 025 Settlement IN

Fig 1 419 Proposed method of synthesizing design loadsettlement curve (a) conservative design prodiction b) design prediction- peak in shaft loadsettlement curve (Burland et al 1966)

Cf

-0 0 0

J

0

~-----~--~-~ amp- 2 3 4 5 6 (cm)

a~middotltii -0 lt) cco2 41 -~ -0 1)

vi ~ llloli=----------- ---c~0 1 2 3 4 5 6 7 ( of diameter)1 1 1 1

05 10 15 20 ( in) for 30 in Pile Movemen~ ( 75cm pile)

Fig 1 4 20 Approximate load settlement curves for 30 in bored piles (AB and C represent failure load at 1 in settlement A B and C represent ultimate failure load) (Touma and Reese 194)

95

Load in MN 0 2 3 4 5

25

50E E C

-C 75

-~ ~

-Z 100 lJ

Shaft resistshy

125 once

15 Fig 1 4 21 Load-settlement relationships for largeshydiameter bored piles in stiff clay (Tomlinson 1977)

SettlementSo

Fig 1 4 22 Diagrams of s1iaft and base resistances versus settleshyment assumed in analysis (Kiosinski 1977)

96

0 0 1 ~ r- 025g ~~ 2

1- -shy3 03Sg 14 5 2

Qls =Qpls+Q5 (sQpls) Qs(s-3E

0

degsis __ -- Qpls) a~ C

4

t Sg l

5 Qu Is)

Q(s)in MN-l T

Ouls Q Is) in MN ---

Fig 1 4 23 Construction of load - settlement curves a) for sand b) for cohesive soil (DIN 4014 Part 2 1977 and Franke 1981)

-

s C 5C

Cl

3 0 00 05 10 15 20 Mean settlement I in)

Fig 1 4 24 Load- settlement curves for test shaft S4 (1 in = 25 4 mm 1 ton= 8 90 kN) (Reese 1978)

97

Relative side resistance

0 05 10 15 20 0E=--t----+---+--~

c QI lt) ~ 2 C

I itaker c

QI amp Cooke3E QI-j

c-en 4

C QI

E us 59o

5 QI gt

SA0 w 0 6

Fig 1425a Relative side resistance for clay vesus relative midlength settlement (Reese 1978)

degs (Osl u l t 0 05 10 15 2 0

Mean

2 Lower ~ C QI u

confidence line

~ 3 a

0

~4 E

()

5

6 __ _ ______ ________ __1

Fig 1 4 25b Design curves for esti mating developed side resistance (~Jy1nht ReertP- 1987 J

98 Load Q

8 - 15 mm

1- 2 of p ile diameter

100-200 10-15 of pile Os Ot diameter Shaft Total

Settlement S Resistshy Resist- Load ance once

Fig 1426 Dependence of total load base resistance and shaft resistance on settlement of lar-ge diameter pile (Tejchman Gwizdala 1979)

6

5 Shaft load

4

3

2

z ~

-0

g Pile EF- 56 J 0

0 0 20 30 Butt settlement (mm)

Fig 1 4 27 Deveiopment of shaft and base resistance with settiement (Promboon Brenner 1981)

99

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 0 r-=-1---J__-----------------------~----_shy

Load [ k N l5

10

20

( I

Skin friction ----1 I I

~ 40 QI E

fQI

50 I

Q) I () ICOntinuos fost deolading

Fig 1428 Load-Settlement-Diagram Testelement III (Diaphragm-Wall 0515 m 244 m deep) Portion of Skin Friction and Base Resistance (Prodinger Veder 1981)

Qs (QJ max

0 05 10

Upper Limit of Data

Farr and Aurora (1981J C

~ 2 - shy -+shy - Mean of Data

I QI

Lower Limit of Data a

0 - 3 E

Vl

4

Smid = Approximate shaft buff movement ignoring the elastic compression of upper halt of the shaft

D = Shaft diameter

Q Mobi Ii zed shaft resistance

Qs1max = Maximum shaft resistance

Fig 1 4 29 Relative shaft resistance vs relative movement (Farr and Aurora 1981)

100 Load Q (s) [ MN]

Su5 s s 20 mm for non- cohesive soil u

s s 10 mm f or cohesive soil u

s s 15 mm for claysand u

Q (s) + Q (s)s p

Qs(s)

-C ltII E s ~- [mm]-ltII IJ)

Fig 1 430 Dependence of total load Q(s) point res i stance Q (s) and shaft resistance Q (s) versus settlement p s

~ 3 Usu Qpu Qu Q(s) [ MN]

Sus= 20

1J

60

80

100

120

degs (s ) 140

5 P=Ol Op

1EO

C -ltII E 180 ~ ] 200

s [mm]

Approximative dependence of total load point resistance and shaft resistance versus settlement fny non-cohesive soil

Fig 1 4 31

101

113 3 ~fic0P Ye hY

1 Ground water

D

I y

yh C

Fig 1 5 1 Determination of 01 and 03 for settlement analysis of lar ge diameter bored piles

102

I

E=Et [MPa]

160 0

140

120 0

100

80

6

40

--- --shy 0

0

8 0

0

0

20

2 3 4

I 0 15

Fig 1 5 2

E = Et [MPa]

120

100

80

60

40

I I 0 35 065 085

0

Et= 17 81 qcp0844

( r = 0 128)

5

100

6 qcplMPo]

Calculated values of Young s modulus for piles No 1shy24 according to equation 1 5 2 and 1 56

0

0 0

E =898qcp127 (r= 0314)

E = 9 middot qcp 13 0

20 shy 0

0 0

0 1 2

loJ

I 0 35

3 I

065

4

I 085

5

100

6 qcp [MPo]

Fig 1 5 3 Calculated valueBof Young s modulus for piles No 1shy24 according to equation 1 5 4 and 1 5 6

I K 10 3

( 1 ] 1832

1400 0

1200 0

0

1000 0

800 0

m=2821 qcp0621

600 0

(r=0057)

400 0 0 0 0 0

200

2 3 4 5 6 qcp (MPa]

I 035

I 065

I 085 100 Io

Fig 15 4 Calculated valuesof the dimensionless compress ion modulus K for piles No 1- 24 according to equation 1 5 2 and 1 56

K ( 1 ]

0

1400

1200 0 0

1000

800

600

0

0 0

0

0 0

0 K= 1422 qcpl05

(r=0181)

0 K= 150 qcp

400 0

3)0 0 0

2 3 4 5 6 qcp(MPa)

I I -J 035 065 085 100 Io

Fig 1 5 5 Calculated values of the dimensionless compression modulus K for pile~ No 1-24 according to equation 1 5 2 and 1 5 6

104

120

100

2 3 4 5

I I I rv 0 15 035 065 085 100 lo

Bergdahl (1982) for shallow foundation

o----o Bozant Masopust (1981) D= 1 0 rn h=10 rn large diameter bored piles in noncohesive so il

0----0 Proposal according to current anal ysis

Klosinski (1977) D=090 to 125 rn large diameter bored piles in sand and sandy grave l

Mitchell Gardner (1976) very dense sand E=(35)q (it depends on sand density and stress history) c

Fig 1 5 6 Composision of Young s moduius

105

TABLES

0 Tab 1 11 Methods for detemination of the bearing capacity of bored piles (Ro llberg 1977)

Cl

Nol -- I Soil Areas of Q) Q) Editor Determination of Coefficients 5 type influenceqP qs p ~ C C 11 12 fP I fs

1 all Lab f Soil Mech (1936) l qp at the elevashy 1 0

2 all Huizinga (1951) ~ t~on of the pile 14 point

3 all Van der Veen (1953) ) 18 1 h+l14 all Van der Veen 1 0 Dpl375 D~ 15-- J qcmiddotdhBoersma (1957)

~ 11 +12 h - 12

5 12 all Menzenbach ( 1961) qc at the elevashy~ tion of pile point

6 18 all Mohan Jain Kuman (1963)1 average of qc over 1 h Q) h ~qcmiddotdhl 10 Dpj 3 75 Dj 15 50_micro

and 1 2C 11

7 I amp all de Beer ( 1964) graphically from 10 Q) qc 0 1 h+l18 u C

sand Soviet norm SNIP II 9ct9cp I4 bull O Dp I10 DP l66-1 083shyu clay B5- 67 Trofimenkov (1969) 2 50 1 251 +l J qc middotdh micro middot h middot-l l 2h-~ _micro

9 _micro u all Paproth (1972) at the elevation 3 5 I shy

) of pile point (Dpgt0 5 m 7 D8DpE

E-lt p 1 h+l1 1 h Dplt 5 m u l+l J qcmiddotdh h f qcmiddotd~ 30 Dpl 50 Dp 2 0 100shy10 sand Norwegian method

0l 2 h-12 200Senneseth (1974)

11 lall Soviet method h+l (20-0lqgl - 101 1 q middotdhTrofimenkov (1974) -- f C UpUsmiddotQct

l1+l2 h - 1212 Qct-Qcp 40 D~ 10 Dp 1 33- 0 67shyUsbullh 4 00 2 50

13 English method 10 DFJ 375Dp 10 I

Rodin Corbett Shershywood Thorburn (1974)

3 7 5 Dcl 8 0 DP 10h+l1 _1_ J qcmiddotdh 1 h

qcmiddotdh 20011 +12 h - 12 hb

1 h qcmiddotdh 150hf

0

Observations

fp I f (qp)fs C

Dp E = 1 cm Qbu = 2 Qpa (approx )

s fs=f (qc)

q=~g Us 0 h

fp=f(q~)

fs=f(qgl

bull fine grained non- cohesive soil loosely packed

bull fine grained non- cohesive soil medium dense comp

fine grained non- cohesive soil

Tab 111 (cont)

h+h bE 14 non-cohe- Meyerhof ( 1956 poundti J N 3o middot dh CtME fN3 o dh 1 0 DP 4 0 DP 10 100 etM= l 2

sive soil 1976) lJ +12 h - li hE o hgp taken into consi der ~ Ul (I)

E-lt

C 0

~E = 1 kgbull 30 cm

(statistical limit depth of the pile) hE - clamping length of

pile micro rrJ l-l micro (I)

15 C (I) p

sand Norwegian method

- irm - - - 10 IT

m = diagram O l-l Senneset (1 974) rrJO C

16 rrJ micro gravel English meth it 3 middot N30 - - - 10 - Jf 3 + diagram U) ~

E-lt p U)

iiouiu Coruett Sherwood Thorshyburn (1974 )

(NJQat the elevashytion of pile point1

0 -i

108

Tab 11 2

Results of calculati o n of p i le point load pile shaft load and total pile load from static con e penetration test (Rol l berg 1977)

~ gt

~ gt Ultima te Ultimate Ult imate

No Method micro micro poi nt skin bearing 080lt17nlt1 50 Q) -l

-l middot-i resistanceuro resistance r esistancE

middot-i p 0

(J n1 n n2 n n3 n n1 n2 n3

1

2

Lab fSoil Mech

Hu izinga (1951)

(1936 ) 430

307 i 3 Van der Veen (1953) 239

49

4

5

Van der VeenBoersma

Menzenbach (1961)

(1957) -l middot-i 0

2 4 7

1 57 1-CJ)

6

7

8

Mohan Jain Kumen

de Beer (1964)

Sovi et Norm (1969)

(1963) CJ) Q)

-l middot-i 0

lJ Q)

Q)

gt- CJ) Q)

c 0

2 44

1 37

183

47

t I

49

487

0 18

47

16

3 02

0 85 1

47

16

137

08

9

10

Paproth ( 1972)

Norw Method (1974)

~ 0

0

u I

C 0 C

1 8 1

180 l 46

1- - -_L~ 46 167 46 1 19

1 1 Soviet Method ( 1974) [1 1 41 46 1 62 13 083 13 1 14 0 8

12 Engl Method (1974) 2 66 35 128 35 2 30 35 1 28

Note

cal Q a) n = --- mean value of the rat i o between calculat ed pile loads and those n Q determined f r om loading test

b) n = number of piles

109

Tab 113

Point resistance of large diameter piles (DIN 4014 Part 2 1977)

Settlement Point pressure 1 Factor -fshy

(cm) (MPa) cf=lOMPa I i=15 MPa C C

Piles without enlarged base

1 05 005 003 2 08 008 005 3 11 0 11 007

15 34 034 023

Piles with enlarged base

1 035 0 04 002 2 065 0 07 004 3 0 90 009 006

15 2 40 0 24 0 16

Note 10 lt qp lt 15 (MPa)C

Tab 114

Skin friction resistance of large diameter piles (DIN 4014 1977)

Strength Static cone pen- Depth below Skin frict ion Factor of sand etration resist surface

(MPa) (m) (MPa) fs

Very small lt 5 - 0

Small 5 to 10 0 to 2 0 2 to 5 003 ln6 to 333

gt 5 005 100 to 200

Medium I I 10 to 15 0 to 2 0 I

I 2 to 7 5

gt 75 I 0045 0075

222 to 133 to

333 200

High I I

i

l

gt 15 0 2

to 2 to 10 gt 10

I I I

I

i

0 006 0 10

gt gt

250 150

Note Skin friction is assumpted as linear until s =2 cm and constant for s gt 2 cm

11 0

Tab 115

Values of the inverse of the point resistance factor (Bustamante 1982) fp

Soil type qPC I 1

Factor - shyfp(MPa)

for piles group

a) Silt and loose sand lt 5 0 40 -b) Moderately compact

5 - 12 040sand and gravel

c) Compact to very gt 12 i 030compact sand and gravel I

Tab 116

Values of the shaft resistance factor fs (Bustamante 1982)

Factor fs

Soil type qs

C Category I(MPa) I A I B I II A III BI

I a) Silt and loose lt 5 60

i 150 I 60 I 120-

sand

b) Moderately corn- I pact sand and 5 - 12 100 200 100 200 gravel i

Icl Compact to very

compact sand gt 12 150 i I 300 150 I 200I

I I and gravel i

I

111

Tab 117

Point resistance factor (proposal)

-

1-fp

qc (MPa)

Gravel

Coarse sand Medium sand

Fine sand Silty sand

25

080

0 70

060

5 0

0 65

055

047

75

054

045

039

10 0

045

036

031

150

035

027

022

200

030

0 23

018

Tab 118

Shaf t r e sistance factor (proposal)

fs

qc (MPa)

Gravel

Coarse sand Medium sand

Fine sand Silty sand

25

80

100

130

10 0

120

150

190

I 200

180

230

300

11 2

Tab 119

Calculated values qcp

for large diameter piles

Pile Literature Length Diameter (m) Measured p Cr1 lcul Settlement Note Authcr(year) No (ml D Dp (MPa)

(s=0 10Dp) (MPa)p ~~JL__

s s ()(mm) Dp

1 Franke (1977) 1 13 11 36 38 117 106 Garbrecht

2

3

2

3

13

14

11

15

1 58 36

37

38

40

215

185

136

123

) qg accord to Franke

4 4 13 15 204 3 2 33 220 108 and Garshy

5 5 6 11 33 35 127 11 5 brecht (1977)

6 6 6 11 153 36 35 146 9 5

7 7 6 1 5 34 35 158 105

8 -shy 8 6 15 2 1 41 3 0 109 52

9 10 9 11 39 52 47

10 11 95 11 43 35 77 70

11 12 9 11 49 66 60

12 13 10 11 15 5 1 4 0 77 5 1

13 14 9 11 1 5 4 8 46 115 77--shy14 Pranke ( 1973) 15 115 18 4 9

) ) average 88

15 13$ 13 5 1 3 19 -2 5 3 2 sd=3 0

16 - - 165 16 5 13 19 30 sv=0 34

17

18

Spang (1972)

llXJ

V90

6 6

6 75

0 7

09

3 2

4 2

32X

42X

x) s =0 10 D p

19 VlaJ 720 1 2 39 3 9X

20 - - VlsJ 6 5 1 5 3 0 3 ox

21 Touma and US59 9 9 o 76 8 0 Reese ( 1977)

22 HH 75 0 61 8 0

23 Gl 180 091 - 2 5

24 BB 137 o 76

sd = standard deviation

sv = standard variation

Tab 1 2 1

Ultimate point resistance coarse and medium sand psf (MPal (Pol ish Specification 1975)

Depth h

Medium sand r = 0 40 N = 200 30 Base diam (Op) and depthbase diam (hDp)

Dense sand r 0 Base diam (Op)

= 0 80 = 50N30 and dpethbase diam (hDp)

(ml Dp = 0 6 m Dp = 1 0 m Dp =12 m Dp = 1 5 m Dp = 0 6 m DP = 10 m DP = 12 m DP = 15 m

Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp

5 10 83 0 85 5 0 075 42 07 33 20 8 3 16 50 14 42 13 3 3

7 14 11 7 1 2 70 11 5 8 10 4 7 2 8 11 7 22 70 2 0 5 8 1 8 47

10 18 16 7 15 10 0 14 8 3 1 3 67 35 167 28 100 2 5 83 2 2 67

15 18 250 18 15 0 16 12 5 15 100 4 2 25 0 3 4 15 0 30 125 27 100

20 2 4 333 2 0 200 185 167 1 7 133 4 7 333 3 8 200 33 167 30 13 3

25 26 41 7 2 2 25 0 20 208 19 167 5 0 41 7 4 0 250 3 5 20 8 3 2 167

w

11 4

Tab 131

Partial safety factors for resistance to axial load for bored piles (Wright Reese 1979)

Partial safety Normal Poor factor for control control

Unit skin resistance 1 70 185

(no load test)

Unit skin resistance 160 1 70

(from load test)

End bearing 165 180

Tab 1 3 2

Probability of failure of bored piles under normal design conditions (Wright Reese 1979)

Probability of Factor of Structure failure safety classification

5 10-3 25 monumental

210shy 22 permanent- 2

5 middot 10 2 0 110shy 1 85

temporary 5 bull 10-l 165

11 5

Tab 133 Results of field tests (Tejchman Gwizdara 1979)

L

II C C C 0 0 0

micro micro

micro micro micro For universal safe~y F2u u CUNo micro C C ~ ~g~ middot- C

~ Permisible micro micro i ~c -i micro

cmiddot-~ micro~ L

micro oo ~ load ~t~ ~~ omicro micro ~ ~ 3Z~ ~ ~ micro

-~~

~ e ~ --middot--

middot- ~ obull 0

~ g ~~ ~~ ~

~ L

o Jl i5 sect~ =gt L Q~ = yen t p Qp Qp

D h Q~ Srrx s tm p s E~ iQ~lQ~cm ~~ KN X ll1l kPa kPa kN kN kN Jl ~e ~ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 70 6 60 4081 1550 2531 38 0 1182 10 4040 175 2041 245 1796 632 141 120

2 90 6 75 5082 3041 2041 598 1785 10 4782 107 2541 1079 1462 282 140 42 5

3 120 720 7259 4041 3218 557 1035 10 3576 119 3630 2158 1472 187 2 19 594

4 150 650 8643 4454 4189 51 5 928 20 2521 136 4326 2158 2168 3 10 166 253

5 130190 195 7750 3011 4709 392 805 10 1075 - 3875 981 2894 3 10 166 253

6 130190 165 9516 5101 4415 536 522 20 1800 - 4758 1962 2796 260 158 412

7 130190 135 8044 5199 2845 646 114 4 15 1834 - 4022 2109 1913 2 47 149 524

8 180 115 11380 4415 6965 388 792 15 1735 - 5690 2747 2943 161 2 37 483

9 76 980 6867 4316 2551 628 110 13 9529 109 3534 1128 2306 383 111 32 8

10 61 7 60 7161 2747 44 14 383 67 15 9404 303 3581 392 3188 700 169 109

11 92 180 4807 883 3924 184 20 8 1329 76 2404 196 2207 450 178 82

12 76 24 5 6769 736 6033 109 20 8 1623 103 3385 147 3238 500 186 43

13 76 137 5396 2060 3336 38 2 63 8 4535 102 2698 589 1109 350 t 58 218

14 120 23 5297 1854 3443 35 0 960 10 1640 39 2649 196 2453 945 130 7 4

15 135 16 7 13489 7554 5935 560 181 10 5260 83 6749 2060 4689 367 127 305

16 170 46 0 8829 2943 5886 333 17 10 3466 39 4415 1373 3042 2 14 1 94 31 1

Average Fi 387 166 Standard deviation Sd 2 1 5 034 Standard variation sv= 0 56 0 20

1234 Spang1972 567 8 Franke 1976 9 10 111 2 1 3 Touma Reese 1974

14 Colombo 1971 15 Kerisel Simons 1962 16 Appendino 1973

11 6

Tab 134

Results of model

SafetyScheme factor

medium F ssand

F p

loose F s

samd Fp

F 3 55 sd _P F 1 32 sd

s

tests (Tejchman Gwizdara 1979)

Diameter D (mm)

30 60 90 133

145 129 108 112

280 3 08 307 294

140 154 153 112

594 3 04 324 426

107 sv 030

0 19 sv 0 14

117

Tab 135

Individual safety factors according to literature

Literature proposal ofLiterature individual safety factor

Fs Fb

Polish Specification (1974) 100 250

Tejchman Gwizdala (1979) 150 400

Bustamante Gianeselli 200 300 (1982)

Decourt ( 1982) 130 400

average 145 3 38

TAB 141 0)

Load settlement curves - measured

Pile No

Settlement 1 c 3 4 5 6 7 8 9 10 11 12

s p s p p s

p p s P

p s P

p s p p s

P p s

P p s

p p s p p S

p I i p s

p p s p

mm MPa rrrn lifl5a MPa mm

lifl5a MPa

mm lifl5a MPa mm

RPa mmMPa nwa MPa mm

RPa MPa mm RPa MPa mm

RPa MPa mm RPa MPa mm

RPa MPa mm RPa MPa mm

RPa 10 045 222 09 1 1 05 20 07 143 06 167 08 125 0 5 20 08 125 10 100 08 12 5 15 67 16 63 20 092 21 7 14 43 08 25 10 20 0 1 1 182 12 167 0 9 22 2 12 167 18 111 14 143 24 83 22 9 1 30 125 240 1 7 I 7 6 1 1 273 1 2 250 14 214 15 200 1 2 250 15 200 25 12 0 19 15 8 30 100 26 11 5 40 1ti 250 20 10 0 14 28 6 14 286 1 7 235 18 222 1 4 286 18 22 2 3 2 12 5 23 174 36 111 3 0 133 50 20 250 22 ~27 1 7 294 1 5 333 20 250 2 1 ~38 1 7 294 1 9 263 37 135 27 18 5 4 2 11 9 33 152 60 2 2 273 24 ~5o 20 300 1 7 353 23 61 22 ~73 18 333 21 286 43 140 30 20 0 46 13 0 36 16 7 80 271 295 27 796 24 333 20 400 27 ~96 25 1320 22 364 25 32 0 53 15 1 36 222 41 195

100 322 31 1 30 333 28 357 22 454 31 1323 29 345 26 385 28 357 60 16 7 40 25 0 45 22 2 125 38 329 32 391 32 391 25 500 32 139 1 30 41 7 32 39 1 4 6 272 48 ~6 0 150 14 2 357 34 1441 36 41 7 27 555 36 ~1 7 34 44 1 36 41 7 175 36 486 39 449 30 583 38 ~61 38 461 200 38 526 42 476 32 625 225 39 577 33 682

(mmMPa) ( 1 MPa)

1

1=2074

t 1=O ~01 =0 98S

a1=1132

b1 =0 212 V =0994

a1=2217

b1=O 131

V =Q 978

a1=1860 b1=0233

V =Q966

a1=1562

b1=0174 V =Q983

a1=1382

b1=O195

V =0975

a1 =20 37

b1 =C 174

V =0957

a1=1443

b1=(l 193 v =O 961

a1=965

b1= 0071 V =0 990

a1=1 91

b1 =o 128

V =0 993

a1=5 83

b1=C124

v =O 981

a1=6 1 4

b1=01 64 v =U 985

li(MPa) ~9 4 7 76 43 57 middot5 1 57 5 2 141 78 81 61 cp (MPa) B8 39 40 33 35 35 35 3 0 39 3 5 49 40 __Ef ~-6 1 2 1 9 1 3 16 15 16 1 7 36 22 16 15 qcp

TAB 141 (continue) Load settlement curves - measured

Pi le No 3ettlement 13 14 15 1 17 18 19 20 21 22 23 24

s p s T5

p s T5

p s T5

p s P

p s P

p s P

p s P

p s P

p s T5

p s T5

p s p p s

p mm MPa lll1l

HPa MPa mm HPa MPa mm

fWa MPa mm fWa MPa lll1l

HPa MPa mm HPa MPa mm

MPa MPa lll1l NT5a MPa HPa MPa 111111

HPa MPa 111111

HPa MPa 1)1111

mra 10 1 7 59 075 133 06 167 075 133 ~95 105 09 11 1 07 143 3 76 1 7 59 08 133 10 100 20 2 4 83 130 154 095 21 1 1 15 17 4 1 75 114 16 125 12 167 ~7 74 33 6 2 1 3 15 3 1 9 103 30 29 103 1 7 176 1 2 250 15 200 r55 118 22 136 16 18 8 38 79 46 66 1 7 182 27 110 40 33 12 1 20 200 1 35 29 6 1 75 229 ~O 133 26 154 175 229 49 82 58 6 9 1 9 21 1 35 115 50 36 139 235 21 3 145 34 5 1 95 256 24 208 ~-4 147 28 17 9 20 250 gt8 86 6 9 72 2 2 233 4 2 11 8 60 39 154 265 22 6 1 55 387 2 15 279 28 214 ~6 16 7 30 120 0 2 2 27 3 o 8 89 80 7 5 2 3 262 80 43 186 31 258 1 7 47 1 36 222 14 05 198 33 124 2 25 320 B 1 98 25 327

100 45 222 18 556 39~ 253 ~-5 222 36 1278 27 370 ~8 113 125 47 26 6 20 625 42 29 8 149 255 28 1446 t50 22 682 3 0 500 175 200 225

(mmMPa) a1=479 a1=1206 a1=14 51 a1=1113 a1=1406 ~=836 a1=843 a1=1176 ~=64 a =561 a1=10 0 a1=9 5 (1MPa) b1=0175 b1=0 178 b1=0 382 b=0287 b1=O 119 p 1=0 137 h1 =o 193 b=0258 p1=0 049 b1=0032 b1=0 276 b1 =0 048

hf (MPa)

v =0998 57

v =0-987 5 6

v =0989 26

v =0992 35

v =0933 Iv =0991 84 73

v =0993 5 2

v =0998 tJ

3 9 =0944 v =0998 v =0996 v =0981

qcp (MPa) 46 39 32 30 32 14 2 39 30

lL 12 1 1 08 12 26 1 7 1 3 13 qcp

lD

N 0

TAB 142

Calculated point resistance curves

Setlement (mm) p(s)

1

n p(s)

Calculated value of the p(s) for pile No

2 3 4 5

n p(s) n p(s) n p(s) n p(s) 6

(MPa)

n p(s)

7

n p(s) 8

n p(s) 9

n p(s)

10 20 30 50 80

100

150 200 225

070 128 177 253 335

375 446 493

157 140 141

127

123

1 16 106

070 1 25 168 232

297

327 378 410

422

078 089 099 1 06

1 10

109 1 11 108

108

073 1 30 176 246

315 349

405 441

146 163

160 145

1 32 125

113 105

056 096

1 26

167 205 222

249 265

271

0 80 096

105

1 11 100 101

092 0 83

082

065

118 162 233

308 345

412 456

108 108

1 16 116 114 111

064

1 12 151 2 10 2 69

298

346 3 76

078 P63 093 tt 13 101 tt 53 100 I 13

108 ~75

103 ~04 096 ~ 55

~ 87

1 26 125 127 126

125

1 17 1 04

052 088

1 15 153

188 2 03 227 242

065 0 74

o 77 0 81 0 75

0 73

063

072 122

1 83 262 347 388

463 5 11

073

0 74

073 0 71 0 65 065

064 1 18

162 233 309

3 46

41 3 4 57

Dp (m) 1 1 Qcp (MPa) 38 (mmMPa) h2 8 1 1 9 Qcpbullv1(MPa) 72

158

39

124 14 55

15

40

n20 15 60

204

33 148 10 33

1 1

35

tt 4o 1 9 67

1 53 3 5

tt 4 0 1 5 51

15

13 5

114 0 15 i-gt 3

2 1

30

tt 6 0 10 3 0

1 1

3 9

12 4 1 9 74

1 1

3 5 h40

1 9 67

Note n = condition coefficient calculated p(s) measured p(s)

10

n

081

084 0 85 0 86 0 85

087

TAB 142 (continue)

Calculated point resistance curves

Calculated value of the p(s) for pile No (MPa) Setlement 11 12 13 14 15 16 17 18 19 20

(mm) p(s) ll p(s) n p(s) ll p(s) n p(s) n p(s) n p(s) n p(s) n p(s n p(s) n

10 106 070 0 71 045 091 054 099 1 32 055 092 053 070 060 081 085 0 72 080 055 078

20 1 90 079 130 059 160 067 1 70 1 30 096 101 091 079 1 12 148 085 1 31 082 098 082

30 258 086 1 76 068 2 15 074 222 1 31 1 26 105 120 080 156 205 081 180 082 132 083

50 363 086 246 075 297 082 296 1 26 1 70 117 161 082 228 095 295 087 256 0 91 184 092

80 471 316 o 77 3 77 088 364 1 18 2 1 o 1 24 199 308 085 393 097 336 1 02 237 095

100 522 349 078 415 092 394 228 1 27 2 16 348 088 442 098 375 104 262 097

150 611 405 479 443 258 117 244 423 529 443 304 101

200 669 441 518 473 276 261 474 587 488 331

Dp (MPa) 1 1 1 5 1 5 18 1 9 19 070 090 12 15

qcp (MPa) 49 4 0 46 49 32 30 32 42 39 30 12 a1 mmMPa) 84 h20 96 84 152 160 152 124 160

IV1 1 9 1 5 15 12 11 1 1 23 21 18 15

qcpmiddotv1 (MPa) 93 60 69 59 35 33 74 88 70 45

- 12287 average = ~ = 098

standard deviation sd = 023 standard variation sv = 023

N

122

TAB 143 Ultimate settlement for shaft resistance - summing up

Ultimate settlements (mm)Literature sand cohesive claysand

soil

Burland Butler Dunican (1966) 7

Touma Reese (1974) 10 Tomlinson (1977) 10 Klosinski (1977) 8

Francke Gerbrecht (1977) 20-30 DIN 4014 part 2 (1977) 20 10 Francke (1981) Reese (1978) (1979) 05-2 of 05-2 of Farr Aurora (1981) shaft dia~ shaft diam

5-20 mm 5-20 mm Tejchman Gwizdala (1979) - Spang (1972) 10

10 10 20

- Francke (1976) 10 20 15 15

- Touma Reese (1974) 13 8 15 8

8 - Colombo (1971) 10

- Kerisel Simons (1962) 20 - Appendino (1973) 10 Promboon Brenner (1981) 10 Prodinger Veder (1981) 12 Decourt (1982) 10-15 10-15

-average s = 14 1 10 126

standard deviation sd = 53 2 1 47

standard variation sv = 038 021 037

123

TABLE 14 4 Al l owab l e base resistance versus sett lement

Pile Li terature ength Diameter (m) Calculated qcp=qcp Settl ement Fp-3- sa (mm)No Aut hor No (m) D DP qcp (MPa) for qcp3(MPa)

1 Francke ( 1977) 1 13 11 38 127 25 Garbrecht

II2 2 13 11 158 39 130 19

II3 3 14 15 40 133 33

II4 4 13 15 204 33 110 23

II5 5 6 11 35 117 22

II6 6 6 11 153 35 117 19

II

8

7 7 6 15 35 1 17 25

II 8 6 15 21 30 100 21

II9 10 9 11 39 130 13

II10 11 95 11 35 117 15

II11 12 9 11 39 163 11

II12 13 10 11 15 40 133 7

II13 14 9 11 15 46 153 9

14 Francke ( 1973) 115 11 5 18 30 100 15

II15 135 135 13 19 32 107 29

II16 165 165 13 19 49 163 35

17 Spang (1972) V70 660 070 32 107 28

18 II V90 675 0 90 42 140 16

II19 V120 720 1 20 3 9 130 16

II20 V15C 650 150 30 100 16 average for pi les 198

standard dev sd = 78

standard var sv = 039

)assumed qc = p for s = 010 Op sonding meRsurement were not availab le

IV

TA~LE 15 1

Comparison of the initial sl ope of the pile point resistance - settlement curve

Accardi ng to 1 2 3 4

In i t i ~l 5

slope a1 for the pile No

6 7 8 9

(mmMPa)

10 11 12 13 14 15 Note

a 1 for s=10 mm 222 11 1 a1 for s=20 mm 21 7 14 3 calculated 207 113see Tab 14 1 Bo Berggren (198 )230s=20 mm

Schmertmann s method (see 202B Berggren 1981)s=20 mm

No 1 _ llNo - 6 1 97 098

202 250

22 2

400

30 8

090

14 3

200

186

076

167

182 156

286

18 2

107

125

167 138

091

20 0

222

204

426

263

098

125

167

144

087

100

11 1 9 7

182

23 5

1 03

12 5

14 3

11 9

174

164

105

67 83

58

14 6

125

1 16

63

9 1

61

103

59

8 3 48

123

13 3

15 4 12 1

1 10

167 21 1

aceto hypershy14 5 bola type curve

1 15

No 2 NQj = n1

No 4Noz ~ na No 5Naz= T]g

105 1 27

106

093

1 13

160

1 23

108 1 17

157

100

121 109

1 92

118

1 16 1 14

164

2 12

120

122

1 15

143

1 76

151

149 1 73 1 27 146

TAllLE 151 (continue)

Compa ri son of the initial slope of the pile point resistance - settl ement curve

Initial slope a1 for the pile No (mmMPa)According Note to 16 17 18 19 20 21 22 23 24 -a1 for s=10 mm 133 - 105 11 1 143 76 59 133 100 a1 for s=20 mm 174 - 114 125 167 74 62 153 10 3 calculated see 11 1 146 84 84 118 64 56 100 95Tab 141

Bo Berggren 198 67 78 25 0 114s=20 mm Schmertmann s method (see B 136 67 250 146 Berggren 1981) s = 20 mm

nG = 108 No 1NoJ = n 1 20 125 1 32 121 1 19 105 1 33 105 sd = 0 14

SY= 013 No 2 i) = 1 29ro1 = n1 157 136 149 142 1 16 1 11 1 53 108 sd = 019

SY= 015 No 4 iis = 143 INo2 = ns 091 126 1 63 111 sd = 033

SY= 0 23 No 5 ii9 = 1 37183 108 163 142INoz = n9 sd = 0 37

SY = 027

N Vl

126

TABLE 152

Measured and calculated pile point resistance

Pile Calculated Measured Measured No qcp P for

s=10 mm P for s=20 mm

~ 10 mm ~ 20 mm

- (MPa) (MPa) (MPa) - -

1 38 045 092 84 41 2 39 09 14 43 28

3 40 05 08 80 50 4 33 07 10 47 33 5 35 06 11 58 30 6 35 08 12 44 29 7 35 05 09 70 39 8 30 08 12 38 25 9 39 10 18 39 22

10 35 08 14 44 25 11 49 15 24 33 20 12 40 16 22 25 18 13 46 1 7 2 4 27 19 14 30 075 13 40 23 15 32 06 095 53 34 16 49 075 115 65 43 17 32 - - - -18 42 095 1 75 44 24 19 39 09 160 4 3 23 20 3 0 07 12 43 25

average= 484 291

sd 163 088 sv 034 030

Tab 153 Results of calculation for piles No 1-24

Pile No

Length (m)

Overburden pressure 0 vs

0hs (kPa)

0ve (kPa)

0 nc (kPa)

- -ov=o1 (kPa)

- -OV=03 ( kPa)

00 (kPa)

p(a il ( kPa)

s (a 1) (mm)

A2 ( 1 )

E t

(kPa)

Md ( 1 )

K (1)

E I

t (kPa)

( kPa) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

l 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

13 12 14 13 6 6 6 6 9 95 9

10 95

11 5 135 165 66 675 72 65 99 75

180 137

l 33 133 123 116

70 70 70 70

104 102 95

102 95 94

106 139 95

101 106 97

180 137 221 215

53 53 49 46 28 28 28 28 42 41 38 41 38 38 42 56 38 40 42 39 72 55 88 86

202 202 216 202 1114 104 104 104 146 153 146 160 153 181 209 251 120 128 134 123 238 180 305 277

202 202 216 202 104 104 104 104 146 153 146 160 153 181 209 251 120 128 134 123 238 180 305 277

168 Hi8 170 159 87 87 87 87

125 128 121 131 124 138 158 195 108 115 120 110 209 159 263 246

128 128 133 124 66 66 66 66 94 97 92

101 96

110 126 154 79 84 88 81

155 118 197 182

141 141 145 136

73 73 73 73

104 107 104 111 105 119 137 117 89 94 99 91

173 132 219 203

950 975

1000 825 875 875 875 750 975 875

1225 1000 1150 750 800

1225 800

1050 975 750

2000 2000 625

1500

218 139 255 190 16 1 146 210 12 7 10 1 11 7 84 73 69

104 167 210 124 103 10 1 109 142 120 76

153

0802 0802 0822 0820 0798 0798 0798 0798 0791 0798 0800 0811 0814 0837 0837 0830 0769 0 768 0771 0 775 0 780 0 781 0 788 o 779

35296 81603 43312 65222 44019 67515 4609 91313 78186 60572

118115 15129 5 184075 95577 67017 81607 33252 67554 85294 75994 78816 74857 55101 54862

075 075 0 77 075 084 084 084 081 079 078 084 080 083 076 076 078 0 77 081 079 076 082 087 064 0 74

278 643 337 512 542 832 567

1085 766 572

1216 1417 1832

796 520 709 353 735 878 781 630 726 302 366

26472 61202 33350 48917 36976 56713 38656 73964 61767 47246 99217

121036 152782

72639 51932 63653 25604 54719 67382 57755 64629 65126 35265 40598

a=282l a =l781 y=axs S=0621 B=0 844

V=0 057 V=0 128 _ Iv -J

~

N co

Tab l53 Results of calculation for piles No 7-24

Pile No

17

1 2 3 4 5 6 7 8 9

70 11 72 13 74 75 16 17 78 79 20 27 22 23 24

Ground water

18

-20 m b s

-28 m -335 m -330 m -3 15 m dry dry -53 m -85 m

E t (kPa)

19

33653 64979 35364 45664 47969 54583 37574 63072 74548 57753

71 2618 123531 150297

71239 48619 59204 39744 77208 77863 62049 90407 95844 57762 62937

vxEt=E Md (kPa)

20

25240 48689 27230 34248 35254 45849 31562 51040 58893 45047 94599 98825

724747 54142 36950 46179 30603 57678 61572 47157 47734 83384 36968 46569

a=898 S=l 27 =0314

K (l )

21

265 511 275 358 517 672 463 749 730 546

1160 1157 7496

593 377 514 422 775 802 638 723 929 377 420

a=l422 S=l 05 =0187

E=E = t1 3

g-gcp (kPa)

22

51046 52799 54566 42492 45870 45870 45870 37547 52799 45870 77039 54566 65438 52799 40826 71039 40926 58739 52799 37541 82549 82549 40826 59945

Calculated s

(mm)

23

708 128 72 7 15 3 724 146 144 17 3 71 3 11 5 11 2 732 13 2 707 1 5 1 13 7 93

102 118 137 728 12 l 69

11 9

s__caL n=smeos

() 24

050 092 050 087 0 77 7 00 069 l36 l 12 098 133 l81 l97 103 090 065 0 75 099 117 126 090 101 097 078

ri=l00 sd=035 sv=035

K = l50gcp

25

570 585 600 495 525 525 525 450 585 525 735 600 690 450 480 735 480 630 585 450 825 825 1180 645

E l

(kPa)

26

67684 69465 72250 57726 44856 44856 44856 38448 59659 54306 74956 63214 70704 49089 56783 79502 45283 61081 58207 42927

708572 94785 71033 91898

E = t E middotA2

l

(kPa)

27

54283 5571 l 59389 47336 35795 35795 35795 30682 47790 43336 59964 51266 57553 47088 47024 65987 34823 46970 44877 33269 84639 74027 55974 71589

Calculated s

(mm)

28

l O l 12 l 11 7 737 15 9 18 7 185 21 1 12 6 12 2 133 14 l 150 13 7 13 l 14 7 709 12 7 738 755 12 4 735 50

100

- -

Tab l53 Results of calculation for piles No l-24

Pile

29

l 2 3 4 5 6 7 8 9

10 ll 12 13 14 15 76 17 78 19 20 21 22 23 24

sea l n= middotshy

smeas

28 TT

30

0 46 087 046 0 72 099 l 28 088 l 66 l 25 l 04 l 58 l 93 2 17 l 32 078 0 70 088 l 23 l 37 l42 087 l l 3 066 065

n=l 10 sd=0 44 sv=040

s seal for p n=s=lOrnn ac cording to s = 70mm

(mm)

37 32

5 l 0 51 ll 8 l18 64 064

13 0 l30 85 0 85

13 3 l 33 83 0 83

184 l84 ll6 l l 6 105 l05 137 l 37 21 3 2 12 19 4 l94 107 l06 l l 3 l l 3 84 084

92 092 l 0 9 l09 128 l28 83 083

l 0 3 l03 88 088 79 0 79

n=1 73 sd=025 sv=027

s for p according to s = 20mm

(mm)

33

10 4 184 102 18 6 15 6 200 14 9 276 209 18 4 219 292 274 185 17 9 12 9 -

169 194 219 172 200 143 15 0

seal n=s=20rnn

34

052 092 051 093 078 l00 075 l 38 l 05 092 l l 0 l46 l 37 093 090 065

-085 097 l1 0 086 l00 072 075

n=093 sd=025 sv=0 27

s for p according to s = 30rnn

(mm)

35

142 223 14 l 22 3 198 249 142 34 5 290 249 274 345 33 l 243 22 6 168 -

24 7 26 6 293 24 3 279 187 213

seal n=s=30rnn

36

047 0 74 047 0 74 066 083 047 l 15 0 97 083 091 l 15 l10 0 81 075 056 -

082 089 098 081 093 062 0 71

n=o80 sd=020 _ sv=0 25 N

IO

APPENDIXES

APPENDIX 1 1 1

Pi le No 1 Length 13 m D 10 m

Areas of influence

-

qe

(MPa)

1 fp

___9c_ f

(MPR) zyen

(MPf) qcp (MPa)

Soil type

22 20 18 16 14 1 2

l 2 (m)

10

1 0 08 06

16 15 16

026 027 026

42 41 42 Sand

04 14 U28 39 02 14 028 39 41

02 16 0 26 42 04 16 026 42 06 16 026 42 08 14 028 39 Sand 1 0 13 030 39 12 15 027 4 1 38 14 13 030 39 16 12 032 38 18 12 032 38

40 20 10 036 36 22 10 036 36 24 9 U39 35 2 6 8 043 34 28 10 036 36 30 10 036 36 3 2 10 036 36 34 10 0 36 36 36 11 0 34 37 38 11 034 37

l 1 (m)

40

42 44

11 0 34 37 15 1

46 48 50 52 54 56 58 60 62 64 66 68 70 7 2 74 76 78 8 0

APPENDIX 112

Pile No 2

to little depth of sounding

q~ = middle values for 11 = 2 Op

q~ = 145 MAa (Francke Garbrecht 1977 Tab 2 p 50) (Fi g No 2)

for sand

qcp = 0275middot145 = 40 MPa q~p =V ~~s) middot 40 = 097middot40 = 39 MPa

Pile No 4

q~ = 120 MPa sand (Fig No 4)

q = 0 315middot12 = 3 8 MPa q bull 38 = 086middot38 = 33 MPa=V Jmiddot54

1

cp middot bull cp

Pile No 12

qg = 155 MPa sand (Fig No 13)

qcp = 026middot155 = 4 03 MPa

Pile No 13

q~ = 200 MPa sand (Fig No 14)

q = 0 23middot20 = 46 MPacp

APPENDIX 113

PileNo3 Length 14 m D 15 m

Areas of influence

-

qe

(MPa)

1 Tp

----9cf

(t-1Pf) r~

(MPf) qcp (MPa)

Soil type

22 2D 18 16 17 025 43 14 17 II II

L 2 17 II II

12 (m)

16 10 08 06

17 17 17

o

II

II

II

II

Sand 04 17 II II

02 19 024 46 b9

02 19 024 46 04 17 025 43 06 15 027 41 08 13 030 48 1 0 12 032 38 12 11 033 36 14 13 0 30 39 16 14 028 39 18 12 032 38 40 20 16 026 42 2 2 16 026 42 24 11 033 36 26 11 033 36

60 28 30

10 10

036 036

36 36

Sand

32 10 036 36 34 12 032 3 8 3 6 12 032 38 38 12 032 38

1 1 (m)

40

4 2 4 4

13

14 16

030

028 026

39

39 42

46 13 030 39 48 12 032 38 50 14 028 39 52 10 036 36 54 13 030 39 56 14 028 39 58 15 027 41 60 15 027 ~-1 236 62 64 66 68 70 72 74 76 7 8 80

APPENDIX 114

Pi l e No 5 Length 6 0m D 11 m Dp 11 m

Area s of i nfluence

-

qc

(MPa)

1 Tp

-3Lf

( MPf) l ~

(MP~) qcp (MPa)

Soil type

2 2 2 0 18 1 6 14 1 2 155 U i1 33

l 2 (m)

1 2 10 08 06

15 14 12

022 023 0 27

3 3 32 32

Fine sand

+ silt

04 125 026 33 02 16 0 21 34 39

02 16 021 34 04 13 025 33 06 08 10

15 5 17 20

022 0 20 018

34 34 36

35 Fi ne sand

1 2 20 0 18 36 14 20 018 36 + s ilt 16 20 0 18 36 18 165 020 32 20 165 0 20 32 22 17 0 20 34 24 26 2 8 30 32 3 36 38 4 0

19 21 5 21 5 21 5 20 19 5 19 5 20 215

01 9 ---

018 018 0 18 0 18 -

3 6 40 40 40 36 35 3 5 36 4 0

l 1 (m) 4 2

44 20 19

018 01 9

36 3 6 157

46 48 50 5 2 54 56 58 6 0 62 64 66 68 70 7 2 74 76 7 8 8 0

APPENDIX 1 15

Pi le No 6 Lengt h6 0 m D 11 m

Areas of qc 1 __9_c_ qcp Soil typei nfluence fp f 1 yen (MPa) (MPf ) (MPf) (MPa)

-2 2 20 18 16 t 4---0 14 75 038 29 L2 20 018 36 Fi ne sand

1ti 10 30 40 + s i lt12 08 19 0 19 36(m) 06 17 020 34 04 14 023 32 02 9 034 31 56

02 6 043 26 04 12 026 3 1 06 17 020 34 08 11 028 3 1 1 0 14 023 32 35 1 2 17 020 34 Fi ne sand14 19 019 35 16 20 018 36 + silt18 18 0 19 34 20 14 023 32

46 22 12 026 31 24 12 026 31 26 15 022 33 28 18 019 34 30 20 018 36 3 20 0 18 36 34 20 018 36 3G 20 018 36 38 20 018 36 4 0 20 018 36

l 1 42 22 40

(m) 44 22 40 46 L2 4 0 158 48 50 52 54 56 q =V ~ - 3 b =0 99middot35 = 35 MPp cp 53 58 6 0 62 64 66 68 70 72 74 76 78 80

APPENDIX 116

Pi leNo7 Length 60 m 0 15 m

Areas of influence

-

qe

(MPa)

1 Tp ~

(MPg) r~

(MPf) qcp (MPa)

Soil type

22 20 18 16 9 U33 30 14 10 031 31 12 135 024 32

l 2 (m)

16 10 08 06 04 02

13 12 6

10 175

025 026 043 0 31 020

33 31 26 3 1 35 50

Fine sand

+ silt

02 04 06

17 10 115

0 20 0 31 027

34 31 3 1

08 10

145 185

023 019

33 35 3 5

1 2 14

20 19

018 0 19

36 36 Fine sand

l 1 (m)

60

16 18 20 22 24 26 28 30 3 2 34 36 38 40

42 44 46 48 50 52 54 56 58 6 0

185 125 125 165 17 19 21 215 205 20 21 20 20

24 22 20 215 22 22 21 19 18 22

0 19 026 0 26 020 020 019 --

018 018 -

018 01 8 --

018 ----

0 19 0 19

35 33 33 33 34 36 40 40 37 36 40 36 36

40 40 36 40 40 40 40 36 34 40 219

+ silt

62 64 66 68 70 72 74 76 78 80

APPENDIX 117

Pile No 8 Length60 m D 15 m Dp 2 1 m

Areas of influence

-

qe

(MPa)

1 r +

(MPg) r~

(MPf) qcp (MPa)

Soil type

22 18 019 34 20 16 021 34 18 125 026 3 3 16 115 027 31 14 11 028 3 1 12 11 028 3 1

l 2 (m)

10 08 06

105 11 145

D29 028 023

30 31 33

Fine sand

+ silt

04 18 0 19 34 02 18 019 34 71

02 15 022 33 04 11 0 28 31 06 13 0 25 33 08 20 0 18 36 10 15 022 33 12 13 025 33 14 175 020 35 16 18 20 22

20 21 20 15

018 -

018 0 22

36 40 36 33

35 Fine sand

+ s i lt

24 26 28 30 3 =

13 16 175 19 20 20

025 021 020 0 18 018 018

33 34 3 5 34 36 36

36 38 4 0

20 20 21

018 0 18 -

36 36 40

11 (m)

4 2 4 4 4 6 48 50 5 2 5 4 56 5 8 60 6 2 6 4

20 20 21 22 21 20 19 175 19 20 25 28

018 0 18 ---

01 8 01 9 0 20 0 19 018

36 36 40 40 40 36 36 35 36 36 40 4 0 23 0

6 6 68 70 72 74 76 78

qcp 1f5=v 2T middot35 = b85 middot35 = 30 MPa

80

APPENDIX 118

Pi le No 9 Le ngth 90 m D 11 m m

Areas of 1Qe -9c qcp Soil typeinfluence Tp f ryen (MPa) (MPg) (MPf) (MPa)

-

2 2 2 0 18 16 14 lc 11 034 37

12 10 10 036 36 12 08 9 039 35 Medium(m) 06 10 036 36 sand04 10 036 36

02 11 034 37 43

02 12 032 38 04 12 0 32 38 06 12 0 32 38 08 13 030 39 10 13 030 39 12 13 030 39 14 14 028 39 16 14 028 39

44 18 14 028 39 20 14 028 39 39 Med ium 22 15 027 4 1 sand 24 16 026 4 2 26 17 025 43 28 13 0 30 39 3 0 9 039 35 32 13 030 39 34 16 026 42 36 17 025 43 38 17 025 43 40 19 024 4 6

11 42 17 025 43

(m) 44 15 027 41 17 7 46 48 50 52 54 56 58 60 6 2 64 66 68 7 0 7 2 74 76 78 80

APPENDIX 119

Pi 1 e No 10 Length 95m D 11 m m

Areas of influence

-

qe

(MPa)

1 fp

-9c f

(t-1Pf) [~

(MPf)

qcp

(MPa)

Soil type

22 20 1 8 16 14 L 2 13 Uti 3J

l 2 (m) 12

10 08 06 04

18 18 28 19

0 19 019 0 19 019

34 34 34 34

Fine

sand

02 21 40 42

02 20 4 0 04 17 020 34 06 21 40 0 8 10

23 22

40 40 Fine

1 2 14 16 18

21 20 16 15

0 21 022

4 0 4 0 34 33

sand

44

20 2 2 24 26 28 30 32 34 36 38 40

14 14 13 11 11 14 17 14 12 13 12

023 023 025 0 28 028 023 020 023 027 025 027

32 32 33 31 31 32 34 3 2 32 3 3 32

l 1 (m) 42

44 12 13

0 27 025

32 33 15 2

46 48 50 5 2 5 4 56 5 8 6 0 6 2 6 4 66 6 8 70 72 74 76 78 80

APPENDIX 11 10

Pi 1 e No 11 Lengt h 9 0m D 11 m m

Area s of influence

-

Qe

(MPa)

1 fp

__k_ f

(MP~) ryen

(MPf) qcp (MPa)

Soi l type

22 20 18 16 14 12 lb 55

12 (m)

1 0 08 06 04

23 19 20 21

024 023

55 46 46 55

Medium

sand

02 22 55 62

0 2 04

24 25

55 55

06 08

27 28

55 55

10 12 14

28 28 28

55 55 55 49

16 26 55

44

18 20 22 24 26 28 30 3 34 36 38 40

24 19 18 17 22 21 17 11 13 12 11 9

024 024 025

025 0 34 030 032 034 039

55 46 43 43 55 55 4 3 37 39 38 3 7 35

1 1 (m) 42

Ll Ll

12 16

032 0 26

38 4 2 209

46 48 50 5 2 54 56 58 60 62 64 66 68 70 72 74 76 78 80

APPENDIX 141

0 2 3 4 p [MPa)

PILES WITH 40 ENLARGED BASES

80

120

160 C----0

200 IN4014 s (1977)

[mm]

P s calculateds P p(s)(mm) (MPa)(mmMPa)(MPa) ()

10 035 286 046 20 065 308 080 30 090 333 104

150 24 625 214 200 229

ai = 2605 (mmMPa) b1 = 0243 1MPa V 1000 bi = 1b = 411 MPa

_ 411 MP Vi - 24 a

() assumed

average Dp = 18 m

qcp = 24 MPa ai = 184 (mmMPa) (28-4middot24)

Vi = 1 2 (3-18)

qcpmiddotvi = 29 MPa

40

80

120

160

200 s

[mm]

DIN 4014 Part 2 ( 1977)

0 1 2 3 4 5 p [MPal

PILES WITHOUT ENLARGED BASES

C----0

DIN 4014 ( 1977

s calculated s p -p- p(s)

(mm) (MPa)mmMPa)(MPa) ()

10 05 20 062 20 08 25 113 30 11 27 3 155

150 34 441 385 200 424

ai = 2085 (mmMPa) bi= 0 157 1MPa V = 0970

bi= 1s = 637 MPa

Vi 187=3f =

() assumed

average Dp = 12 m

qcp = 34 MPa a1 = 144 (mmMPa)

Vi = 18

qcpmiddotvi = 61 MPa

Range qc = 10-15 MPa

(28-4bull34)

(3-12)

1 1 q = r -r- = 036 for qc = 10 MPaCp p Ip+= 027 for qc = 15 MPa

qcp = 36-405 MPa P

APPENDIX 142

Touma F and Reese L (1974)

Soil parameters pile parameters and base resistance see fig bullbullbullbull

TAB

Measured load settlement curves

Settlement s

mm

10 20 30 40 50 60 80

100 120

a 1 (mmMPa) bi(MPa) V

N3u

q =04 -N30 (cMPa) ()

1 qCp=--rpbullqC

Pile No 21 (US 59) 22 (HH) 23 (G1) 24 (BB) Notep Sp p S p p S p f Sp MPa mmMPa MPa mmMPa MPa mmMPa Mla mmMPa

131 76 169 59 075 133 100 100 269 74 325 62 131 153 1 94 103 381 79 456 66 165 182 273 11 0 488 82 581 69 1 90 21 1 349 115 581 86 694 72 2 15 233 424 118 675 89 800 75 229 262 813 98 245 327 884 113 925 130

64 56 100 95 U049 0032 0276 0048 0944 0998 0996 0981

80 gt100 30 60 32 gt 40 12 24 ()

Bergdahl (1982)

gt5 5 gt55 32 4 3

(0 18middot32) (018middot40) (0265middot12) (018middot24)

CONTACT PRESSURE p [ MPa]

0 2 4 6 8 100 N-------r---------------(us 59) ( HH) ( BBi

E E SQ-------lt+-----+--------------lt

VI

1shyz UJ

~ 100 1---------i----+----+----+------l------I -J I shyI shyUJ V)

so~----~--~-- ~--~

APPENDIX 143

us 59 fYJo 0 50 00

ff-t r-=-~c~=~-r~c_---_---l-~e-J-C~ 0 ------

CLAY

FINE SANO

J lD- 760 mm

f5m~--~--~

Pile US 59 and results from penetration test

HH IV_l() so 100 r=-=-==-==-r-~--=-=- 0 0 II 15- flf ~ II~ Ibull If t f

CLAY SAND

Sm

)

= -middotl lo - GtOmm

~ JI

SILTY SANO tOm

Pile HH and results from penetration t est

APPENDIX 14 4

61 NJO 50 --------00

11 1 =f J - 1 -- 0

CLAYSILT

E ~ Sm ltrj

SILTY SAND

q I lDmiddot 910 mrn tom

I) t bull

Pile G1 and results from penetration test

88

0 50 too ~1-e I q 111bull - Q

CLAY

SIL TY SAND 5m

]

l lDmiddot760mrn

Om

Pile BB and results from penetration test

APPENDIX 145

Klosinski B (1977)

Loading tests 50 bored piles 09-125 m diameter average Op= 11 m On t he sett l ement of rigid pla te the settlement of t he pi le base is given by

PmiddotOSp = T-K b

where Mb - equivalent deformability modu lus

1) Sand and sandy gravel of medium density

Mb = 25-50 MPa

According to Bergdahl (1979) medium sand is between

q(l) 5 MPa (Io=035)c2)

ql = 10 MPa (Io=065)C

from fig 117 rp1 = 055 for qc = 5 MPa 1Tp = 036 for qc = 10 MPa

q(l)= 0 55middot5 = 2 75 MPacp bull

q(2= 0 36middot10 = 360 MPacp

allowable p~ 1)= ~p = yen = 092 MPa and p~2) = ~ = 120 MPa

settlement of the pi l e base

5(1)= o 92 middot 1bull1 = O 0135 m = 13 5 mm p 325 middot middot

5( 2)= 1bull2bull1middot 1 = O 0088 m = 8 8 m p 350 bull bull

1) _ s _ 135 _ 14 7 (mm) a(2) _ 88 _ a 1 - p - o---92 - bull NPa bull 1 - T-7 - 733 (Wa)

2) Loose sand lo= 030-040

Mb = 12- 25 MPa

q~l) = 44 MPa q~2)= 58 MPa

1Tp = 058 and 052

q(3) = 0 58middot4 4 = 2 55 MPa middot q( 4) = 0 52middot5 8 = 3 02 MPa cp bull middot bull cp bull middot middot

allowable p~ 3)= 4i = 085 MPa p~4)= yenl = 101 MPa

s(3)_ 085-11 = 26 mmmiddot s(4)_ 101middot11 = 148 mm p - 312 p - 3 25

STATENS GEOTEKNISKA INSTITUT Swedish Geotechnical Institute S-581 01 Linkoping Tel 01311 51 00

Serien Rapport ersatter vara tidigare serier Proceedings (27 nr) Sartryck och Preliminara rapporter (60 nr) samt Meddelanden (10 nr)

The series Report supersedes the previous series Proceedings (27 Nos) Reprints and Preliminary Reports (60 Nos) and Meddelanden (10 Nos)

RAPPORT REPORT Pris kr

No Ar (Swcrs)

1 Grundvattensankning till foljd av 1977 50shytunnelsprangning P Ahlberg T Lundgren

2 Pahangskrafter pa langa betongpalar 1977 50shyL Bjerin

3 Methods for reducing undrained 1977 30shyshear strength of soft clay K V Helenelund

4 Basic behaviour of Scandinavian soft 1977 40shyclays R Larsson

5 Snabba odometerforsok 1978 25 shyR Karlsson L Viberg

6 Skredriskbedomningar med hjalp av 1978 40shyelektromagnetisk faltstyrkematning - provning av ny metod J Ingands

7 Forebyggande av sattningar i 1979 40shyledningsgravar - en forstudie U Bergdahl R Fogelstrom K - G Larsson P Liljekvist

8 Grundlaggningskostnadernas fordelning 1979 25 shyB Carlsson

9 Horisontalarmerade fyllningar pa los 1981 50 shyjord J Belfrage

RAPPORTREPORT

No

10 Tuveskredet 1977-11-30 Inlagg om skredets orsaker

11a Tuveskredet geoteknik

l1b Tuveskredet geologi

11 c Tuveskredet hydrogeologi

12 Drained behaviour of Swedish clays

R Larsson

13 Long term consolidation beneath the test fills at Vasby Sweden YCE Chang

14 Bentonittatning mot lakvatten T Lundgren L Karlqvist U Qvarfort

15 Kartering och klassificering av leromradens stabilitetsforutshysattningar L Viberg

16 Geotekniska faltundersokningar Metoder - Erfarenheter - FoU-behov E Ottosson (red)

17 Symposium on Slopes on Soft Clays

18 The Landslide at Tuve November 30 1 977 R Larsson M Jansson

19 Slantstabilitetsberakningar i lera Skall man anvanda total spanningsanalys effektivspanningsanalys eller kombinerad analys R Larsson

20 Portrycksvariationer i leror i Gateshyborgsregionen J Berntson

21 Tekniska egenskaper hos restproshydukter fran kolforbranning shyen laboratoriestudie B Moller G Nilson

Ar

1981

1981

1981

1981

1981

1982

1982

1982

1983

1982

1983

1983

1983

Pris kr (Swcrs)

50shy

50shy

40shy

50shy

100shy

60shy

80shy

60shy

190shy

75shy

60shy

150shy

65shy

RAPPORTREPORT

No Ar Pri s kr (Sw crs)

22 Bestamning av jordegenskaper med sondering - en litteraturstudie U Bergdahl U Eriksson

1983 75 shy

23 Geobildtolkn ing L Vi berg

av grova moraner 1984 70 -

24 Radon i jord -Exhal ation- vatten kvot -Arstidsvariationer - Permeabilitet A Lindmar k B Rosen

1984 75 shy

25 Geoteknisk terrangklassificering for fysisk planering L Viber g

1984 120shy

26 Large diameter bored piles in nonshycohesive soils Determination of the bearing capacity and settlement from results of static penetration tests (CPT) and standard penetration test (SPT) K Gwizdala

1984 85shy

11

1 LARGE DIAMETER BORED PILES IN NON-COHESIVE SOILS

11 peterminati on of bearing capacity of bored piles

from results of Cone Penetration Test (CPTl

The methods published in available literature up to 1976

were compiled by D Rollberg (1976 1977) It contains

totally 25 methods

- 22 use the results of static soundings (CPT)

3 use the results of standard soundings (SPT)

The failure load Qu of the pile is evaluated as the sum

of the pile point resistance Q and the pile skin reshypu sistance Qsu

(111)

Pile point resistance Q based on static soundina reshypu shysults can be expressed as

1- bull qP A ( 1 1 2)f C p

p

where

fp = point resistance factor

qP mean sounding resistance of static cone C

penetrometer in the area of the pile point

A cross-sectional area of the pilep

The pile skin resistance is expressed as

1 s -- bullq bullU middot Lih (113) fS C p

where

fs = shaft friction factor

sqc mean sounding resistance along the depth h

and skin surface area U middotLih p

1 2

The methods differ in

- the calculation of qPC

(074 to 40) Db below the pile base (Fig 11 1)

(10 to 80) Db above the pile base (Fig 1 11)

- the evaluation of the point resistance factor usually

values off gt 10 are used p

- the calculation of qsC

- the evaluation of the shaft friction factor

fs = 50-300 is applied

In Table 111 methods for determination of the bearing

capacity of bored piles are listed Rollberg 1977 The

point load the skin friction load and the ultimate total

load are evaluated for bored piles (shaft diameter D ~

03-090 m) from static sounding results in non-cohesive

soil

Calculation results based on static sounding measurements

are shown in Table 112 for pile point pile shaft and

total pile load respectively

The table shows that

- a ll methods overestimate the ultimate point resistance

- the best correlation for ultimate point resistance is

obtained with the Soviet method Trofimenkov 1974

n1 = 114

- there a re only five methods for evaluation of the ultimate

skin resistance

- all methods with exception of the Soviet norm Trofimenkov

1969 method overestimate the ultimate shaft resistance

- the Norwegian method Senneset 1974 gives the best

correlation for the ultimate shaft resistance =119n 2

- with exception of the Soviet methods the total ultimate

load is on the average overestimated by all methods

1 3

Taking into account the above results the Soviet and

the Norwegi an methods are presented below

The Soviet method JG TrofimenkgtV 1974

1 qP bullA + qsbullA (114a)Qu = Qpu+Qsu fp C p f C s s

where

11 40 DP 12 1 0 D p h+l1 qp r dhqcC l1+l2 h-12

0ct-0ceqs C u middoth s

f(qp) -+ see Fig 1 bull 1 2 fp C

f f ( qcs) -+ see Fig 1 1 3 s

The Norwegian methon K Senneset 1974

1 p A 1 s bullA ( 1 bull 1 bull 4b)-f-middotqcmiddot p + -f-q s p S C

where

11 30 D p

12 50 D p h+l11 f dhqP l1+l 2 qc

C h-12 h s 1

= f dhqc qch 0

f 20 p

f = f (q~ ) + see Fig 114 s

Note a ) The total skin friction -f-middotq~ is assumed to be

no less than 10 kPa even~ith a very little

cone penetrometer resistance

b) The poin t resistance -f-middotq~ is assumed to be

maximum 10 MPa even iJl case of very dense sand

14

It must be underlined that the best correlation for

the pile point is obtained with the Soviet method

101 for 94 driven piles in non-cohesive soil

- 172 114 for 46 bored piles in non-cohesive soil

Trofimenkov 19731974 showed the results of comparison

of the ultimate loads determined by formula (114a)

Q~ and by pile load tests Q~ for 153 driven friction

piles at the 57 various sites see Fig 115

In Germany a lot of investigations were made before

establishing the DIN 4014 part 2 (1977) on large diameter

piles

In Table 113 and 114 the results from these investigashy

tions are generalized

The data in the tables were obtained from 35 test loadings

(4 of which were published by Franke 1973 The diameter

of the piles was from 08 to 25 m the length from 5 m

to 34 m and the cone penetrometer resistance varied from

10 MPa to 15 MPa

Bustamente and Gianeselli 1982 proposed a prediction

of the pile bearing capacity by means of the static

penetrometer Their proposal was based on the intershy

pretation of a series of 197 full scale static loading

tests In this paper the results from tests of 55 bored

piles are chosen The diameter of the piles varies from

042 m to 150 m and the length from 6 m to 44 m The

equivalent cone resistance was determined as showed in

Fig 116 The authors have noticed that the point

resistance factor f depends on the nature of the soil p and its compactness but also on the different pile placeshy

ment techniques (see Tab 115)

Piles of category group I

- Plain bored piles - Cased bored piles

- Mud bored piles - Hollow auger bored piles

- Type I micropiles - Piers (grouted under low - Barrettespressure)

15

In Tab 116 values of the shaft resistance factor

fs are given

Category IA

- Plain bored piles - Mud bored piles

- Hollow auger bored piles - Cast screwed piles

- Type I micropiles - Piers

- Barrettes

Category IB

- Cased bored piles - Driven cast piles (concrete or metal shaft)

Category IIA

- Driven precast piles - Prestressed tubular piles

- Jacked concrete piles

Category IIB

- Driven metal piles - Jacked metal piles

It can be noted that the values in Tab 116 are in

genera l of the same range for the driven and the

bored piles

According to the Polish Specification 1979 the point

and shaft resistance factor are given by

1-f- = kmiddota

p p

where

ap 035 for sand

k coefficent of unhomogeneity k qcp min

qcp

= 0065 for sandfrac12

1

16

Similar results can be observed in Fig 116a and

Fig 116b It was showed by Kerisel (1965) and Franke

(1973) that the harder soil the more loosening at

excavation and thus relatively smaller bearing capacity

Taking into account the Franke diagrams we will have

for D = 125mand settlements= 2 cm p

Cone resistance qc (MPa) 1 5 50 1 0 15 22

qc p for s=2 cm 3 6 8 12 14

(see Fia 1 1 6b )

taking safety factor for pile base F = 3 the point resis~ance

33-10 ~-05

380375 lo 212 bull lo 2114 bull

factors- shy are p

The above anal ysis shows that it is possible to determine

ultimate point and shaft resistance of bored piles from

static cone sounding But it is very important and must

be taken into account type of pile kind of soil and

degree of compaction

Bel ow calculation method for large diameter bored piles

based on the static cone penetrometer resistance (CPT)

is proposed Equation (117) can be used directly for

the base diameter D lt 15 m For larger diameters p shyD gt 15 m the values should be multiplied by the

p ff t ITscoe icen Y~ as pi

( 1 1 5 )

where

qcp = according to equation (117)

D = diameter of the pile base D gt 15 mpi pi

17

This value q~p should be put into equation 116

The value qc s in equation 118 is independent on the

pile diameter

Proposed calculation method

(116)

where)

1 1 40 ~ 11 3 for piles wit h a nd enlarged bases12 10 12 = ~

h+h

q (h) dh (117)qcp l1+l2 f -f- Ch-li p

h 1 f 1

qcs = o -f- qc (h) dh (118)h s

1 -f- = f(q kind of soil ) -+- see Fig 11 7 and Tab 1 1 7

C p

f (q kind of soil ) -+- see Fig 1 1 8 and Tab 1 1 8 fs C

Note

a) the point resistance q for qc gt 20 MPa is assumed cp to be maximum as

- Gravel 70 MPa - Coarse sand medium sand 55 MPa - Fine sand s il ty sand 40 MPa

b ) The shaft resistance qcs for qc gt 20 MPa is assumed to

be maximum as

- Gravel 110 kPa - Coarse sand medium sand 90 kPa - Fine sand s ilty sand 70 kPa

These proposed values are compared with results by

Bustamente (1 982) and the Polish Specification (1978)

Fig 11 9 and F i g 1110 A similar comparison for DIN

4014 1 977 is shown in Fig 1111 and Fig 1112

) In this paper was used the above values 1 1 and l z But it can be used in practice 11 =30 D and h =2Dp respectively The results shall be very simi l ar to the above onPs

18

The proposed method has been examined with field test

results This is shown in Fig 1113 to Fig 1128

and Appendix 1 11 to 1110 and Tab 119

The comparison shows that the value of q in equationcp (117) corresponds to the settlement -10 of the base

diameter (s=010 DP) see Fig 1113 and Tab 119

(average sDp=88 and standard deviation sd=3)

Later in this paper the allowable load and dependence of

the load versus settlement will be determined

12 Determination of bearing capacity of the large

diameter bored piles from results of the Standard

Penetration Tests (SPT)

There are little published on pile tests coupled with

results from Standard Penetration Test (SPT) Among the

authors who have published material in the subject are

- Meyerhof 1956 1976

- Senneset 1974 (Norwegian method)

- Rodin Corbett Sherwood Thorburn 1974 (English method)

- Polish Specification 1975

- Weltman Healy 197 8

- Reese 1978

- Japanese Society 1981

- Decourt 1978 1982

The Norwegian method is valid o nly for concrete andor

wooden piles the English method only for gravel It is

very important to underline that the Norwegian a nd the

English methods use of the SPT resul ts intermediate by

the static cone penetrometer resistance (q ) as well C

Below methods are presented that are using the results of

SPT directly Meyerhof s method in total can also be used

on driven piles in non-cohesive soil Although we could

have found some proposes for bored piles Eqs (121 and

122) see Fig 121 and Fig 1 22 as well

19

Ultimate point resistance (psf)

12 N 3 omiddotH lt 120 N 30

(kPa) (1 2 1)Psf D

where

N30 the average standard penetration resistance

in blows per 03 m

H depth in bearing stratum

Ultimate skin friction tu

for bored piles tu N~ o (kPa) (1 22a)

for driven pil estu 2N30 (kPa) (1 2 2b)

where

N30 the average standard penetration resistance

in blows per 03 m within embedded length

of pile

Weltman and Healy (1978) taking into account Meherhofs

proposition for driven piles have introduced two coefshy

ficents for bored piles in gravels (glacial soil) Equ

123 and Fig 1 23

t = a 2 N30 (kPa ) (1 2 3)U 1

where

ai a 1 for impermeable gravels see Fig 123a

ai a 2 for permeable gravels see Fig 123b

The Polish Specification ( Specification for Design and

Construction of Large Diameter Bored Piles in Bridges

1975 Ministry of Transport) gives the ultimat e point

resistance in dependence of N30 base diameter and depth

see Tab 12 1 The Tab 121 contains values for coarse

and medium sand For other non-cohesive soils the following

coefficients are proposed

p f = S bull p f (medium sand) ( 1 2 4)S 1 S

20

where

S1 1 20 for grave lSi

f 132 080 for fine sand

13 3 070 for silty sand13i

In Fig 124 values of psf are shown for h = 10 m DP

06 m DP= 15 m and h = 20 m DP= 06 m DP 1 5 m

respectively

A few of the instrumented piles were tested and analyzed

by Wright and Reese (1979) The ultimate point and shaft

resistance in the fine and silty sand as a function of

blow count from SPT is shown in Fig 125 Results from

two additional tests reported by Koizumi (1971) are also

introduced in the figure The ultimate point resistance

is assumed to exist at a settlement equal to 5 of the

base diameter

Methods of prediction of the bearing capacity of piles

based exclusively on N30 values were presented by Decourt

1982 Below a proposition for high capacity piles excavated

and cast under bentoni te is presented

The ultimate skin friction is determined by the expression

(see Fig 126)

t = 33 N30 + 1 0 (kPa) ( 1 bull 2 5 ) u

where

N30 average value of N30 along the shaft

- for N30 lt 3 must be taken as = 3N30 - for N3o gt 5 0 must be taken as NJo= 50

The allowable point resistance can be obtained in a n

expedite way as

Psa = 33 N30 (kPa) (1 2 6)

where

N30 = average of Nat point level one metre above

and one metre below

Psa allowable point resistance

21

Decourt proposed a safety factor for the point of F = p

40 Therefore the ultimate point resistance can be

determined by the expression

(kPa) (1 2 7)

In Fig 12 7 and Fig 1 28 the above values for base

and skin friction resistance are compared respectively

Taking into account the type of soil thereis a good

correlation for ultimate point resistance The result for

ultimate skin friction is scattered but only apparently

The values for large diameter bored piles are between

the line 1a and 1b in Fig 128 Large diameter piles

have a high ultimate skin friction in relation to driven

piles (see points for bored piles in Fig 122 and DIN

4014 Part 2 1977 as well) The high values for piles

excavated and cast under bentonite have had a strong base

on the load tests (Decourt 1978 1982 and Wright and

Reese 1979)

Below the proposals are given for determination of the

values of the ultimate point resistance and the ultimate

skin friction Eqs 128 to 1214 and Fig129 1210

The ultimate point resistance

- gravel psf = 140 N30 (kPa) ( 1 bull 2 8)

for N~ 0 gt 50 blows3O cm Psf 7 MPa

- coarse sand and medium sand

(kPa) ( 1 2 9)

for N30 gt 50 blows3O cm Psf 55 MPa

- fine sand and silty sand

psf = 80 Nio (kPa ) (1210)

for N30 gt 50 blows3O cm p f = 40 MPa 5

where N3 o the average of N value near the point level as

22

h+l1

f N3o(h)dh ( 1 2 11 ) h-12

3DP see Fig 1 1 1 D

p

The ultimate skin friction for coarse sand and medium sand

tu = 1 8 N 3 o (kPa) (1212)

t (kPa) (excavated and cast (1213)u under bentonite)

where

N30= the average value of N along the shaft as h

N -

3 o = h1 f N 3 o ( h) dh ( 1 bull 2 bull 1 4 ) 0

The ultimate skin friction for N30 gt 50 blows30 cm is

assumed to be maximum as tu = 90 kPa and t = 150 kPa u

13 Allowable load of large diameter bored piles

The allowable load Qa of large diameter piles has been

expressed as

OuQa ( 1 3 1)Ft

Qa Q(s)=Qb(s) + Os(s) ( 1 3 2)

Opu + Osu (1 3 3)Qa Fp Fs

Qr lt mmiddotQf ( 1 bull 3 4)-

= universal safety factor

individual safety factor for ultimate resistance of the pile point

individual safety factor for ultimate resistance of the pile shaft

= load according to the allowable settlement

calculated load

m coefficient

calculated ultimate bearing load of the pile

23

The equations from (131) to (134) are used as

1) equation (131)

a) DIN 4014 - 1977 Ft= 2 175 15 (depending on the kind of load)

b) Polish Specification 1975 Ft = 18 16 ( -- )

1c) Trofimenkov 1974 Ft = 14307

2) equation (132)

a) DIN 4014-1977 i Q(s) = Qb(s) + Q (s) = A middotp(s) + E tAsmiddott(s)

s p 0

where Qbs) and Qs(s) are described in Fig 1423

3) equation (133)

a) Polish Specification 1974

F 25 22 depending on the kind of load p

F 1 bull 0 s

b) Wright SJ Reese LC 1979

The ultimate capacity or resistance is considered as a

random value and represented by a frequency distribution

The distribution can be described by a mean value and a

variance The distribution of the load applied to the

foundation can be described similarly The coefshy

ficients used to factor resistance and loads are called

partial safety factors Some recommended partial safety

factors for resistance under normal conditions of design

and construction are given in Tab 131 Normal control

is defined as a condition where the coefficient of variation

is less than about 035

Typical values for partial safety factors for loads are

in the range 1 to 2 depending on the type of load and

how it is applied The overall factor of safety Ft can

then be calculated from the equation

Ft = y RbullY S

24

where

YR the par tial sa f ety fac t or for resistance and

Ys the partial safety factor fo r load

The probability of fa i lur e of the foundation can be r eshy

lat ed to the factor of safety for a parti cular degree of

uncert ainty (see Tab 13 2)

c ) Tejchman Gwizdala 1979

The authors discuss adequate safety factors based on fie l d

test s by Spang (1 972) Franke (1976) Touma and Reese (1974)

Colombo (1971) Kerisel and Simons (1962) Appendirno (1973)

see Tab 1 33 Taking into account the universal safety

factor Ft= 2 0 for the tota l load settlement curves it

was estimated

i) F in the range of 111 to 237 with the average value s F = 166 and standard deviation sd = 034 s (see column 16 Tab 133)

ii) Fb in the range of 161 to 945 with the average

value Fb = 387 and standard deviation sd = 2 15

For model core d piles in laboratory conditions values of

Fs = 108 to 154 (average Fs = 132 s~ = 019) and

values of F = 280 to 5 94 (average F = 3 55 sd = 1 07)p p

see Tab 1 3 4

As a conclusion it was assumed that Fb = 40 and F 1 5 s

for l arge diameter bored piles

The investi gation has shown that for the above safety

factors settlements of piles under permissibl e loads are

10 to 20 mm There was assumed a maximum load on large

diameter piles corresponding to a settlement of 010

diameter of the piles

25

d) Bustamente Gianeselli 1 982

e) 0ecourt 1982

The safety factor is given by

F = FgmiddotFfmiddotFamiddotFw where

F 11 - skin friction g F 135 - point bearing capacity

g

Ff safety factor related to the formulation adapted

Ff= 10 for Decourts method

Fd safety factor related to excessive deformation

Fd = 10 for skin friction

As for the point Fa= 2 to 3 depending on the

pile diameter For usual cases 25 is suggested

Fw safety factor related to working load

Decourt recommends 12

Thus we will have

- for skin friction

Fs = 11bull10middot10middot12 132 - 13

- for the point

F = 135bull10bull25middot 1 2 = 405 = 40 p

4) equation (134)

a ) Polish Code 1983

Q lt mbullN r shy

where

total load coefficient (depending on the kind of load For foundation we can assume Yf = 12 )= code load

correction coeffic i ent

09 for pile foundations

m 08 for two piles

m 07 for single pile

26

N ymmiddotQu

ym material (soil) coefficient

ym 08 to 09 (Polish Code 1981)

Thus we will have

QnmiddotYf lt mmiddotym middotQu-

Yf9uFt = On m bull Ym

1 2 max = 2 14Ft 0 7 bull 0 8

1 2min = 1 48Ft 0909

The above analysis has shown different ways to determine

the allowable load The analysis is in direct connection

with mobilization of the load (versus settlement) The

dependence of total load point resistance and shaft reshy

sistance will be discussed in detail in Chapter 14

In the authors opinion taking into account the above

analysis the allowable load should be determined based

on the equation 133 ie based on individual safety

factors for ultimate point and shaft resistance Proposed

values of F and F in literature are shown in Tab 135 s p The average values are Fs = 145 and Fp = 3 38 respectively

Taking into account that the bearing capacity is determined

based on the results from sounding measurements direct from

a place near the piling without a ny indirect correlation

the allowable load of large diameter bored piles is given

by the equation (133a)

( 1 3 3a)

where F = 30 and F 13 are proposedp s

27

14 Determination of settlement of larqe diameter bored

piles based on static cone penetration tests CPT

Determination of ultimate point and skin friction resistance

based on static cone penetration tests has been discussed

in Chapter 11 above Based on the results of this calcushy

lation and on Chapter 13 we can establish an approximate

relation between point resistance shaft resistance and

total load on one hand and settlement on the other However

the approximation gives a wide scatter especially for base

resistance as can be observed in Fig 141 to Fig 144

Only the first part of the point resistance - settlement

curves are in good agreement with measured values It can

be observed in Fig 145 that the average correlation

coefficient n = 098 and standard deviation sd= 029

This way of calculation can be used only for rough calcushy

lation (see Chapter 13)

In Chapter 11 also measured point resistance - settlement

curves were shown The base resistance increases gradually

with increasing pressure and settlement Below the cur7

vature of the point resistance - settl ement curve will be

examined It is assumed that this curve can be described

as a part of the hyperbola curve Thus if the ratio of

the measured settlement (s ) to the point resistance (p)

is plotted against the measured settlement the result

will fall closely to a straight line with the equation

( 1 4 1)

where a 1 and b 1 are constants (see Fig 1 46a and Fig

14 6b)

Then the point resistance - settlement realtionship can be

expressed as a hyperbola

s p = ( 1 bull 4 2)

The constant is the initial s lope of the point resistanceshya 1

settlement curve ie a 1 = t~a The inverse of the constant

28

b 1 is the vertical tangent (asymptote) to the curve 1ie for s = 00

bf= ~ If the ultimate point reshy1

sistance psf is equal to bf (psf=bf) the whole point

resistance settlement curve will be a hyperbola type

Now the Eq 1 4 2 can be written as

s s ( 1 4 3)a) p s or b) p = a+__sect_a1 + 1 Psfbf

If the ultimate point resistance is smaller than bf only

a part of the hyperbola curve ought to be considered

Further the Eq 14 3 will be written as

p ( 1 4 4)

where

poundf_ correction factor for hyperbola point Psf resistance-settlement relationship

Taking into account the discussion in Chapter 11 the

ultimate point resistance psf = qcp based on the CPT measurements

Therefore the relationship between the point resistance

the sett l ement and the CPT result can be expressed as

s p (1 4 5)s

The correction coefficient v 1 will cause a change of the

position of the vertical asymptote bf in r elation to the

ultimate point resistance q bull This means that we take cp into account a different part of the hyperbola curve for

the description of the point resistance-settlement relationshy

ship

Now if we want to use the equation (145) in practice

we must determine the constant and the coefficienta 1 v 1 (assumed that q is determined ear l ier Chapter 11)cp

29

The constant a 1 and t h e coefficient Vi have been detershy

mined based on fi e ld tests according to pi l es No 1 - 20

see Tab 14 1 and Tab 1 1 9 as wel l The values of

a 1 versus the point diameter D and the ul timate pointp

resistance respectively are shown in F i g 147 and Fig

148 Fig 1 47 shows that a 1 is independent of the

point diameter D Based on Fig 148 it can be assumed p

that

28-4bullq (1 4 6)cp

This correlation has been examined with data of the

literature see Fig 1 49 and Appendix 141 to 1 45

(Note there were no static penetration tests and qcp was determined based on a correlation made by Bergdahl

(1982))

A good correlation with equation 146 can be seen taking

into account the safety factor in the DIN 4014 Part 2

(1977) bull

The correction factor v 1 versus the poi nt diameter is shown

in Fig 1410 I t is assumed that the correlation is

V1 = 3 0 - D ( 1 4 7)p

where D is in m p

The above equations ie 146 and 147 were assumed for

a later analyses see Fig 14 11 and Fig 1412 The

piles No 1 to 20 were examined taking into account Eqs

14 5 14 6 and 1 4 7 The result of this cal cul ation is

presented in Fig 1 413 to Fig 1 4 18 and in Tab 1 4 2

respectively In Fig 1413 the calculation way for pile

No 2 is shown as an example

In Fig 1414 to Fig 1 417 measured and calculated

values of the point resistance versus settl ement can be

compared In tota l good correlation exists for all the

30

pressure-settlement curves Values of q from static cp

cone penetration tests and generalized values of anda 1

v 1 were considered Only for piles No 17-20 qcp was

assumed as the point resistance for s = 010 D because p

the static penetration test results were inaccessible

The similar comparison is shown in Fig 1417a for piles

in sand based on experimental results (Tuoma Reese 1972

and Wright Reese 1979) where the ultimate case resistance

was assumed as the resistance at a base settlement of 005

D The relative base resistance is the mobilized base p resistance divided by the ultinate base resistance The

curvature of the proposed point resistance settlement shy

curve to mean value proposed by Wright and Reese is excellent

However the constant a 1 and the coefficient v 1 were

determined for sand only In the future they should be

examined especially for gravel and silty sand based on

field tests Until then in the authors opinion the

values of v 1 can be chosen from Eq 147 for all nonshy

cohesive soils But for a 1 there is proposed

at = gt bulla (1 4 8)1

where

gt- 1 = 080 for gravel

gt 2 120 for silty sand

This proposal is shown in Fig 14 11 as dashed lines

A good correlation can be seen with the investigation by I

Kiosimiddotnski for sandy gravel and on the safety side with

the investigation by Tuoma and Reese for silty sand (see

Fig 149)

In Fig 1418 all calcul ations for pile No 1 to 20 are

summarize d The correlation coefficient n is defined as

the calculated point resistance p(s) divided by measured

point resistance p(s) For totally 126 points from 20

curves an average of n = 098 with standard deviation

31

al= 023 was obtained see Fig 1418 A similar result

can be observed for the range usually assumed of the

allowable settlement for sinqle large diameter bored

piles as

for

- for

- for

s

s

s =

10

20

30

mm a

mm

mm

verage n10 II

II

mm 089

095

099

and sd =

and sd

and sd

031

027

026

It can be questioned whether the sonstant a 1 can be deshy

termined in different ways The constant a 1 is the initial

slope of the point resistance-settlement curve as menshy

tioned above Then we can use all methods for determination

of settlement of a pile point The range of validity of

these methods then must be determined This will be shown

later

In order to be able to design the total load settlement

curve the skin friction resistance-settlement relationshy

ship must be determined The ultimate skin resistance of

large diameter bored piles was determined in Chapter 11

(based on static penetration tests) and in Chapter 12

(based on standard penetration tests)

In the past a lot of field tests have been done on the

mobilization of the shaft resistance versus pile settleshy

ment In this subject there is a rather good agreement

in the whole investigation for cohesive and non-cohesive

soil

Some results and opinions on thispresented in the literashy

ture during the last few years are shown below

Ultimate shaft resistance versus settlement

1) BurlandJB Butler FG Duncan P (1969)

-The shaft l oadsettlement curve is derived using a=0 3

with 90 ultimate load being mobilized at 025 in

settlement(~65 mm)

- soil London clay

- see Fig 1 419

32

2) Touma FT Reese LC (1974)

- The failure of the sides of the shaft takes place

at a downward movement of about 04 in (10 mm)

- soil sand

- see Fig 1420

3) Tomlinson HJ (1977)

- The maximum shaft resistance is mobilized at a

settlement of only 10 mm (or j in)

- soil stiff clay

- see Fig 1421

4) Klosinski B ( 1977)

- It was assumed that skin friction increased proshy

portionally to pile settlement up to the limit value

s bull This value depends on soil conditions and pile0 diameter and is usually from 3 to 8 mm For soft

compressible soil it may be grater than 10 mm

- soil cohesive soils

- see Fig 1422

5) Franke E Garbrecht D (1977)

- At settlement of 2 to 3 cm which are normally

allowed in Germany under working loads for buildings

not very sensitive to differential settlementsthe

skin friction is almost always fully mobilized

- soil sand

6) DIN 4014 part 2 (1977) and Franke E (1981)

- The skin friction Tm is approximated as diameter

independent having failure settlements of smf = 2 cm

in sand and 1 cm in clay

- soil sand and clay

- see Fig 1423

33

7) Reese By L (1978) Reese By L Wright SJ (1979)

(1978) The maximum skin friction being developed at

an average downward movement ranging from about 05shy

2 of the shaft diameter The average of six load tests

reported by Whitaker and Cooke (1966) are a lso plotted

for comparison

- soil stiff clays

- see Fig 1424 and Fig 1425a

(1979) The relative settlement is the average settleshy

ment of the butt and base devided by the shaft diameter

The mean curve maximises at a relative settlement of

about 002 D

- soil sand and clay

- see Fig 1425b

8) Tejchman A Gwizda3a K (1979)

- A clear differentiation of the distribution of shaft

and base resistances is observed for changing settleshy

ment For fairly small settlements the shaft resist shy

ance increases quite fast and the ultimate values

are reached soon while the base resistance increases

gradually with increasing loads and settlements withshy

out clearout ultimate values it can be assumed that

complete mobilization of shaft resistance corresponds

to settlements equal to 001 or 002 diameter of pile

- soil cohesive and non-cohesive soils

- see Tab 131 and Fig 1 426

9) Promboon S Brenner R P (1981)

- Load distribution and load transfer curves disclose

that most of the load is carried by shaft friction

which is developed at small displacements in the order

of 10 mm

- soil Bangkok clay

- see Fig 1427

34

10) Prodinger w Veder Ch (1981)

- The maximum value of skin friction resistance

occurred for a total settlement of 12 mm

- soil silty clay and sand

- see Fig 1428

11) Farr JS Aurora RP (1981)

- Ultimate load transfer was recehed (or nearly reached)

at a relative settlement of about 04 in (10 mm)

- soil gravelly sand

- see Fig 1429

12) Decourt (1982)

The skin friction resistance is totally mobilized

with deformations of about 10 mm or at the most 15

mm regardless of shaft dimensions This observation

of ours seems to clash with the opinions of other

authors who seek to relate the deformation necessary

for full skin friction mobilization with the shaft

diameter

- soil cohesive and non-cohesive soil

In Tab 143 all these results are shown Depending on

the kind of soil the following v a lue s of ultimate settleshy

ment for shaft can be assumed

- averages 142 mm (sd 5 3 mm) for sand

- averages 100 mm (sd = 21 mm) for cohesive soil

averages 726 mm (sd 67 mm) for claysand

It can be observed (see Fig 1419 to 1428) that the

shaft friction resistance increases proportionally to

the pile settlement up to the above limit value and

thereafter becomes constant

35

Taking into account what was mentioned earlier on point

resistance settlement relationship and the above results

a relationship between total load point resistance and

shaft resistance on one hand and settlement on the other

can be made see Fig 1430

It is assumed on the safety side that the following

ultimate settlement (S~) exists for the shaft resistance

of large diameter bored piles

SS1 ) 200 mm for non-cohesive soil u SS2) = 100 mm for cohesive soil u SS3) 15 0 mm for claysandu

In Fig 1 430 the curve Q (s) is calculated based on p

the equation 14 5 or 144

The values of psf in equation 144 can be calculated

based on other methods as well

The total load-settlement relationship is obtained by

summing up point and s haft resistance as

Q (s) = Q (s) + Q (s) (149)s p

for each point

Now the allowable load can be determined from equation

133a and versus the allowabl e settlement as

Q (s) = Q (s) + Q (s) (1410)s p

where s lt Sa

Sa= the allowable settlement of the pile

The analysis allows determination of the approximative

load settlement dependence without calculating the settleshy

ment for non-cohesive soil In Fig 1431 it is shown

36

In Tab 144 the settlement for allowable point reshy

sistance q5P according to equation 133a is shown

as well The average settlements= 198 mm (sd=78 mm)

is obtained This value is similar to the assumed ultimate

settlement of shaft for non-cohesive soil The ultimate

settlement for point resistance is assumed s = 010 Dp as mentioned earlier

37

15 Initial slope of pile point resistance shy

settlement curve

Settlement of piles and pile foundations can be cal culated

based on

- empirical correlations

load-transfer methods using measured relationships

between pile resistance and pile movement at various

points along the pile

- theory of elasticity that employs the equations of

Mindlin for subsurface loading within a semi-infinite

mass

- numerical methods and in particular the finite element

method

- use of in-situ tests (Cone Penetration Test Standard

Penetration Test Pressuremeter Test)

The critical slope of the pile point resistance-settlement

curve is important for calculation in chapter 14 The

constant a1 can be determined from all the above mentioned

methods

Comparison is made to Berggrens and Schmertmanns methods

below (see Berggren 1981 as well)

6sIn Tab 151 (No 1 2 3) the values of a 1 =~p for s =

10 mm and s = 20 mm (measured for large diameter bored

piles No 1 to 24) are compared to the calculated values

according to the modified hyperbola method (see Fig 14 6)

It can be seen that these calculated values are between

s = 1U-2u mm but rather closer the measured values for

the settlements= 10 mm see correlation coefficient n 6

and n 7 in Tab 151 respectively The average correlat i on

coefficent for the settlements= 10 mm is n9 = 108 and

the standard deviation is sct = 014 The comparison to

Berggrens and Schmertmanns methods for s = 20 mm ( see

Berggren 1~81 and Tab 151 as well) shows that the

results based om these methods give too high values of a 1 bull

38

The average values are ne= 143 sd = OJ3 and ng= 137

sd = 037 for Berggrens and Schmertmanns methods

respectively A bit better agreement can be observed

for Schmertmanns method

Taking into account the results in Tab 151 ana Tab

15l it must be assumed that for the determination of

a 1 the pile point contact pressure p(a1) should be

assumed as the ultimate point bearing capacity devided

by about 4

p(ai) - ( 1 bull 5 1 )

Most of the methods for determination of settlement are

based on the theory of elasticity The settlement ot the

pile point can be expressed as the average settlement of

a rigid circular foundation from the equation

11-Dp 1-v 2

s = p -4- -E-bull microd (1 ~ 2 J

where

p pile point contact pressure

E Youngs modulus

D diameter ot pile pointp ) = Poissons ratio

microd = depth factor

The range of validity of the pile point contact pressure

was determined in equation 151 Youngs modulus has an

important meaning lt can be determined from triaxial

tests or oedometer tests The relationship between the

constrained (oedometric) modulus Mo and Young s modulus

Eis dependent on Poissons ratio v as expressed by the

equation

E = l 1 + V ) ( 1 - 2 V ) Mo ( 1 bull 1 bull 1)- 1-v

39

TaKing into account the analyses made ny Chaplin (19b1a

1 961bJ Janbu (1 963 1970 1973J Andreassen (1973)

Duncan and Cheng (1970) Tejchman anct Gwizdala (1979)

Gwizdala (1978) Franke (1981) Berggren (1981) Withiam

and Kulhawy (7981) and the present investigation the

calculation of settlement is proposed to be

s = 24 bull p bull ~ D bull 1-v 2 bull micro d (154)Do o E

where s (r1)

p (kPa)

Dp (m)

E (kPa)

D0 =10 m

micro = 05 + 01 vfrac34E (1 5 5)d vs

but 05 lt microd lt 10-tip= p - (J (ovs see Fig 151)vs

E =Et= Kbullpat (Oo )n [1- Rf(1-sinltj) 101 - 03 ) 12 (1 5 6)2 c cosltP + 2o 3 sinltP 1Pat

in which K n and Rf= hyperbolic stress-strain parameters

Pa= atmosferic pressure ando 1 o 3 and o0 are determined by

averaging the concrete and soil vertical and radial stresses

near the pile point according to Fig 151 Then the

stresses at the pile point level are h

(J vs = L

0 Yi h

l vertical stress in the soil

0 hs Ko h

0 vs radial (horizontal) stress in the soil

0 vc L ye h -l

vertical stress in the concrete 0

0 hc K oc a vc radial (horizontal)

concrete stress in the

40

K at rest soil lateral stress coefficient 0

K c lateral stress coefficient for fluid fresh concrete0

K 1 0 oc

and average values

a 05(a +a)V vc vs

1 1 - shy~ = -(a +a+a I = -3 (av+2ahJ the applied mean normal stress0 j Z X y

Assuming this model calculation results for piles No 1-24

(see Tab 11~ as well) are shown in Tab 153

The piles are embedded mainly in medium sand to fine sand

For this kind of soil it can be assumed (soil parameters

from field or laboratory tests were inaccessible)

~ = 35deg c = 0 R~ = 09 n 05 v = 025 K c 10l 0

K = 04 Pat= 1UO kPa ye 24 kNrn 3 y = 14 kNm 3 bull0 C

Moreover in Tab 153 the following symbols are used

p(a1 ) - pile point contact pressure according to equation

1 bull 5 1

s(a1) - settl ement of pi l e point according to equation

143 and Tab 141

pound TT ( 2E = s bull Dp bull i 1-v ) according to equa~ion 152t

E~ Et bull microltl

EI

K = ro~ - according to equation 1 bull 5 6 p bullO middotA2

a~ o

E = E voD middot D middot ~4 ( 1 - v 2 ) according to equationt S p O 0

1 5 4

Et= E microd

K = according to equation 156 V PatmiddotaomiddotA2

41

The calculation results of Youngs modulus E = Et and

dimensionless canpressionrro1ulus for piles to 1-24 are shown

in Fig 152 to 155 using equation 152 and 15b

or equation 1~4 and 156 respectively lt can be obshy

served that the scatter in Fig 153 and Fig 155

where the influence of tne pile diameter is reduced

compare equation 154 is less than in the other figures

The reduced influence was made after observations from

field and laboratory tests while the equation 152 is

taken direct from theory of elasticity These values of

E and K are in good correlation with published values in

literature The values of Youngs modulus versus the

relative density of soil are compared to literature values

see Fig 15b Based on the analysis in this chapter it

can be assumed that

E = 9-ql 3 ( 1 bull 5 7)cp

where qcp is in accordance with equation 117

The calculation results based on this proposal are incluced

in Tab 1 5 3

The c a lculate d s e ttlements based on e q ua tion 154 and

157 are shown in column 23 and the values of the

correlation coef f icie nt (n= Seal ) in column 24 respectshyimeas

ively

The dimensionless canpression modulus can be d e termined as

K = 15Ubullq (qcp in MPa) (1 5 8)cp

see column 25 Tab 153

The calculation results based on the K compression modulus

according to equation 158 156 and 1 5 4 are shown in

columns 25 26 2 7 28 and 29 in Tab 153

42

For comparison and for determination of the range of

validity of this method the caLculation results of

pile point pressure for settlements s = 10 mm s = 20 mm

s = 30 mm (see Tab 141) according to equation 157

and 154 are shown in columns 30 to 35

The results obtained in Tab 153 confirm the possibility

to use the proposed method to calculate the initial part

of the pile point resistance settlement curve of large

diameter bored piles in non-cohesive soil and the initial

slope of this curve as well

A simple model has been proposed based on the theory of

elasticity ana the tangent modulus defined by Janbu (1963)

and Duncan amp Chang (1970)

A new approach according to the pile diameter depth factor

and principal stress is proposed

The settlement of the pile point can be made up to a point

pressure according to equation 151 on up to a settlement

of about s ~ 20 mm (30 mm)

-- The application of v Op in equation 1 5 4 a llows us ing

Youngs modulus as independent of the pile diameter

opposed to Bazants a nd Mosopusts (1981) proposal where

Youngs modulus wa s determined versus the pile diameter

The equation 1 5 6 takes into account the dependence of

Youngs modulus on depth (or overburden pressure) as

well

In the method field test (Cone Penetration Test) or

laboratory tests (hyperbolic stress-strain parameters

can be used

Comparison of the method to 24 availa ble load test r e sults

or large diameter bored piles in sand shows good a greement

to calculated and measured values

43

REFERE~CES

Adamczyk J (1978) Okreslanie udzwigu pali wierconych

za pomoca sondy statycznej (Bearing capacity of bored

piles based on the static sounding) Inz i Bud No 7

pp 253-257

Andreasson L (1973) The compressibility of cohesionless

soils Thesis Chalmers University of Technology

G6teborg (in Swedish)

Appendino M (1973) Comportamento di un palo di grande

diametro strumentato Rivista Italiano di Geotechnica

No 3 pp 115-118

Butterfield R Banerjee P (1971) A rigid disc embedded

in an elastic half space Geotechnical Engineering

Vol 2 pp 35-49

Bozant z Mosopust J (1981) Drilled pier design based

on load settlement curve X ICSMFE Stockholm Vol 2

pp 615-619

Begemann HK (1982) Cone penetration tests pile bearing

capacity and the thesis of Rollberg Proc of the Second

European Symposium on Penetration Testing Amsterdam

pp 433-438

Berggren B (1981) Bored piles on non-cohesive soils shy

settlement and bearing capacity (in Sweden) Thesis

Department of Geotechnical Engineering Chalmers

University of Technology G6teborg

Bergdahl UB (1979 1982) Sonderingen und in situ Messungen

Wien 18-19 Juni 1979 - Private information 19821983

Bustamante M Giane selli L(1982) Pile bearing capacity

prediction by means of static penetrometer CPT Proc

of the Second Europ Symp on PenTest Amsterdam

Vol 2 pp 493-500

Chaplin TK (1961a) An experimental study of the settleshy

ment of footings in sand PhD Thesis Univ of

Birmingham

44

Chaplin TK (1961b) Compressibility of sands and settleshy

ments of model footings and piles in sand 5th Int

Conf on Soil Mech a Found Engng Vol 2 p 33 Paris

Colombo P (1971) Observazoni sul comportamento ltli pali

a grande diametro Rivista Italiana di Geotechnika

No 3 pp 163-172

Dahlberg R (1975) Settlement characteristics of preconshy

solidated natural sands Swedish Council for Building

Research D11975

De Beer EE (1964) Some considerations concerning the

point bearing capacity of piles Proc Syrop Bearing

Capacity of Piles Boorkee I pp 178-204

Decourt L Quaresma AR (1978) Capacidade de Carga de

Carga de Estacas a partir de Valores de SPT VI Conshy

gresso Brasilerio de Mecanica dos Solos e Engenharia

de Fundacoes - Rio de Janerio - ABNS

Decourt L (1982) Prediction of the bearing capacity of

piles based exclusively on N values of the SPT Proc

of the Second Europ Syrop on Penetration Testing

Amsterdam Vol 1 pp 29-34

Duncan MJ Chang CV (1970) Non-linear analysis of stress

and strain in soils Journal Soil Mech Found Div Vol

96 SM5 pp 1629-1651

Durgunoglu HT (1979) Effect of foundation embedment on

stress and deformation distributions Third Int Conf

on Num Meth in Geomechanics Aachen pp 925-928

Farr JS Aurora RP (1981) Behaviour of an instrumented

pier in gravelly sand Proc of a session Drived Piers

and Caissons sponsored by the Geotech Eng Div of the

ASCE Nat Convention St Louis Missouri pp 53-65

Franke E (1981) Point pressure versus length and diameter

of piles X ICSMFE Stockholm Vol 2 pp 717-722

45

Gregersen os Aas G and Dibiagio E (1973) Load tests

on friction piles in loose sand Proc of the Eigth

International Conference on Soil Mech Moscow USSR

Vol 21 pp 109-117

Gwizda1a K (1978) Behaviour of large diameter bored piles

in non-cohesive soil (in Polish) Archiwum Hydrotechniki

Vol XXV No 2 pp 183-217 (English summary)

Huizinga TK (1951) Application of Results of Deep

Penetration Tests to Foundation Piles Building Research

Congress Vol 1 p 173

Janbu N (1963) Soil compressibility as determined by

oedometer and triaxial tests Proc Europ Conf Soil

Mech and Found Eng Vol 1 p 19 Vol 2 (Discussion)

p 17 Wiesbaden

Janbu N (1970) Grunlung i geoteknikk Tapir Forlag NTH

Trondheim

Janbu N Bjerrum L Kjaernsli B (1973) Soil Mechanics

applied to some engineering problems Norw Inst Publ

No 16 Oslo

Japanese Society SMFE (1981) Present state and future trend

of penetration testing in Japan Separate report at

X ICSMFE Stockholm

Kjekstad O Lunne T (1979) Soil parameters used for design

of gravity platforms in the north sea Second Int Conf

on Behaviour of Off-shore structures London Vol 1

pp 175-192

Klosinski B (1977) Bearing capacity of large diameter bored

piles IX ICSMFE Tokyo Vol 1 pp 609-612

Laboratory for soil mechanics Delft (1936) The predetershy

mination of the required and the prediction of the

resistance of piles Proc 1 Int Conf on Soil Mech

and Found Engng Cambridge (Mass) I p 181

46

Matich M and Stermac A (1971) Settlement performance of

the Burlington Bay Skyway Canadian Geotechnical Journal

Val 8 pp 252-271

Mccammon NR and Golder HQ (1970) Some loading tests

on long pipe piles Geotechnique London England

Val 20 pp 171-184

Meigh AC (1971) Some driving and loading tests on piles

in gravel and chalk Proc of the conference on beshy

haviour of piles London England pp 9-16

Mitchell JK Gardner WS (1976) In situ measurement

of volume change characteristics American Society of

Civil Engineers Specialty Conference on In-situ

Measurements of Soil Properties Raleigh 1975 Proc

Val II pp 279-345

Mezenbach E (1961) The determination of the permissible

pointload of piles by means of static penetration tests

Proc 5 Int Conf on Soil Mech and Found Engng

Paris II pp 99-104

Meyerhof CG (1956) Penetration tests and bearing capacity

of cohesionless soils Proc Amer Society of Civ Engng

SM 1 Pap 866 pp 1-19

Meyherhof GG (1 976) Bearing capacity and settlement of

pile foundations Proc Amer Society of Civ Engng

Journal Geotechnical Engineering Division Val 102

No GT3 pp 197-227

Mohan D Jain GS and Kumar V (196 3 ) Load bearing capacity

of piles Geotechn Val XIII pp 76-86

Nixon I (1982) Standard penetration test State of the

art report Proc of the Second Europ Symp on Pen

Test Amsterdam Val 1 pp 3-20

47

Nunes A Vargas M (1953) Computed bearing capacity of

piles in residual soil compared with laboratory and

load tests Proc of the Third International Conference

on Soil Mechanics Zlirich Switzerland Vol 2 pp 75-79

Nordal S Grande L Janbu N (1982) Prediction of offshy

shore pile behaviour The Norwegian Institute of

Technology Trondheim

Ohde J (1939) Zur Theorie der Druckverteilung im Baugrund

Der Bauingenieur Vol 20 No 3334 p 451

Parroth E (1972) Einfache Formel zur Vorausbestimmung der

Tragfahigkeit von Standpfahlen mit Hilfe der Sande

Bautechn 9 pp 312-314

Poulos HG Davis EH (1980) Pile foundation analysis

and design New York - J Wiley and sons

Prodinger W Veder Ch (1981) Bearing capacity of floating

groups of diaphragm walls Proc X ICSMFE Stockholm

Vol 2 pp 809-814

Promboon S Brenner R (1981) Large diameter bored piles

in Bangkok Clay Proc X ICSMFE Stockholm Vol 2 pp

815-818

Reese L (1978) Design and construction of drilled shafts

ASCE JSMFD Vol 104 No OT1 pp 95-116

Rodin s Corbett BO et al (1974) Penetration testing in

United Kingdom state-of-the-art-report Proc Europ

Symp on Penetration Testing 1 Stockholm pp 139-146

Rollberg D (1976) Bestimmung des verhaltens von Pfahlen

aus sandier und rammengebnissen Heft 4 FBG Technische

Hochschule Aachen

Rollberg D (1977) Determination of the bearing capacity

and pile driving resistance of piles using soundings

Publications of the Institute for Found Eng Soil Mech

Rock Mech and Water Ways Construction Aachen Vol 3

48

Schmertmann J (1970) Static cone to compute static

settlement over sand Journal of the Soil Mech and

Found Division ASCE SM3 pp 1011-1043

Schmertmann J Hartman JP Brown PR (1978) Improved

strain influence factor diagrams Journal of the Soil

Mech and Found Division ASCE GT8 pp 1131-1135

Shibata T Hijikuro K and Fominerga M (1973) Settlement

of a blast furnace foundation Proc of the Eighth Int

Conf on Soil Mech Moscow USSR Vol 13 pp 239-242

Spang J (1972) Die Bestimmung der Tragfahigkeit von Grossshy

borhpfahlen (I) Strassen und Tiefbau No 2 pp 339-355

Senneset K (1974) Penetration testing in Norway State-ofshy

the-art-report Proc Europ Symp on Penetration Testing

Stockholm I pp 85-95

Tejchman A Gwizdala K (1979) Analysis of safety factors

of bearing capacity for large diameter piles Proc VII

ECSMFE Brighton Vol 1 pp 293-296

Thorburn s and Mac Vicar R (1971) Pile load tests to

f a ilure in the clyde alluvium Proc of the conference

on behaviour of pile s London England pp 1-7

Trof imenkov JG (1969) Accuracy of determining the bearing

capacity of piles based on results of static penetration

sounding of soils Osnovaniya Fundamenty i Mekhanika

Gruntov 4 (Translation Soil Mechanics and Foundation

Engineering 4 p 248)

Trofimenkov JG (1974) Penetration testing in USSR Stateshy

of-the-art report Proc Europ Symp on Penetration

Testing Stockholm I pp 147-154

Tuoma F and Reese L (1974) Behaviour of bored piles in

sand JSMFD ASCE Vol 100 No GT 7 Proc Paper 10651

July pp 749-761

49

Van der Veen C (1953) The bearing capacity of a pile

Proc 3 Int Conf on Soil Mech and Found Engng

Zlirich II pp 84-90

Van der Veen C and Boersma L (1957) The bearing capacity

of a pile predetermined by a cone penetration test

Proc 4 Int Conf on Soil Mech and Found Engng

London II pp 72-75

Weltrnan AJ Healy PR (1978) Piling in boulder clay

and other glacial tills Construction Industry Research

and Information Association UK-Report PG 5

Withiam J Kulhawy F (1981) Analysis prodecure for

drilled shaft uplift capacity Proc of a session

Drilled piers and caissons ASCE St Louis Missouri

pp 82-97

Woodward R Lundgren R Boitano J (1961) Pile loading

tests in stiff clays Proc of the Fifth International

Conference on Soil Mechanics Paris France Vol 2

pp 177-184

Wright SJ Reese LC (1979) Design of large diameter

bored piles Ground Engineering Vol 12 No 8 pp

17-22

DIN 4014 Cods Teil 2 (1977) Bohrpfahle Grossbohrpfahle

Herstellung Bemessung und zulassige Belastung

Polish Specification (1975) Specification for design and

construction of large diameter bored piles in bridges

Ministry of Transport Warsaw (in Polish)

Polish Specification (1979) Specification for prevision

bearing capacity of the piles on the presiometer test

and static sounding ENERGOPOL Warsaw (In Polish)

Polish Code (1983) Foundations Bearing capacity of piles

and pile foundations

5 1

FIGURES

bull bull

53

Ou

+ sect raquo iir 1

4 + D

h + +Osu

bull + t2 =n- Dp

LDpl r f 1

Opu

Fig 1 1 1 Bearing pi le in the soil

J_

fp

080

070

060

050

0 40

030

020

010

q~ [MPa ]000 -+--~-~-~-~------------------------=-shy

00 20 4fJ 60 80 10 0 120 14fJ 160 180 200

Fig 1 1 2 The point resistance factor fp

(Trofimenkov 1974)

54

ts

160

140

120

100

080

060

040

020

q~5 [ kPa)

0Q0--1------~-~-~-~-~-~ - - ---=- -- shy000 10 20 30 40 50 60 70 80 90 100

Fig 1 1 3 The shaft resistance factor fs middot (TYofimenkov 1974)

f s

200

180

160

140

120

100 2 3 4 5 6 7 8 9

Fig 1 1 4 Shaft friction factor f depenshys

ding of the soil density (Senneset 1974)

55

Q~ [kN]

1500

1000

500

0-r-----------r----~- Q~ [kN] 0 500 1000 1500

Fig 1 1 5 Comparison of the pile resisshytance determined by the results of static sounding and load tests (TYofimenkov 1974)

D f f

0

Fig 1 16 Equivalent cone resisshytance (Bustamante 1982)

56

E u shy0 ~

QI I ltII ltII

~ a C QI

O C

D

w gt

0

Cone res istance Point resistance

80 160 240 320

05

10

15

e d

20

ver y dense Cone resistance 300 kgcm2

Dpcm

a =45 b = 30 C 60 d = 100 e = 150

Fig 1 16a

Cone resistance _ qc

80 160 80 160 qc [ k g cm2 ]p

05

10 10

15 15 e d a

e d20

Dense Medium2 2200 kgcm 100 kgcm

Cone resistance and point resistance of piles versus overburden pressure (Kerisel 1965)

Point resi stance - p(for s=2cm) of the pi le for

15 sett Iement s = 2 cm

10

5

E u

uJ1 o-~----shya er O 804 2500

32 56

I 1

L oose50 -I =25 Very loose L

----~--shy5000 7500 80 98

~-----lmiddotI1--------2 10000 12500 31400 =Flcn)

112 123 200 =Dplcm)

Fig 1 1 6b Point resistance versus cone resistance and pile diameter (Franke 193)

57

1

fp

080 (D Gravel

0 Coarse sand Medium sand 070

reg Fine sond Silty sand

060

050

040

030

020

010

qc [MPa]000-+----r--~-~-~--------r----r----r-~-~-- -shy

oo 20 40 60 80 100 120 140 160 180 200

Fig 1 1 7 Point resistance factor f (proposal) p

58

300

250

200

150

100

qc [MPa I50-+---------------r---r---r---r----r------------- shy

oo 20 40 60 80 100 120 140 160 180 200

Fig 1 1 8 Shaft resistance factor fs (pr oposal)

59

Bustamante (seetab 115 I

l fp

G)

0 Gravel

Coarse sand Medium sand

cl

b)

t-----l

1----1

080 reg Fine sand Silty sand a) D

070 Polish

060 Specification

( 1979) 050

040

030 CD 020 0

reg 010

qc [MPa]0 00 -+-------------------------------------=--shy

oo 20 4o 5o 80 100 120 14o 15o 180 200

Fig 1 19 Point resistance factor f comparisonp

Bustamente ( see tab 116 I 300

a) ~

250 b)~

cl~

200 Polish Specification ( 1979 l

150

100

q [ MPa]504---~--~--~----- ---___

00 20 40 60 80 100 120 140 150 180 200

Fig 1 1 10 Shaft resistance factor fs comparison

60

1 fp

~

080 CD CD Gravel

070 0 reg Coarse sand Medium sand

060 0 Q) Fine sand Silty sand

05

040 Franke (1973)___

030 DIN 4014

020 Part 2 1977

( see tab113 l 0shy

--shy --a - 010 C---0 Piles without enlarged bases

D---0 Piles with enlarged bases qc [MPa ] 000

00 20 4JJ 60 80 90 100 120 140 160 200

Fig 11 11 Point resistance factor f comparison p

fs

DIN 4014 Part 2 1977 ( see tab 114 l

300

~ 5 lt qc lt 10 MPa 50

~ 10 lt qclt 15 MPa

~qcgt15MPa

200

150

CD

100 0 0

qc [ 1Pa] 50-t-----T-~----T-r-~----------------shy

OO 20 40 6JJ 80 100 120 14JJ 160 180 200

Fig 1 1 12 Shaft resistance factor fs comparison

61

Measured p [ MPa]

( s=010 Dp) 10

9

8

7

6

5 0

4 0 61

3

I 2

Calculated qcp [MPa]

0 0 2 3 4 5 6 7 8 9 10

Fig 1 1 13 Comparison of experimental and aomputed values of the pile point resistanae

62

Contact pressure ( MPa ]

2 I 6

50

100

E E 150 Ill

c QI

E Sett lement for QI

calculated qcpai V) 200

Fig 1114 Results from load tests on piles No 1 and 5

Contact pressure [ MPa I 0 2 I 6

01---------------------1

50

E E 100 Ill

Settlement forc QI calculated qcp E ~ ai

I V) 150

Fig 1 1 15 Results from load test on piles No 7 and 5

63

Contact pressure p [ MPa] 0 2 3 4 6

0-t=-----~-~-----

E E

100 1)

c CU E 2 QI V) 150

Fig 1 1 16 Results from load test on piles No 9 10 and 11

Contact pressured p [MPa] 0 1 2 3 4 5

o~~~=------------___-~-shy

50

100

E E

i 150

CU E CU

-a V) 200 2

Fig 1 1 17 Results from load test on piles No 12 and 13

c

-------------- -

64

Contact pressured

0 1 2 3 4 p [ MPo] ~o __L____1_____J_____L___

50

100

150

E

E

IJ) 200

c a

E a

~ 250

Fig 1 1 18 Results f Pom load tests on piles No 2 4 6 and 8

p [MPa]

60

50

tO

30

~

Pile Pile Pile Pile

Pile No18

------+ Pile No17 + ~_ ---0 Pile No 19

bullbull - --bull Pile No 20

- ~middot -shy-shy -(y I Settlement for

20 tO 60

No17 +-middotmiddot- V 70 No 18 bull--- V 9o No19-middot- V 120 No20bull---- V150

qcp 3

80 100 120 140 160 s (mm)

Bose resistance

Fig 1 1 lBa Point Pesistance vePsus settlement (Spang 1972J

65 Cone resistance qc [ MPa]

0 10 20 30

mud

5 ~ lll

0 c 0

c CD

peat

10 sand

Ill N

10=10

D=lOOOmm

1540=40

20__________________

[ml

Fig 1 119 Pile No 1 and results from static cone penetration test

Cone resistance qc [MPa l 0 10 20 30

7N V degW = 0+--------------------i

mud

5

lll

~ C 0

c peat~

10

sand lll N 1D15

15l lD=1500mm

40=60

20l---------=-------__J

[ml

Fig 1 1 20 Pile No 3 and results from static cone penetration test

66 Cone resistance qc [MPa]

10 20 II 3 igt pound ~

mud+peat

fine sand+ silt

50=11

l lo-11oomm

40= 44

10

15l____________c

[ml

Fig 1 1 21 Pile No 5 and results from static cone penetration test

Section Cone resistance Pile

0 0

5 10 15 20 25 30 qc [MPa] -----~-~shy~

Silt

[7r_ ___~ Medium Sand_~-----l

0 ltD

+shy4

0=11

9=

Fine sand + Silt t

30p=

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot1~11+-----E-----

[ml

Fig 1 1 22 Pile No 6 and results from static cone penetration test

Cone resistance qcmiddot 1MPuJ

0 10 20 30 67 01-+-------l--------------i

mud+ peat

fine sand

l1)

N

40=60

15L_____________

[ml Fig 1 1 23 PiZe No 7 and resuZts from static

cone penetr ation test

Section Cone resistance Pi le

0 5 10 15 20 25 30 qc [MPa 1 --~----Y-~-----~

Silt

Fine sand

Medium Sand Bentonite2----1~i

t 3

4

0

0=15

Fine iii ~~= 5

sand t ltD

6 +

Silt 7

3Dp=

63 g

10

11

12

13+------=~---l

[ml

Fig 1 1 24 PiZe No 8 and resuZts f rom static cone penetration test

68

I =3

Cone resistance qc [MPa]

0 10 20 30

C 0 C Cl

(I)

Said

Peat

Sand

l 0=110

D = 11

4 D = 44

Fig 1 125 Pile No 9 and results form static cone penetration test

69

Cone resistance qc[MPa)

0 10 20 30 I ~ II JE Ill= II=E IS

Fine sand QI

U) I

[- I C 0 + C Peat QI

CD

Fine sand 0

Ci D = 1 1

L l D= 110

4D= 4 4

Fig 1 1 25 Pile No 10 and results f rom static cone penetr ation test

70

Cone resistance 9c[MPa]

0 10 20 30

Sand

C 0 Mud peat

+shyc 5 ltII

co

Sand Op= 11

u 10 D= 110 4Dp=44

Fig 1 1 26 Pile No 11 and results foIm static cone penetration test

71

00 a_ N ~

middotu rr QI 0 u ~ C 0

QI ui C iij 0 QI U - 0

0 EN

d 2

Sll 1lOl

C

u (rr

C 0 u~

0

QI - C middot 0 C

U - O 0 EN

~ 0 2

E

ltD a---==-lr---___--~---6-l_-0_012 ~ Lr- - --1---------J J

S9l ls= apound QI -0 gtcc _gmiddot- 0 1) ui I

Fi g 1 1 2 Piles No 14 and 15 and results f r om stat i c cone penetr ation tests

72

Contact pressure p [ MPa] 2 4 6

01lt---------------~

50

E E

111 100 ~ (qcp=30 MPa for No16

~ iqcp =49 MPa for No14

~ 1so~--~~- _ _ __

I _ _

11 I lf--q = 32 MPa for No15

cp

Fig 1 1 28 Results f r om load tests on piles No 14 15 and 16

73

0300--------------~---~--~--shyE

Driven piles in ~ 0 bull Gravel

amp250 bull Sand L QJ X Silt a 1l o Bored piles in

sand -sect 200 0=-- shyC ~ ~ 10 unless ~~ middot D shown 1

ii O

~ ~ o 3 a 1501-----+-------I- --+---laquo-+-- -+------lt

~ sect 5 - 6 6middot 100t----+----+-----_-1---4--__co_--J~__j

-_

~ 0 t7

C

a 50 2 shyg ~ gt

0 20 30 40 50 60

Standard penetration resistanceN in blows per foot

(N 30

Fig 12 1 Emperical relation between ultimate point resistance of piles and standard penetrashytion test in cohesionless soil (Meyerhof 1976)

14 r-------------------r-------b-----q

References and symbols given in Fig121

121-----+---+----+----+------ll------j

- _sect ~ 10t----+----+-_--1-----+---lt~--~H---- 0 lt-~5- _-)0 I() l- I Q---+-----I[08 ~

H -(l () ltj-~C X bulls pound 061------lt----+-----i~- --+-- shy

- bull

-gt Q1pound--I---L---L---L---L--~ 0 10 20 30 40 50 60

Mean standard penetration resistance N in blows per foot ( N30 l

Fig 122 Empirical relation between ultimate skin friction of piles and standard penetration resistance in cohesionless soil (Meyerhof 1976)

74

a) b)0(1 0lt2

10 10

05 05

1 N30OD-+---------__ OD--t-----r-----r----------------ll--Nbull30~ 10 20 30 10 20 30 40 50

Fig 1 2 3 Reduction coefficient a) for impermeable gravels b) form permeablr gravels (Weltman and Healy 1978)

psf [MPo)

Fig 1 2 4 Relation between ultimate point resistance and SPT in cohesionless soil (Polish specification 1975)

75

30 35 40 45 Loo Med Dense Ver dense

50

40

~ E

l)

g 8 1)

middotu

1 ~

QI- bull Touma ~ bull Koizumi

(183)-depth base middotameter5

20 40 60 00 100 N30

30 35 40 45

OG2(294) bull G1 (183)

300 bull us 59 ( 102) bull 88(180)

bull 075 a GT (467)

150

~ 200-+--------+-- t--- --t-----i 130i 0 094 081

014 _- --- -- shy~ E 066bull bull 063 Note -~ ~m~r~s~ ~ 1001---1-r--t---1point is xh QI Ratio ~ Number in ( ) middotn key is h c Ratio s ~

0 20 40 60 00 100

~ig 1 2 5 Ultimate point and shaft resistance versus N30

(Wr ight and Reese 1979)

-----

76

tu Psa

[kPa] [MPa]

200 tu

------ shy150 Psa

1 1

1100 10 1 1

1 50

0+----------T----~---~-N-3J~shy0 20 40 60 80

Relation between ultimate skin friction and SPT (Decourt 1982)

Fig 1 2 6

Psa

[MPa]

8

0----Meyerhof 1976) 0 7

--- - --~ - copy Polish Specifcoti on 1975)6 ~-

~

reg- middot - Reese (1978) middot 5

f41- -- Decourt (1982) -I bull 4 2

----==---______z__ h25m Dp=12m

3 ---shybull

2 7

--shy ----shy~----shy0-t----i----------r-- ----------------------N3l~shy

0 10 20 30 40 so 60 70

Fig 1 2 7 Relation between ultimate point re~istance of large diameter piles and standard peneshytration test (SPT) in cohesionless soil

------

77

tu [kPa)

200 17 Cast under -J bentonite

~----Meyerhof (1976) ~copy -=middotmiddotmiddotmiddot== middotmiddot150 ~------- Wei tman (1978 ) middot Healy middotmiddot ___ Japanese ) 119810 Society

(0 -middotmiddot- Decourt (1982)middot Wright

100

- -middotmiddot -- 11979]reg Reesemiddot Bored piles

~shy50 1 -- shy

-- shy middotmiddot s-shy - --~ ------reg~~ ---~E_==---- ------- shy

N_ ---shy0-+--C--------------r---- ---------~---~-~shyo 10 20 30 40 50 60 70

Fig 12 8 Relation between ultimate skin friction of piles and standard penetration test (SPT)

78

Pst [MPa]

8

7 ---------ist=7MPa

6

5

4

3

2

I N30o~------------------------------+---------__=-shyo 10 20 30 40 50 60 70

Fig 12 9 Relation between ultimate point resistance of large diamter piles and standard peneshytration test (SPT) in cohesionless soil (proposal)

tu [MPa ]

( excavanted and cast

150 under bentonite ) tu=150 kPa

100 tu=90 kPa

I I

50 I I I I I N30

10 20 30 40 50 60 70

Fig 1 2 10 Relation between ultimate skin friction of large diameter piles and standard penetrashytion test (SPT) in sand (proposal)

79

2 3 4 5 p[MPa] 0 2 3 4 5 p[MPa]0

40 40 Cl

80 c 80

c 120 120

Pile No 1 PileNo216 160

200 2

s s c [mm] (mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MPa]

40 40

00 80

120 120

16 160 Pile No 3 Pile No 4

200 200

s s [mm] (mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MAJ]

tgt11 tgt- measured40 40

80 80

120 120

Pile No 5 Pile No 6 160 160

20 200 s s

[mm) [mm)

Fig 1 4 1 Base resistance vs settlement appoximative method piZe No 1- 6

80

0 2 3 6 5 p[MPa) 0 2 3 4 5 p[MPa]

40 40

80 80 6

120 120 6

6160 160

Pi le No 7 Pile No 8 6

200 3J s s

[mm] (mm]

0 2 3 4 5 4 p [ MPo)

6 6 40

6 6

6 80

6 6

6

Pi le No 9 Pile No 10

XJO s s

[mm] [mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MPa)

6 6

40 40 6 6

6

00 80 6

6

12 1Xl 6

160 Pile No 11 160 Pile No 12

200 200 s s

[mm ] [mm]

Fig 1 4 2 Base resistance vs settlement approximative method pile No - 12

81

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MPa]

6 6

40 6 40 6

6

80 6 80 6

120 6 120

Pile No 13 Pile No 141fO 160

200 200 s s

[mm] [mm]

0 2 3 4 5 p [MPa) 0 2 3 4 5 p [MPa)

40 40

80 80

120 120

HiO 160

200 200Pile No 15 Pile No 16

s s (mm) [rrrn 1

0 2 3 4 5 p[MPa] 0 2 3 4 5 p[MPa)

40 40 A A A-measured

680 80 t t

120 c 120 c

1fil Pi le No 17 160 Pile No 18

200 200 s s

[mm] [mm]

Fig 1 4 3 Base r esistance vs settlement approximative method pile No 13- 18

82

0 2 3 4 5 p[MPal 0 2 3 4 5 p (MPa]

D D40 40 c c

80 c 80 c

120 120

160 160

Pile No 19 Pile No 20 200 200

~ml (mm]

Fig 1 4 4 Base resistance vs settlement approximative method pile No 19- 20

LlJ QI

0 average lJ = 098 E sd = 029 C

6 SY = 030

4

2

lJ calculated ________________________ _______ measu red

06 08 10 12 14 16

Fig 1 4 5 Calculated pressure divided by the measured pressure at 20 mn settlement for aZZowabZe

q Zoad Pa= ~p approximative method pile

No 1- 20

8 3

Point resistance p [ MPaJ

a)

p(s) = s a +--sshy1 y qcp

1

SQ100p -- --- ---shy

~ s

[mml

I- 01 s rmm]-l p LMPa b)

f~]

c Cll E ~ i s

[mm)

Fig 146 Definition of the point resistance - settlement curve according to the modified hyperbolic method

84

01 ~ 0

20 0 0

0

16 0

medium 0 value a1 = 905-+ 256 Op 0 0

12 (r=039)

0 0

----0 0

8 0

0 0

0 0

4 0

05 06 07 08 09 10 11 12 f3 14 15 16 17 18 19 20 2 1 Op (ml

Fig 1 4 Initial slope of the base resistance curve vs pile diameter

a1 [p] 0

0020

16 assumed a 1= 28 - 4 qcp

12 0

0 Ct) 0 a = 2659 - 369 qcp8 1

0 0 (r = 0188)0

4

2 3 4 5 (MPa]qcp

Fig 1 4 8 Initial slope of the point resistance curve vs ultimate point resistance on the static cone resistance for pile tests No 1 20

85

a [~ 28

24

20

16

12

8

4

0 2 3 4 5 6 Qcp [MPa]

~ Kiosinski (1977) sand and sandy gravel of mediwn density

~ Klosinski (1977) loose sand ID= 0 3 0 4

o US59 ] t HH Touma p and Reese L (1974) fine sand and silty sand OGl (US59 HH BB - very dense Cl - mediwn dense) 1 BB

DIN 4014 Part 2 (1977)

Fig 1 4 9 Initial s lope of the point res istance curve vs ultimate point resis tance

86

assumed [il =30 -10 Op but )1~ 10 )1 [1 I

u 311-10 Op ( r =0 368)4 1 0

3 0 0

02 0

0 0co 0 8 0 0

0

0

05 06 07 08 09 10 11 12 13 14 15 16 17 19 20 21 Dp [ ml

Fig 14 10 Correction factor for hyperbolic base resistance shysettlement relationship

87

a [~] 28

24

20

16

12

8

4

2 3 4 5 qcp [ MPa]

Fig 14 11 Initial slope of the base resistance curve vs ultimate base resistance (proposal)

v [ 1 ]

3

2 -----G- DP J l 1J I Op lm] J

for Dp ~ 2 0 m ~ u = 1 01

0 --------r----r---r----r-----------------r-------------------------r------r-~-~--shy

05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 Dp[m)

Fig 1 4 12 Correction facto r for hyperbolic base resisshytance - settlement relationship (proposal)

s P ( s)

s +

u qcp

88

a) b)1

bt=o212= 47 MPa a1=1~32 tMWJ s 2 3 4 5 O 1 10 20 30 40 50 60 p [~a]0

0p [ MPa] 40 40

80 80

120 ~

160 b1 = ~ajtg ~= 0 212

~=1132 + 0212middot s

mJ 240 r=0994t t t measured s __ according to Jl s

o o o according to p (bull ll l[mm] [mm]

Pile No 2

slmm) 10 20 30 40 50 60 80 100 125 150 175 2)0 225 Note

p [ MPa] 09 14 17 20 22 24 27 30 32 34 36 38 39

measured

pibull) [ MPa] 074 128 169 202 228 249 282 307 330 347 360 371 380calculated

plbullbull1[MPal 070 125 168 203 233 257 297 327 356 378 396 410 422calculated

1) (bull) ij l099082 091 099 101 104 104 104 102 103 102 100 098 097 sd = 006

ij (HJ1041) (bull10) 078 089 099 102 106 107 110 109 111 111 110 10B 10B sd = 010

plbulll-according to a =1132 [ Jp(s) = s s for pile No21 0 1132 12 39

plbullbulll-according toa =1241 lmiddotGcp=39MPa1 0

~=14 see fig 1411 and fig 14 12 sp(S)=

124+ _ s_ 14middot39

11lbulll11l-J - correlation coefficient calculat~d P5 for

measure p s p(bull) and p(bull) respectively

Fig 1 41 3 Modified hyperboZic point resistance - settZement reZationship for piZe No 2

89

0 2 3 4 5 p(MA1] 0 2 3 4 5 p[MPa)

40 40

80 A 80 A

120 120

160 16 Pile No 1 Pile No 2

20 200 s s

[mm] rnm

0 2 3 4 5 0 2 3 4 5p [MPa] p [MPo]

40 40

80 80

120 1ZJ

lfpound) Pi le No 3 Pile No 4 A

200 A

s s A

[mm) [mm

0 2 3 4 5 p [MPa] 0 2 3 4 5 p [MPa]

40 40 A A A measured ~ calculated

80 80

12

160 160 Pi le No 5 Pile No 6

200 Z)Q

Fig 1 4 14 l3ase resmiddotistance vs settlement pr oposed method pile No 1- 6

90

2 3 4 5 p [MPa] 2 3 4 5 p [ MPa]

40 6

6 40

1 80 80

6

120 120 6

6 160 160

Pile No 7 6

200 200 s

[mm ] s

[mm]

0 2 3 4 5 6 p [MR] 0 2 3 4 5 p [MPa] 0 0

40 40 6

6

80 80

6

120 120

160 160 Pile No9 Pile No 10

200 200

s [mm] [msml I

0 2 3 4 5 6p[MR] 0 2 3 4 5 p [MPa]04--___ ____ ___ ___ ____

0+-=---------------~-~- shy

40 40 c 6 c - measured

0--0-0 shy calculated

80 80

120 120

160 160 Pile No11 Pi le No12

200 200

s [mm]

s [mm]

Fig 1415 Base resistance vs settlement proposed method pile No 7-12

91

0 2 3 4 5 p [MPal 0 2 3 4 5 p [MPa)

40 40

80 80

120

16 Pile No 13 Pile No 14

200 s

tnml [mm]

0 2 3 4 5 p [ MPa] 0 2 3 4 5 p [MPa)

40 40

80 80

120 120

160 1fD

Pi le No 15200 axJ s s

[mm] [mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 6 plMPa ]

A A A measured40 0---0-0 calculated

80

120 120

160 1ED Pile No 17 Pi le No 18

200 200

s s [mm] [mm]

Fig 1 4 16 Base resistance vs settlement proposed method pile No 13- 18

92

0 2 3 4 5 p [MFb] 0 2 3 4 5 p[MPa]

0 6 o -measured40 40 0 0 o -calculated

80 80

120 120

160 160 Pile No 19 Pile No 20

200 200 s s

[mm] [mnil

Fig 1 4 17 Base resistance vs settlement proposed method pile No 19-20

p(s~Psf

15 20

ean

-C 5 w u L Lower ~ confidence

linea 0

a IJl 10

o---o proposed

method I I I

15

Fig 1 4 17a Design curves for estimating developed base resistance in sand (Wr ight and Reese 1979)

93

n (number)

30

28

26

24

22

20

18

16

14

12

10

8

6

4

2

0 02 04

Fig 1 4 18

I= 126

Between 1] = 0 7 - 1 3--- I= 106 ( 84 frac34)

Average ~ = 098 Standard sd =023 deviation

Standard sv =023 veriation

1] (Coefficient Calculated Measured

06 08 10 12 14 16 18

Calculated pressur e divided by the measured pr essure for all pressure - settlement curves pr oposed method pile No 1- 20

94

a) b) Total load

Total load curve

---- _____-- shy- -- -Base load ~- Base load

-0-0 ~

00 00 J

ldeoli zed shaft load J

Shaft sesistanc1---------- 0=0middot30 a= 0 middot 30

025 Settlement IN 025 Settlement IN

Fig 1 419 Proposed method of synthesizing design loadsettlement curve (a) conservative design prodiction b) design prediction- peak in shaft loadsettlement curve (Burland et al 1966)

Cf

-0 0 0

J

0

~-----~--~-~ amp- 2 3 4 5 6 (cm)

a~middotltii -0 lt) cco2 41 -~ -0 1)

vi ~ llloli=----------- ---c~0 1 2 3 4 5 6 7 ( of diameter)1 1 1 1

05 10 15 20 ( in) for 30 in Pile Movemen~ ( 75cm pile)

Fig 1 4 20 Approximate load settlement curves for 30 in bored piles (AB and C represent failure load at 1 in settlement A B and C represent ultimate failure load) (Touma and Reese 194)

95

Load in MN 0 2 3 4 5

25

50E E C

-C 75

-~ ~

-Z 100 lJ

Shaft resistshy

125 once

15 Fig 1 4 21 Load-settlement relationships for largeshydiameter bored piles in stiff clay (Tomlinson 1977)

SettlementSo

Fig 1 4 22 Diagrams of s1iaft and base resistances versus settleshyment assumed in analysis (Kiosinski 1977)

96

0 0 1 ~ r- 025g ~~ 2

1- -shy3 03Sg 14 5 2

Qls =Qpls+Q5 (sQpls) Qs(s-3E

0

degsis __ -- Qpls) a~ C

4

t Sg l

5 Qu Is)

Q(s)in MN-l T

Ouls Q Is) in MN ---

Fig 1 4 23 Construction of load - settlement curves a) for sand b) for cohesive soil (DIN 4014 Part 2 1977 and Franke 1981)

-

s C 5C

Cl

3 0 00 05 10 15 20 Mean settlement I in)

Fig 1 4 24 Load- settlement curves for test shaft S4 (1 in = 25 4 mm 1 ton= 8 90 kN) (Reese 1978)

97

Relative side resistance

0 05 10 15 20 0E=--t----+---+--~

c QI lt) ~ 2 C

I itaker c

QI amp Cooke3E QI-j

c-en 4

C QI

E us 59o

5 QI gt

SA0 w 0 6

Fig 1425a Relative side resistance for clay vesus relative midlength settlement (Reese 1978)

degs (Osl u l t 0 05 10 15 2 0

Mean

2 Lower ~ C QI u

confidence line

~ 3 a

0

~4 E

()

5

6 __ _ ______ ________ __1

Fig 1 4 25b Design curves for esti mating developed side resistance (~Jy1nht ReertP- 1987 J

98 Load Q

8 - 15 mm

1- 2 of p ile diameter

100-200 10-15 of pile Os Ot diameter Shaft Total

Settlement S Resistshy Resist- Load ance once

Fig 1426 Dependence of total load base resistance and shaft resistance on settlement of lar-ge diameter pile (Tejchman Gwizdala 1979)

6

5 Shaft load

4

3

2

z ~

-0

g Pile EF- 56 J 0

0 0 20 30 Butt settlement (mm)

Fig 1 4 27 Deveiopment of shaft and base resistance with settiement (Promboon Brenner 1981)

99

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 0 r-=-1---J__-----------------------~----_shy

Load [ k N l5

10

20

( I

Skin friction ----1 I I

~ 40 QI E

fQI

50 I

Q) I () ICOntinuos fost deolading

Fig 1428 Load-Settlement-Diagram Testelement III (Diaphragm-Wall 0515 m 244 m deep) Portion of Skin Friction and Base Resistance (Prodinger Veder 1981)

Qs (QJ max

0 05 10

Upper Limit of Data

Farr and Aurora (1981J C

~ 2 - shy -+shy - Mean of Data

I QI

Lower Limit of Data a

0 - 3 E

Vl

4

Smid = Approximate shaft buff movement ignoring the elastic compression of upper halt of the shaft

D = Shaft diameter

Q Mobi Ii zed shaft resistance

Qs1max = Maximum shaft resistance

Fig 1 4 29 Relative shaft resistance vs relative movement (Farr and Aurora 1981)

100 Load Q (s) [ MN]

Su5 s s 20 mm for non- cohesive soil u

s s 10 mm f or cohesive soil u

s s 15 mm for claysand u

Q (s) + Q (s)s p

Qs(s)

-C ltII E s ~- [mm]-ltII IJ)

Fig 1 430 Dependence of total load Q(s) point res i stance Q (s) and shaft resistance Q (s) versus settlement p s

~ 3 Usu Qpu Qu Q(s) [ MN]

Sus= 20

1J

60

80

100

120

degs (s ) 140

5 P=Ol Op

1EO

C -ltII E 180 ~ ] 200

s [mm]

Approximative dependence of total load point resistance and shaft resistance versus settlement fny non-cohesive soil

Fig 1 4 31

101

113 3 ~fic0P Ye hY

1 Ground water

D

I y

yh C

Fig 1 5 1 Determination of 01 and 03 for settlement analysis of lar ge diameter bored piles

102

I

E=Et [MPa]

160 0

140

120 0

100

80

6

40

--- --shy 0

0

8 0

0

0

20

2 3 4

I 0 15

Fig 1 5 2

E = Et [MPa]

120

100

80

60

40

I I 0 35 065 085

0

Et= 17 81 qcp0844

( r = 0 128)

5

100

6 qcplMPo]

Calculated values of Young s modulus for piles No 1shy24 according to equation 1 5 2 and 1 56

0

0 0

E =898qcp127 (r= 0314)

E = 9 middot qcp 13 0

20 shy 0

0 0

0 1 2

loJ

I 0 35

3 I

065

4

I 085

5

100

6 qcp [MPo]

Fig 1 5 3 Calculated valueBof Young s modulus for piles No 1shy24 according to equation 1 5 4 and 1 5 6

I K 10 3

( 1 ] 1832

1400 0

1200 0

0

1000 0

800 0

m=2821 qcp0621

600 0

(r=0057)

400 0 0 0 0 0

200

2 3 4 5 6 qcp (MPa]

I 035

I 065

I 085 100 Io

Fig 15 4 Calculated valuesof the dimensionless compress ion modulus K for piles No 1- 24 according to equation 1 5 2 and 1 56

K ( 1 ]

0

1400

1200 0 0

1000

800

600

0

0 0

0

0 0

0 K= 1422 qcpl05

(r=0181)

0 K= 150 qcp

400 0

3)0 0 0

2 3 4 5 6 qcp(MPa)

I I -J 035 065 085 100 Io

Fig 1 5 5 Calculated values of the dimensionless compression modulus K for pile~ No 1-24 according to equation 1 5 2 and 1 5 6

104

120

100

2 3 4 5

I I I rv 0 15 035 065 085 100 lo

Bergdahl (1982) for shallow foundation

o----o Bozant Masopust (1981) D= 1 0 rn h=10 rn large diameter bored piles in noncohesive so il

0----0 Proposal according to current anal ysis

Klosinski (1977) D=090 to 125 rn large diameter bored piles in sand and sandy grave l

Mitchell Gardner (1976) very dense sand E=(35)q (it depends on sand density and stress history) c

Fig 1 5 6 Composision of Young s moduius

105

TABLES

0 Tab 1 11 Methods for detemination of the bearing capacity of bored piles (Ro llberg 1977)

Cl

Nol -- I Soil Areas of Q) Q) Editor Determination of Coefficients 5 type influenceqP qs p ~ C C 11 12 fP I fs

1 all Lab f Soil Mech (1936) l qp at the elevashy 1 0

2 all Huizinga (1951) ~ t~on of the pile 14 point

3 all Van der Veen (1953) ) 18 1 h+l14 all Van der Veen 1 0 Dpl375 D~ 15-- J qcmiddotdhBoersma (1957)

~ 11 +12 h - 12

5 12 all Menzenbach ( 1961) qc at the elevashy~ tion of pile point

6 18 all Mohan Jain Kuman (1963)1 average of qc over 1 h Q) h ~qcmiddotdhl 10 Dpj 3 75 Dj 15 50_micro

and 1 2C 11

7 I amp all de Beer ( 1964) graphically from 10 Q) qc 0 1 h+l18 u C

sand Soviet norm SNIP II 9ct9cp I4 bull O Dp I10 DP l66-1 083shyu clay B5- 67 Trofimenkov (1969) 2 50 1 251 +l J qc middotdh micro middot h middot-l l 2h-~ _micro

9 _micro u all Paproth (1972) at the elevation 3 5 I shy

) of pile point (Dpgt0 5 m 7 D8DpE

E-lt p 1 h+l1 1 h Dplt 5 m u l+l J qcmiddotdh h f qcmiddotd~ 30 Dpl 50 Dp 2 0 100shy10 sand Norwegian method

0l 2 h-12 200Senneseth (1974)

11 lall Soviet method h+l (20-0lqgl - 101 1 q middotdhTrofimenkov (1974) -- f C UpUsmiddotQct

l1+l2 h - 1212 Qct-Qcp 40 D~ 10 Dp 1 33- 0 67shyUsbullh 4 00 2 50

13 English method 10 DFJ 375Dp 10 I

Rodin Corbett Shershywood Thorburn (1974)

3 7 5 Dcl 8 0 DP 10h+l1 _1_ J qcmiddotdh 1 h

qcmiddotdh 20011 +12 h - 12 hb

1 h qcmiddotdh 150hf

0

Observations

fp I f (qp)fs C

Dp E = 1 cm Qbu = 2 Qpa (approx )

s fs=f (qc)

q=~g Us 0 h

fp=f(q~)

fs=f(qgl

bull fine grained non- cohesive soil loosely packed

bull fine grained non- cohesive soil medium dense comp

fine grained non- cohesive soil

Tab 111 (cont)

h+h bE 14 non-cohe- Meyerhof ( 1956 poundti J N 3o middot dh CtME fN3 o dh 1 0 DP 4 0 DP 10 100 etM= l 2

sive soil 1976) lJ +12 h - li hE o hgp taken into consi der ~ Ul (I)

E-lt

C 0

~E = 1 kgbull 30 cm

(statistical limit depth of the pile) hE - clamping length of

pile micro rrJ l-l micro (I)

15 C (I) p

sand Norwegian method

- irm - - - 10 IT

m = diagram O l-l Senneset (1 974) rrJO C

16 rrJ micro gravel English meth it 3 middot N30 - - - 10 - Jf 3 + diagram U) ~

E-lt p U)

iiouiu Coruett Sherwood Thorshyburn (1974 )

(NJQat the elevashytion of pile point1

0 -i

108

Tab 11 2

Results of calculati o n of p i le point load pile shaft load and total pile load from static con e penetration test (Rol l berg 1977)

~ gt

~ gt Ultima te Ultimate Ult imate

No Method micro micro poi nt skin bearing 080lt17nlt1 50 Q) -l

-l middot-i resistanceuro resistance r esistancE

middot-i p 0

(J n1 n n2 n n3 n n1 n2 n3

1

2

Lab fSoil Mech

Hu izinga (1951)

(1936 ) 430

307 i 3 Van der Veen (1953) 239

49

4

5

Van der VeenBoersma

Menzenbach (1961)

(1957) -l middot-i 0

2 4 7

1 57 1-CJ)

6

7

8

Mohan Jain Kumen

de Beer (1964)

Sovi et Norm (1969)

(1963) CJ) Q)

-l middot-i 0

lJ Q)

Q)

gt- CJ) Q)

c 0

2 44

1 37

183

47

t I

49

487

0 18

47

16

3 02

0 85 1

47

16

137

08

9

10

Paproth ( 1972)

Norw Method (1974)

~ 0

0

u I

C 0 C

1 8 1

180 l 46

1- - -_L~ 46 167 46 1 19

1 1 Soviet Method ( 1974) [1 1 41 46 1 62 13 083 13 1 14 0 8

12 Engl Method (1974) 2 66 35 128 35 2 30 35 1 28

Note

cal Q a) n = --- mean value of the rat i o between calculat ed pile loads and those n Q determined f r om loading test

b) n = number of piles

109

Tab 113

Point resistance of large diameter piles (DIN 4014 Part 2 1977)

Settlement Point pressure 1 Factor -fshy

(cm) (MPa) cf=lOMPa I i=15 MPa C C

Piles without enlarged base

1 05 005 003 2 08 008 005 3 11 0 11 007

15 34 034 023

Piles with enlarged base

1 035 0 04 002 2 065 0 07 004 3 0 90 009 006

15 2 40 0 24 0 16

Note 10 lt qp lt 15 (MPa)C

Tab 114

Skin friction resistance of large diameter piles (DIN 4014 1977)

Strength Static cone pen- Depth below Skin frict ion Factor of sand etration resist surface

(MPa) (m) (MPa) fs

Very small lt 5 - 0

Small 5 to 10 0 to 2 0 2 to 5 003 ln6 to 333

gt 5 005 100 to 200

Medium I I 10 to 15 0 to 2 0 I

I 2 to 7 5

gt 75 I 0045 0075

222 to 133 to

333 200

High I I

i

l

gt 15 0 2

to 2 to 10 gt 10

I I I

I

i

0 006 0 10

gt gt

250 150

Note Skin friction is assumpted as linear until s =2 cm and constant for s gt 2 cm

11 0

Tab 115

Values of the inverse of the point resistance factor (Bustamante 1982) fp

Soil type qPC I 1

Factor - shyfp(MPa)

for piles group

a) Silt and loose sand lt 5 0 40 -b) Moderately compact

5 - 12 040sand and gravel

c) Compact to very gt 12 i 030compact sand and gravel I

Tab 116

Values of the shaft resistance factor fs (Bustamante 1982)

Factor fs

Soil type qs

C Category I(MPa) I A I B I II A III BI

I a) Silt and loose lt 5 60

i 150 I 60 I 120-

sand

b) Moderately corn- I pact sand and 5 - 12 100 200 100 200 gravel i

Icl Compact to very

compact sand gt 12 150 i I 300 150 I 200I

I I and gravel i

I

111

Tab 117

Point resistance factor (proposal)

-

1-fp

qc (MPa)

Gravel

Coarse sand Medium sand

Fine sand Silty sand

25

080

0 70

060

5 0

0 65

055

047

75

054

045

039

10 0

045

036

031

150

035

027

022

200

030

0 23

018

Tab 118

Shaf t r e sistance factor (proposal)

fs

qc (MPa)

Gravel

Coarse sand Medium sand

Fine sand Silty sand

25

80

100

130

10 0

120

150

190

I 200

180

230

300

11 2

Tab 119

Calculated values qcp

for large diameter piles

Pile Literature Length Diameter (m) Measured p Cr1 lcul Settlement Note Authcr(year) No (ml D Dp (MPa)

(s=0 10Dp) (MPa)p ~~JL__

s s ()(mm) Dp

1 Franke (1977) 1 13 11 36 38 117 106 Garbrecht

2

3

2

3

13

14

11

15

1 58 36

37

38

40

215

185

136

123

) qg accord to Franke

4 4 13 15 204 3 2 33 220 108 and Garshy

5 5 6 11 33 35 127 11 5 brecht (1977)

6 6 6 11 153 36 35 146 9 5

7 7 6 1 5 34 35 158 105

8 -shy 8 6 15 2 1 41 3 0 109 52

9 10 9 11 39 52 47

10 11 95 11 43 35 77 70

11 12 9 11 49 66 60

12 13 10 11 15 5 1 4 0 77 5 1

13 14 9 11 1 5 4 8 46 115 77--shy14 Pranke ( 1973) 15 115 18 4 9

) ) average 88

15 13$ 13 5 1 3 19 -2 5 3 2 sd=3 0

16 - - 165 16 5 13 19 30 sv=0 34

17

18

Spang (1972)

llXJ

V90

6 6

6 75

0 7

09

3 2

4 2

32X

42X

x) s =0 10 D p

19 VlaJ 720 1 2 39 3 9X

20 - - VlsJ 6 5 1 5 3 0 3 ox

21 Touma and US59 9 9 o 76 8 0 Reese ( 1977)

22 HH 75 0 61 8 0

23 Gl 180 091 - 2 5

24 BB 137 o 76

sd = standard deviation

sv = standard variation

Tab 1 2 1

Ultimate point resistance coarse and medium sand psf (MPal (Pol ish Specification 1975)

Depth h

Medium sand r = 0 40 N = 200 30 Base diam (Op) and depthbase diam (hDp)

Dense sand r 0 Base diam (Op)

= 0 80 = 50N30 and dpethbase diam (hDp)

(ml Dp = 0 6 m Dp = 1 0 m Dp =12 m Dp = 1 5 m Dp = 0 6 m DP = 10 m DP = 12 m DP = 15 m

Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp

5 10 83 0 85 5 0 075 42 07 33 20 8 3 16 50 14 42 13 3 3

7 14 11 7 1 2 70 11 5 8 10 4 7 2 8 11 7 22 70 2 0 5 8 1 8 47

10 18 16 7 15 10 0 14 8 3 1 3 67 35 167 28 100 2 5 83 2 2 67

15 18 250 18 15 0 16 12 5 15 100 4 2 25 0 3 4 15 0 30 125 27 100

20 2 4 333 2 0 200 185 167 1 7 133 4 7 333 3 8 200 33 167 30 13 3

25 26 41 7 2 2 25 0 20 208 19 167 5 0 41 7 4 0 250 3 5 20 8 3 2 167

w

11 4

Tab 131

Partial safety factors for resistance to axial load for bored piles (Wright Reese 1979)

Partial safety Normal Poor factor for control control

Unit skin resistance 1 70 185

(no load test)

Unit skin resistance 160 1 70

(from load test)

End bearing 165 180

Tab 1 3 2

Probability of failure of bored piles under normal design conditions (Wright Reese 1979)

Probability of Factor of Structure failure safety classification

5 10-3 25 monumental

210shy 22 permanent- 2

5 middot 10 2 0 110shy 1 85

temporary 5 bull 10-l 165

11 5

Tab 133 Results of field tests (Tejchman Gwizdara 1979)

L

II C C C 0 0 0

micro micro

micro micro micro For universal safe~y F2u u CUNo micro C C ~ ~g~ middot- C

~ Permisible micro micro i ~c -i micro

cmiddot-~ micro~ L

micro oo ~ load ~t~ ~~ omicro micro ~ ~ 3Z~ ~ ~ micro

-~~

~ e ~ --middot--

middot- ~ obull 0

~ g ~~ ~~ ~

~ L

o Jl i5 sect~ =gt L Q~ = yen t p Qp Qp

D h Q~ Srrx s tm p s E~ iQ~lQ~cm ~~ KN X ll1l kPa kPa kN kN kN Jl ~e ~ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 70 6 60 4081 1550 2531 38 0 1182 10 4040 175 2041 245 1796 632 141 120

2 90 6 75 5082 3041 2041 598 1785 10 4782 107 2541 1079 1462 282 140 42 5

3 120 720 7259 4041 3218 557 1035 10 3576 119 3630 2158 1472 187 2 19 594

4 150 650 8643 4454 4189 51 5 928 20 2521 136 4326 2158 2168 3 10 166 253

5 130190 195 7750 3011 4709 392 805 10 1075 - 3875 981 2894 3 10 166 253

6 130190 165 9516 5101 4415 536 522 20 1800 - 4758 1962 2796 260 158 412

7 130190 135 8044 5199 2845 646 114 4 15 1834 - 4022 2109 1913 2 47 149 524

8 180 115 11380 4415 6965 388 792 15 1735 - 5690 2747 2943 161 2 37 483

9 76 980 6867 4316 2551 628 110 13 9529 109 3534 1128 2306 383 111 32 8

10 61 7 60 7161 2747 44 14 383 67 15 9404 303 3581 392 3188 700 169 109

11 92 180 4807 883 3924 184 20 8 1329 76 2404 196 2207 450 178 82

12 76 24 5 6769 736 6033 109 20 8 1623 103 3385 147 3238 500 186 43

13 76 137 5396 2060 3336 38 2 63 8 4535 102 2698 589 1109 350 t 58 218

14 120 23 5297 1854 3443 35 0 960 10 1640 39 2649 196 2453 945 130 7 4

15 135 16 7 13489 7554 5935 560 181 10 5260 83 6749 2060 4689 367 127 305

16 170 46 0 8829 2943 5886 333 17 10 3466 39 4415 1373 3042 2 14 1 94 31 1

Average Fi 387 166 Standard deviation Sd 2 1 5 034 Standard variation sv= 0 56 0 20

1234 Spang1972 567 8 Franke 1976 9 10 111 2 1 3 Touma Reese 1974

14 Colombo 1971 15 Kerisel Simons 1962 16 Appendino 1973

11 6

Tab 134

Results of model

SafetyScheme factor

medium F ssand

F p

loose F s

samd Fp

F 3 55 sd _P F 1 32 sd

s

tests (Tejchman Gwizdara 1979)

Diameter D (mm)

30 60 90 133

145 129 108 112

280 3 08 307 294

140 154 153 112

594 3 04 324 426

107 sv 030

0 19 sv 0 14

117

Tab 135

Individual safety factors according to literature

Literature proposal ofLiterature individual safety factor

Fs Fb

Polish Specification (1974) 100 250

Tejchman Gwizdala (1979) 150 400

Bustamante Gianeselli 200 300 (1982)

Decourt ( 1982) 130 400

average 145 3 38

TAB 141 0)

Load settlement curves - measured

Pile No

Settlement 1 c 3 4 5 6 7 8 9 10 11 12

s p s p p s

p p s P

p s P

p s p p s

P p s

P p s

p p s p p S

p I i p s

p p s p

mm MPa rrrn lifl5a MPa mm

lifl5a MPa

mm lifl5a MPa mm

RPa mmMPa nwa MPa mm

RPa MPa mm RPa MPa mm

RPa MPa mm RPa MPa mm

RPa MPa mm RPa MPa mm

RPa 10 045 222 09 1 1 05 20 07 143 06 167 08 125 0 5 20 08 125 10 100 08 12 5 15 67 16 63 20 092 21 7 14 43 08 25 10 20 0 1 1 182 12 167 0 9 22 2 12 167 18 111 14 143 24 83 22 9 1 30 125 240 1 7 I 7 6 1 1 273 1 2 250 14 214 15 200 1 2 250 15 200 25 12 0 19 15 8 30 100 26 11 5 40 1ti 250 20 10 0 14 28 6 14 286 1 7 235 18 222 1 4 286 18 22 2 3 2 12 5 23 174 36 111 3 0 133 50 20 250 22 ~27 1 7 294 1 5 333 20 250 2 1 ~38 1 7 294 1 9 263 37 135 27 18 5 4 2 11 9 33 152 60 2 2 273 24 ~5o 20 300 1 7 353 23 61 22 ~73 18 333 21 286 43 140 30 20 0 46 13 0 36 16 7 80 271 295 27 796 24 333 20 400 27 ~96 25 1320 22 364 25 32 0 53 15 1 36 222 41 195

100 322 31 1 30 333 28 357 22 454 31 1323 29 345 26 385 28 357 60 16 7 40 25 0 45 22 2 125 38 329 32 391 32 391 25 500 32 139 1 30 41 7 32 39 1 4 6 272 48 ~6 0 150 14 2 357 34 1441 36 41 7 27 555 36 ~1 7 34 44 1 36 41 7 175 36 486 39 449 30 583 38 ~61 38 461 200 38 526 42 476 32 625 225 39 577 33 682

(mmMPa) ( 1 MPa)

1

1=2074

t 1=O ~01 =0 98S

a1=1132

b1 =0 212 V =0994

a1=2217

b1=O 131

V =Q 978

a1=1860 b1=0233

V =Q966

a1=1562

b1=0174 V =Q983

a1=1382

b1=O195

V =0975

a1 =20 37

b1 =C 174

V =0957

a1=1443

b1=(l 193 v =O 961

a1=965

b1= 0071 V =0 990

a1=1 91

b1 =o 128

V =0 993

a1=5 83

b1=C124

v =O 981

a1=6 1 4

b1=01 64 v =U 985

li(MPa) ~9 4 7 76 43 57 middot5 1 57 5 2 141 78 81 61 cp (MPa) B8 39 40 33 35 35 35 3 0 39 3 5 49 40 __Ef ~-6 1 2 1 9 1 3 16 15 16 1 7 36 22 16 15 qcp

TAB 141 (continue) Load settlement curves - measured

Pi le No 3ettlement 13 14 15 1 17 18 19 20 21 22 23 24

s p s T5

p s T5

p s T5

p s P

p s P

p s P

p s P

p s P

p s T5

p s T5

p s p p s

p mm MPa lll1l

HPa MPa mm HPa MPa mm

fWa MPa mm fWa MPa lll1l

HPa MPa mm HPa MPa mm

MPa MPa lll1l NT5a MPa HPa MPa 111111

HPa MPa 111111

HPa MPa 1)1111

mra 10 1 7 59 075 133 06 167 075 133 ~95 105 09 11 1 07 143 3 76 1 7 59 08 133 10 100 20 2 4 83 130 154 095 21 1 1 15 17 4 1 75 114 16 125 12 167 ~7 74 33 6 2 1 3 15 3 1 9 103 30 29 103 1 7 176 1 2 250 15 200 r55 118 22 136 16 18 8 38 79 46 66 1 7 182 27 110 40 33 12 1 20 200 1 35 29 6 1 75 229 ~O 133 26 154 175 229 49 82 58 6 9 1 9 21 1 35 115 50 36 139 235 21 3 145 34 5 1 95 256 24 208 ~-4 147 28 17 9 20 250 gt8 86 6 9 72 2 2 233 4 2 11 8 60 39 154 265 22 6 1 55 387 2 15 279 28 214 ~6 16 7 30 120 0 2 2 27 3 o 8 89 80 7 5 2 3 262 80 43 186 31 258 1 7 47 1 36 222 14 05 198 33 124 2 25 320 B 1 98 25 327

100 45 222 18 556 39~ 253 ~-5 222 36 1278 27 370 ~8 113 125 47 26 6 20 625 42 29 8 149 255 28 1446 t50 22 682 3 0 500 175 200 225

(mmMPa) a1=479 a1=1206 a1=14 51 a1=1113 a1=1406 ~=836 a1=843 a1=1176 ~=64 a =561 a1=10 0 a1=9 5 (1MPa) b1=0175 b1=0 178 b1=0 382 b=0287 b1=O 119 p 1=0 137 h1 =o 193 b=0258 p1=0 049 b1=0032 b1=0 276 b1 =0 048

hf (MPa)

v =0998 57

v =0-987 5 6

v =0989 26

v =0992 35

v =0933 Iv =0991 84 73

v =0993 5 2

v =0998 tJ

3 9 =0944 v =0998 v =0996 v =0981

qcp (MPa) 46 39 32 30 32 14 2 39 30

lL 12 1 1 08 12 26 1 7 1 3 13 qcp

lD

N 0

TAB 142

Calculated point resistance curves

Setlement (mm) p(s)

1

n p(s)

Calculated value of the p(s) for pile No

2 3 4 5

n p(s) n p(s) n p(s) n p(s) 6

(MPa)

n p(s)

7

n p(s) 8

n p(s) 9

n p(s)

10 20 30 50 80

100

150 200 225

070 128 177 253 335

375 446 493

157 140 141

127

123

1 16 106

070 1 25 168 232

297

327 378 410

422

078 089 099 1 06

1 10

109 1 11 108

108

073 1 30 176 246

315 349

405 441

146 163

160 145

1 32 125

113 105

056 096

1 26

167 205 222

249 265

271

0 80 096

105

1 11 100 101

092 0 83

082

065

118 162 233

308 345

412 456

108 108

1 16 116 114 111

064

1 12 151 2 10 2 69

298

346 3 76

078 P63 093 tt 13 101 tt 53 100 I 13

108 ~75

103 ~04 096 ~ 55

~ 87

1 26 125 127 126

125

1 17 1 04

052 088

1 15 153

188 2 03 227 242

065 0 74

o 77 0 81 0 75

0 73

063

072 122

1 83 262 347 388

463 5 11

073

0 74

073 0 71 0 65 065

064 1 18

162 233 309

3 46

41 3 4 57

Dp (m) 1 1 Qcp (MPa) 38 (mmMPa) h2 8 1 1 9 Qcpbullv1(MPa) 72

158

39

124 14 55

15

40

n20 15 60

204

33 148 10 33

1 1

35

tt 4o 1 9 67

1 53 3 5

tt 4 0 1 5 51

15

13 5

114 0 15 i-gt 3

2 1

30

tt 6 0 10 3 0

1 1

3 9

12 4 1 9 74

1 1

3 5 h40

1 9 67

Note n = condition coefficient calculated p(s) measured p(s)

10

n

081

084 0 85 0 86 0 85

087

TAB 142 (continue)

Calculated point resistance curves

Calculated value of the p(s) for pile No (MPa) Setlement 11 12 13 14 15 16 17 18 19 20

(mm) p(s) ll p(s) n p(s) ll p(s) n p(s) n p(s) n p(s) n p(s) n p(s n p(s) n

10 106 070 0 71 045 091 054 099 1 32 055 092 053 070 060 081 085 0 72 080 055 078

20 1 90 079 130 059 160 067 1 70 1 30 096 101 091 079 1 12 148 085 1 31 082 098 082

30 258 086 1 76 068 2 15 074 222 1 31 1 26 105 120 080 156 205 081 180 082 132 083

50 363 086 246 075 297 082 296 1 26 1 70 117 161 082 228 095 295 087 256 0 91 184 092

80 471 316 o 77 3 77 088 364 1 18 2 1 o 1 24 199 308 085 393 097 336 1 02 237 095

100 522 349 078 415 092 394 228 1 27 2 16 348 088 442 098 375 104 262 097

150 611 405 479 443 258 117 244 423 529 443 304 101

200 669 441 518 473 276 261 474 587 488 331

Dp (MPa) 1 1 1 5 1 5 18 1 9 19 070 090 12 15

qcp (MPa) 49 4 0 46 49 32 30 32 42 39 30 12 a1 mmMPa) 84 h20 96 84 152 160 152 124 160

IV1 1 9 1 5 15 12 11 1 1 23 21 18 15

qcpmiddotv1 (MPa) 93 60 69 59 35 33 74 88 70 45

- 12287 average = ~ = 098

standard deviation sd = 023 standard variation sv = 023

N

122

TAB 143 Ultimate settlement for shaft resistance - summing up

Ultimate settlements (mm)Literature sand cohesive claysand

soil

Burland Butler Dunican (1966) 7

Touma Reese (1974) 10 Tomlinson (1977) 10 Klosinski (1977) 8

Francke Gerbrecht (1977) 20-30 DIN 4014 part 2 (1977) 20 10 Francke (1981) Reese (1978) (1979) 05-2 of 05-2 of Farr Aurora (1981) shaft dia~ shaft diam

5-20 mm 5-20 mm Tejchman Gwizdala (1979) - Spang (1972) 10

10 10 20

- Francke (1976) 10 20 15 15

- Touma Reese (1974) 13 8 15 8

8 - Colombo (1971) 10

- Kerisel Simons (1962) 20 - Appendino (1973) 10 Promboon Brenner (1981) 10 Prodinger Veder (1981) 12 Decourt (1982) 10-15 10-15

-average s = 14 1 10 126

standard deviation sd = 53 2 1 47

standard variation sv = 038 021 037

123

TABLE 14 4 Al l owab l e base resistance versus sett lement

Pile Li terature ength Diameter (m) Calculated qcp=qcp Settl ement Fp-3- sa (mm)No Aut hor No (m) D DP qcp (MPa) for qcp3(MPa)

1 Francke ( 1977) 1 13 11 38 127 25 Garbrecht

II2 2 13 11 158 39 130 19

II3 3 14 15 40 133 33

II4 4 13 15 204 33 110 23

II5 5 6 11 35 117 22

II6 6 6 11 153 35 117 19

II

8

7 7 6 15 35 1 17 25

II 8 6 15 21 30 100 21

II9 10 9 11 39 130 13

II10 11 95 11 35 117 15

II11 12 9 11 39 163 11

II12 13 10 11 15 40 133 7

II13 14 9 11 15 46 153 9

14 Francke ( 1973) 115 11 5 18 30 100 15

II15 135 135 13 19 32 107 29

II16 165 165 13 19 49 163 35

17 Spang (1972) V70 660 070 32 107 28

18 II V90 675 0 90 42 140 16

II19 V120 720 1 20 3 9 130 16

II20 V15C 650 150 30 100 16 average for pi les 198

standard dev sd = 78

standard var sv = 039

)assumed qc = p for s = 010 Op sonding meRsurement were not availab le

IV

TA~LE 15 1

Comparison of the initial sl ope of the pile point resistance - settlement curve

Accardi ng to 1 2 3 4

In i t i ~l 5

slope a1 for the pile No

6 7 8 9

(mmMPa)

10 11 12 13 14 15 Note

a 1 for s=10 mm 222 11 1 a1 for s=20 mm 21 7 14 3 calculated 207 113see Tab 14 1 Bo Berggren (198 )230s=20 mm

Schmertmann s method (see 202B Berggren 1981)s=20 mm

No 1 _ llNo - 6 1 97 098

202 250

22 2

400

30 8

090

14 3

200

186

076

167

182 156

286

18 2

107

125

167 138

091

20 0

222

204

426

263

098

125

167

144

087

100

11 1 9 7

182

23 5

1 03

12 5

14 3

11 9

174

164

105

67 83

58

14 6

125

1 16

63

9 1

61

103

59

8 3 48

123

13 3

15 4 12 1

1 10

167 21 1

aceto hypershy14 5 bola type curve

1 15

No 2 NQj = n1

No 4Noz ~ na No 5Naz= T]g

105 1 27

106

093

1 13

160

1 23

108 1 17

157

100

121 109

1 92

118

1 16 1 14

164

2 12

120

122

1 15

143

1 76

151

149 1 73 1 27 146

TAllLE 151 (continue)

Compa ri son of the initial slope of the pile point resistance - settl ement curve

Initial slope a1 for the pile No (mmMPa)According Note to 16 17 18 19 20 21 22 23 24 -a1 for s=10 mm 133 - 105 11 1 143 76 59 133 100 a1 for s=20 mm 174 - 114 125 167 74 62 153 10 3 calculated see 11 1 146 84 84 118 64 56 100 95Tab 141

Bo Berggren 198 67 78 25 0 114s=20 mm Schmertmann s method (see B 136 67 250 146 Berggren 1981) s = 20 mm

nG = 108 No 1NoJ = n 1 20 125 1 32 121 1 19 105 1 33 105 sd = 0 14

SY= 013 No 2 i) = 1 29ro1 = n1 157 136 149 142 1 16 1 11 1 53 108 sd = 019

SY= 015 No 4 iis = 143 INo2 = ns 091 126 1 63 111 sd = 033

SY= 0 23 No 5 ii9 = 1 37183 108 163 142INoz = n9 sd = 0 37

SY = 027

N Vl

126

TABLE 152

Measured and calculated pile point resistance

Pile Calculated Measured Measured No qcp P for

s=10 mm P for s=20 mm

~ 10 mm ~ 20 mm

- (MPa) (MPa) (MPa) - -

1 38 045 092 84 41 2 39 09 14 43 28

3 40 05 08 80 50 4 33 07 10 47 33 5 35 06 11 58 30 6 35 08 12 44 29 7 35 05 09 70 39 8 30 08 12 38 25 9 39 10 18 39 22

10 35 08 14 44 25 11 49 15 24 33 20 12 40 16 22 25 18 13 46 1 7 2 4 27 19 14 30 075 13 40 23 15 32 06 095 53 34 16 49 075 115 65 43 17 32 - - - -18 42 095 1 75 44 24 19 39 09 160 4 3 23 20 3 0 07 12 43 25

average= 484 291

sd 163 088 sv 034 030

Tab 153 Results of calculation for piles No 1-24

Pile No

Length (m)

Overburden pressure 0 vs

0hs (kPa)

0ve (kPa)

0 nc (kPa)

- -ov=o1 (kPa)

- -OV=03 ( kPa)

00 (kPa)

p(a il ( kPa)

s (a 1) (mm)

A2 ( 1 )

E t

(kPa)

Md ( 1 )

K (1)

E I

t (kPa)

( kPa) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

l 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

13 12 14 13 6 6 6 6 9 95 9

10 95

11 5 135 165 66 675 72 65 99 75

180 137

l 33 133 123 116

70 70 70 70

104 102 95

102 95 94

106 139 95

101 106 97

180 137 221 215

53 53 49 46 28 28 28 28 42 41 38 41 38 38 42 56 38 40 42 39 72 55 88 86

202 202 216 202 1114 104 104 104 146 153 146 160 153 181 209 251 120 128 134 123 238 180 305 277

202 202 216 202 104 104 104 104 146 153 146 160 153 181 209 251 120 128 134 123 238 180 305 277

168 Hi8 170 159 87 87 87 87

125 128 121 131 124 138 158 195 108 115 120 110 209 159 263 246

128 128 133 124 66 66 66 66 94 97 92

101 96

110 126 154 79 84 88 81

155 118 197 182

141 141 145 136

73 73 73 73

104 107 104 111 105 119 137 117 89 94 99 91

173 132 219 203

950 975

1000 825 875 875 875 750 975 875

1225 1000 1150 750 800

1225 800

1050 975 750

2000 2000 625

1500

218 139 255 190 16 1 146 210 12 7 10 1 11 7 84 73 69

104 167 210 124 103 10 1 109 142 120 76

153

0802 0802 0822 0820 0798 0798 0798 0798 0791 0798 0800 0811 0814 0837 0837 0830 0769 0 768 0771 0 775 0 780 0 781 0 788 o 779

35296 81603 43312 65222 44019 67515 4609 91313 78186 60572

118115 15129 5 184075 95577 67017 81607 33252 67554 85294 75994 78816 74857 55101 54862

075 075 0 77 075 084 084 084 081 079 078 084 080 083 076 076 078 0 77 081 079 076 082 087 064 0 74

278 643 337 512 542 832 567

1085 766 572

1216 1417 1832

796 520 709 353 735 878 781 630 726 302 366

26472 61202 33350 48917 36976 56713 38656 73964 61767 47246 99217

121036 152782

72639 51932 63653 25604 54719 67382 57755 64629 65126 35265 40598

a=282l a =l781 y=axs S=0621 B=0 844

V=0 057 V=0 128 _ Iv -J

~

N co

Tab l53 Results of calculation for piles No 7-24

Pile No

17

1 2 3 4 5 6 7 8 9

70 11 72 13 74 75 16 17 78 79 20 27 22 23 24

Ground water

18

-20 m b s

-28 m -335 m -330 m -3 15 m dry dry -53 m -85 m

E t (kPa)

19

33653 64979 35364 45664 47969 54583 37574 63072 74548 57753

71 2618 123531 150297

71239 48619 59204 39744 77208 77863 62049 90407 95844 57762 62937

vxEt=E Md (kPa)

20

25240 48689 27230 34248 35254 45849 31562 51040 58893 45047 94599 98825

724747 54142 36950 46179 30603 57678 61572 47157 47734 83384 36968 46569

a=898 S=l 27 =0314

K (l )

21

265 511 275 358 517 672 463 749 730 546

1160 1157 7496

593 377 514 422 775 802 638 723 929 377 420

a=l422 S=l 05 =0187

E=E = t1 3

g-gcp (kPa)

22

51046 52799 54566 42492 45870 45870 45870 37547 52799 45870 77039 54566 65438 52799 40826 71039 40926 58739 52799 37541 82549 82549 40826 59945

Calculated s

(mm)

23

708 128 72 7 15 3 724 146 144 17 3 71 3 11 5 11 2 732 13 2 707 1 5 1 13 7 93

102 118 137 728 12 l 69

11 9

s__caL n=smeos

() 24

050 092 050 087 0 77 7 00 069 l36 l 12 098 133 l81 l97 103 090 065 0 75 099 117 126 090 101 097 078

ri=l00 sd=035 sv=035

K = l50gcp

25

570 585 600 495 525 525 525 450 585 525 735 600 690 450 480 735 480 630 585 450 825 825 1180 645

E l

(kPa)

26

67684 69465 72250 57726 44856 44856 44856 38448 59659 54306 74956 63214 70704 49089 56783 79502 45283 61081 58207 42927

708572 94785 71033 91898

E = t E middotA2

l

(kPa)

27

54283 5571 l 59389 47336 35795 35795 35795 30682 47790 43336 59964 51266 57553 47088 47024 65987 34823 46970 44877 33269 84639 74027 55974 71589

Calculated s

(mm)

28

l O l 12 l 11 7 737 15 9 18 7 185 21 1 12 6 12 2 133 14 l 150 13 7 13 l 14 7 709 12 7 738 755 12 4 735 50

100

- -

Tab l53 Results of calculation for piles No l-24

Pile

29

l 2 3 4 5 6 7 8 9

10 ll 12 13 14 15 76 17 78 19 20 21 22 23 24

sea l n= middotshy

smeas

28 TT

30

0 46 087 046 0 72 099 l 28 088 l 66 l 25 l 04 l 58 l 93 2 17 l 32 078 0 70 088 l 23 l 37 l42 087 l l 3 066 065

n=l 10 sd=0 44 sv=040

s seal for p n=s=lOrnn ac cording to s = 70mm

(mm)

37 32

5 l 0 51 ll 8 l18 64 064

13 0 l30 85 0 85

13 3 l 33 83 0 83

184 l84 ll6 l l 6 105 l05 137 l 37 21 3 2 12 19 4 l94 107 l06 l l 3 l l 3 84 084

92 092 l 0 9 l09 128 l28 83 083

l 0 3 l03 88 088 79 0 79

n=1 73 sd=025 sv=027

s for p according to s = 20mm

(mm)

33

10 4 184 102 18 6 15 6 200 14 9 276 209 18 4 219 292 274 185 17 9 12 9 -

169 194 219 172 200 143 15 0

seal n=s=20rnn

34

052 092 051 093 078 l00 075 l 38 l 05 092 l l 0 l46 l 37 093 090 065

-085 097 l1 0 086 l00 072 075

n=093 sd=025 sv=0 27

s for p according to s = 30rnn

(mm)

35

142 223 14 l 22 3 198 249 142 34 5 290 249 274 345 33 l 243 22 6 168 -

24 7 26 6 293 24 3 279 187 213

seal n=s=30rnn

36

047 0 74 047 0 74 066 083 047 l 15 0 97 083 091 l 15 l10 0 81 075 056 -

082 089 098 081 093 062 0 71

n=o80 sd=020 _ sv=0 25 N

IO

APPENDIXES

APPENDIX 1 1 1

Pi le No 1 Length 13 m D 10 m

Areas of influence

-

qe

(MPa)

1 fp

___9c_ f

(MPR) zyen

(MPf) qcp (MPa)

Soil type

22 20 18 16 14 1 2

l 2 (m)

10

1 0 08 06

16 15 16

026 027 026

42 41 42 Sand

04 14 U28 39 02 14 028 39 41

02 16 0 26 42 04 16 026 42 06 16 026 42 08 14 028 39 Sand 1 0 13 030 39 12 15 027 4 1 38 14 13 030 39 16 12 032 38 18 12 032 38

40 20 10 036 36 22 10 036 36 24 9 U39 35 2 6 8 043 34 28 10 036 36 30 10 036 36 3 2 10 036 36 34 10 0 36 36 36 11 0 34 37 38 11 034 37

l 1 (m)

40

42 44

11 0 34 37 15 1

46 48 50 52 54 56 58 60 62 64 66 68 70 7 2 74 76 78 8 0

APPENDIX 112

Pile No 2

to little depth of sounding

q~ = middle values for 11 = 2 Op

q~ = 145 MAa (Francke Garbrecht 1977 Tab 2 p 50) (Fi g No 2)

for sand

qcp = 0275middot145 = 40 MPa q~p =V ~~s) middot 40 = 097middot40 = 39 MPa

Pile No 4

q~ = 120 MPa sand (Fig No 4)

q = 0 315middot12 = 3 8 MPa q bull 38 = 086middot38 = 33 MPa=V Jmiddot54

1

cp middot bull cp

Pile No 12

qg = 155 MPa sand (Fig No 13)

qcp = 026middot155 = 4 03 MPa

Pile No 13

q~ = 200 MPa sand (Fig No 14)

q = 0 23middot20 = 46 MPacp

APPENDIX 113

PileNo3 Length 14 m D 15 m

Areas of influence

-

qe

(MPa)

1 Tp

----9cf

(t-1Pf) r~

(MPf) qcp (MPa)

Soil type

22 2D 18 16 17 025 43 14 17 II II

L 2 17 II II

12 (m)

16 10 08 06

17 17 17

o

II

II

II

II

Sand 04 17 II II

02 19 024 46 b9

02 19 024 46 04 17 025 43 06 15 027 41 08 13 030 48 1 0 12 032 38 12 11 033 36 14 13 0 30 39 16 14 028 39 18 12 032 38 40 20 16 026 42 2 2 16 026 42 24 11 033 36 26 11 033 36

60 28 30

10 10

036 036

36 36

Sand

32 10 036 36 34 12 032 3 8 3 6 12 032 38 38 12 032 38

1 1 (m)

40

4 2 4 4

13

14 16

030

028 026

39

39 42

46 13 030 39 48 12 032 38 50 14 028 39 52 10 036 36 54 13 030 39 56 14 028 39 58 15 027 41 60 15 027 ~-1 236 62 64 66 68 70 72 74 76 7 8 80

APPENDIX 114

Pi l e No 5 Length 6 0m D 11 m Dp 11 m

Area s of i nfluence

-

qc

(MPa)

1 Tp

-3Lf

( MPf) l ~

(MP~) qcp (MPa)

Soil type

2 2 2 0 18 1 6 14 1 2 155 U i1 33

l 2 (m)

1 2 10 08 06

15 14 12

022 023 0 27

3 3 32 32

Fine sand

+ silt

04 125 026 33 02 16 0 21 34 39

02 16 021 34 04 13 025 33 06 08 10

15 5 17 20

022 0 20 018

34 34 36

35 Fi ne sand

1 2 20 0 18 36 14 20 018 36 + s ilt 16 20 0 18 36 18 165 020 32 20 165 0 20 32 22 17 0 20 34 24 26 2 8 30 32 3 36 38 4 0

19 21 5 21 5 21 5 20 19 5 19 5 20 215

01 9 ---

018 018 0 18 0 18 -

3 6 40 40 40 36 35 3 5 36 4 0

l 1 (m) 4 2

44 20 19

018 01 9

36 3 6 157

46 48 50 5 2 54 56 58 6 0 62 64 66 68 70 7 2 74 76 7 8 8 0

APPENDIX 1 15

Pi le No 6 Lengt h6 0 m D 11 m

Areas of qc 1 __9_c_ qcp Soil typei nfluence fp f 1 yen (MPa) (MPf ) (MPf) (MPa)

-2 2 20 18 16 t 4---0 14 75 038 29 L2 20 018 36 Fi ne sand

1ti 10 30 40 + s i lt12 08 19 0 19 36(m) 06 17 020 34 04 14 023 32 02 9 034 31 56

02 6 043 26 04 12 026 3 1 06 17 020 34 08 11 028 3 1 1 0 14 023 32 35 1 2 17 020 34 Fi ne sand14 19 019 35 16 20 018 36 + silt18 18 0 19 34 20 14 023 32

46 22 12 026 31 24 12 026 31 26 15 022 33 28 18 019 34 30 20 018 36 3 20 0 18 36 34 20 018 36 3G 20 018 36 38 20 018 36 4 0 20 018 36

l 1 42 22 40

(m) 44 22 40 46 L2 4 0 158 48 50 52 54 56 q =V ~ - 3 b =0 99middot35 = 35 MPp cp 53 58 6 0 62 64 66 68 70 72 74 76 78 80

APPENDIX 116

Pi leNo7 Length 60 m 0 15 m

Areas of influence

-

qe

(MPa)

1 Tp ~

(MPg) r~

(MPf) qcp (MPa)

Soil type

22 20 18 16 9 U33 30 14 10 031 31 12 135 024 32

l 2 (m)

16 10 08 06 04 02

13 12 6

10 175

025 026 043 0 31 020

33 31 26 3 1 35 50

Fine sand

+ silt

02 04 06

17 10 115

0 20 0 31 027

34 31 3 1

08 10

145 185

023 019

33 35 3 5

1 2 14

20 19

018 0 19

36 36 Fine sand

l 1 (m)

60

16 18 20 22 24 26 28 30 3 2 34 36 38 40

42 44 46 48 50 52 54 56 58 6 0

185 125 125 165 17 19 21 215 205 20 21 20 20

24 22 20 215 22 22 21 19 18 22

0 19 026 0 26 020 020 019 --

018 018 -

018 01 8 --

018 ----

0 19 0 19

35 33 33 33 34 36 40 40 37 36 40 36 36

40 40 36 40 40 40 40 36 34 40 219

+ silt

62 64 66 68 70 72 74 76 78 80

APPENDIX 117

Pile No 8 Length60 m D 15 m Dp 2 1 m

Areas of influence

-

qe

(MPa)

1 r +

(MPg) r~

(MPf) qcp (MPa)

Soil type

22 18 019 34 20 16 021 34 18 125 026 3 3 16 115 027 31 14 11 028 3 1 12 11 028 3 1

l 2 (m)

10 08 06

105 11 145

D29 028 023

30 31 33

Fine sand

+ silt

04 18 0 19 34 02 18 019 34 71

02 15 022 33 04 11 0 28 31 06 13 0 25 33 08 20 0 18 36 10 15 022 33 12 13 025 33 14 175 020 35 16 18 20 22

20 21 20 15

018 -

018 0 22

36 40 36 33

35 Fine sand

+ s i lt

24 26 28 30 3 =

13 16 175 19 20 20

025 021 020 0 18 018 018

33 34 3 5 34 36 36

36 38 4 0

20 20 21

018 0 18 -

36 36 40

11 (m)

4 2 4 4 4 6 48 50 5 2 5 4 56 5 8 60 6 2 6 4

20 20 21 22 21 20 19 175 19 20 25 28

018 0 18 ---

01 8 01 9 0 20 0 19 018

36 36 40 40 40 36 36 35 36 36 40 4 0 23 0

6 6 68 70 72 74 76 78

qcp 1f5=v 2T middot35 = b85 middot35 = 30 MPa

80

APPENDIX 118

Pi le No 9 Le ngth 90 m D 11 m m

Areas of 1Qe -9c qcp Soil typeinfluence Tp f ryen (MPa) (MPg) (MPf) (MPa)

-

2 2 2 0 18 16 14 lc 11 034 37

12 10 10 036 36 12 08 9 039 35 Medium(m) 06 10 036 36 sand04 10 036 36

02 11 034 37 43

02 12 032 38 04 12 0 32 38 06 12 0 32 38 08 13 030 39 10 13 030 39 12 13 030 39 14 14 028 39 16 14 028 39

44 18 14 028 39 20 14 028 39 39 Med ium 22 15 027 4 1 sand 24 16 026 4 2 26 17 025 43 28 13 0 30 39 3 0 9 039 35 32 13 030 39 34 16 026 42 36 17 025 43 38 17 025 43 40 19 024 4 6

11 42 17 025 43

(m) 44 15 027 41 17 7 46 48 50 52 54 56 58 60 6 2 64 66 68 7 0 7 2 74 76 78 80

APPENDIX 119

Pi 1 e No 10 Length 95m D 11 m m

Areas of influence

-

qe

(MPa)

1 fp

-9c f

(t-1Pf) [~

(MPf)

qcp

(MPa)

Soil type

22 20 1 8 16 14 L 2 13 Uti 3J

l 2 (m) 12

10 08 06 04

18 18 28 19

0 19 019 0 19 019

34 34 34 34

Fine

sand

02 21 40 42

02 20 4 0 04 17 020 34 06 21 40 0 8 10

23 22

40 40 Fine

1 2 14 16 18

21 20 16 15

0 21 022

4 0 4 0 34 33

sand

44

20 2 2 24 26 28 30 32 34 36 38 40

14 14 13 11 11 14 17 14 12 13 12

023 023 025 0 28 028 023 020 023 027 025 027

32 32 33 31 31 32 34 3 2 32 3 3 32

l 1 (m) 42

44 12 13

0 27 025

32 33 15 2

46 48 50 5 2 5 4 56 5 8 6 0 6 2 6 4 66 6 8 70 72 74 76 78 80

APPENDIX 11 10

Pi 1 e No 11 Lengt h 9 0m D 11 m m

Area s of influence

-

Qe

(MPa)

1 fp

__k_ f

(MP~) ryen

(MPf) qcp (MPa)

Soi l type

22 20 18 16 14 12 lb 55

12 (m)

1 0 08 06 04

23 19 20 21

024 023

55 46 46 55

Medium

sand

02 22 55 62

0 2 04

24 25

55 55

06 08

27 28

55 55

10 12 14

28 28 28

55 55 55 49

16 26 55

44

18 20 22 24 26 28 30 3 34 36 38 40

24 19 18 17 22 21 17 11 13 12 11 9

024 024 025

025 0 34 030 032 034 039

55 46 43 43 55 55 4 3 37 39 38 3 7 35

1 1 (m) 42

Ll Ll

12 16

032 0 26

38 4 2 209

46 48 50 5 2 54 56 58 60 62 64 66 68 70 72 74 76 78 80

APPENDIX 141

0 2 3 4 p [MPa)

PILES WITH 40 ENLARGED BASES

80

120

160 C----0

200 IN4014 s (1977)

[mm]

P s calculateds P p(s)(mm) (MPa)(mmMPa)(MPa) ()

10 035 286 046 20 065 308 080 30 090 333 104

150 24 625 214 200 229

ai = 2605 (mmMPa) b1 = 0243 1MPa V 1000 bi = 1b = 411 MPa

_ 411 MP Vi - 24 a

() assumed

average Dp = 18 m

qcp = 24 MPa ai = 184 (mmMPa) (28-4middot24)

Vi = 1 2 (3-18)

qcpmiddotvi = 29 MPa

40

80

120

160

200 s

[mm]

DIN 4014 Part 2 ( 1977)

0 1 2 3 4 5 p [MPal

PILES WITHOUT ENLARGED BASES

C----0

DIN 4014 ( 1977

s calculated s p -p- p(s)

(mm) (MPa)mmMPa)(MPa) ()

10 05 20 062 20 08 25 113 30 11 27 3 155

150 34 441 385 200 424

ai = 2085 (mmMPa) bi= 0 157 1MPa V = 0970

bi= 1s = 637 MPa

Vi 187=3f =

() assumed

average Dp = 12 m

qcp = 34 MPa a1 = 144 (mmMPa)

Vi = 18

qcpmiddotvi = 61 MPa

Range qc = 10-15 MPa

(28-4bull34)

(3-12)

1 1 q = r -r- = 036 for qc = 10 MPaCp p Ip+= 027 for qc = 15 MPa

qcp = 36-405 MPa P

APPENDIX 142

Touma F and Reese L (1974)

Soil parameters pile parameters and base resistance see fig bullbullbullbull

TAB

Measured load settlement curves

Settlement s

mm

10 20 30 40 50 60 80

100 120

a 1 (mmMPa) bi(MPa) V

N3u

q =04 -N30 (cMPa) ()

1 qCp=--rpbullqC

Pile No 21 (US 59) 22 (HH) 23 (G1) 24 (BB) Notep Sp p S p p S p f Sp MPa mmMPa MPa mmMPa MPa mmMPa Mla mmMPa

131 76 169 59 075 133 100 100 269 74 325 62 131 153 1 94 103 381 79 456 66 165 182 273 11 0 488 82 581 69 1 90 21 1 349 115 581 86 694 72 2 15 233 424 118 675 89 800 75 229 262 813 98 245 327 884 113 925 130

64 56 100 95 U049 0032 0276 0048 0944 0998 0996 0981

80 gt100 30 60 32 gt 40 12 24 ()

Bergdahl (1982)

gt5 5 gt55 32 4 3

(0 18middot32) (018middot40) (0265middot12) (018middot24)

CONTACT PRESSURE p [ MPa]

0 2 4 6 8 100 N-------r---------------(us 59) ( HH) ( BBi

E E SQ-------lt+-----+--------------lt

VI

1shyz UJ

~ 100 1---------i----+----+----+------l------I -J I shyI shyUJ V)

so~----~--~-- ~--~

APPENDIX 143

us 59 fYJo 0 50 00

ff-t r-=-~c~=~-r~c_---_---l-~e-J-C~ 0 ------

CLAY

FINE SANO

J lD- 760 mm

f5m~--~--~

Pile US 59 and results from penetration test

HH IV_l() so 100 r=-=-==-==-r-~--=-=- 0 0 II 15- flf ~ II~ Ibull If t f

CLAY SAND

Sm

)

= -middotl lo - GtOmm

~ JI

SILTY SANO tOm

Pile HH and results from penetration t est

APPENDIX 14 4

61 NJO 50 --------00

11 1 =f J - 1 -- 0

CLAYSILT

E ~ Sm ltrj

SILTY SAND

q I lDmiddot 910 mrn tom

I) t bull

Pile G1 and results from penetration test

88

0 50 too ~1-e I q 111bull - Q

CLAY

SIL TY SAND 5m

]

l lDmiddot760mrn

Om

Pile BB and results from penetration test

APPENDIX 145

Klosinski B (1977)

Loading tests 50 bored piles 09-125 m diameter average Op= 11 m On t he sett l ement of rigid pla te the settlement of t he pi le base is given by

PmiddotOSp = T-K b

where Mb - equivalent deformability modu lus

1) Sand and sandy gravel of medium density

Mb = 25-50 MPa

According to Bergdahl (1979) medium sand is between

q(l) 5 MPa (Io=035)c2)

ql = 10 MPa (Io=065)C

from fig 117 rp1 = 055 for qc = 5 MPa 1Tp = 036 for qc = 10 MPa

q(l)= 0 55middot5 = 2 75 MPacp bull

q(2= 0 36middot10 = 360 MPacp

allowable p~ 1)= ~p = yen = 092 MPa and p~2) = ~ = 120 MPa

settlement of the pi l e base

5(1)= o 92 middot 1bull1 = O 0135 m = 13 5 mm p 325 middot middot

5( 2)= 1bull2bull1middot 1 = O 0088 m = 8 8 m p 350 bull bull

1) _ s _ 135 _ 14 7 (mm) a(2) _ 88 _ a 1 - p - o---92 - bull NPa bull 1 - T-7 - 733 (Wa)

2) Loose sand lo= 030-040

Mb = 12- 25 MPa

q~l) = 44 MPa q~2)= 58 MPa

1Tp = 058 and 052

q(3) = 0 58middot4 4 = 2 55 MPa middot q( 4) = 0 52middot5 8 = 3 02 MPa cp bull middot bull cp bull middot middot

allowable p~ 3)= 4i = 085 MPa p~4)= yenl = 101 MPa

s(3)_ 085-11 = 26 mmmiddot s(4)_ 101middot11 = 148 mm p - 312 p - 3 25

STATENS GEOTEKNISKA INSTITUT Swedish Geotechnical Institute S-581 01 Linkoping Tel 01311 51 00

Serien Rapport ersatter vara tidigare serier Proceedings (27 nr) Sartryck och Preliminara rapporter (60 nr) samt Meddelanden (10 nr)

The series Report supersedes the previous series Proceedings (27 Nos) Reprints and Preliminary Reports (60 Nos) and Meddelanden (10 Nos)

RAPPORT REPORT Pris kr

No Ar (Swcrs)

1 Grundvattensankning till foljd av 1977 50shytunnelsprangning P Ahlberg T Lundgren

2 Pahangskrafter pa langa betongpalar 1977 50shyL Bjerin

3 Methods for reducing undrained 1977 30shyshear strength of soft clay K V Helenelund

4 Basic behaviour of Scandinavian soft 1977 40shyclays R Larsson

5 Snabba odometerforsok 1978 25 shyR Karlsson L Viberg

6 Skredriskbedomningar med hjalp av 1978 40shyelektromagnetisk faltstyrkematning - provning av ny metod J Ingands

7 Forebyggande av sattningar i 1979 40shyledningsgravar - en forstudie U Bergdahl R Fogelstrom K - G Larsson P Liljekvist

8 Grundlaggningskostnadernas fordelning 1979 25 shyB Carlsson

9 Horisontalarmerade fyllningar pa los 1981 50 shyjord J Belfrage

RAPPORTREPORT

No

10 Tuveskredet 1977-11-30 Inlagg om skredets orsaker

11a Tuveskredet geoteknik

l1b Tuveskredet geologi

11 c Tuveskredet hydrogeologi

12 Drained behaviour of Swedish clays

R Larsson

13 Long term consolidation beneath the test fills at Vasby Sweden YCE Chang

14 Bentonittatning mot lakvatten T Lundgren L Karlqvist U Qvarfort

15 Kartering och klassificering av leromradens stabilitetsforutshysattningar L Viberg

16 Geotekniska faltundersokningar Metoder - Erfarenheter - FoU-behov E Ottosson (red)

17 Symposium on Slopes on Soft Clays

18 The Landslide at Tuve November 30 1 977 R Larsson M Jansson

19 Slantstabilitetsberakningar i lera Skall man anvanda total spanningsanalys effektivspanningsanalys eller kombinerad analys R Larsson

20 Portrycksvariationer i leror i Gateshyborgsregionen J Berntson

21 Tekniska egenskaper hos restproshydukter fran kolforbranning shyen laboratoriestudie B Moller G Nilson

Ar

1981

1981

1981

1981

1981

1982

1982

1982

1983

1982

1983

1983

1983

Pris kr (Swcrs)

50shy

50shy

40shy

50shy

100shy

60shy

80shy

60shy

190shy

75shy

60shy

150shy

65shy

RAPPORTREPORT

No Ar Pri s kr (Sw crs)

22 Bestamning av jordegenskaper med sondering - en litteraturstudie U Bergdahl U Eriksson

1983 75 shy

23 Geobildtolkn ing L Vi berg

av grova moraner 1984 70 -

24 Radon i jord -Exhal ation- vatten kvot -Arstidsvariationer - Permeabilitet A Lindmar k B Rosen

1984 75 shy

25 Geoteknisk terrangklassificering for fysisk planering L Viber g

1984 120shy

26 Large diameter bored piles in nonshycohesive soils Determination of the bearing capacity and settlement from results of static penetration tests (CPT) and standard penetration test (SPT) K Gwizdala

1984 85shy

1 2

The methods differ in

- the calculation of qPC

(074 to 40) Db below the pile base (Fig 11 1)

(10 to 80) Db above the pile base (Fig 1 11)

- the evaluation of the point resistance factor usually

values off gt 10 are used p

- the calculation of qsC

- the evaluation of the shaft friction factor

fs = 50-300 is applied

In Table 111 methods for determination of the bearing

capacity of bored piles are listed Rollberg 1977 The

point load the skin friction load and the ultimate total

load are evaluated for bored piles (shaft diameter D ~

03-090 m) from static sounding results in non-cohesive

soil

Calculation results based on static sounding measurements

are shown in Table 112 for pile point pile shaft and

total pile load respectively

The table shows that

- a ll methods overestimate the ultimate point resistance

- the best correlation for ultimate point resistance is

obtained with the Soviet method Trofimenkov 1974

n1 = 114

- there a re only five methods for evaluation of the ultimate

skin resistance

- all methods with exception of the Soviet norm Trofimenkov

1969 method overestimate the ultimate shaft resistance

- the Norwegian method Senneset 1974 gives the best

correlation for the ultimate shaft resistance =119n 2

- with exception of the Soviet methods the total ultimate

load is on the average overestimated by all methods

1 3

Taking into account the above results the Soviet and

the Norwegi an methods are presented below

The Soviet method JG TrofimenkgtV 1974

1 qP bullA + qsbullA (114a)Qu = Qpu+Qsu fp C p f C s s

where

11 40 DP 12 1 0 D p h+l1 qp r dhqcC l1+l2 h-12

0ct-0ceqs C u middoth s

f(qp) -+ see Fig 1 bull 1 2 fp C

f f ( qcs) -+ see Fig 1 1 3 s

The Norwegian methon K Senneset 1974

1 p A 1 s bullA ( 1 bull 1 bull 4b)-f-middotqcmiddot p + -f-q s p S C

where

11 30 D p

12 50 D p h+l11 f dhqP l1+l 2 qc

C h-12 h s 1

= f dhqc qch 0

f 20 p

f = f (q~ ) + see Fig 114 s

Note a ) The total skin friction -f-middotq~ is assumed to be

no less than 10 kPa even~ith a very little

cone penetrometer resistance

b) The poin t resistance -f-middotq~ is assumed to be

maximum 10 MPa even iJl case of very dense sand

14

It must be underlined that the best correlation for

the pile point is obtained with the Soviet method

101 for 94 driven piles in non-cohesive soil

- 172 114 for 46 bored piles in non-cohesive soil

Trofimenkov 19731974 showed the results of comparison

of the ultimate loads determined by formula (114a)

Q~ and by pile load tests Q~ for 153 driven friction

piles at the 57 various sites see Fig 115

In Germany a lot of investigations were made before

establishing the DIN 4014 part 2 (1977) on large diameter

piles

In Table 113 and 114 the results from these investigashy

tions are generalized

The data in the tables were obtained from 35 test loadings

(4 of which were published by Franke 1973 The diameter

of the piles was from 08 to 25 m the length from 5 m

to 34 m and the cone penetrometer resistance varied from

10 MPa to 15 MPa

Bustamente and Gianeselli 1982 proposed a prediction

of the pile bearing capacity by means of the static

penetrometer Their proposal was based on the intershy

pretation of a series of 197 full scale static loading

tests In this paper the results from tests of 55 bored

piles are chosen The diameter of the piles varies from

042 m to 150 m and the length from 6 m to 44 m The

equivalent cone resistance was determined as showed in

Fig 116 The authors have noticed that the point

resistance factor f depends on the nature of the soil p and its compactness but also on the different pile placeshy

ment techniques (see Tab 115)

Piles of category group I

- Plain bored piles - Cased bored piles

- Mud bored piles - Hollow auger bored piles

- Type I micropiles - Piers (grouted under low - Barrettespressure)

15

In Tab 116 values of the shaft resistance factor

fs are given

Category IA

- Plain bored piles - Mud bored piles

- Hollow auger bored piles - Cast screwed piles

- Type I micropiles - Piers

- Barrettes

Category IB

- Cased bored piles - Driven cast piles (concrete or metal shaft)

Category IIA

- Driven precast piles - Prestressed tubular piles

- Jacked concrete piles

Category IIB

- Driven metal piles - Jacked metal piles

It can be noted that the values in Tab 116 are in

genera l of the same range for the driven and the

bored piles

According to the Polish Specification 1979 the point

and shaft resistance factor are given by

1-f- = kmiddota

p p

where

ap 035 for sand

k coefficent of unhomogeneity k qcp min

qcp

= 0065 for sandfrac12

1

16

Similar results can be observed in Fig 116a and

Fig 116b It was showed by Kerisel (1965) and Franke

(1973) that the harder soil the more loosening at

excavation and thus relatively smaller bearing capacity

Taking into account the Franke diagrams we will have

for D = 125mand settlements= 2 cm p

Cone resistance qc (MPa) 1 5 50 1 0 15 22

qc p for s=2 cm 3 6 8 12 14

(see Fia 1 1 6b )

taking safety factor for pile base F = 3 the point resis~ance

33-10 ~-05

380375 lo 212 bull lo 2114 bull

factors- shy are p

The above anal ysis shows that it is possible to determine

ultimate point and shaft resistance of bored piles from

static cone sounding But it is very important and must

be taken into account type of pile kind of soil and

degree of compaction

Bel ow calculation method for large diameter bored piles

based on the static cone penetrometer resistance (CPT)

is proposed Equation (117) can be used directly for

the base diameter D lt 15 m For larger diameters p shyD gt 15 m the values should be multiplied by the

p ff t ITscoe icen Y~ as pi

( 1 1 5 )

where

qcp = according to equation (117)

D = diameter of the pile base D gt 15 mpi pi

17

This value q~p should be put into equation 116

The value qc s in equation 118 is independent on the

pile diameter

Proposed calculation method

(116)

where)

1 1 40 ~ 11 3 for piles wit h a nd enlarged bases12 10 12 = ~

h+h

q (h) dh (117)qcp l1+l2 f -f- Ch-li p

h 1 f 1

qcs = o -f- qc (h) dh (118)h s

1 -f- = f(q kind of soil ) -+- see Fig 11 7 and Tab 1 1 7

C p

f (q kind of soil ) -+- see Fig 1 1 8 and Tab 1 1 8 fs C

Note

a) the point resistance q for qc gt 20 MPa is assumed cp to be maximum as

- Gravel 70 MPa - Coarse sand medium sand 55 MPa - Fine sand s il ty sand 40 MPa

b ) The shaft resistance qcs for qc gt 20 MPa is assumed to

be maximum as

- Gravel 110 kPa - Coarse sand medium sand 90 kPa - Fine sand s ilty sand 70 kPa

These proposed values are compared with results by

Bustamente (1 982) and the Polish Specification (1978)

Fig 11 9 and F i g 1110 A similar comparison for DIN

4014 1 977 is shown in Fig 1111 and Fig 1112

) In this paper was used the above values 1 1 and l z But it can be used in practice 11 =30 D and h =2Dp respectively The results shall be very simi l ar to the above onPs

18

The proposed method has been examined with field test

results This is shown in Fig 1113 to Fig 1128

and Appendix 1 11 to 1110 and Tab 119

The comparison shows that the value of q in equationcp (117) corresponds to the settlement -10 of the base

diameter (s=010 DP) see Fig 1113 and Tab 119

(average sDp=88 and standard deviation sd=3)

Later in this paper the allowable load and dependence of

the load versus settlement will be determined

12 Determination of bearing capacity of the large

diameter bored piles from results of the Standard

Penetration Tests (SPT)

There are little published on pile tests coupled with

results from Standard Penetration Test (SPT) Among the

authors who have published material in the subject are

- Meyerhof 1956 1976

- Senneset 1974 (Norwegian method)

- Rodin Corbett Sherwood Thorburn 1974 (English method)

- Polish Specification 1975

- Weltman Healy 197 8

- Reese 1978

- Japanese Society 1981

- Decourt 1978 1982

The Norwegian method is valid o nly for concrete andor

wooden piles the English method only for gravel It is

very important to underline that the Norwegian a nd the

English methods use of the SPT resul ts intermediate by

the static cone penetrometer resistance (q ) as well C

Below methods are presented that are using the results of

SPT directly Meyerhof s method in total can also be used

on driven piles in non-cohesive soil Although we could

have found some proposes for bored piles Eqs (121 and

122) see Fig 121 and Fig 1 22 as well

19

Ultimate point resistance (psf)

12 N 3 omiddotH lt 120 N 30

(kPa) (1 2 1)Psf D

where

N30 the average standard penetration resistance

in blows per 03 m

H depth in bearing stratum

Ultimate skin friction tu

for bored piles tu N~ o (kPa) (1 22a)

for driven pil estu 2N30 (kPa) (1 2 2b)

where

N30 the average standard penetration resistance

in blows per 03 m within embedded length

of pile

Weltman and Healy (1978) taking into account Meherhofs

proposition for driven piles have introduced two coefshy

ficents for bored piles in gravels (glacial soil) Equ

123 and Fig 1 23

t = a 2 N30 (kPa ) (1 2 3)U 1

where

ai a 1 for impermeable gravels see Fig 123a

ai a 2 for permeable gravels see Fig 123b

The Polish Specification ( Specification for Design and

Construction of Large Diameter Bored Piles in Bridges

1975 Ministry of Transport) gives the ultimat e point

resistance in dependence of N30 base diameter and depth

see Tab 12 1 The Tab 121 contains values for coarse

and medium sand For other non-cohesive soils the following

coefficients are proposed

p f = S bull p f (medium sand) ( 1 2 4)S 1 S

20

where

S1 1 20 for grave lSi

f 132 080 for fine sand

13 3 070 for silty sand13i

In Fig 124 values of psf are shown for h = 10 m DP

06 m DP= 15 m and h = 20 m DP= 06 m DP 1 5 m

respectively

A few of the instrumented piles were tested and analyzed

by Wright and Reese (1979) The ultimate point and shaft

resistance in the fine and silty sand as a function of

blow count from SPT is shown in Fig 125 Results from

two additional tests reported by Koizumi (1971) are also

introduced in the figure The ultimate point resistance

is assumed to exist at a settlement equal to 5 of the

base diameter

Methods of prediction of the bearing capacity of piles

based exclusively on N30 values were presented by Decourt

1982 Below a proposition for high capacity piles excavated

and cast under bentoni te is presented

The ultimate skin friction is determined by the expression

(see Fig 126)

t = 33 N30 + 1 0 (kPa) ( 1 bull 2 5 ) u

where

N30 average value of N30 along the shaft

- for N30 lt 3 must be taken as = 3N30 - for N3o gt 5 0 must be taken as NJo= 50

The allowable point resistance can be obtained in a n

expedite way as

Psa = 33 N30 (kPa) (1 2 6)

where

N30 = average of Nat point level one metre above

and one metre below

Psa allowable point resistance

21

Decourt proposed a safety factor for the point of F = p

40 Therefore the ultimate point resistance can be

determined by the expression

(kPa) (1 2 7)

In Fig 12 7 and Fig 1 28 the above values for base

and skin friction resistance are compared respectively

Taking into account the type of soil thereis a good

correlation for ultimate point resistance The result for

ultimate skin friction is scattered but only apparently

The values for large diameter bored piles are between

the line 1a and 1b in Fig 128 Large diameter piles

have a high ultimate skin friction in relation to driven

piles (see points for bored piles in Fig 122 and DIN

4014 Part 2 1977 as well) The high values for piles

excavated and cast under bentonite have had a strong base

on the load tests (Decourt 1978 1982 and Wright and

Reese 1979)

Below the proposals are given for determination of the

values of the ultimate point resistance and the ultimate

skin friction Eqs 128 to 1214 and Fig129 1210

The ultimate point resistance

- gravel psf = 140 N30 (kPa) ( 1 bull 2 8)

for N~ 0 gt 50 blows3O cm Psf 7 MPa

- coarse sand and medium sand

(kPa) ( 1 2 9)

for N30 gt 50 blows3O cm Psf 55 MPa

- fine sand and silty sand

psf = 80 Nio (kPa ) (1210)

for N30 gt 50 blows3O cm p f = 40 MPa 5

where N3 o the average of N value near the point level as

22

h+l1

f N3o(h)dh ( 1 2 11 ) h-12

3DP see Fig 1 1 1 D

p

The ultimate skin friction for coarse sand and medium sand

tu = 1 8 N 3 o (kPa) (1212)

t (kPa) (excavated and cast (1213)u under bentonite)

where

N30= the average value of N along the shaft as h

N -

3 o = h1 f N 3 o ( h) dh ( 1 bull 2 bull 1 4 ) 0

The ultimate skin friction for N30 gt 50 blows30 cm is

assumed to be maximum as tu = 90 kPa and t = 150 kPa u

13 Allowable load of large diameter bored piles

The allowable load Qa of large diameter piles has been

expressed as

OuQa ( 1 3 1)Ft

Qa Q(s)=Qb(s) + Os(s) ( 1 3 2)

Opu + Osu (1 3 3)Qa Fp Fs

Qr lt mmiddotQf ( 1 bull 3 4)-

= universal safety factor

individual safety factor for ultimate resistance of the pile point

individual safety factor for ultimate resistance of the pile shaft

= load according to the allowable settlement

calculated load

m coefficient

calculated ultimate bearing load of the pile

23

The equations from (131) to (134) are used as

1) equation (131)

a) DIN 4014 - 1977 Ft= 2 175 15 (depending on the kind of load)

b) Polish Specification 1975 Ft = 18 16 ( -- )

1c) Trofimenkov 1974 Ft = 14307

2) equation (132)

a) DIN 4014-1977 i Q(s) = Qb(s) + Q (s) = A middotp(s) + E tAsmiddott(s)

s p 0

where Qbs) and Qs(s) are described in Fig 1423

3) equation (133)

a) Polish Specification 1974

F 25 22 depending on the kind of load p

F 1 bull 0 s

b) Wright SJ Reese LC 1979

The ultimate capacity or resistance is considered as a

random value and represented by a frequency distribution

The distribution can be described by a mean value and a

variance The distribution of the load applied to the

foundation can be described similarly The coefshy

ficients used to factor resistance and loads are called

partial safety factors Some recommended partial safety

factors for resistance under normal conditions of design

and construction are given in Tab 131 Normal control

is defined as a condition where the coefficient of variation

is less than about 035

Typical values for partial safety factors for loads are

in the range 1 to 2 depending on the type of load and

how it is applied The overall factor of safety Ft can

then be calculated from the equation

Ft = y RbullY S

24

where

YR the par tial sa f ety fac t or for resistance and

Ys the partial safety factor fo r load

The probability of fa i lur e of the foundation can be r eshy

lat ed to the factor of safety for a parti cular degree of

uncert ainty (see Tab 13 2)

c ) Tejchman Gwizdala 1979

The authors discuss adequate safety factors based on fie l d

test s by Spang (1 972) Franke (1976) Touma and Reese (1974)

Colombo (1971) Kerisel and Simons (1962) Appendirno (1973)

see Tab 1 33 Taking into account the universal safety

factor Ft= 2 0 for the tota l load settlement curves it

was estimated

i) F in the range of 111 to 237 with the average value s F = 166 and standard deviation sd = 034 s (see column 16 Tab 133)

ii) Fb in the range of 161 to 945 with the average

value Fb = 387 and standard deviation sd = 2 15

For model core d piles in laboratory conditions values of

Fs = 108 to 154 (average Fs = 132 s~ = 019) and

values of F = 280 to 5 94 (average F = 3 55 sd = 1 07)p p

see Tab 1 3 4

As a conclusion it was assumed that Fb = 40 and F 1 5 s

for l arge diameter bored piles

The investi gation has shown that for the above safety

factors settlements of piles under permissibl e loads are

10 to 20 mm There was assumed a maximum load on large

diameter piles corresponding to a settlement of 010

diameter of the piles

25

d) Bustamente Gianeselli 1 982

e) 0ecourt 1982

The safety factor is given by

F = FgmiddotFfmiddotFamiddotFw where

F 11 - skin friction g F 135 - point bearing capacity

g

Ff safety factor related to the formulation adapted

Ff= 10 for Decourts method

Fd safety factor related to excessive deformation

Fd = 10 for skin friction

As for the point Fa= 2 to 3 depending on the

pile diameter For usual cases 25 is suggested

Fw safety factor related to working load

Decourt recommends 12

Thus we will have

- for skin friction

Fs = 11bull10middot10middot12 132 - 13

- for the point

F = 135bull10bull25middot 1 2 = 405 = 40 p

4) equation (134)

a ) Polish Code 1983

Q lt mbullN r shy

where

total load coefficient (depending on the kind of load For foundation we can assume Yf = 12 )= code load

correction coeffic i ent

09 for pile foundations

m 08 for two piles

m 07 for single pile

26

N ymmiddotQu

ym material (soil) coefficient

ym 08 to 09 (Polish Code 1981)

Thus we will have

QnmiddotYf lt mmiddotym middotQu-

Yf9uFt = On m bull Ym

1 2 max = 2 14Ft 0 7 bull 0 8

1 2min = 1 48Ft 0909

The above analysis has shown different ways to determine

the allowable load The analysis is in direct connection

with mobilization of the load (versus settlement) The

dependence of total load point resistance and shaft reshy

sistance will be discussed in detail in Chapter 14

In the authors opinion taking into account the above

analysis the allowable load should be determined based

on the equation 133 ie based on individual safety

factors for ultimate point and shaft resistance Proposed

values of F and F in literature are shown in Tab 135 s p The average values are Fs = 145 and Fp = 3 38 respectively

Taking into account that the bearing capacity is determined

based on the results from sounding measurements direct from

a place near the piling without a ny indirect correlation

the allowable load of large diameter bored piles is given

by the equation (133a)

( 1 3 3a)

where F = 30 and F 13 are proposedp s

27

14 Determination of settlement of larqe diameter bored

piles based on static cone penetration tests CPT

Determination of ultimate point and skin friction resistance

based on static cone penetration tests has been discussed

in Chapter 11 above Based on the results of this calcushy

lation and on Chapter 13 we can establish an approximate

relation between point resistance shaft resistance and

total load on one hand and settlement on the other However

the approximation gives a wide scatter especially for base

resistance as can be observed in Fig 141 to Fig 144

Only the first part of the point resistance - settlement

curves are in good agreement with measured values It can

be observed in Fig 145 that the average correlation

coefficient n = 098 and standard deviation sd= 029

This way of calculation can be used only for rough calcushy

lation (see Chapter 13)

In Chapter 11 also measured point resistance - settlement

curves were shown The base resistance increases gradually

with increasing pressure and settlement Below the cur7

vature of the point resistance - settl ement curve will be

examined It is assumed that this curve can be described

as a part of the hyperbola curve Thus if the ratio of

the measured settlement (s ) to the point resistance (p)

is plotted against the measured settlement the result

will fall closely to a straight line with the equation

( 1 4 1)

where a 1 and b 1 are constants (see Fig 1 46a and Fig

14 6b)

Then the point resistance - settlement realtionship can be

expressed as a hyperbola

s p = ( 1 bull 4 2)

The constant is the initial s lope of the point resistanceshya 1

settlement curve ie a 1 = t~a The inverse of the constant

28

b 1 is the vertical tangent (asymptote) to the curve 1ie for s = 00

bf= ~ If the ultimate point reshy1

sistance psf is equal to bf (psf=bf) the whole point

resistance settlement curve will be a hyperbola type

Now the Eq 1 4 2 can be written as

s s ( 1 4 3)a) p s or b) p = a+__sect_a1 + 1 Psfbf

If the ultimate point resistance is smaller than bf only

a part of the hyperbola curve ought to be considered

Further the Eq 14 3 will be written as

p ( 1 4 4)

where

poundf_ correction factor for hyperbola point Psf resistance-settlement relationship

Taking into account the discussion in Chapter 11 the

ultimate point resistance psf = qcp based on the CPT measurements

Therefore the relationship between the point resistance

the sett l ement and the CPT result can be expressed as

s p (1 4 5)s

The correction coefficient v 1 will cause a change of the

position of the vertical asymptote bf in r elation to the

ultimate point resistance q bull This means that we take cp into account a different part of the hyperbola curve for

the description of the point resistance-settlement relationshy

ship

Now if we want to use the equation (145) in practice

we must determine the constant and the coefficienta 1 v 1 (assumed that q is determined ear l ier Chapter 11)cp

29

The constant a 1 and t h e coefficient Vi have been detershy

mined based on fi e ld tests according to pi l es No 1 - 20

see Tab 14 1 and Tab 1 1 9 as wel l The values of

a 1 versus the point diameter D and the ul timate pointp

resistance respectively are shown in F i g 147 and Fig

148 Fig 1 47 shows that a 1 is independent of the

point diameter D Based on Fig 148 it can be assumed p

that

28-4bullq (1 4 6)cp

This correlation has been examined with data of the

literature see Fig 1 49 and Appendix 141 to 1 45

(Note there were no static penetration tests and qcp was determined based on a correlation made by Bergdahl

(1982))

A good correlation with equation 146 can be seen taking

into account the safety factor in the DIN 4014 Part 2

(1977) bull

The correction factor v 1 versus the poi nt diameter is shown

in Fig 1410 I t is assumed that the correlation is

V1 = 3 0 - D ( 1 4 7)p

where D is in m p

The above equations ie 146 and 147 were assumed for

a later analyses see Fig 14 11 and Fig 1412 The

piles No 1 to 20 were examined taking into account Eqs

14 5 14 6 and 1 4 7 The result of this cal cul ation is

presented in Fig 1 413 to Fig 1 4 18 and in Tab 1 4 2

respectively In Fig 1413 the calculation way for pile

No 2 is shown as an example

In Fig 1414 to Fig 1 417 measured and calculated

values of the point resistance versus settl ement can be

compared In tota l good correlation exists for all the

30

pressure-settlement curves Values of q from static cp

cone penetration tests and generalized values of anda 1

v 1 were considered Only for piles No 17-20 qcp was

assumed as the point resistance for s = 010 D because p

the static penetration test results were inaccessible

The similar comparison is shown in Fig 1417a for piles

in sand based on experimental results (Tuoma Reese 1972

and Wright Reese 1979) where the ultimate case resistance

was assumed as the resistance at a base settlement of 005

D The relative base resistance is the mobilized base p resistance divided by the ultinate base resistance The

curvature of the proposed point resistance settlement shy

curve to mean value proposed by Wright and Reese is excellent

However the constant a 1 and the coefficient v 1 were

determined for sand only In the future they should be

examined especially for gravel and silty sand based on

field tests Until then in the authors opinion the

values of v 1 can be chosen from Eq 147 for all nonshy

cohesive soils But for a 1 there is proposed

at = gt bulla (1 4 8)1

where

gt- 1 = 080 for gravel

gt 2 120 for silty sand

This proposal is shown in Fig 14 11 as dashed lines

A good correlation can be seen with the investigation by I

Kiosimiddotnski for sandy gravel and on the safety side with

the investigation by Tuoma and Reese for silty sand (see

Fig 149)

In Fig 1418 all calcul ations for pile No 1 to 20 are

summarize d The correlation coefficient n is defined as

the calculated point resistance p(s) divided by measured

point resistance p(s) For totally 126 points from 20

curves an average of n = 098 with standard deviation

31

al= 023 was obtained see Fig 1418 A similar result

can be observed for the range usually assumed of the

allowable settlement for sinqle large diameter bored

piles as

for

- for

- for

s

s

s =

10

20

30

mm a

mm

mm

verage n10 II

II

mm 089

095

099

and sd =

and sd

and sd

031

027

026

It can be questioned whether the sonstant a 1 can be deshy

termined in different ways The constant a 1 is the initial

slope of the point resistance-settlement curve as menshy

tioned above Then we can use all methods for determination

of settlement of a pile point The range of validity of

these methods then must be determined This will be shown

later

In order to be able to design the total load settlement

curve the skin friction resistance-settlement relationshy

ship must be determined The ultimate skin resistance of

large diameter bored piles was determined in Chapter 11

(based on static penetration tests) and in Chapter 12

(based on standard penetration tests)

In the past a lot of field tests have been done on the

mobilization of the shaft resistance versus pile settleshy

ment In this subject there is a rather good agreement

in the whole investigation for cohesive and non-cohesive

soil

Some results and opinions on thispresented in the literashy

ture during the last few years are shown below

Ultimate shaft resistance versus settlement

1) BurlandJB Butler FG Duncan P (1969)

-The shaft l oadsettlement curve is derived using a=0 3

with 90 ultimate load being mobilized at 025 in

settlement(~65 mm)

- soil London clay

- see Fig 1 419

32

2) Touma FT Reese LC (1974)

- The failure of the sides of the shaft takes place

at a downward movement of about 04 in (10 mm)

- soil sand

- see Fig 1420

3) Tomlinson HJ (1977)

- The maximum shaft resistance is mobilized at a

settlement of only 10 mm (or j in)

- soil stiff clay

- see Fig 1421

4) Klosinski B ( 1977)

- It was assumed that skin friction increased proshy

portionally to pile settlement up to the limit value

s bull This value depends on soil conditions and pile0 diameter and is usually from 3 to 8 mm For soft

compressible soil it may be grater than 10 mm

- soil cohesive soils

- see Fig 1422

5) Franke E Garbrecht D (1977)

- At settlement of 2 to 3 cm which are normally

allowed in Germany under working loads for buildings

not very sensitive to differential settlementsthe

skin friction is almost always fully mobilized

- soil sand

6) DIN 4014 part 2 (1977) and Franke E (1981)

- The skin friction Tm is approximated as diameter

independent having failure settlements of smf = 2 cm

in sand and 1 cm in clay

- soil sand and clay

- see Fig 1423

33

7) Reese By L (1978) Reese By L Wright SJ (1979)

(1978) The maximum skin friction being developed at

an average downward movement ranging from about 05shy

2 of the shaft diameter The average of six load tests

reported by Whitaker and Cooke (1966) are a lso plotted

for comparison

- soil stiff clays

- see Fig 1424 and Fig 1425a

(1979) The relative settlement is the average settleshy

ment of the butt and base devided by the shaft diameter

The mean curve maximises at a relative settlement of

about 002 D

- soil sand and clay

- see Fig 1425b

8) Tejchman A Gwizda3a K (1979)

- A clear differentiation of the distribution of shaft

and base resistances is observed for changing settleshy

ment For fairly small settlements the shaft resist shy

ance increases quite fast and the ultimate values

are reached soon while the base resistance increases

gradually with increasing loads and settlements withshy

out clearout ultimate values it can be assumed that

complete mobilization of shaft resistance corresponds

to settlements equal to 001 or 002 diameter of pile

- soil cohesive and non-cohesive soils

- see Tab 131 and Fig 1 426

9) Promboon S Brenner R P (1981)

- Load distribution and load transfer curves disclose

that most of the load is carried by shaft friction

which is developed at small displacements in the order

of 10 mm

- soil Bangkok clay

- see Fig 1427

34

10) Prodinger w Veder Ch (1981)

- The maximum value of skin friction resistance

occurred for a total settlement of 12 mm

- soil silty clay and sand

- see Fig 1428

11) Farr JS Aurora RP (1981)

- Ultimate load transfer was recehed (or nearly reached)

at a relative settlement of about 04 in (10 mm)

- soil gravelly sand

- see Fig 1429

12) Decourt (1982)

The skin friction resistance is totally mobilized

with deformations of about 10 mm or at the most 15

mm regardless of shaft dimensions This observation

of ours seems to clash with the opinions of other

authors who seek to relate the deformation necessary

for full skin friction mobilization with the shaft

diameter

- soil cohesive and non-cohesive soil

In Tab 143 all these results are shown Depending on

the kind of soil the following v a lue s of ultimate settleshy

ment for shaft can be assumed

- averages 142 mm (sd 5 3 mm) for sand

- averages 100 mm (sd = 21 mm) for cohesive soil

averages 726 mm (sd 67 mm) for claysand

It can be observed (see Fig 1419 to 1428) that the

shaft friction resistance increases proportionally to

the pile settlement up to the above limit value and

thereafter becomes constant

35

Taking into account what was mentioned earlier on point

resistance settlement relationship and the above results

a relationship between total load point resistance and

shaft resistance on one hand and settlement on the other

can be made see Fig 1430

It is assumed on the safety side that the following

ultimate settlement (S~) exists for the shaft resistance

of large diameter bored piles

SS1 ) 200 mm for non-cohesive soil u SS2) = 100 mm for cohesive soil u SS3) 15 0 mm for claysandu

In Fig 1 430 the curve Q (s) is calculated based on p

the equation 14 5 or 144

The values of psf in equation 144 can be calculated

based on other methods as well

The total load-settlement relationship is obtained by

summing up point and s haft resistance as

Q (s) = Q (s) + Q (s) (149)s p

for each point

Now the allowable load can be determined from equation

133a and versus the allowabl e settlement as

Q (s) = Q (s) + Q (s) (1410)s p

where s lt Sa

Sa= the allowable settlement of the pile

The analysis allows determination of the approximative

load settlement dependence without calculating the settleshy

ment for non-cohesive soil In Fig 1431 it is shown

36

In Tab 144 the settlement for allowable point reshy

sistance q5P according to equation 133a is shown

as well The average settlements= 198 mm (sd=78 mm)

is obtained This value is similar to the assumed ultimate

settlement of shaft for non-cohesive soil The ultimate

settlement for point resistance is assumed s = 010 Dp as mentioned earlier

37

15 Initial slope of pile point resistance shy

settlement curve

Settlement of piles and pile foundations can be cal culated

based on

- empirical correlations

load-transfer methods using measured relationships

between pile resistance and pile movement at various

points along the pile

- theory of elasticity that employs the equations of

Mindlin for subsurface loading within a semi-infinite

mass

- numerical methods and in particular the finite element

method

- use of in-situ tests (Cone Penetration Test Standard

Penetration Test Pressuremeter Test)

The critical slope of the pile point resistance-settlement

curve is important for calculation in chapter 14 The

constant a1 can be determined from all the above mentioned

methods

Comparison is made to Berggrens and Schmertmanns methods

below (see Berggren 1981 as well)

6sIn Tab 151 (No 1 2 3) the values of a 1 =~p for s =

10 mm and s = 20 mm (measured for large diameter bored

piles No 1 to 24) are compared to the calculated values

according to the modified hyperbola method (see Fig 14 6)

It can be seen that these calculated values are between

s = 1U-2u mm but rather closer the measured values for

the settlements= 10 mm see correlation coefficient n 6

and n 7 in Tab 151 respectively The average correlat i on

coefficent for the settlements= 10 mm is n9 = 108 and

the standard deviation is sct = 014 The comparison to

Berggrens and Schmertmanns methods for s = 20 mm ( see

Berggren 1~81 and Tab 151 as well) shows that the

results based om these methods give too high values of a 1 bull

38

The average values are ne= 143 sd = OJ3 and ng= 137

sd = 037 for Berggrens and Schmertmanns methods

respectively A bit better agreement can be observed

for Schmertmanns method

Taking into account the results in Tab 151 ana Tab

15l it must be assumed that for the determination of

a 1 the pile point contact pressure p(a1) should be

assumed as the ultimate point bearing capacity devided

by about 4

p(ai) - ( 1 bull 5 1 )

Most of the methods for determination of settlement are

based on the theory of elasticity The settlement ot the

pile point can be expressed as the average settlement of

a rigid circular foundation from the equation

11-Dp 1-v 2

s = p -4- -E-bull microd (1 ~ 2 J

where

p pile point contact pressure

E Youngs modulus

D diameter ot pile pointp ) = Poissons ratio

microd = depth factor

The range of validity of the pile point contact pressure

was determined in equation 151 Youngs modulus has an

important meaning lt can be determined from triaxial

tests or oedometer tests The relationship between the

constrained (oedometric) modulus Mo and Young s modulus

Eis dependent on Poissons ratio v as expressed by the

equation

E = l 1 + V ) ( 1 - 2 V ) Mo ( 1 bull 1 bull 1)- 1-v

39

TaKing into account the analyses made ny Chaplin (19b1a

1 961bJ Janbu (1 963 1970 1973J Andreassen (1973)

Duncan and Cheng (1970) Tejchman anct Gwizdala (1979)

Gwizdala (1978) Franke (1981) Berggren (1981) Withiam

and Kulhawy (7981) and the present investigation the

calculation of settlement is proposed to be

s = 24 bull p bull ~ D bull 1-v 2 bull micro d (154)Do o E

where s (r1)

p (kPa)

Dp (m)

E (kPa)

D0 =10 m

micro = 05 + 01 vfrac34E (1 5 5)d vs

but 05 lt microd lt 10-tip= p - (J (ovs see Fig 151)vs

E =Et= Kbullpat (Oo )n [1- Rf(1-sinltj) 101 - 03 ) 12 (1 5 6)2 c cosltP + 2o 3 sinltP 1Pat

in which K n and Rf= hyperbolic stress-strain parameters

Pa= atmosferic pressure ando 1 o 3 and o0 are determined by

averaging the concrete and soil vertical and radial stresses

near the pile point according to Fig 151 Then the

stresses at the pile point level are h

(J vs = L

0 Yi h

l vertical stress in the soil

0 hs Ko h

0 vs radial (horizontal) stress in the soil

0 vc L ye h -l

vertical stress in the concrete 0

0 hc K oc a vc radial (horizontal)

concrete stress in the

40

K at rest soil lateral stress coefficient 0

K c lateral stress coefficient for fluid fresh concrete0

K 1 0 oc

and average values

a 05(a +a)V vc vs

1 1 - shy~ = -(a +a+a I = -3 (av+2ahJ the applied mean normal stress0 j Z X y

Assuming this model calculation results for piles No 1-24

(see Tab 11~ as well) are shown in Tab 153

The piles are embedded mainly in medium sand to fine sand

For this kind of soil it can be assumed (soil parameters

from field or laboratory tests were inaccessible)

~ = 35deg c = 0 R~ = 09 n 05 v = 025 K c 10l 0

K = 04 Pat= 1UO kPa ye 24 kNrn 3 y = 14 kNm 3 bull0 C

Moreover in Tab 153 the following symbols are used

p(a1 ) - pile point contact pressure according to equation

1 bull 5 1

s(a1) - settl ement of pi l e point according to equation

143 and Tab 141

pound TT ( 2E = s bull Dp bull i 1-v ) according to equa~ion 152t

E~ Et bull microltl

EI

K = ro~ - according to equation 1 bull 5 6 p bullO middotA2

a~ o

E = E voD middot D middot ~4 ( 1 - v 2 ) according to equationt S p O 0

1 5 4

Et= E microd

K = according to equation 156 V PatmiddotaomiddotA2

41

The calculation results of Youngs modulus E = Et and

dimensionless canpressionrro1ulus for piles to 1-24 are shown

in Fig 152 to 155 using equation 152 and 15b

or equation 1~4 and 156 respectively lt can be obshy

served that the scatter in Fig 153 and Fig 155

where the influence of tne pile diameter is reduced

compare equation 154 is less than in the other figures

The reduced influence was made after observations from

field and laboratory tests while the equation 152 is

taken direct from theory of elasticity These values of

E and K are in good correlation with published values in

literature The values of Youngs modulus versus the

relative density of soil are compared to literature values

see Fig 15b Based on the analysis in this chapter it

can be assumed that

E = 9-ql 3 ( 1 bull 5 7)cp

where qcp is in accordance with equation 117

The calculation results based on this proposal are incluced

in Tab 1 5 3

The c a lculate d s e ttlements based on e q ua tion 154 and

157 are shown in column 23 and the values of the

correlation coef f icie nt (n= Seal ) in column 24 respectshyimeas

ively

The dimensionless canpression modulus can be d e termined as

K = 15Ubullq (qcp in MPa) (1 5 8)cp

see column 25 Tab 153

The calculation results based on the K compression modulus

according to equation 158 156 and 1 5 4 are shown in

columns 25 26 2 7 28 and 29 in Tab 153

42

For comparison and for determination of the range of

validity of this method the caLculation results of

pile point pressure for settlements s = 10 mm s = 20 mm

s = 30 mm (see Tab 141) according to equation 157

and 154 are shown in columns 30 to 35

The results obtained in Tab 153 confirm the possibility

to use the proposed method to calculate the initial part

of the pile point resistance settlement curve of large

diameter bored piles in non-cohesive soil and the initial

slope of this curve as well

A simple model has been proposed based on the theory of

elasticity ana the tangent modulus defined by Janbu (1963)

and Duncan amp Chang (1970)

A new approach according to the pile diameter depth factor

and principal stress is proposed

The settlement of the pile point can be made up to a point

pressure according to equation 151 on up to a settlement

of about s ~ 20 mm (30 mm)

-- The application of v Op in equation 1 5 4 a llows us ing

Youngs modulus as independent of the pile diameter

opposed to Bazants a nd Mosopusts (1981) proposal where

Youngs modulus wa s determined versus the pile diameter

The equation 1 5 6 takes into account the dependence of

Youngs modulus on depth (or overburden pressure) as

well

In the method field test (Cone Penetration Test) or

laboratory tests (hyperbolic stress-strain parameters

can be used

Comparison of the method to 24 availa ble load test r e sults

or large diameter bored piles in sand shows good a greement

to calculated and measured values

43

REFERE~CES

Adamczyk J (1978) Okreslanie udzwigu pali wierconych

za pomoca sondy statycznej (Bearing capacity of bored

piles based on the static sounding) Inz i Bud No 7

pp 253-257

Andreasson L (1973) The compressibility of cohesionless

soils Thesis Chalmers University of Technology

G6teborg (in Swedish)

Appendino M (1973) Comportamento di un palo di grande

diametro strumentato Rivista Italiano di Geotechnica

No 3 pp 115-118

Butterfield R Banerjee P (1971) A rigid disc embedded

in an elastic half space Geotechnical Engineering

Vol 2 pp 35-49

Bozant z Mosopust J (1981) Drilled pier design based

on load settlement curve X ICSMFE Stockholm Vol 2

pp 615-619

Begemann HK (1982) Cone penetration tests pile bearing

capacity and the thesis of Rollberg Proc of the Second

European Symposium on Penetration Testing Amsterdam

pp 433-438

Berggren B (1981) Bored piles on non-cohesive soils shy

settlement and bearing capacity (in Sweden) Thesis

Department of Geotechnical Engineering Chalmers

University of Technology G6teborg

Bergdahl UB (1979 1982) Sonderingen und in situ Messungen

Wien 18-19 Juni 1979 - Private information 19821983

Bustamante M Giane selli L(1982) Pile bearing capacity

prediction by means of static penetrometer CPT Proc

of the Second Europ Symp on PenTest Amsterdam

Vol 2 pp 493-500

Chaplin TK (1961a) An experimental study of the settleshy

ment of footings in sand PhD Thesis Univ of

Birmingham

44

Chaplin TK (1961b) Compressibility of sands and settleshy

ments of model footings and piles in sand 5th Int

Conf on Soil Mech a Found Engng Vol 2 p 33 Paris

Colombo P (1971) Observazoni sul comportamento ltli pali

a grande diametro Rivista Italiana di Geotechnika

No 3 pp 163-172

Dahlberg R (1975) Settlement characteristics of preconshy

solidated natural sands Swedish Council for Building

Research D11975

De Beer EE (1964) Some considerations concerning the

point bearing capacity of piles Proc Syrop Bearing

Capacity of Piles Boorkee I pp 178-204

Decourt L Quaresma AR (1978) Capacidade de Carga de

Carga de Estacas a partir de Valores de SPT VI Conshy

gresso Brasilerio de Mecanica dos Solos e Engenharia

de Fundacoes - Rio de Janerio - ABNS

Decourt L (1982) Prediction of the bearing capacity of

piles based exclusively on N values of the SPT Proc

of the Second Europ Syrop on Penetration Testing

Amsterdam Vol 1 pp 29-34

Duncan MJ Chang CV (1970) Non-linear analysis of stress

and strain in soils Journal Soil Mech Found Div Vol

96 SM5 pp 1629-1651

Durgunoglu HT (1979) Effect of foundation embedment on

stress and deformation distributions Third Int Conf

on Num Meth in Geomechanics Aachen pp 925-928

Farr JS Aurora RP (1981) Behaviour of an instrumented

pier in gravelly sand Proc of a session Drived Piers

and Caissons sponsored by the Geotech Eng Div of the

ASCE Nat Convention St Louis Missouri pp 53-65

Franke E (1981) Point pressure versus length and diameter

of piles X ICSMFE Stockholm Vol 2 pp 717-722

45

Gregersen os Aas G and Dibiagio E (1973) Load tests

on friction piles in loose sand Proc of the Eigth

International Conference on Soil Mech Moscow USSR

Vol 21 pp 109-117

Gwizda1a K (1978) Behaviour of large diameter bored piles

in non-cohesive soil (in Polish) Archiwum Hydrotechniki

Vol XXV No 2 pp 183-217 (English summary)

Huizinga TK (1951) Application of Results of Deep

Penetration Tests to Foundation Piles Building Research

Congress Vol 1 p 173

Janbu N (1963) Soil compressibility as determined by

oedometer and triaxial tests Proc Europ Conf Soil

Mech and Found Eng Vol 1 p 19 Vol 2 (Discussion)

p 17 Wiesbaden

Janbu N (1970) Grunlung i geoteknikk Tapir Forlag NTH

Trondheim

Janbu N Bjerrum L Kjaernsli B (1973) Soil Mechanics

applied to some engineering problems Norw Inst Publ

No 16 Oslo

Japanese Society SMFE (1981) Present state and future trend

of penetration testing in Japan Separate report at

X ICSMFE Stockholm

Kjekstad O Lunne T (1979) Soil parameters used for design

of gravity platforms in the north sea Second Int Conf

on Behaviour of Off-shore structures London Vol 1

pp 175-192

Klosinski B (1977) Bearing capacity of large diameter bored

piles IX ICSMFE Tokyo Vol 1 pp 609-612

Laboratory for soil mechanics Delft (1936) The predetershy

mination of the required and the prediction of the

resistance of piles Proc 1 Int Conf on Soil Mech

and Found Engng Cambridge (Mass) I p 181

46

Matich M and Stermac A (1971) Settlement performance of

the Burlington Bay Skyway Canadian Geotechnical Journal

Val 8 pp 252-271

Mccammon NR and Golder HQ (1970) Some loading tests

on long pipe piles Geotechnique London England

Val 20 pp 171-184

Meigh AC (1971) Some driving and loading tests on piles

in gravel and chalk Proc of the conference on beshy

haviour of piles London England pp 9-16

Mitchell JK Gardner WS (1976) In situ measurement

of volume change characteristics American Society of

Civil Engineers Specialty Conference on In-situ

Measurements of Soil Properties Raleigh 1975 Proc

Val II pp 279-345

Mezenbach E (1961) The determination of the permissible

pointload of piles by means of static penetration tests

Proc 5 Int Conf on Soil Mech and Found Engng

Paris II pp 99-104

Meyerhof CG (1956) Penetration tests and bearing capacity

of cohesionless soils Proc Amer Society of Civ Engng

SM 1 Pap 866 pp 1-19

Meyherhof GG (1 976) Bearing capacity and settlement of

pile foundations Proc Amer Society of Civ Engng

Journal Geotechnical Engineering Division Val 102

No GT3 pp 197-227

Mohan D Jain GS and Kumar V (196 3 ) Load bearing capacity

of piles Geotechn Val XIII pp 76-86

Nixon I (1982) Standard penetration test State of the

art report Proc of the Second Europ Symp on Pen

Test Amsterdam Val 1 pp 3-20

47

Nunes A Vargas M (1953) Computed bearing capacity of

piles in residual soil compared with laboratory and

load tests Proc of the Third International Conference

on Soil Mechanics Zlirich Switzerland Vol 2 pp 75-79

Nordal S Grande L Janbu N (1982) Prediction of offshy

shore pile behaviour The Norwegian Institute of

Technology Trondheim

Ohde J (1939) Zur Theorie der Druckverteilung im Baugrund

Der Bauingenieur Vol 20 No 3334 p 451

Parroth E (1972) Einfache Formel zur Vorausbestimmung der

Tragfahigkeit von Standpfahlen mit Hilfe der Sande

Bautechn 9 pp 312-314

Poulos HG Davis EH (1980) Pile foundation analysis

and design New York - J Wiley and sons

Prodinger W Veder Ch (1981) Bearing capacity of floating

groups of diaphragm walls Proc X ICSMFE Stockholm

Vol 2 pp 809-814

Promboon S Brenner R (1981) Large diameter bored piles

in Bangkok Clay Proc X ICSMFE Stockholm Vol 2 pp

815-818

Reese L (1978) Design and construction of drilled shafts

ASCE JSMFD Vol 104 No OT1 pp 95-116

Rodin s Corbett BO et al (1974) Penetration testing in

United Kingdom state-of-the-art-report Proc Europ

Symp on Penetration Testing 1 Stockholm pp 139-146

Rollberg D (1976) Bestimmung des verhaltens von Pfahlen

aus sandier und rammengebnissen Heft 4 FBG Technische

Hochschule Aachen

Rollberg D (1977) Determination of the bearing capacity

and pile driving resistance of piles using soundings

Publications of the Institute for Found Eng Soil Mech

Rock Mech and Water Ways Construction Aachen Vol 3

48

Schmertmann J (1970) Static cone to compute static

settlement over sand Journal of the Soil Mech and

Found Division ASCE SM3 pp 1011-1043

Schmertmann J Hartman JP Brown PR (1978) Improved

strain influence factor diagrams Journal of the Soil

Mech and Found Division ASCE GT8 pp 1131-1135

Shibata T Hijikuro K and Fominerga M (1973) Settlement

of a blast furnace foundation Proc of the Eighth Int

Conf on Soil Mech Moscow USSR Vol 13 pp 239-242

Spang J (1972) Die Bestimmung der Tragfahigkeit von Grossshy

borhpfahlen (I) Strassen und Tiefbau No 2 pp 339-355

Senneset K (1974) Penetration testing in Norway State-ofshy

the-art-report Proc Europ Symp on Penetration Testing

Stockholm I pp 85-95

Tejchman A Gwizdala K (1979) Analysis of safety factors

of bearing capacity for large diameter piles Proc VII

ECSMFE Brighton Vol 1 pp 293-296

Thorburn s and Mac Vicar R (1971) Pile load tests to

f a ilure in the clyde alluvium Proc of the conference

on behaviour of pile s London England pp 1-7

Trof imenkov JG (1969) Accuracy of determining the bearing

capacity of piles based on results of static penetration

sounding of soils Osnovaniya Fundamenty i Mekhanika

Gruntov 4 (Translation Soil Mechanics and Foundation

Engineering 4 p 248)

Trofimenkov JG (1974) Penetration testing in USSR Stateshy

of-the-art report Proc Europ Symp on Penetration

Testing Stockholm I pp 147-154

Tuoma F and Reese L (1974) Behaviour of bored piles in

sand JSMFD ASCE Vol 100 No GT 7 Proc Paper 10651

July pp 749-761

49

Van der Veen C (1953) The bearing capacity of a pile

Proc 3 Int Conf on Soil Mech and Found Engng

Zlirich II pp 84-90

Van der Veen C and Boersma L (1957) The bearing capacity

of a pile predetermined by a cone penetration test

Proc 4 Int Conf on Soil Mech and Found Engng

London II pp 72-75

Weltrnan AJ Healy PR (1978) Piling in boulder clay

and other glacial tills Construction Industry Research

and Information Association UK-Report PG 5

Withiam J Kulhawy F (1981) Analysis prodecure for

drilled shaft uplift capacity Proc of a session

Drilled piers and caissons ASCE St Louis Missouri

pp 82-97

Woodward R Lundgren R Boitano J (1961) Pile loading

tests in stiff clays Proc of the Fifth International

Conference on Soil Mechanics Paris France Vol 2

pp 177-184

Wright SJ Reese LC (1979) Design of large diameter

bored piles Ground Engineering Vol 12 No 8 pp

17-22

DIN 4014 Cods Teil 2 (1977) Bohrpfahle Grossbohrpfahle

Herstellung Bemessung und zulassige Belastung

Polish Specification (1975) Specification for design and

construction of large diameter bored piles in bridges

Ministry of Transport Warsaw (in Polish)

Polish Specification (1979) Specification for prevision

bearing capacity of the piles on the presiometer test

and static sounding ENERGOPOL Warsaw (In Polish)

Polish Code (1983) Foundations Bearing capacity of piles

and pile foundations

5 1

FIGURES

bull bull

53

Ou

+ sect raquo iir 1

4 + D

h + +Osu

bull + t2 =n- Dp

LDpl r f 1

Opu

Fig 1 1 1 Bearing pi le in the soil

J_

fp

080

070

060

050

0 40

030

020

010

q~ [MPa ]000 -+--~-~-~-~------------------------=-shy

00 20 4fJ 60 80 10 0 120 14fJ 160 180 200

Fig 1 1 2 The point resistance factor fp

(Trofimenkov 1974)

54

ts

160

140

120

100

080

060

040

020

q~5 [ kPa)

0Q0--1------~-~-~-~-~-~ - - ---=- -- shy000 10 20 30 40 50 60 70 80 90 100

Fig 1 1 3 The shaft resistance factor fs middot (TYofimenkov 1974)

f s

200

180

160

140

120

100 2 3 4 5 6 7 8 9

Fig 1 1 4 Shaft friction factor f depenshys

ding of the soil density (Senneset 1974)

55

Q~ [kN]

1500

1000

500

0-r-----------r----~- Q~ [kN] 0 500 1000 1500

Fig 1 1 5 Comparison of the pile resisshytance determined by the results of static sounding and load tests (TYofimenkov 1974)

D f f

0

Fig 1 16 Equivalent cone resisshytance (Bustamante 1982)

56

E u shy0 ~

QI I ltII ltII

~ a C QI

O C

D

w gt

0

Cone res istance Point resistance

80 160 240 320

05

10

15

e d

20

ver y dense Cone resistance 300 kgcm2

Dpcm

a =45 b = 30 C 60 d = 100 e = 150

Fig 1 16a

Cone resistance _ qc

80 160 80 160 qc [ k g cm2 ]p

05

10 10

15 15 e d a

e d20

Dense Medium2 2200 kgcm 100 kgcm

Cone resistance and point resistance of piles versus overburden pressure (Kerisel 1965)

Point resi stance - p(for s=2cm) of the pi le for

15 sett Iement s = 2 cm

10

5

E u

uJ1 o-~----shya er O 804 2500

32 56

I 1

L oose50 -I =25 Very loose L

----~--shy5000 7500 80 98

~-----lmiddotI1--------2 10000 12500 31400 =Flcn)

112 123 200 =Dplcm)

Fig 1 1 6b Point resistance versus cone resistance and pile diameter (Franke 193)

57

1

fp

080 (D Gravel

0 Coarse sand Medium sand 070

reg Fine sond Silty sand

060

050

040

030

020

010

qc [MPa]000-+----r--~-~-~--------r----r----r-~-~-- -shy

oo 20 40 60 80 100 120 140 160 180 200

Fig 1 1 7 Point resistance factor f (proposal) p

58

300

250

200

150

100

qc [MPa I50-+---------------r---r---r---r----r------------- shy

oo 20 40 60 80 100 120 140 160 180 200

Fig 1 1 8 Shaft resistance factor fs (pr oposal)

59

Bustamante (seetab 115 I

l fp

G)

0 Gravel

Coarse sand Medium sand

cl

b)

t-----l

1----1

080 reg Fine sand Silty sand a) D

070 Polish

060 Specification

( 1979) 050

040

030 CD 020 0

reg 010

qc [MPa]0 00 -+-------------------------------------=--shy

oo 20 4o 5o 80 100 120 14o 15o 180 200

Fig 1 19 Point resistance factor f comparisonp

Bustamente ( see tab 116 I 300

a) ~

250 b)~

cl~

200 Polish Specification ( 1979 l

150

100

q [ MPa]504---~--~--~----- ---___

00 20 40 60 80 100 120 140 150 180 200

Fig 1 1 10 Shaft resistance factor fs comparison

60

1 fp

~

080 CD CD Gravel

070 0 reg Coarse sand Medium sand

060 0 Q) Fine sand Silty sand

05

040 Franke (1973)___

030 DIN 4014

020 Part 2 1977

( see tab113 l 0shy

--shy --a - 010 C---0 Piles without enlarged bases

D---0 Piles with enlarged bases qc [MPa ] 000

00 20 4JJ 60 80 90 100 120 140 160 200

Fig 11 11 Point resistance factor f comparison p

fs

DIN 4014 Part 2 1977 ( see tab 114 l

300

~ 5 lt qc lt 10 MPa 50

~ 10 lt qclt 15 MPa

~qcgt15MPa

200

150

CD

100 0 0

qc [ 1Pa] 50-t-----T-~----T-r-~----------------shy

OO 20 40 6JJ 80 100 120 14JJ 160 180 200

Fig 1 1 12 Shaft resistance factor fs comparison

61

Measured p [ MPa]

( s=010 Dp) 10

9

8

7

6

5 0

4 0 61

3

I 2

Calculated qcp [MPa]

0 0 2 3 4 5 6 7 8 9 10

Fig 1 1 13 Comparison of experimental and aomputed values of the pile point resistanae

62

Contact pressure ( MPa ]

2 I 6

50

100

E E 150 Ill

c QI

E Sett lement for QI

calculated qcpai V) 200

Fig 1114 Results from load tests on piles No 1 and 5

Contact pressure [ MPa I 0 2 I 6

01---------------------1

50

E E 100 Ill

Settlement forc QI calculated qcp E ~ ai

I V) 150

Fig 1 1 15 Results from load test on piles No 7 and 5

63

Contact pressure p [ MPa] 0 2 3 4 6

0-t=-----~-~-----

E E

100 1)

c CU E 2 QI V) 150

Fig 1 1 16 Results from load test on piles No 9 10 and 11

Contact pressured p [MPa] 0 1 2 3 4 5

o~~~=------------___-~-shy

50

100

E E

i 150

CU E CU

-a V) 200 2

Fig 1 1 17 Results from load test on piles No 12 and 13

c

-------------- -

64

Contact pressured

0 1 2 3 4 p [ MPo] ~o __L____1_____J_____L___

50

100

150

E

E

IJ) 200

c a

E a

~ 250

Fig 1 1 18 Results f Pom load tests on piles No 2 4 6 and 8

p [MPa]

60

50

tO

30

~

Pile Pile Pile Pile

Pile No18

------+ Pile No17 + ~_ ---0 Pile No 19

bullbull - --bull Pile No 20

- ~middot -shy-shy -(y I Settlement for

20 tO 60

No17 +-middotmiddot- V 70 No 18 bull--- V 9o No19-middot- V 120 No20bull---- V150

qcp 3

80 100 120 140 160 s (mm)

Bose resistance

Fig 1 1 lBa Point Pesistance vePsus settlement (Spang 1972J

65 Cone resistance qc [ MPa]

0 10 20 30

mud

5 ~ lll

0 c 0

c CD

peat

10 sand

Ill N

10=10

D=lOOOmm

1540=40

20__________________

[ml

Fig 1 119 Pile No 1 and results from static cone penetration test

Cone resistance qc [MPa l 0 10 20 30

7N V degW = 0+--------------------i

mud

5

lll

~ C 0

c peat~

10

sand lll N 1D15

15l lD=1500mm

40=60

20l---------=-------__J

[ml

Fig 1 1 20 Pile No 3 and results from static cone penetration test

66 Cone resistance qc [MPa]

10 20 II 3 igt pound ~

mud+peat

fine sand+ silt

50=11

l lo-11oomm

40= 44

10

15l____________c

[ml

Fig 1 1 21 Pile No 5 and results from static cone penetration test

Section Cone resistance Pile

0 0

5 10 15 20 25 30 qc [MPa] -----~-~shy~

Silt

[7r_ ___~ Medium Sand_~-----l

0 ltD

+shy4

0=11

9=

Fine sand + Silt t

30p=

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot1~11+-----E-----

[ml

Fig 1 1 22 Pile No 6 and results from static cone penetration test

Cone resistance qcmiddot 1MPuJ

0 10 20 30 67 01-+-------l--------------i

mud+ peat

fine sand

l1)

N

40=60

15L_____________

[ml Fig 1 1 23 PiZe No 7 and resuZts from static

cone penetr ation test

Section Cone resistance Pi le

0 5 10 15 20 25 30 qc [MPa 1 --~----Y-~-----~

Silt

Fine sand

Medium Sand Bentonite2----1~i

t 3

4

0

0=15

Fine iii ~~= 5

sand t ltD

6 +

Silt 7

3Dp=

63 g

10

11

12

13+------=~---l

[ml

Fig 1 1 24 PiZe No 8 and resuZts f rom static cone penetration test

68

I =3

Cone resistance qc [MPa]

0 10 20 30

C 0 C Cl

(I)

Said

Peat

Sand

l 0=110

D = 11

4 D = 44

Fig 1 125 Pile No 9 and results form static cone penetration test

69

Cone resistance qc[MPa)

0 10 20 30 I ~ II JE Ill= II=E IS

Fine sand QI

U) I

[- I C 0 + C Peat QI

CD

Fine sand 0

Ci D = 1 1

L l D= 110

4D= 4 4

Fig 1 1 25 Pile No 10 and results f rom static cone penetr ation test

70

Cone resistance 9c[MPa]

0 10 20 30

Sand

C 0 Mud peat

+shyc 5 ltII

co

Sand Op= 11

u 10 D= 110 4Dp=44

Fig 1 1 26 Pile No 11 and results foIm static cone penetration test

71

00 a_ N ~

middotu rr QI 0 u ~ C 0

QI ui C iij 0 QI U - 0

0 EN

d 2

Sll 1lOl

C

u (rr

C 0 u~

0

QI - C middot 0 C

U - O 0 EN

~ 0 2

E

ltD a---==-lr---___--~---6-l_-0_012 ~ Lr- - --1---------J J

S9l ls= apound QI -0 gtcc _gmiddot- 0 1) ui I

Fi g 1 1 2 Piles No 14 and 15 and results f r om stat i c cone penetr ation tests

72

Contact pressure p [ MPa] 2 4 6

01lt---------------~

50

E E

111 100 ~ (qcp=30 MPa for No16

~ iqcp =49 MPa for No14

~ 1so~--~~- _ _ __

I _ _

11 I lf--q = 32 MPa for No15

cp

Fig 1 1 28 Results f r om load tests on piles No 14 15 and 16

73

0300--------------~---~--~--shyE

Driven piles in ~ 0 bull Gravel

amp250 bull Sand L QJ X Silt a 1l o Bored piles in

sand -sect 200 0=-- shyC ~ ~ 10 unless ~~ middot D shown 1

ii O

~ ~ o 3 a 1501-----+-------I- --+---laquo-+-- -+------lt

~ sect 5 - 6 6middot 100t----+----+-----_-1---4--__co_--J~__j

-_

~ 0 t7

C

a 50 2 shyg ~ gt

0 20 30 40 50 60

Standard penetration resistanceN in blows per foot

(N 30

Fig 12 1 Emperical relation between ultimate point resistance of piles and standard penetrashytion test in cohesionless soil (Meyerhof 1976)

14 r-------------------r-------b-----q

References and symbols given in Fig121

121-----+---+----+----+------ll------j

- _sect ~ 10t----+----+-_--1-----+---lt~--~H---- 0 lt-~5- _-)0 I() l- I Q---+-----I[08 ~

H -(l () ltj-~C X bulls pound 061------lt----+-----i~- --+-- shy

- bull

-gt Q1pound--I---L---L---L---L--~ 0 10 20 30 40 50 60

Mean standard penetration resistance N in blows per foot ( N30 l

Fig 122 Empirical relation between ultimate skin friction of piles and standard penetration resistance in cohesionless soil (Meyerhof 1976)

74

a) b)0(1 0lt2

10 10

05 05

1 N30OD-+---------__ OD--t-----r-----r----------------ll--Nbull30~ 10 20 30 10 20 30 40 50

Fig 1 2 3 Reduction coefficient a) for impermeable gravels b) form permeablr gravels (Weltman and Healy 1978)

psf [MPo)

Fig 1 2 4 Relation between ultimate point resistance and SPT in cohesionless soil (Polish specification 1975)

75

30 35 40 45 Loo Med Dense Ver dense

50

40

~ E

l)

g 8 1)

middotu

1 ~

QI- bull Touma ~ bull Koizumi

(183)-depth base middotameter5

20 40 60 00 100 N30

30 35 40 45

OG2(294) bull G1 (183)

300 bull us 59 ( 102) bull 88(180)

bull 075 a GT (467)

150

~ 200-+--------+-- t--- --t-----i 130i 0 094 081

014 _- --- -- shy~ E 066bull bull 063 Note -~ ~m~r~s~ ~ 1001---1-r--t---1point is xh QI Ratio ~ Number in ( ) middotn key is h c Ratio s ~

0 20 40 60 00 100

~ig 1 2 5 Ultimate point and shaft resistance versus N30

(Wr ight and Reese 1979)

-----

76

tu Psa

[kPa] [MPa]

200 tu

------ shy150 Psa

1 1

1100 10 1 1

1 50

0+----------T----~---~-N-3J~shy0 20 40 60 80

Relation between ultimate skin friction and SPT (Decourt 1982)

Fig 1 2 6

Psa

[MPa]

8

0----Meyerhof 1976) 0 7

--- - --~ - copy Polish Specifcoti on 1975)6 ~-

~

reg- middot - Reese (1978) middot 5

f41- -- Decourt (1982) -I bull 4 2

----==---______z__ h25m Dp=12m

3 ---shybull

2 7

--shy ----shy~----shy0-t----i----------r-- ----------------------N3l~shy

0 10 20 30 40 so 60 70

Fig 1 2 7 Relation between ultimate point re~istance of large diameter piles and standard peneshytration test (SPT) in cohesionless soil

------

77

tu [kPa)

200 17 Cast under -J bentonite

~----Meyerhof (1976) ~copy -=middotmiddotmiddotmiddot== middotmiddot150 ~------- Wei tman (1978 ) middot Healy middotmiddot ___ Japanese ) 119810 Society

(0 -middotmiddot- Decourt (1982)middot Wright

100

- -middotmiddot -- 11979]reg Reesemiddot Bored piles

~shy50 1 -- shy

-- shy middotmiddot s-shy - --~ ------reg~~ ---~E_==---- ------- shy

N_ ---shy0-+--C--------------r---- ---------~---~-~shyo 10 20 30 40 50 60 70

Fig 12 8 Relation between ultimate skin friction of piles and standard penetration test (SPT)

78

Pst [MPa]

8

7 ---------ist=7MPa

6

5

4

3

2

I N30o~------------------------------+---------__=-shyo 10 20 30 40 50 60 70

Fig 12 9 Relation between ultimate point resistance of large diamter piles and standard peneshytration test (SPT) in cohesionless soil (proposal)

tu [MPa ]

( excavanted and cast

150 under bentonite ) tu=150 kPa

100 tu=90 kPa

I I

50 I I I I I N30

10 20 30 40 50 60 70

Fig 1 2 10 Relation between ultimate skin friction of large diameter piles and standard penetrashytion test (SPT) in sand (proposal)

79

2 3 4 5 p[MPa] 0 2 3 4 5 p[MPa]0

40 40 Cl

80 c 80

c 120 120

Pile No 1 PileNo216 160

200 2

s s c [mm] (mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MPa]

40 40

00 80

120 120

16 160 Pile No 3 Pile No 4

200 200

s s [mm] (mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MAJ]

tgt11 tgt- measured40 40

80 80

120 120

Pile No 5 Pile No 6 160 160

20 200 s s

[mm) [mm)

Fig 1 4 1 Base resistance vs settlement appoximative method piZe No 1- 6

80

0 2 3 6 5 p[MPa) 0 2 3 4 5 p[MPa]

40 40

80 80 6

120 120 6

6160 160

Pi le No 7 Pile No 8 6

200 3J s s

[mm] (mm]

0 2 3 4 5 4 p [ MPo)

6 6 40

6 6

6 80

6 6

6

Pi le No 9 Pile No 10

XJO s s

[mm] [mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MPa)

6 6

40 40 6 6

6

00 80 6

6

12 1Xl 6

160 Pile No 11 160 Pile No 12

200 200 s s

[mm ] [mm]

Fig 1 4 2 Base resistance vs settlement approximative method pile No - 12

81

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MPa]

6 6

40 6 40 6

6

80 6 80 6

120 6 120

Pile No 13 Pile No 141fO 160

200 200 s s

[mm] [mm]

0 2 3 4 5 p [MPa) 0 2 3 4 5 p [MPa)

40 40

80 80

120 120

HiO 160

200 200Pile No 15 Pile No 16

s s (mm) [rrrn 1

0 2 3 4 5 p[MPa] 0 2 3 4 5 p[MPa)

40 40 A A A-measured

680 80 t t

120 c 120 c

1fil Pi le No 17 160 Pile No 18

200 200 s s

[mm] [mm]

Fig 1 4 3 Base r esistance vs settlement approximative method pile No 13- 18

82

0 2 3 4 5 p[MPal 0 2 3 4 5 p (MPa]

D D40 40 c c

80 c 80 c

120 120

160 160

Pile No 19 Pile No 20 200 200

~ml (mm]

Fig 1 4 4 Base resistance vs settlement approximative method pile No 19- 20

LlJ QI

0 average lJ = 098 E sd = 029 C

6 SY = 030

4

2

lJ calculated ________________________ _______ measu red

06 08 10 12 14 16

Fig 1 4 5 Calculated pressure divided by the measured pressure at 20 mn settlement for aZZowabZe

q Zoad Pa= ~p approximative method pile

No 1- 20

8 3

Point resistance p [ MPaJ

a)

p(s) = s a +--sshy1 y qcp

1

SQ100p -- --- ---shy

~ s

[mml

I- 01 s rmm]-l p LMPa b)

f~]

c Cll E ~ i s

[mm)

Fig 146 Definition of the point resistance - settlement curve according to the modified hyperbolic method

84

01 ~ 0

20 0 0

0

16 0

medium 0 value a1 = 905-+ 256 Op 0 0

12 (r=039)

0 0

----0 0

8 0

0 0

0 0

4 0

05 06 07 08 09 10 11 12 f3 14 15 16 17 18 19 20 2 1 Op (ml

Fig 1 4 Initial slope of the base resistance curve vs pile diameter

a1 [p] 0

0020

16 assumed a 1= 28 - 4 qcp

12 0

0 Ct) 0 a = 2659 - 369 qcp8 1

0 0 (r = 0188)0

4

2 3 4 5 (MPa]qcp

Fig 1 4 8 Initial slope of the point resistance curve vs ultimate point resistance on the static cone resistance for pile tests No 1 20

85

a [~ 28

24

20

16

12

8

4

0 2 3 4 5 6 Qcp [MPa]

~ Kiosinski (1977) sand and sandy gravel of mediwn density

~ Klosinski (1977) loose sand ID= 0 3 0 4

o US59 ] t HH Touma p and Reese L (1974) fine sand and silty sand OGl (US59 HH BB - very dense Cl - mediwn dense) 1 BB

DIN 4014 Part 2 (1977)

Fig 1 4 9 Initial s lope of the point res istance curve vs ultimate point resis tance

86

assumed [il =30 -10 Op but )1~ 10 )1 [1 I

u 311-10 Op ( r =0 368)4 1 0

3 0 0

02 0

0 0co 0 8 0 0

0

0

05 06 07 08 09 10 11 12 13 14 15 16 17 19 20 21 Dp [ ml

Fig 14 10 Correction factor for hyperbolic base resistance shysettlement relationship

87

a [~] 28

24

20

16

12

8

4

2 3 4 5 qcp [ MPa]

Fig 14 11 Initial slope of the base resistance curve vs ultimate base resistance (proposal)

v [ 1 ]

3

2 -----G- DP J l 1J I Op lm] J

for Dp ~ 2 0 m ~ u = 1 01

0 --------r----r---r----r-----------------r-------------------------r------r-~-~--shy

05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 Dp[m)

Fig 1 4 12 Correction facto r for hyperbolic base resisshytance - settlement relationship (proposal)

s P ( s)

s +

u qcp

88

a) b)1

bt=o212= 47 MPa a1=1~32 tMWJ s 2 3 4 5 O 1 10 20 30 40 50 60 p [~a]0

0p [ MPa] 40 40

80 80

120 ~

160 b1 = ~ajtg ~= 0 212

~=1132 + 0212middot s

mJ 240 r=0994t t t measured s __ according to Jl s

o o o according to p (bull ll l[mm] [mm]

Pile No 2

slmm) 10 20 30 40 50 60 80 100 125 150 175 2)0 225 Note

p [ MPa] 09 14 17 20 22 24 27 30 32 34 36 38 39

measured

pibull) [ MPa] 074 128 169 202 228 249 282 307 330 347 360 371 380calculated

plbullbull1[MPal 070 125 168 203 233 257 297 327 356 378 396 410 422calculated

1) (bull) ij l099082 091 099 101 104 104 104 102 103 102 100 098 097 sd = 006

ij (HJ1041) (bull10) 078 089 099 102 106 107 110 109 111 111 110 10B 10B sd = 010

plbulll-according to a =1132 [ Jp(s) = s s for pile No21 0 1132 12 39

plbullbulll-according toa =1241 lmiddotGcp=39MPa1 0

~=14 see fig 1411 and fig 14 12 sp(S)=

124+ _ s_ 14middot39

11lbulll11l-J - correlation coefficient calculat~d P5 for

measure p s p(bull) and p(bull) respectively

Fig 1 41 3 Modified hyperboZic point resistance - settZement reZationship for piZe No 2

89

0 2 3 4 5 p(MA1] 0 2 3 4 5 p[MPa)

40 40

80 A 80 A

120 120

160 16 Pile No 1 Pile No 2

20 200 s s

[mm] rnm

0 2 3 4 5 0 2 3 4 5p [MPa] p [MPo]

40 40

80 80

120 1ZJ

lfpound) Pi le No 3 Pile No 4 A

200 A

s s A

[mm) [mm

0 2 3 4 5 p [MPa] 0 2 3 4 5 p [MPa]

40 40 A A A measured ~ calculated

80 80

12

160 160 Pi le No 5 Pile No 6

200 Z)Q

Fig 1 4 14 l3ase resmiddotistance vs settlement pr oposed method pile No 1- 6

90

2 3 4 5 p [MPa] 2 3 4 5 p [ MPa]

40 6

6 40

1 80 80

6

120 120 6

6 160 160

Pile No 7 6

200 200 s

[mm ] s

[mm]

0 2 3 4 5 6 p [MR] 0 2 3 4 5 p [MPa] 0 0

40 40 6

6

80 80

6

120 120

160 160 Pile No9 Pile No 10

200 200

s [mm] [msml I

0 2 3 4 5 6p[MR] 0 2 3 4 5 p [MPa]04--___ ____ ___ ___ ____

0+-=---------------~-~- shy

40 40 c 6 c - measured

0--0-0 shy calculated

80 80

120 120

160 160 Pile No11 Pi le No12

200 200

s [mm]

s [mm]

Fig 1415 Base resistance vs settlement proposed method pile No 7-12

91

0 2 3 4 5 p [MPal 0 2 3 4 5 p [MPa)

40 40

80 80

120

16 Pile No 13 Pile No 14

200 s

tnml [mm]

0 2 3 4 5 p [ MPa] 0 2 3 4 5 p [MPa)

40 40

80 80

120 120

160 1fD

Pi le No 15200 axJ s s

[mm] [mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 6 plMPa ]

A A A measured40 0---0-0 calculated

80

120 120

160 1ED Pile No 17 Pi le No 18

200 200

s s [mm] [mm]

Fig 1 4 16 Base resistance vs settlement proposed method pile No 13- 18

92

0 2 3 4 5 p [MFb] 0 2 3 4 5 p[MPa]

0 6 o -measured40 40 0 0 o -calculated

80 80

120 120

160 160 Pile No 19 Pile No 20

200 200 s s

[mm] [mnil

Fig 1 4 17 Base resistance vs settlement proposed method pile No 19-20

p(s~Psf

15 20

ean

-C 5 w u L Lower ~ confidence

linea 0

a IJl 10

o---o proposed

method I I I

15

Fig 1 4 17a Design curves for estimating developed base resistance in sand (Wr ight and Reese 1979)

93

n (number)

30

28

26

24

22

20

18

16

14

12

10

8

6

4

2

0 02 04

Fig 1 4 18

I= 126

Between 1] = 0 7 - 1 3--- I= 106 ( 84 frac34)

Average ~ = 098 Standard sd =023 deviation

Standard sv =023 veriation

1] (Coefficient Calculated Measured

06 08 10 12 14 16 18

Calculated pressur e divided by the measured pr essure for all pressure - settlement curves pr oposed method pile No 1- 20

94

a) b) Total load

Total load curve

---- _____-- shy- -- -Base load ~- Base load

-0-0 ~

00 00 J

ldeoli zed shaft load J

Shaft sesistanc1---------- 0=0middot30 a= 0 middot 30

025 Settlement IN 025 Settlement IN

Fig 1 419 Proposed method of synthesizing design loadsettlement curve (a) conservative design prodiction b) design prediction- peak in shaft loadsettlement curve (Burland et al 1966)

Cf

-0 0 0

J

0

~-----~--~-~ amp- 2 3 4 5 6 (cm)

a~middotltii -0 lt) cco2 41 -~ -0 1)

vi ~ llloli=----------- ---c~0 1 2 3 4 5 6 7 ( of diameter)1 1 1 1

05 10 15 20 ( in) for 30 in Pile Movemen~ ( 75cm pile)

Fig 1 4 20 Approximate load settlement curves for 30 in bored piles (AB and C represent failure load at 1 in settlement A B and C represent ultimate failure load) (Touma and Reese 194)

95

Load in MN 0 2 3 4 5

25

50E E C

-C 75

-~ ~

-Z 100 lJ

Shaft resistshy

125 once

15 Fig 1 4 21 Load-settlement relationships for largeshydiameter bored piles in stiff clay (Tomlinson 1977)

SettlementSo

Fig 1 4 22 Diagrams of s1iaft and base resistances versus settleshyment assumed in analysis (Kiosinski 1977)

96

0 0 1 ~ r- 025g ~~ 2

1- -shy3 03Sg 14 5 2

Qls =Qpls+Q5 (sQpls) Qs(s-3E

0

degsis __ -- Qpls) a~ C

4

t Sg l

5 Qu Is)

Q(s)in MN-l T

Ouls Q Is) in MN ---

Fig 1 4 23 Construction of load - settlement curves a) for sand b) for cohesive soil (DIN 4014 Part 2 1977 and Franke 1981)

-

s C 5C

Cl

3 0 00 05 10 15 20 Mean settlement I in)

Fig 1 4 24 Load- settlement curves for test shaft S4 (1 in = 25 4 mm 1 ton= 8 90 kN) (Reese 1978)

97

Relative side resistance

0 05 10 15 20 0E=--t----+---+--~

c QI lt) ~ 2 C

I itaker c

QI amp Cooke3E QI-j

c-en 4

C QI

E us 59o

5 QI gt

SA0 w 0 6

Fig 1425a Relative side resistance for clay vesus relative midlength settlement (Reese 1978)

degs (Osl u l t 0 05 10 15 2 0

Mean

2 Lower ~ C QI u

confidence line

~ 3 a

0

~4 E

()

5

6 __ _ ______ ________ __1

Fig 1 4 25b Design curves for esti mating developed side resistance (~Jy1nht ReertP- 1987 J

98 Load Q

8 - 15 mm

1- 2 of p ile diameter

100-200 10-15 of pile Os Ot diameter Shaft Total

Settlement S Resistshy Resist- Load ance once

Fig 1426 Dependence of total load base resistance and shaft resistance on settlement of lar-ge diameter pile (Tejchman Gwizdala 1979)

6

5 Shaft load

4

3

2

z ~

-0

g Pile EF- 56 J 0

0 0 20 30 Butt settlement (mm)

Fig 1 4 27 Deveiopment of shaft and base resistance with settiement (Promboon Brenner 1981)

99

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 0 r-=-1---J__-----------------------~----_shy

Load [ k N l5

10

20

( I

Skin friction ----1 I I

~ 40 QI E

fQI

50 I

Q) I () ICOntinuos fost deolading

Fig 1428 Load-Settlement-Diagram Testelement III (Diaphragm-Wall 0515 m 244 m deep) Portion of Skin Friction and Base Resistance (Prodinger Veder 1981)

Qs (QJ max

0 05 10

Upper Limit of Data

Farr and Aurora (1981J C

~ 2 - shy -+shy - Mean of Data

I QI

Lower Limit of Data a

0 - 3 E

Vl

4

Smid = Approximate shaft buff movement ignoring the elastic compression of upper halt of the shaft

D = Shaft diameter

Q Mobi Ii zed shaft resistance

Qs1max = Maximum shaft resistance

Fig 1 4 29 Relative shaft resistance vs relative movement (Farr and Aurora 1981)

100 Load Q (s) [ MN]

Su5 s s 20 mm for non- cohesive soil u

s s 10 mm f or cohesive soil u

s s 15 mm for claysand u

Q (s) + Q (s)s p

Qs(s)

-C ltII E s ~- [mm]-ltII IJ)

Fig 1 430 Dependence of total load Q(s) point res i stance Q (s) and shaft resistance Q (s) versus settlement p s

~ 3 Usu Qpu Qu Q(s) [ MN]

Sus= 20

1J

60

80

100

120

degs (s ) 140

5 P=Ol Op

1EO

C -ltII E 180 ~ ] 200

s [mm]

Approximative dependence of total load point resistance and shaft resistance versus settlement fny non-cohesive soil

Fig 1 4 31

101

113 3 ~fic0P Ye hY

1 Ground water

D

I y

yh C

Fig 1 5 1 Determination of 01 and 03 for settlement analysis of lar ge diameter bored piles

102

I

E=Et [MPa]

160 0

140

120 0

100

80

6

40

--- --shy 0

0

8 0

0

0

20

2 3 4

I 0 15

Fig 1 5 2

E = Et [MPa]

120

100

80

60

40

I I 0 35 065 085

0

Et= 17 81 qcp0844

( r = 0 128)

5

100

6 qcplMPo]

Calculated values of Young s modulus for piles No 1shy24 according to equation 1 5 2 and 1 56

0

0 0

E =898qcp127 (r= 0314)

E = 9 middot qcp 13 0

20 shy 0

0 0

0 1 2

loJ

I 0 35

3 I

065

4

I 085

5

100

6 qcp [MPo]

Fig 1 5 3 Calculated valueBof Young s modulus for piles No 1shy24 according to equation 1 5 4 and 1 5 6

I K 10 3

( 1 ] 1832

1400 0

1200 0

0

1000 0

800 0

m=2821 qcp0621

600 0

(r=0057)

400 0 0 0 0 0

200

2 3 4 5 6 qcp (MPa]

I 035

I 065

I 085 100 Io

Fig 15 4 Calculated valuesof the dimensionless compress ion modulus K for piles No 1- 24 according to equation 1 5 2 and 1 56

K ( 1 ]

0

1400

1200 0 0

1000

800

600

0

0 0

0

0 0

0 K= 1422 qcpl05

(r=0181)

0 K= 150 qcp

400 0

3)0 0 0

2 3 4 5 6 qcp(MPa)

I I -J 035 065 085 100 Io

Fig 1 5 5 Calculated values of the dimensionless compression modulus K for pile~ No 1-24 according to equation 1 5 2 and 1 5 6

104

120

100

2 3 4 5

I I I rv 0 15 035 065 085 100 lo

Bergdahl (1982) for shallow foundation

o----o Bozant Masopust (1981) D= 1 0 rn h=10 rn large diameter bored piles in noncohesive so il

0----0 Proposal according to current anal ysis

Klosinski (1977) D=090 to 125 rn large diameter bored piles in sand and sandy grave l

Mitchell Gardner (1976) very dense sand E=(35)q (it depends on sand density and stress history) c

Fig 1 5 6 Composision of Young s moduius

105

TABLES

0 Tab 1 11 Methods for detemination of the bearing capacity of bored piles (Ro llberg 1977)

Cl

Nol -- I Soil Areas of Q) Q) Editor Determination of Coefficients 5 type influenceqP qs p ~ C C 11 12 fP I fs

1 all Lab f Soil Mech (1936) l qp at the elevashy 1 0

2 all Huizinga (1951) ~ t~on of the pile 14 point

3 all Van der Veen (1953) ) 18 1 h+l14 all Van der Veen 1 0 Dpl375 D~ 15-- J qcmiddotdhBoersma (1957)

~ 11 +12 h - 12

5 12 all Menzenbach ( 1961) qc at the elevashy~ tion of pile point

6 18 all Mohan Jain Kuman (1963)1 average of qc over 1 h Q) h ~qcmiddotdhl 10 Dpj 3 75 Dj 15 50_micro

and 1 2C 11

7 I amp all de Beer ( 1964) graphically from 10 Q) qc 0 1 h+l18 u C

sand Soviet norm SNIP II 9ct9cp I4 bull O Dp I10 DP l66-1 083shyu clay B5- 67 Trofimenkov (1969) 2 50 1 251 +l J qc middotdh micro middot h middot-l l 2h-~ _micro

9 _micro u all Paproth (1972) at the elevation 3 5 I shy

) of pile point (Dpgt0 5 m 7 D8DpE

E-lt p 1 h+l1 1 h Dplt 5 m u l+l J qcmiddotdh h f qcmiddotd~ 30 Dpl 50 Dp 2 0 100shy10 sand Norwegian method

0l 2 h-12 200Senneseth (1974)

11 lall Soviet method h+l (20-0lqgl - 101 1 q middotdhTrofimenkov (1974) -- f C UpUsmiddotQct

l1+l2 h - 1212 Qct-Qcp 40 D~ 10 Dp 1 33- 0 67shyUsbullh 4 00 2 50

13 English method 10 DFJ 375Dp 10 I

Rodin Corbett Shershywood Thorburn (1974)

3 7 5 Dcl 8 0 DP 10h+l1 _1_ J qcmiddotdh 1 h

qcmiddotdh 20011 +12 h - 12 hb

1 h qcmiddotdh 150hf

0

Observations

fp I f (qp)fs C

Dp E = 1 cm Qbu = 2 Qpa (approx )

s fs=f (qc)

q=~g Us 0 h

fp=f(q~)

fs=f(qgl

bull fine grained non- cohesive soil loosely packed

bull fine grained non- cohesive soil medium dense comp

fine grained non- cohesive soil

Tab 111 (cont)

h+h bE 14 non-cohe- Meyerhof ( 1956 poundti J N 3o middot dh CtME fN3 o dh 1 0 DP 4 0 DP 10 100 etM= l 2

sive soil 1976) lJ +12 h - li hE o hgp taken into consi der ~ Ul (I)

E-lt

C 0

~E = 1 kgbull 30 cm

(statistical limit depth of the pile) hE - clamping length of

pile micro rrJ l-l micro (I)

15 C (I) p

sand Norwegian method

- irm - - - 10 IT

m = diagram O l-l Senneset (1 974) rrJO C

16 rrJ micro gravel English meth it 3 middot N30 - - - 10 - Jf 3 + diagram U) ~

E-lt p U)

iiouiu Coruett Sherwood Thorshyburn (1974 )

(NJQat the elevashytion of pile point1

0 -i

108

Tab 11 2

Results of calculati o n of p i le point load pile shaft load and total pile load from static con e penetration test (Rol l berg 1977)

~ gt

~ gt Ultima te Ultimate Ult imate

No Method micro micro poi nt skin bearing 080lt17nlt1 50 Q) -l

-l middot-i resistanceuro resistance r esistancE

middot-i p 0

(J n1 n n2 n n3 n n1 n2 n3

1

2

Lab fSoil Mech

Hu izinga (1951)

(1936 ) 430

307 i 3 Van der Veen (1953) 239

49

4

5

Van der VeenBoersma

Menzenbach (1961)

(1957) -l middot-i 0

2 4 7

1 57 1-CJ)

6

7

8

Mohan Jain Kumen

de Beer (1964)

Sovi et Norm (1969)

(1963) CJ) Q)

-l middot-i 0

lJ Q)

Q)

gt- CJ) Q)

c 0

2 44

1 37

183

47

t I

49

487

0 18

47

16

3 02

0 85 1

47

16

137

08

9

10

Paproth ( 1972)

Norw Method (1974)

~ 0

0

u I

C 0 C

1 8 1

180 l 46

1- - -_L~ 46 167 46 1 19

1 1 Soviet Method ( 1974) [1 1 41 46 1 62 13 083 13 1 14 0 8

12 Engl Method (1974) 2 66 35 128 35 2 30 35 1 28

Note

cal Q a) n = --- mean value of the rat i o between calculat ed pile loads and those n Q determined f r om loading test

b) n = number of piles

109

Tab 113

Point resistance of large diameter piles (DIN 4014 Part 2 1977)

Settlement Point pressure 1 Factor -fshy

(cm) (MPa) cf=lOMPa I i=15 MPa C C

Piles without enlarged base

1 05 005 003 2 08 008 005 3 11 0 11 007

15 34 034 023

Piles with enlarged base

1 035 0 04 002 2 065 0 07 004 3 0 90 009 006

15 2 40 0 24 0 16

Note 10 lt qp lt 15 (MPa)C

Tab 114

Skin friction resistance of large diameter piles (DIN 4014 1977)

Strength Static cone pen- Depth below Skin frict ion Factor of sand etration resist surface

(MPa) (m) (MPa) fs

Very small lt 5 - 0

Small 5 to 10 0 to 2 0 2 to 5 003 ln6 to 333

gt 5 005 100 to 200

Medium I I 10 to 15 0 to 2 0 I

I 2 to 7 5

gt 75 I 0045 0075

222 to 133 to

333 200

High I I

i

l

gt 15 0 2

to 2 to 10 gt 10

I I I

I

i

0 006 0 10

gt gt

250 150

Note Skin friction is assumpted as linear until s =2 cm and constant for s gt 2 cm

11 0

Tab 115

Values of the inverse of the point resistance factor (Bustamante 1982) fp

Soil type qPC I 1

Factor - shyfp(MPa)

for piles group

a) Silt and loose sand lt 5 0 40 -b) Moderately compact

5 - 12 040sand and gravel

c) Compact to very gt 12 i 030compact sand and gravel I

Tab 116

Values of the shaft resistance factor fs (Bustamante 1982)

Factor fs

Soil type qs

C Category I(MPa) I A I B I II A III BI

I a) Silt and loose lt 5 60

i 150 I 60 I 120-

sand

b) Moderately corn- I pact sand and 5 - 12 100 200 100 200 gravel i

Icl Compact to very

compact sand gt 12 150 i I 300 150 I 200I

I I and gravel i

I

111

Tab 117

Point resistance factor (proposal)

-

1-fp

qc (MPa)

Gravel

Coarse sand Medium sand

Fine sand Silty sand

25

080

0 70

060

5 0

0 65

055

047

75

054

045

039

10 0

045

036

031

150

035

027

022

200

030

0 23

018

Tab 118

Shaf t r e sistance factor (proposal)

fs

qc (MPa)

Gravel

Coarse sand Medium sand

Fine sand Silty sand

25

80

100

130

10 0

120

150

190

I 200

180

230

300

11 2

Tab 119

Calculated values qcp

for large diameter piles

Pile Literature Length Diameter (m) Measured p Cr1 lcul Settlement Note Authcr(year) No (ml D Dp (MPa)

(s=0 10Dp) (MPa)p ~~JL__

s s ()(mm) Dp

1 Franke (1977) 1 13 11 36 38 117 106 Garbrecht

2

3

2

3

13

14

11

15

1 58 36

37

38

40

215

185

136

123

) qg accord to Franke

4 4 13 15 204 3 2 33 220 108 and Garshy

5 5 6 11 33 35 127 11 5 brecht (1977)

6 6 6 11 153 36 35 146 9 5

7 7 6 1 5 34 35 158 105

8 -shy 8 6 15 2 1 41 3 0 109 52

9 10 9 11 39 52 47

10 11 95 11 43 35 77 70

11 12 9 11 49 66 60

12 13 10 11 15 5 1 4 0 77 5 1

13 14 9 11 1 5 4 8 46 115 77--shy14 Pranke ( 1973) 15 115 18 4 9

) ) average 88

15 13$ 13 5 1 3 19 -2 5 3 2 sd=3 0

16 - - 165 16 5 13 19 30 sv=0 34

17

18

Spang (1972)

llXJ

V90

6 6

6 75

0 7

09

3 2

4 2

32X

42X

x) s =0 10 D p

19 VlaJ 720 1 2 39 3 9X

20 - - VlsJ 6 5 1 5 3 0 3 ox

21 Touma and US59 9 9 o 76 8 0 Reese ( 1977)

22 HH 75 0 61 8 0

23 Gl 180 091 - 2 5

24 BB 137 o 76

sd = standard deviation

sv = standard variation

Tab 1 2 1

Ultimate point resistance coarse and medium sand psf (MPal (Pol ish Specification 1975)

Depth h

Medium sand r = 0 40 N = 200 30 Base diam (Op) and depthbase diam (hDp)

Dense sand r 0 Base diam (Op)

= 0 80 = 50N30 and dpethbase diam (hDp)

(ml Dp = 0 6 m Dp = 1 0 m Dp =12 m Dp = 1 5 m Dp = 0 6 m DP = 10 m DP = 12 m DP = 15 m

Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp

5 10 83 0 85 5 0 075 42 07 33 20 8 3 16 50 14 42 13 3 3

7 14 11 7 1 2 70 11 5 8 10 4 7 2 8 11 7 22 70 2 0 5 8 1 8 47

10 18 16 7 15 10 0 14 8 3 1 3 67 35 167 28 100 2 5 83 2 2 67

15 18 250 18 15 0 16 12 5 15 100 4 2 25 0 3 4 15 0 30 125 27 100

20 2 4 333 2 0 200 185 167 1 7 133 4 7 333 3 8 200 33 167 30 13 3

25 26 41 7 2 2 25 0 20 208 19 167 5 0 41 7 4 0 250 3 5 20 8 3 2 167

w

11 4

Tab 131

Partial safety factors for resistance to axial load for bored piles (Wright Reese 1979)

Partial safety Normal Poor factor for control control

Unit skin resistance 1 70 185

(no load test)

Unit skin resistance 160 1 70

(from load test)

End bearing 165 180

Tab 1 3 2

Probability of failure of bored piles under normal design conditions (Wright Reese 1979)

Probability of Factor of Structure failure safety classification

5 10-3 25 monumental

210shy 22 permanent- 2

5 middot 10 2 0 110shy 1 85

temporary 5 bull 10-l 165

11 5

Tab 133 Results of field tests (Tejchman Gwizdara 1979)

L

II C C C 0 0 0

micro micro

micro micro micro For universal safe~y F2u u CUNo micro C C ~ ~g~ middot- C

~ Permisible micro micro i ~c -i micro

cmiddot-~ micro~ L

micro oo ~ load ~t~ ~~ omicro micro ~ ~ 3Z~ ~ ~ micro

-~~

~ e ~ --middot--

middot- ~ obull 0

~ g ~~ ~~ ~

~ L

o Jl i5 sect~ =gt L Q~ = yen t p Qp Qp

D h Q~ Srrx s tm p s E~ iQ~lQ~cm ~~ KN X ll1l kPa kPa kN kN kN Jl ~e ~ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 70 6 60 4081 1550 2531 38 0 1182 10 4040 175 2041 245 1796 632 141 120

2 90 6 75 5082 3041 2041 598 1785 10 4782 107 2541 1079 1462 282 140 42 5

3 120 720 7259 4041 3218 557 1035 10 3576 119 3630 2158 1472 187 2 19 594

4 150 650 8643 4454 4189 51 5 928 20 2521 136 4326 2158 2168 3 10 166 253

5 130190 195 7750 3011 4709 392 805 10 1075 - 3875 981 2894 3 10 166 253

6 130190 165 9516 5101 4415 536 522 20 1800 - 4758 1962 2796 260 158 412

7 130190 135 8044 5199 2845 646 114 4 15 1834 - 4022 2109 1913 2 47 149 524

8 180 115 11380 4415 6965 388 792 15 1735 - 5690 2747 2943 161 2 37 483

9 76 980 6867 4316 2551 628 110 13 9529 109 3534 1128 2306 383 111 32 8

10 61 7 60 7161 2747 44 14 383 67 15 9404 303 3581 392 3188 700 169 109

11 92 180 4807 883 3924 184 20 8 1329 76 2404 196 2207 450 178 82

12 76 24 5 6769 736 6033 109 20 8 1623 103 3385 147 3238 500 186 43

13 76 137 5396 2060 3336 38 2 63 8 4535 102 2698 589 1109 350 t 58 218

14 120 23 5297 1854 3443 35 0 960 10 1640 39 2649 196 2453 945 130 7 4

15 135 16 7 13489 7554 5935 560 181 10 5260 83 6749 2060 4689 367 127 305

16 170 46 0 8829 2943 5886 333 17 10 3466 39 4415 1373 3042 2 14 1 94 31 1

Average Fi 387 166 Standard deviation Sd 2 1 5 034 Standard variation sv= 0 56 0 20

1234 Spang1972 567 8 Franke 1976 9 10 111 2 1 3 Touma Reese 1974

14 Colombo 1971 15 Kerisel Simons 1962 16 Appendino 1973

11 6

Tab 134

Results of model

SafetyScheme factor

medium F ssand

F p

loose F s

samd Fp

F 3 55 sd _P F 1 32 sd

s

tests (Tejchman Gwizdara 1979)

Diameter D (mm)

30 60 90 133

145 129 108 112

280 3 08 307 294

140 154 153 112

594 3 04 324 426

107 sv 030

0 19 sv 0 14

117

Tab 135

Individual safety factors according to literature

Literature proposal ofLiterature individual safety factor

Fs Fb

Polish Specification (1974) 100 250

Tejchman Gwizdala (1979) 150 400

Bustamante Gianeselli 200 300 (1982)

Decourt ( 1982) 130 400

average 145 3 38

TAB 141 0)

Load settlement curves - measured

Pile No

Settlement 1 c 3 4 5 6 7 8 9 10 11 12

s p s p p s

p p s P

p s P

p s p p s

P p s

P p s

p p s p p S

p I i p s

p p s p

mm MPa rrrn lifl5a MPa mm

lifl5a MPa

mm lifl5a MPa mm

RPa mmMPa nwa MPa mm

RPa MPa mm RPa MPa mm

RPa MPa mm RPa MPa mm

RPa MPa mm RPa MPa mm

RPa 10 045 222 09 1 1 05 20 07 143 06 167 08 125 0 5 20 08 125 10 100 08 12 5 15 67 16 63 20 092 21 7 14 43 08 25 10 20 0 1 1 182 12 167 0 9 22 2 12 167 18 111 14 143 24 83 22 9 1 30 125 240 1 7 I 7 6 1 1 273 1 2 250 14 214 15 200 1 2 250 15 200 25 12 0 19 15 8 30 100 26 11 5 40 1ti 250 20 10 0 14 28 6 14 286 1 7 235 18 222 1 4 286 18 22 2 3 2 12 5 23 174 36 111 3 0 133 50 20 250 22 ~27 1 7 294 1 5 333 20 250 2 1 ~38 1 7 294 1 9 263 37 135 27 18 5 4 2 11 9 33 152 60 2 2 273 24 ~5o 20 300 1 7 353 23 61 22 ~73 18 333 21 286 43 140 30 20 0 46 13 0 36 16 7 80 271 295 27 796 24 333 20 400 27 ~96 25 1320 22 364 25 32 0 53 15 1 36 222 41 195

100 322 31 1 30 333 28 357 22 454 31 1323 29 345 26 385 28 357 60 16 7 40 25 0 45 22 2 125 38 329 32 391 32 391 25 500 32 139 1 30 41 7 32 39 1 4 6 272 48 ~6 0 150 14 2 357 34 1441 36 41 7 27 555 36 ~1 7 34 44 1 36 41 7 175 36 486 39 449 30 583 38 ~61 38 461 200 38 526 42 476 32 625 225 39 577 33 682

(mmMPa) ( 1 MPa)

1

1=2074

t 1=O ~01 =0 98S

a1=1132

b1 =0 212 V =0994

a1=2217

b1=O 131

V =Q 978

a1=1860 b1=0233

V =Q966

a1=1562

b1=0174 V =Q983

a1=1382

b1=O195

V =0975

a1 =20 37

b1 =C 174

V =0957

a1=1443

b1=(l 193 v =O 961

a1=965

b1= 0071 V =0 990

a1=1 91

b1 =o 128

V =0 993

a1=5 83

b1=C124

v =O 981

a1=6 1 4

b1=01 64 v =U 985

li(MPa) ~9 4 7 76 43 57 middot5 1 57 5 2 141 78 81 61 cp (MPa) B8 39 40 33 35 35 35 3 0 39 3 5 49 40 __Ef ~-6 1 2 1 9 1 3 16 15 16 1 7 36 22 16 15 qcp

TAB 141 (continue) Load settlement curves - measured

Pi le No 3ettlement 13 14 15 1 17 18 19 20 21 22 23 24

s p s T5

p s T5

p s T5

p s P

p s P

p s P

p s P

p s P

p s T5

p s T5

p s p p s

p mm MPa lll1l

HPa MPa mm HPa MPa mm

fWa MPa mm fWa MPa lll1l

HPa MPa mm HPa MPa mm

MPa MPa lll1l NT5a MPa HPa MPa 111111

HPa MPa 111111

HPa MPa 1)1111

mra 10 1 7 59 075 133 06 167 075 133 ~95 105 09 11 1 07 143 3 76 1 7 59 08 133 10 100 20 2 4 83 130 154 095 21 1 1 15 17 4 1 75 114 16 125 12 167 ~7 74 33 6 2 1 3 15 3 1 9 103 30 29 103 1 7 176 1 2 250 15 200 r55 118 22 136 16 18 8 38 79 46 66 1 7 182 27 110 40 33 12 1 20 200 1 35 29 6 1 75 229 ~O 133 26 154 175 229 49 82 58 6 9 1 9 21 1 35 115 50 36 139 235 21 3 145 34 5 1 95 256 24 208 ~-4 147 28 17 9 20 250 gt8 86 6 9 72 2 2 233 4 2 11 8 60 39 154 265 22 6 1 55 387 2 15 279 28 214 ~6 16 7 30 120 0 2 2 27 3 o 8 89 80 7 5 2 3 262 80 43 186 31 258 1 7 47 1 36 222 14 05 198 33 124 2 25 320 B 1 98 25 327

100 45 222 18 556 39~ 253 ~-5 222 36 1278 27 370 ~8 113 125 47 26 6 20 625 42 29 8 149 255 28 1446 t50 22 682 3 0 500 175 200 225

(mmMPa) a1=479 a1=1206 a1=14 51 a1=1113 a1=1406 ~=836 a1=843 a1=1176 ~=64 a =561 a1=10 0 a1=9 5 (1MPa) b1=0175 b1=0 178 b1=0 382 b=0287 b1=O 119 p 1=0 137 h1 =o 193 b=0258 p1=0 049 b1=0032 b1=0 276 b1 =0 048

hf (MPa)

v =0998 57

v =0-987 5 6

v =0989 26

v =0992 35

v =0933 Iv =0991 84 73

v =0993 5 2

v =0998 tJ

3 9 =0944 v =0998 v =0996 v =0981

qcp (MPa) 46 39 32 30 32 14 2 39 30

lL 12 1 1 08 12 26 1 7 1 3 13 qcp

lD

N 0

TAB 142

Calculated point resistance curves

Setlement (mm) p(s)

1

n p(s)

Calculated value of the p(s) for pile No

2 3 4 5

n p(s) n p(s) n p(s) n p(s) 6

(MPa)

n p(s)

7

n p(s) 8

n p(s) 9

n p(s)

10 20 30 50 80

100

150 200 225

070 128 177 253 335

375 446 493

157 140 141

127

123

1 16 106

070 1 25 168 232

297

327 378 410

422

078 089 099 1 06

1 10

109 1 11 108

108

073 1 30 176 246

315 349

405 441

146 163

160 145

1 32 125

113 105

056 096

1 26

167 205 222

249 265

271

0 80 096

105

1 11 100 101

092 0 83

082

065

118 162 233

308 345

412 456

108 108

1 16 116 114 111

064

1 12 151 2 10 2 69

298

346 3 76

078 P63 093 tt 13 101 tt 53 100 I 13

108 ~75

103 ~04 096 ~ 55

~ 87

1 26 125 127 126

125

1 17 1 04

052 088

1 15 153

188 2 03 227 242

065 0 74

o 77 0 81 0 75

0 73

063

072 122

1 83 262 347 388

463 5 11

073

0 74

073 0 71 0 65 065

064 1 18

162 233 309

3 46

41 3 4 57

Dp (m) 1 1 Qcp (MPa) 38 (mmMPa) h2 8 1 1 9 Qcpbullv1(MPa) 72

158

39

124 14 55

15

40

n20 15 60

204

33 148 10 33

1 1

35

tt 4o 1 9 67

1 53 3 5

tt 4 0 1 5 51

15

13 5

114 0 15 i-gt 3

2 1

30

tt 6 0 10 3 0

1 1

3 9

12 4 1 9 74

1 1

3 5 h40

1 9 67

Note n = condition coefficient calculated p(s) measured p(s)

10

n

081

084 0 85 0 86 0 85

087

TAB 142 (continue)

Calculated point resistance curves

Calculated value of the p(s) for pile No (MPa) Setlement 11 12 13 14 15 16 17 18 19 20

(mm) p(s) ll p(s) n p(s) ll p(s) n p(s) n p(s) n p(s) n p(s) n p(s n p(s) n

10 106 070 0 71 045 091 054 099 1 32 055 092 053 070 060 081 085 0 72 080 055 078

20 1 90 079 130 059 160 067 1 70 1 30 096 101 091 079 1 12 148 085 1 31 082 098 082

30 258 086 1 76 068 2 15 074 222 1 31 1 26 105 120 080 156 205 081 180 082 132 083

50 363 086 246 075 297 082 296 1 26 1 70 117 161 082 228 095 295 087 256 0 91 184 092

80 471 316 o 77 3 77 088 364 1 18 2 1 o 1 24 199 308 085 393 097 336 1 02 237 095

100 522 349 078 415 092 394 228 1 27 2 16 348 088 442 098 375 104 262 097

150 611 405 479 443 258 117 244 423 529 443 304 101

200 669 441 518 473 276 261 474 587 488 331

Dp (MPa) 1 1 1 5 1 5 18 1 9 19 070 090 12 15

qcp (MPa) 49 4 0 46 49 32 30 32 42 39 30 12 a1 mmMPa) 84 h20 96 84 152 160 152 124 160

IV1 1 9 1 5 15 12 11 1 1 23 21 18 15

qcpmiddotv1 (MPa) 93 60 69 59 35 33 74 88 70 45

- 12287 average = ~ = 098

standard deviation sd = 023 standard variation sv = 023

N

122

TAB 143 Ultimate settlement for shaft resistance - summing up

Ultimate settlements (mm)Literature sand cohesive claysand

soil

Burland Butler Dunican (1966) 7

Touma Reese (1974) 10 Tomlinson (1977) 10 Klosinski (1977) 8

Francke Gerbrecht (1977) 20-30 DIN 4014 part 2 (1977) 20 10 Francke (1981) Reese (1978) (1979) 05-2 of 05-2 of Farr Aurora (1981) shaft dia~ shaft diam

5-20 mm 5-20 mm Tejchman Gwizdala (1979) - Spang (1972) 10

10 10 20

- Francke (1976) 10 20 15 15

- Touma Reese (1974) 13 8 15 8

8 - Colombo (1971) 10

- Kerisel Simons (1962) 20 - Appendino (1973) 10 Promboon Brenner (1981) 10 Prodinger Veder (1981) 12 Decourt (1982) 10-15 10-15

-average s = 14 1 10 126

standard deviation sd = 53 2 1 47

standard variation sv = 038 021 037

123

TABLE 14 4 Al l owab l e base resistance versus sett lement

Pile Li terature ength Diameter (m) Calculated qcp=qcp Settl ement Fp-3- sa (mm)No Aut hor No (m) D DP qcp (MPa) for qcp3(MPa)

1 Francke ( 1977) 1 13 11 38 127 25 Garbrecht

II2 2 13 11 158 39 130 19

II3 3 14 15 40 133 33

II4 4 13 15 204 33 110 23

II5 5 6 11 35 117 22

II6 6 6 11 153 35 117 19

II

8

7 7 6 15 35 1 17 25

II 8 6 15 21 30 100 21

II9 10 9 11 39 130 13

II10 11 95 11 35 117 15

II11 12 9 11 39 163 11

II12 13 10 11 15 40 133 7

II13 14 9 11 15 46 153 9

14 Francke ( 1973) 115 11 5 18 30 100 15

II15 135 135 13 19 32 107 29

II16 165 165 13 19 49 163 35

17 Spang (1972) V70 660 070 32 107 28

18 II V90 675 0 90 42 140 16

II19 V120 720 1 20 3 9 130 16

II20 V15C 650 150 30 100 16 average for pi les 198

standard dev sd = 78

standard var sv = 039

)assumed qc = p for s = 010 Op sonding meRsurement were not availab le

IV

TA~LE 15 1

Comparison of the initial sl ope of the pile point resistance - settlement curve

Accardi ng to 1 2 3 4

In i t i ~l 5

slope a1 for the pile No

6 7 8 9

(mmMPa)

10 11 12 13 14 15 Note

a 1 for s=10 mm 222 11 1 a1 for s=20 mm 21 7 14 3 calculated 207 113see Tab 14 1 Bo Berggren (198 )230s=20 mm

Schmertmann s method (see 202B Berggren 1981)s=20 mm

No 1 _ llNo - 6 1 97 098

202 250

22 2

400

30 8

090

14 3

200

186

076

167

182 156

286

18 2

107

125

167 138

091

20 0

222

204

426

263

098

125

167

144

087

100

11 1 9 7

182

23 5

1 03

12 5

14 3

11 9

174

164

105

67 83

58

14 6

125

1 16

63

9 1

61

103

59

8 3 48

123

13 3

15 4 12 1

1 10

167 21 1

aceto hypershy14 5 bola type curve

1 15

No 2 NQj = n1

No 4Noz ~ na No 5Naz= T]g

105 1 27

106

093

1 13

160

1 23

108 1 17

157

100

121 109

1 92

118

1 16 1 14

164

2 12

120

122

1 15

143

1 76

151

149 1 73 1 27 146

TAllLE 151 (continue)

Compa ri son of the initial slope of the pile point resistance - settl ement curve

Initial slope a1 for the pile No (mmMPa)According Note to 16 17 18 19 20 21 22 23 24 -a1 for s=10 mm 133 - 105 11 1 143 76 59 133 100 a1 for s=20 mm 174 - 114 125 167 74 62 153 10 3 calculated see 11 1 146 84 84 118 64 56 100 95Tab 141

Bo Berggren 198 67 78 25 0 114s=20 mm Schmertmann s method (see B 136 67 250 146 Berggren 1981) s = 20 mm

nG = 108 No 1NoJ = n 1 20 125 1 32 121 1 19 105 1 33 105 sd = 0 14

SY= 013 No 2 i) = 1 29ro1 = n1 157 136 149 142 1 16 1 11 1 53 108 sd = 019

SY= 015 No 4 iis = 143 INo2 = ns 091 126 1 63 111 sd = 033

SY= 0 23 No 5 ii9 = 1 37183 108 163 142INoz = n9 sd = 0 37

SY = 027

N Vl

126

TABLE 152

Measured and calculated pile point resistance

Pile Calculated Measured Measured No qcp P for

s=10 mm P for s=20 mm

~ 10 mm ~ 20 mm

- (MPa) (MPa) (MPa) - -

1 38 045 092 84 41 2 39 09 14 43 28

3 40 05 08 80 50 4 33 07 10 47 33 5 35 06 11 58 30 6 35 08 12 44 29 7 35 05 09 70 39 8 30 08 12 38 25 9 39 10 18 39 22

10 35 08 14 44 25 11 49 15 24 33 20 12 40 16 22 25 18 13 46 1 7 2 4 27 19 14 30 075 13 40 23 15 32 06 095 53 34 16 49 075 115 65 43 17 32 - - - -18 42 095 1 75 44 24 19 39 09 160 4 3 23 20 3 0 07 12 43 25

average= 484 291

sd 163 088 sv 034 030

Tab 153 Results of calculation for piles No 1-24

Pile No

Length (m)

Overburden pressure 0 vs

0hs (kPa)

0ve (kPa)

0 nc (kPa)

- -ov=o1 (kPa)

- -OV=03 ( kPa)

00 (kPa)

p(a il ( kPa)

s (a 1) (mm)

A2 ( 1 )

E t

(kPa)

Md ( 1 )

K (1)

E I

t (kPa)

( kPa) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

l 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

13 12 14 13 6 6 6 6 9 95 9

10 95

11 5 135 165 66 675 72 65 99 75

180 137

l 33 133 123 116

70 70 70 70

104 102 95

102 95 94

106 139 95

101 106 97

180 137 221 215

53 53 49 46 28 28 28 28 42 41 38 41 38 38 42 56 38 40 42 39 72 55 88 86

202 202 216 202 1114 104 104 104 146 153 146 160 153 181 209 251 120 128 134 123 238 180 305 277

202 202 216 202 104 104 104 104 146 153 146 160 153 181 209 251 120 128 134 123 238 180 305 277

168 Hi8 170 159 87 87 87 87

125 128 121 131 124 138 158 195 108 115 120 110 209 159 263 246

128 128 133 124 66 66 66 66 94 97 92

101 96

110 126 154 79 84 88 81

155 118 197 182

141 141 145 136

73 73 73 73

104 107 104 111 105 119 137 117 89 94 99 91

173 132 219 203

950 975

1000 825 875 875 875 750 975 875

1225 1000 1150 750 800

1225 800

1050 975 750

2000 2000 625

1500

218 139 255 190 16 1 146 210 12 7 10 1 11 7 84 73 69

104 167 210 124 103 10 1 109 142 120 76

153

0802 0802 0822 0820 0798 0798 0798 0798 0791 0798 0800 0811 0814 0837 0837 0830 0769 0 768 0771 0 775 0 780 0 781 0 788 o 779

35296 81603 43312 65222 44019 67515 4609 91313 78186 60572

118115 15129 5 184075 95577 67017 81607 33252 67554 85294 75994 78816 74857 55101 54862

075 075 0 77 075 084 084 084 081 079 078 084 080 083 076 076 078 0 77 081 079 076 082 087 064 0 74

278 643 337 512 542 832 567

1085 766 572

1216 1417 1832

796 520 709 353 735 878 781 630 726 302 366

26472 61202 33350 48917 36976 56713 38656 73964 61767 47246 99217

121036 152782

72639 51932 63653 25604 54719 67382 57755 64629 65126 35265 40598

a=282l a =l781 y=axs S=0621 B=0 844

V=0 057 V=0 128 _ Iv -J

~

N co

Tab l53 Results of calculation for piles No 7-24

Pile No

17

1 2 3 4 5 6 7 8 9

70 11 72 13 74 75 16 17 78 79 20 27 22 23 24

Ground water

18

-20 m b s

-28 m -335 m -330 m -3 15 m dry dry -53 m -85 m

E t (kPa)

19

33653 64979 35364 45664 47969 54583 37574 63072 74548 57753

71 2618 123531 150297

71239 48619 59204 39744 77208 77863 62049 90407 95844 57762 62937

vxEt=E Md (kPa)

20

25240 48689 27230 34248 35254 45849 31562 51040 58893 45047 94599 98825

724747 54142 36950 46179 30603 57678 61572 47157 47734 83384 36968 46569

a=898 S=l 27 =0314

K (l )

21

265 511 275 358 517 672 463 749 730 546

1160 1157 7496

593 377 514 422 775 802 638 723 929 377 420

a=l422 S=l 05 =0187

E=E = t1 3

g-gcp (kPa)

22

51046 52799 54566 42492 45870 45870 45870 37547 52799 45870 77039 54566 65438 52799 40826 71039 40926 58739 52799 37541 82549 82549 40826 59945

Calculated s

(mm)

23

708 128 72 7 15 3 724 146 144 17 3 71 3 11 5 11 2 732 13 2 707 1 5 1 13 7 93

102 118 137 728 12 l 69

11 9

s__caL n=smeos

() 24

050 092 050 087 0 77 7 00 069 l36 l 12 098 133 l81 l97 103 090 065 0 75 099 117 126 090 101 097 078

ri=l00 sd=035 sv=035

K = l50gcp

25

570 585 600 495 525 525 525 450 585 525 735 600 690 450 480 735 480 630 585 450 825 825 1180 645

E l

(kPa)

26

67684 69465 72250 57726 44856 44856 44856 38448 59659 54306 74956 63214 70704 49089 56783 79502 45283 61081 58207 42927

708572 94785 71033 91898

E = t E middotA2

l

(kPa)

27

54283 5571 l 59389 47336 35795 35795 35795 30682 47790 43336 59964 51266 57553 47088 47024 65987 34823 46970 44877 33269 84639 74027 55974 71589

Calculated s

(mm)

28

l O l 12 l 11 7 737 15 9 18 7 185 21 1 12 6 12 2 133 14 l 150 13 7 13 l 14 7 709 12 7 738 755 12 4 735 50

100

- -

Tab l53 Results of calculation for piles No l-24

Pile

29

l 2 3 4 5 6 7 8 9

10 ll 12 13 14 15 76 17 78 19 20 21 22 23 24

sea l n= middotshy

smeas

28 TT

30

0 46 087 046 0 72 099 l 28 088 l 66 l 25 l 04 l 58 l 93 2 17 l 32 078 0 70 088 l 23 l 37 l42 087 l l 3 066 065

n=l 10 sd=0 44 sv=040

s seal for p n=s=lOrnn ac cording to s = 70mm

(mm)

37 32

5 l 0 51 ll 8 l18 64 064

13 0 l30 85 0 85

13 3 l 33 83 0 83

184 l84 ll6 l l 6 105 l05 137 l 37 21 3 2 12 19 4 l94 107 l06 l l 3 l l 3 84 084

92 092 l 0 9 l09 128 l28 83 083

l 0 3 l03 88 088 79 0 79

n=1 73 sd=025 sv=027

s for p according to s = 20mm

(mm)

33

10 4 184 102 18 6 15 6 200 14 9 276 209 18 4 219 292 274 185 17 9 12 9 -

169 194 219 172 200 143 15 0

seal n=s=20rnn

34

052 092 051 093 078 l00 075 l 38 l 05 092 l l 0 l46 l 37 093 090 065

-085 097 l1 0 086 l00 072 075

n=093 sd=025 sv=0 27

s for p according to s = 30rnn

(mm)

35

142 223 14 l 22 3 198 249 142 34 5 290 249 274 345 33 l 243 22 6 168 -

24 7 26 6 293 24 3 279 187 213

seal n=s=30rnn

36

047 0 74 047 0 74 066 083 047 l 15 0 97 083 091 l 15 l10 0 81 075 056 -

082 089 098 081 093 062 0 71

n=o80 sd=020 _ sv=0 25 N

IO

APPENDIXES

APPENDIX 1 1 1

Pi le No 1 Length 13 m D 10 m

Areas of influence

-

qe

(MPa)

1 fp

___9c_ f

(MPR) zyen

(MPf) qcp (MPa)

Soil type

22 20 18 16 14 1 2

l 2 (m)

10

1 0 08 06

16 15 16

026 027 026

42 41 42 Sand

04 14 U28 39 02 14 028 39 41

02 16 0 26 42 04 16 026 42 06 16 026 42 08 14 028 39 Sand 1 0 13 030 39 12 15 027 4 1 38 14 13 030 39 16 12 032 38 18 12 032 38

40 20 10 036 36 22 10 036 36 24 9 U39 35 2 6 8 043 34 28 10 036 36 30 10 036 36 3 2 10 036 36 34 10 0 36 36 36 11 0 34 37 38 11 034 37

l 1 (m)

40

42 44

11 0 34 37 15 1

46 48 50 52 54 56 58 60 62 64 66 68 70 7 2 74 76 78 8 0

APPENDIX 112

Pile No 2

to little depth of sounding

q~ = middle values for 11 = 2 Op

q~ = 145 MAa (Francke Garbrecht 1977 Tab 2 p 50) (Fi g No 2)

for sand

qcp = 0275middot145 = 40 MPa q~p =V ~~s) middot 40 = 097middot40 = 39 MPa

Pile No 4

q~ = 120 MPa sand (Fig No 4)

q = 0 315middot12 = 3 8 MPa q bull 38 = 086middot38 = 33 MPa=V Jmiddot54

1

cp middot bull cp

Pile No 12

qg = 155 MPa sand (Fig No 13)

qcp = 026middot155 = 4 03 MPa

Pile No 13

q~ = 200 MPa sand (Fig No 14)

q = 0 23middot20 = 46 MPacp

APPENDIX 113

PileNo3 Length 14 m D 15 m

Areas of influence

-

qe

(MPa)

1 Tp

----9cf

(t-1Pf) r~

(MPf) qcp (MPa)

Soil type

22 2D 18 16 17 025 43 14 17 II II

L 2 17 II II

12 (m)

16 10 08 06

17 17 17

o

II

II

II

II

Sand 04 17 II II

02 19 024 46 b9

02 19 024 46 04 17 025 43 06 15 027 41 08 13 030 48 1 0 12 032 38 12 11 033 36 14 13 0 30 39 16 14 028 39 18 12 032 38 40 20 16 026 42 2 2 16 026 42 24 11 033 36 26 11 033 36

60 28 30

10 10

036 036

36 36

Sand

32 10 036 36 34 12 032 3 8 3 6 12 032 38 38 12 032 38

1 1 (m)

40

4 2 4 4

13

14 16

030

028 026

39

39 42

46 13 030 39 48 12 032 38 50 14 028 39 52 10 036 36 54 13 030 39 56 14 028 39 58 15 027 41 60 15 027 ~-1 236 62 64 66 68 70 72 74 76 7 8 80

APPENDIX 114

Pi l e No 5 Length 6 0m D 11 m Dp 11 m

Area s of i nfluence

-

qc

(MPa)

1 Tp

-3Lf

( MPf) l ~

(MP~) qcp (MPa)

Soil type

2 2 2 0 18 1 6 14 1 2 155 U i1 33

l 2 (m)

1 2 10 08 06

15 14 12

022 023 0 27

3 3 32 32

Fine sand

+ silt

04 125 026 33 02 16 0 21 34 39

02 16 021 34 04 13 025 33 06 08 10

15 5 17 20

022 0 20 018

34 34 36

35 Fi ne sand

1 2 20 0 18 36 14 20 018 36 + s ilt 16 20 0 18 36 18 165 020 32 20 165 0 20 32 22 17 0 20 34 24 26 2 8 30 32 3 36 38 4 0

19 21 5 21 5 21 5 20 19 5 19 5 20 215

01 9 ---

018 018 0 18 0 18 -

3 6 40 40 40 36 35 3 5 36 4 0

l 1 (m) 4 2

44 20 19

018 01 9

36 3 6 157

46 48 50 5 2 54 56 58 6 0 62 64 66 68 70 7 2 74 76 7 8 8 0

APPENDIX 1 15

Pi le No 6 Lengt h6 0 m D 11 m

Areas of qc 1 __9_c_ qcp Soil typei nfluence fp f 1 yen (MPa) (MPf ) (MPf) (MPa)

-2 2 20 18 16 t 4---0 14 75 038 29 L2 20 018 36 Fi ne sand

1ti 10 30 40 + s i lt12 08 19 0 19 36(m) 06 17 020 34 04 14 023 32 02 9 034 31 56

02 6 043 26 04 12 026 3 1 06 17 020 34 08 11 028 3 1 1 0 14 023 32 35 1 2 17 020 34 Fi ne sand14 19 019 35 16 20 018 36 + silt18 18 0 19 34 20 14 023 32

46 22 12 026 31 24 12 026 31 26 15 022 33 28 18 019 34 30 20 018 36 3 20 0 18 36 34 20 018 36 3G 20 018 36 38 20 018 36 4 0 20 018 36

l 1 42 22 40

(m) 44 22 40 46 L2 4 0 158 48 50 52 54 56 q =V ~ - 3 b =0 99middot35 = 35 MPp cp 53 58 6 0 62 64 66 68 70 72 74 76 78 80

APPENDIX 116

Pi leNo7 Length 60 m 0 15 m

Areas of influence

-

qe

(MPa)

1 Tp ~

(MPg) r~

(MPf) qcp (MPa)

Soil type

22 20 18 16 9 U33 30 14 10 031 31 12 135 024 32

l 2 (m)

16 10 08 06 04 02

13 12 6

10 175

025 026 043 0 31 020

33 31 26 3 1 35 50

Fine sand

+ silt

02 04 06

17 10 115

0 20 0 31 027

34 31 3 1

08 10

145 185

023 019

33 35 3 5

1 2 14

20 19

018 0 19

36 36 Fine sand

l 1 (m)

60

16 18 20 22 24 26 28 30 3 2 34 36 38 40

42 44 46 48 50 52 54 56 58 6 0

185 125 125 165 17 19 21 215 205 20 21 20 20

24 22 20 215 22 22 21 19 18 22

0 19 026 0 26 020 020 019 --

018 018 -

018 01 8 --

018 ----

0 19 0 19

35 33 33 33 34 36 40 40 37 36 40 36 36

40 40 36 40 40 40 40 36 34 40 219

+ silt

62 64 66 68 70 72 74 76 78 80

APPENDIX 117

Pile No 8 Length60 m D 15 m Dp 2 1 m

Areas of influence

-

qe

(MPa)

1 r +

(MPg) r~

(MPf) qcp (MPa)

Soil type

22 18 019 34 20 16 021 34 18 125 026 3 3 16 115 027 31 14 11 028 3 1 12 11 028 3 1

l 2 (m)

10 08 06

105 11 145

D29 028 023

30 31 33

Fine sand

+ silt

04 18 0 19 34 02 18 019 34 71

02 15 022 33 04 11 0 28 31 06 13 0 25 33 08 20 0 18 36 10 15 022 33 12 13 025 33 14 175 020 35 16 18 20 22

20 21 20 15

018 -

018 0 22

36 40 36 33

35 Fine sand

+ s i lt

24 26 28 30 3 =

13 16 175 19 20 20

025 021 020 0 18 018 018

33 34 3 5 34 36 36

36 38 4 0

20 20 21

018 0 18 -

36 36 40

11 (m)

4 2 4 4 4 6 48 50 5 2 5 4 56 5 8 60 6 2 6 4

20 20 21 22 21 20 19 175 19 20 25 28

018 0 18 ---

01 8 01 9 0 20 0 19 018

36 36 40 40 40 36 36 35 36 36 40 4 0 23 0

6 6 68 70 72 74 76 78

qcp 1f5=v 2T middot35 = b85 middot35 = 30 MPa

80

APPENDIX 118

Pi le No 9 Le ngth 90 m D 11 m m

Areas of 1Qe -9c qcp Soil typeinfluence Tp f ryen (MPa) (MPg) (MPf) (MPa)

-

2 2 2 0 18 16 14 lc 11 034 37

12 10 10 036 36 12 08 9 039 35 Medium(m) 06 10 036 36 sand04 10 036 36

02 11 034 37 43

02 12 032 38 04 12 0 32 38 06 12 0 32 38 08 13 030 39 10 13 030 39 12 13 030 39 14 14 028 39 16 14 028 39

44 18 14 028 39 20 14 028 39 39 Med ium 22 15 027 4 1 sand 24 16 026 4 2 26 17 025 43 28 13 0 30 39 3 0 9 039 35 32 13 030 39 34 16 026 42 36 17 025 43 38 17 025 43 40 19 024 4 6

11 42 17 025 43

(m) 44 15 027 41 17 7 46 48 50 52 54 56 58 60 6 2 64 66 68 7 0 7 2 74 76 78 80

APPENDIX 119

Pi 1 e No 10 Length 95m D 11 m m

Areas of influence

-

qe

(MPa)

1 fp

-9c f

(t-1Pf) [~

(MPf)

qcp

(MPa)

Soil type

22 20 1 8 16 14 L 2 13 Uti 3J

l 2 (m) 12

10 08 06 04

18 18 28 19

0 19 019 0 19 019

34 34 34 34

Fine

sand

02 21 40 42

02 20 4 0 04 17 020 34 06 21 40 0 8 10

23 22

40 40 Fine

1 2 14 16 18

21 20 16 15

0 21 022

4 0 4 0 34 33

sand

44

20 2 2 24 26 28 30 32 34 36 38 40

14 14 13 11 11 14 17 14 12 13 12

023 023 025 0 28 028 023 020 023 027 025 027

32 32 33 31 31 32 34 3 2 32 3 3 32

l 1 (m) 42

44 12 13

0 27 025

32 33 15 2

46 48 50 5 2 5 4 56 5 8 6 0 6 2 6 4 66 6 8 70 72 74 76 78 80

APPENDIX 11 10

Pi 1 e No 11 Lengt h 9 0m D 11 m m

Area s of influence

-

Qe

(MPa)

1 fp

__k_ f

(MP~) ryen

(MPf) qcp (MPa)

Soi l type

22 20 18 16 14 12 lb 55

12 (m)

1 0 08 06 04

23 19 20 21

024 023

55 46 46 55

Medium

sand

02 22 55 62

0 2 04

24 25

55 55

06 08

27 28

55 55

10 12 14

28 28 28

55 55 55 49

16 26 55

44

18 20 22 24 26 28 30 3 34 36 38 40

24 19 18 17 22 21 17 11 13 12 11 9

024 024 025

025 0 34 030 032 034 039

55 46 43 43 55 55 4 3 37 39 38 3 7 35

1 1 (m) 42

Ll Ll

12 16

032 0 26

38 4 2 209

46 48 50 5 2 54 56 58 60 62 64 66 68 70 72 74 76 78 80

APPENDIX 141

0 2 3 4 p [MPa)

PILES WITH 40 ENLARGED BASES

80

120

160 C----0

200 IN4014 s (1977)

[mm]

P s calculateds P p(s)(mm) (MPa)(mmMPa)(MPa) ()

10 035 286 046 20 065 308 080 30 090 333 104

150 24 625 214 200 229

ai = 2605 (mmMPa) b1 = 0243 1MPa V 1000 bi = 1b = 411 MPa

_ 411 MP Vi - 24 a

() assumed

average Dp = 18 m

qcp = 24 MPa ai = 184 (mmMPa) (28-4middot24)

Vi = 1 2 (3-18)

qcpmiddotvi = 29 MPa

40

80

120

160

200 s

[mm]

DIN 4014 Part 2 ( 1977)

0 1 2 3 4 5 p [MPal

PILES WITHOUT ENLARGED BASES

C----0

DIN 4014 ( 1977

s calculated s p -p- p(s)

(mm) (MPa)mmMPa)(MPa) ()

10 05 20 062 20 08 25 113 30 11 27 3 155

150 34 441 385 200 424

ai = 2085 (mmMPa) bi= 0 157 1MPa V = 0970

bi= 1s = 637 MPa

Vi 187=3f =

() assumed

average Dp = 12 m

qcp = 34 MPa a1 = 144 (mmMPa)

Vi = 18

qcpmiddotvi = 61 MPa

Range qc = 10-15 MPa

(28-4bull34)

(3-12)

1 1 q = r -r- = 036 for qc = 10 MPaCp p Ip+= 027 for qc = 15 MPa

qcp = 36-405 MPa P

APPENDIX 142

Touma F and Reese L (1974)

Soil parameters pile parameters and base resistance see fig bullbullbullbull

TAB

Measured load settlement curves

Settlement s

mm

10 20 30 40 50 60 80

100 120

a 1 (mmMPa) bi(MPa) V

N3u

q =04 -N30 (cMPa) ()

1 qCp=--rpbullqC

Pile No 21 (US 59) 22 (HH) 23 (G1) 24 (BB) Notep Sp p S p p S p f Sp MPa mmMPa MPa mmMPa MPa mmMPa Mla mmMPa

131 76 169 59 075 133 100 100 269 74 325 62 131 153 1 94 103 381 79 456 66 165 182 273 11 0 488 82 581 69 1 90 21 1 349 115 581 86 694 72 2 15 233 424 118 675 89 800 75 229 262 813 98 245 327 884 113 925 130

64 56 100 95 U049 0032 0276 0048 0944 0998 0996 0981

80 gt100 30 60 32 gt 40 12 24 ()

Bergdahl (1982)

gt5 5 gt55 32 4 3

(0 18middot32) (018middot40) (0265middot12) (018middot24)

CONTACT PRESSURE p [ MPa]

0 2 4 6 8 100 N-------r---------------(us 59) ( HH) ( BBi

E E SQ-------lt+-----+--------------lt

VI

1shyz UJ

~ 100 1---------i----+----+----+------l------I -J I shyI shyUJ V)

so~----~--~-- ~--~

APPENDIX 143

us 59 fYJo 0 50 00

ff-t r-=-~c~=~-r~c_---_---l-~e-J-C~ 0 ------

CLAY

FINE SANO

J lD- 760 mm

f5m~--~--~

Pile US 59 and results from penetration test

HH IV_l() so 100 r=-=-==-==-r-~--=-=- 0 0 II 15- flf ~ II~ Ibull If t f

CLAY SAND

Sm

)

= -middotl lo - GtOmm

~ JI

SILTY SANO tOm

Pile HH and results from penetration t est

APPENDIX 14 4

61 NJO 50 --------00

11 1 =f J - 1 -- 0

CLAYSILT

E ~ Sm ltrj

SILTY SAND

q I lDmiddot 910 mrn tom

I) t bull

Pile G1 and results from penetration test

88

0 50 too ~1-e I q 111bull - Q

CLAY

SIL TY SAND 5m

]

l lDmiddot760mrn

Om

Pile BB and results from penetration test

APPENDIX 145

Klosinski B (1977)

Loading tests 50 bored piles 09-125 m diameter average Op= 11 m On t he sett l ement of rigid pla te the settlement of t he pi le base is given by

PmiddotOSp = T-K b

where Mb - equivalent deformability modu lus

1) Sand and sandy gravel of medium density

Mb = 25-50 MPa

According to Bergdahl (1979) medium sand is between

q(l) 5 MPa (Io=035)c2)

ql = 10 MPa (Io=065)C

from fig 117 rp1 = 055 for qc = 5 MPa 1Tp = 036 for qc = 10 MPa

q(l)= 0 55middot5 = 2 75 MPacp bull

q(2= 0 36middot10 = 360 MPacp

allowable p~ 1)= ~p = yen = 092 MPa and p~2) = ~ = 120 MPa

settlement of the pi l e base

5(1)= o 92 middot 1bull1 = O 0135 m = 13 5 mm p 325 middot middot

5( 2)= 1bull2bull1middot 1 = O 0088 m = 8 8 m p 350 bull bull

1) _ s _ 135 _ 14 7 (mm) a(2) _ 88 _ a 1 - p - o---92 - bull NPa bull 1 - T-7 - 733 (Wa)

2) Loose sand lo= 030-040

Mb = 12- 25 MPa

q~l) = 44 MPa q~2)= 58 MPa

1Tp = 058 and 052

q(3) = 0 58middot4 4 = 2 55 MPa middot q( 4) = 0 52middot5 8 = 3 02 MPa cp bull middot bull cp bull middot middot

allowable p~ 3)= 4i = 085 MPa p~4)= yenl = 101 MPa

s(3)_ 085-11 = 26 mmmiddot s(4)_ 101middot11 = 148 mm p - 312 p - 3 25

STATENS GEOTEKNISKA INSTITUT Swedish Geotechnical Institute S-581 01 Linkoping Tel 01311 51 00

Serien Rapport ersatter vara tidigare serier Proceedings (27 nr) Sartryck och Preliminara rapporter (60 nr) samt Meddelanden (10 nr)

The series Report supersedes the previous series Proceedings (27 Nos) Reprints and Preliminary Reports (60 Nos) and Meddelanden (10 Nos)

RAPPORT REPORT Pris kr

No Ar (Swcrs)

1 Grundvattensankning till foljd av 1977 50shytunnelsprangning P Ahlberg T Lundgren

2 Pahangskrafter pa langa betongpalar 1977 50shyL Bjerin

3 Methods for reducing undrained 1977 30shyshear strength of soft clay K V Helenelund

4 Basic behaviour of Scandinavian soft 1977 40shyclays R Larsson

5 Snabba odometerforsok 1978 25 shyR Karlsson L Viberg

6 Skredriskbedomningar med hjalp av 1978 40shyelektromagnetisk faltstyrkematning - provning av ny metod J Ingands

7 Forebyggande av sattningar i 1979 40shyledningsgravar - en forstudie U Bergdahl R Fogelstrom K - G Larsson P Liljekvist

8 Grundlaggningskostnadernas fordelning 1979 25 shyB Carlsson

9 Horisontalarmerade fyllningar pa los 1981 50 shyjord J Belfrage

RAPPORTREPORT

No

10 Tuveskredet 1977-11-30 Inlagg om skredets orsaker

11a Tuveskredet geoteknik

l1b Tuveskredet geologi

11 c Tuveskredet hydrogeologi

12 Drained behaviour of Swedish clays

R Larsson

13 Long term consolidation beneath the test fills at Vasby Sweden YCE Chang

14 Bentonittatning mot lakvatten T Lundgren L Karlqvist U Qvarfort

15 Kartering och klassificering av leromradens stabilitetsforutshysattningar L Viberg

16 Geotekniska faltundersokningar Metoder - Erfarenheter - FoU-behov E Ottosson (red)

17 Symposium on Slopes on Soft Clays

18 The Landslide at Tuve November 30 1 977 R Larsson M Jansson

19 Slantstabilitetsberakningar i lera Skall man anvanda total spanningsanalys effektivspanningsanalys eller kombinerad analys R Larsson

20 Portrycksvariationer i leror i Gateshyborgsregionen J Berntson

21 Tekniska egenskaper hos restproshydukter fran kolforbranning shyen laboratoriestudie B Moller G Nilson

Ar

1981

1981

1981

1981

1981

1982

1982

1982

1983

1982

1983

1983

1983

Pris kr (Swcrs)

50shy

50shy

40shy

50shy

100shy

60shy

80shy

60shy

190shy

75shy

60shy

150shy

65shy

RAPPORTREPORT

No Ar Pri s kr (Sw crs)

22 Bestamning av jordegenskaper med sondering - en litteraturstudie U Bergdahl U Eriksson

1983 75 shy

23 Geobildtolkn ing L Vi berg

av grova moraner 1984 70 -

24 Radon i jord -Exhal ation- vatten kvot -Arstidsvariationer - Permeabilitet A Lindmar k B Rosen

1984 75 shy

25 Geoteknisk terrangklassificering for fysisk planering L Viber g

1984 120shy

26 Large diameter bored piles in nonshycohesive soils Determination of the bearing capacity and settlement from results of static penetration tests (CPT) and standard penetration test (SPT) K Gwizdala

1984 85shy

1 3

Taking into account the above results the Soviet and

the Norwegi an methods are presented below

The Soviet method JG TrofimenkgtV 1974

1 qP bullA + qsbullA (114a)Qu = Qpu+Qsu fp C p f C s s

where

11 40 DP 12 1 0 D p h+l1 qp r dhqcC l1+l2 h-12

0ct-0ceqs C u middoth s

f(qp) -+ see Fig 1 bull 1 2 fp C

f f ( qcs) -+ see Fig 1 1 3 s

The Norwegian methon K Senneset 1974

1 p A 1 s bullA ( 1 bull 1 bull 4b)-f-middotqcmiddot p + -f-q s p S C

where

11 30 D p

12 50 D p h+l11 f dhqP l1+l 2 qc

C h-12 h s 1

= f dhqc qch 0

f 20 p

f = f (q~ ) + see Fig 114 s

Note a ) The total skin friction -f-middotq~ is assumed to be

no less than 10 kPa even~ith a very little

cone penetrometer resistance

b) The poin t resistance -f-middotq~ is assumed to be

maximum 10 MPa even iJl case of very dense sand

14

It must be underlined that the best correlation for

the pile point is obtained with the Soviet method

101 for 94 driven piles in non-cohesive soil

- 172 114 for 46 bored piles in non-cohesive soil

Trofimenkov 19731974 showed the results of comparison

of the ultimate loads determined by formula (114a)

Q~ and by pile load tests Q~ for 153 driven friction

piles at the 57 various sites see Fig 115

In Germany a lot of investigations were made before

establishing the DIN 4014 part 2 (1977) on large diameter

piles

In Table 113 and 114 the results from these investigashy

tions are generalized

The data in the tables were obtained from 35 test loadings

(4 of which were published by Franke 1973 The diameter

of the piles was from 08 to 25 m the length from 5 m

to 34 m and the cone penetrometer resistance varied from

10 MPa to 15 MPa

Bustamente and Gianeselli 1982 proposed a prediction

of the pile bearing capacity by means of the static

penetrometer Their proposal was based on the intershy

pretation of a series of 197 full scale static loading

tests In this paper the results from tests of 55 bored

piles are chosen The diameter of the piles varies from

042 m to 150 m and the length from 6 m to 44 m The

equivalent cone resistance was determined as showed in

Fig 116 The authors have noticed that the point

resistance factor f depends on the nature of the soil p and its compactness but also on the different pile placeshy

ment techniques (see Tab 115)

Piles of category group I

- Plain bored piles - Cased bored piles

- Mud bored piles - Hollow auger bored piles

- Type I micropiles - Piers (grouted under low - Barrettespressure)

15

In Tab 116 values of the shaft resistance factor

fs are given

Category IA

- Plain bored piles - Mud bored piles

- Hollow auger bored piles - Cast screwed piles

- Type I micropiles - Piers

- Barrettes

Category IB

- Cased bored piles - Driven cast piles (concrete or metal shaft)

Category IIA

- Driven precast piles - Prestressed tubular piles

- Jacked concrete piles

Category IIB

- Driven metal piles - Jacked metal piles

It can be noted that the values in Tab 116 are in

genera l of the same range for the driven and the

bored piles

According to the Polish Specification 1979 the point

and shaft resistance factor are given by

1-f- = kmiddota

p p

where

ap 035 for sand

k coefficent of unhomogeneity k qcp min

qcp

= 0065 for sandfrac12

1

16

Similar results can be observed in Fig 116a and

Fig 116b It was showed by Kerisel (1965) and Franke

(1973) that the harder soil the more loosening at

excavation and thus relatively smaller bearing capacity

Taking into account the Franke diagrams we will have

for D = 125mand settlements= 2 cm p

Cone resistance qc (MPa) 1 5 50 1 0 15 22

qc p for s=2 cm 3 6 8 12 14

(see Fia 1 1 6b )

taking safety factor for pile base F = 3 the point resis~ance

33-10 ~-05

380375 lo 212 bull lo 2114 bull

factors- shy are p

The above anal ysis shows that it is possible to determine

ultimate point and shaft resistance of bored piles from

static cone sounding But it is very important and must

be taken into account type of pile kind of soil and

degree of compaction

Bel ow calculation method for large diameter bored piles

based on the static cone penetrometer resistance (CPT)

is proposed Equation (117) can be used directly for

the base diameter D lt 15 m For larger diameters p shyD gt 15 m the values should be multiplied by the

p ff t ITscoe icen Y~ as pi

( 1 1 5 )

where

qcp = according to equation (117)

D = diameter of the pile base D gt 15 mpi pi

17

This value q~p should be put into equation 116

The value qc s in equation 118 is independent on the

pile diameter

Proposed calculation method

(116)

where)

1 1 40 ~ 11 3 for piles wit h a nd enlarged bases12 10 12 = ~

h+h

q (h) dh (117)qcp l1+l2 f -f- Ch-li p

h 1 f 1

qcs = o -f- qc (h) dh (118)h s

1 -f- = f(q kind of soil ) -+- see Fig 11 7 and Tab 1 1 7

C p

f (q kind of soil ) -+- see Fig 1 1 8 and Tab 1 1 8 fs C

Note

a) the point resistance q for qc gt 20 MPa is assumed cp to be maximum as

- Gravel 70 MPa - Coarse sand medium sand 55 MPa - Fine sand s il ty sand 40 MPa

b ) The shaft resistance qcs for qc gt 20 MPa is assumed to

be maximum as

- Gravel 110 kPa - Coarse sand medium sand 90 kPa - Fine sand s ilty sand 70 kPa

These proposed values are compared with results by

Bustamente (1 982) and the Polish Specification (1978)

Fig 11 9 and F i g 1110 A similar comparison for DIN

4014 1 977 is shown in Fig 1111 and Fig 1112

) In this paper was used the above values 1 1 and l z But it can be used in practice 11 =30 D and h =2Dp respectively The results shall be very simi l ar to the above onPs

18

The proposed method has been examined with field test

results This is shown in Fig 1113 to Fig 1128

and Appendix 1 11 to 1110 and Tab 119

The comparison shows that the value of q in equationcp (117) corresponds to the settlement -10 of the base

diameter (s=010 DP) see Fig 1113 and Tab 119

(average sDp=88 and standard deviation sd=3)

Later in this paper the allowable load and dependence of

the load versus settlement will be determined

12 Determination of bearing capacity of the large

diameter bored piles from results of the Standard

Penetration Tests (SPT)

There are little published on pile tests coupled with

results from Standard Penetration Test (SPT) Among the

authors who have published material in the subject are

- Meyerhof 1956 1976

- Senneset 1974 (Norwegian method)

- Rodin Corbett Sherwood Thorburn 1974 (English method)

- Polish Specification 1975

- Weltman Healy 197 8

- Reese 1978

- Japanese Society 1981

- Decourt 1978 1982

The Norwegian method is valid o nly for concrete andor

wooden piles the English method only for gravel It is

very important to underline that the Norwegian a nd the

English methods use of the SPT resul ts intermediate by

the static cone penetrometer resistance (q ) as well C

Below methods are presented that are using the results of

SPT directly Meyerhof s method in total can also be used

on driven piles in non-cohesive soil Although we could

have found some proposes for bored piles Eqs (121 and

122) see Fig 121 and Fig 1 22 as well

19

Ultimate point resistance (psf)

12 N 3 omiddotH lt 120 N 30

(kPa) (1 2 1)Psf D

where

N30 the average standard penetration resistance

in blows per 03 m

H depth in bearing stratum

Ultimate skin friction tu

for bored piles tu N~ o (kPa) (1 22a)

for driven pil estu 2N30 (kPa) (1 2 2b)

where

N30 the average standard penetration resistance

in blows per 03 m within embedded length

of pile

Weltman and Healy (1978) taking into account Meherhofs

proposition for driven piles have introduced two coefshy

ficents for bored piles in gravels (glacial soil) Equ

123 and Fig 1 23

t = a 2 N30 (kPa ) (1 2 3)U 1

where

ai a 1 for impermeable gravels see Fig 123a

ai a 2 for permeable gravels see Fig 123b

The Polish Specification ( Specification for Design and

Construction of Large Diameter Bored Piles in Bridges

1975 Ministry of Transport) gives the ultimat e point

resistance in dependence of N30 base diameter and depth

see Tab 12 1 The Tab 121 contains values for coarse

and medium sand For other non-cohesive soils the following

coefficients are proposed

p f = S bull p f (medium sand) ( 1 2 4)S 1 S

20

where

S1 1 20 for grave lSi

f 132 080 for fine sand

13 3 070 for silty sand13i

In Fig 124 values of psf are shown for h = 10 m DP

06 m DP= 15 m and h = 20 m DP= 06 m DP 1 5 m

respectively

A few of the instrumented piles were tested and analyzed

by Wright and Reese (1979) The ultimate point and shaft

resistance in the fine and silty sand as a function of

blow count from SPT is shown in Fig 125 Results from

two additional tests reported by Koizumi (1971) are also

introduced in the figure The ultimate point resistance

is assumed to exist at a settlement equal to 5 of the

base diameter

Methods of prediction of the bearing capacity of piles

based exclusively on N30 values were presented by Decourt

1982 Below a proposition for high capacity piles excavated

and cast under bentoni te is presented

The ultimate skin friction is determined by the expression

(see Fig 126)

t = 33 N30 + 1 0 (kPa) ( 1 bull 2 5 ) u

where

N30 average value of N30 along the shaft

- for N30 lt 3 must be taken as = 3N30 - for N3o gt 5 0 must be taken as NJo= 50

The allowable point resistance can be obtained in a n

expedite way as

Psa = 33 N30 (kPa) (1 2 6)

where

N30 = average of Nat point level one metre above

and one metre below

Psa allowable point resistance

21

Decourt proposed a safety factor for the point of F = p

40 Therefore the ultimate point resistance can be

determined by the expression

(kPa) (1 2 7)

In Fig 12 7 and Fig 1 28 the above values for base

and skin friction resistance are compared respectively

Taking into account the type of soil thereis a good

correlation for ultimate point resistance The result for

ultimate skin friction is scattered but only apparently

The values for large diameter bored piles are between

the line 1a and 1b in Fig 128 Large diameter piles

have a high ultimate skin friction in relation to driven

piles (see points for bored piles in Fig 122 and DIN

4014 Part 2 1977 as well) The high values for piles

excavated and cast under bentonite have had a strong base

on the load tests (Decourt 1978 1982 and Wright and

Reese 1979)

Below the proposals are given for determination of the

values of the ultimate point resistance and the ultimate

skin friction Eqs 128 to 1214 and Fig129 1210

The ultimate point resistance

- gravel psf = 140 N30 (kPa) ( 1 bull 2 8)

for N~ 0 gt 50 blows3O cm Psf 7 MPa

- coarse sand and medium sand

(kPa) ( 1 2 9)

for N30 gt 50 blows3O cm Psf 55 MPa

- fine sand and silty sand

psf = 80 Nio (kPa ) (1210)

for N30 gt 50 blows3O cm p f = 40 MPa 5

where N3 o the average of N value near the point level as

22

h+l1

f N3o(h)dh ( 1 2 11 ) h-12

3DP see Fig 1 1 1 D

p

The ultimate skin friction for coarse sand and medium sand

tu = 1 8 N 3 o (kPa) (1212)

t (kPa) (excavated and cast (1213)u under bentonite)

where

N30= the average value of N along the shaft as h

N -

3 o = h1 f N 3 o ( h) dh ( 1 bull 2 bull 1 4 ) 0

The ultimate skin friction for N30 gt 50 blows30 cm is

assumed to be maximum as tu = 90 kPa and t = 150 kPa u

13 Allowable load of large diameter bored piles

The allowable load Qa of large diameter piles has been

expressed as

OuQa ( 1 3 1)Ft

Qa Q(s)=Qb(s) + Os(s) ( 1 3 2)

Opu + Osu (1 3 3)Qa Fp Fs

Qr lt mmiddotQf ( 1 bull 3 4)-

= universal safety factor

individual safety factor for ultimate resistance of the pile point

individual safety factor for ultimate resistance of the pile shaft

= load according to the allowable settlement

calculated load

m coefficient

calculated ultimate bearing load of the pile

23

The equations from (131) to (134) are used as

1) equation (131)

a) DIN 4014 - 1977 Ft= 2 175 15 (depending on the kind of load)

b) Polish Specification 1975 Ft = 18 16 ( -- )

1c) Trofimenkov 1974 Ft = 14307

2) equation (132)

a) DIN 4014-1977 i Q(s) = Qb(s) + Q (s) = A middotp(s) + E tAsmiddott(s)

s p 0

where Qbs) and Qs(s) are described in Fig 1423

3) equation (133)

a) Polish Specification 1974

F 25 22 depending on the kind of load p

F 1 bull 0 s

b) Wright SJ Reese LC 1979

The ultimate capacity or resistance is considered as a

random value and represented by a frequency distribution

The distribution can be described by a mean value and a

variance The distribution of the load applied to the

foundation can be described similarly The coefshy

ficients used to factor resistance and loads are called

partial safety factors Some recommended partial safety

factors for resistance under normal conditions of design

and construction are given in Tab 131 Normal control

is defined as a condition where the coefficient of variation

is less than about 035

Typical values for partial safety factors for loads are

in the range 1 to 2 depending on the type of load and

how it is applied The overall factor of safety Ft can

then be calculated from the equation

Ft = y RbullY S

24

where

YR the par tial sa f ety fac t or for resistance and

Ys the partial safety factor fo r load

The probability of fa i lur e of the foundation can be r eshy

lat ed to the factor of safety for a parti cular degree of

uncert ainty (see Tab 13 2)

c ) Tejchman Gwizdala 1979

The authors discuss adequate safety factors based on fie l d

test s by Spang (1 972) Franke (1976) Touma and Reese (1974)

Colombo (1971) Kerisel and Simons (1962) Appendirno (1973)

see Tab 1 33 Taking into account the universal safety

factor Ft= 2 0 for the tota l load settlement curves it

was estimated

i) F in the range of 111 to 237 with the average value s F = 166 and standard deviation sd = 034 s (see column 16 Tab 133)

ii) Fb in the range of 161 to 945 with the average

value Fb = 387 and standard deviation sd = 2 15

For model core d piles in laboratory conditions values of

Fs = 108 to 154 (average Fs = 132 s~ = 019) and

values of F = 280 to 5 94 (average F = 3 55 sd = 1 07)p p

see Tab 1 3 4

As a conclusion it was assumed that Fb = 40 and F 1 5 s

for l arge diameter bored piles

The investi gation has shown that for the above safety

factors settlements of piles under permissibl e loads are

10 to 20 mm There was assumed a maximum load on large

diameter piles corresponding to a settlement of 010

diameter of the piles

25

d) Bustamente Gianeselli 1 982

e) 0ecourt 1982

The safety factor is given by

F = FgmiddotFfmiddotFamiddotFw where

F 11 - skin friction g F 135 - point bearing capacity

g

Ff safety factor related to the formulation adapted

Ff= 10 for Decourts method

Fd safety factor related to excessive deformation

Fd = 10 for skin friction

As for the point Fa= 2 to 3 depending on the

pile diameter For usual cases 25 is suggested

Fw safety factor related to working load

Decourt recommends 12

Thus we will have

- for skin friction

Fs = 11bull10middot10middot12 132 - 13

- for the point

F = 135bull10bull25middot 1 2 = 405 = 40 p

4) equation (134)

a ) Polish Code 1983

Q lt mbullN r shy

where

total load coefficient (depending on the kind of load For foundation we can assume Yf = 12 )= code load

correction coeffic i ent

09 for pile foundations

m 08 for two piles

m 07 for single pile

26

N ymmiddotQu

ym material (soil) coefficient

ym 08 to 09 (Polish Code 1981)

Thus we will have

QnmiddotYf lt mmiddotym middotQu-

Yf9uFt = On m bull Ym

1 2 max = 2 14Ft 0 7 bull 0 8

1 2min = 1 48Ft 0909

The above analysis has shown different ways to determine

the allowable load The analysis is in direct connection

with mobilization of the load (versus settlement) The

dependence of total load point resistance and shaft reshy

sistance will be discussed in detail in Chapter 14

In the authors opinion taking into account the above

analysis the allowable load should be determined based

on the equation 133 ie based on individual safety

factors for ultimate point and shaft resistance Proposed

values of F and F in literature are shown in Tab 135 s p The average values are Fs = 145 and Fp = 3 38 respectively

Taking into account that the bearing capacity is determined

based on the results from sounding measurements direct from

a place near the piling without a ny indirect correlation

the allowable load of large diameter bored piles is given

by the equation (133a)

( 1 3 3a)

where F = 30 and F 13 are proposedp s

27

14 Determination of settlement of larqe diameter bored

piles based on static cone penetration tests CPT

Determination of ultimate point and skin friction resistance

based on static cone penetration tests has been discussed

in Chapter 11 above Based on the results of this calcushy

lation and on Chapter 13 we can establish an approximate

relation between point resistance shaft resistance and

total load on one hand and settlement on the other However

the approximation gives a wide scatter especially for base

resistance as can be observed in Fig 141 to Fig 144

Only the first part of the point resistance - settlement

curves are in good agreement with measured values It can

be observed in Fig 145 that the average correlation

coefficient n = 098 and standard deviation sd= 029

This way of calculation can be used only for rough calcushy

lation (see Chapter 13)

In Chapter 11 also measured point resistance - settlement

curves were shown The base resistance increases gradually

with increasing pressure and settlement Below the cur7

vature of the point resistance - settl ement curve will be

examined It is assumed that this curve can be described

as a part of the hyperbola curve Thus if the ratio of

the measured settlement (s ) to the point resistance (p)

is plotted against the measured settlement the result

will fall closely to a straight line with the equation

( 1 4 1)

where a 1 and b 1 are constants (see Fig 1 46a and Fig

14 6b)

Then the point resistance - settlement realtionship can be

expressed as a hyperbola

s p = ( 1 bull 4 2)

The constant is the initial s lope of the point resistanceshya 1

settlement curve ie a 1 = t~a The inverse of the constant

28

b 1 is the vertical tangent (asymptote) to the curve 1ie for s = 00

bf= ~ If the ultimate point reshy1

sistance psf is equal to bf (psf=bf) the whole point

resistance settlement curve will be a hyperbola type

Now the Eq 1 4 2 can be written as

s s ( 1 4 3)a) p s or b) p = a+__sect_a1 + 1 Psfbf

If the ultimate point resistance is smaller than bf only

a part of the hyperbola curve ought to be considered

Further the Eq 14 3 will be written as

p ( 1 4 4)

where

poundf_ correction factor for hyperbola point Psf resistance-settlement relationship

Taking into account the discussion in Chapter 11 the

ultimate point resistance psf = qcp based on the CPT measurements

Therefore the relationship between the point resistance

the sett l ement and the CPT result can be expressed as

s p (1 4 5)s

The correction coefficient v 1 will cause a change of the

position of the vertical asymptote bf in r elation to the

ultimate point resistance q bull This means that we take cp into account a different part of the hyperbola curve for

the description of the point resistance-settlement relationshy

ship

Now if we want to use the equation (145) in practice

we must determine the constant and the coefficienta 1 v 1 (assumed that q is determined ear l ier Chapter 11)cp

29

The constant a 1 and t h e coefficient Vi have been detershy

mined based on fi e ld tests according to pi l es No 1 - 20

see Tab 14 1 and Tab 1 1 9 as wel l The values of

a 1 versus the point diameter D and the ul timate pointp

resistance respectively are shown in F i g 147 and Fig

148 Fig 1 47 shows that a 1 is independent of the

point diameter D Based on Fig 148 it can be assumed p

that

28-4bullq (1 4 6)cp

This correlation has been examined with data of the

literature see Fig 1 49 and Appendix 141 to 1 45

(Note there were no static penetration tests and qcp was determined based on a correlation made by Bergdahl

(1982))

A good correlation with equation 146 can be seen taking

into account the safety factor in the DIN 4014 Part 2

(1977) bull

The correction factor v 1 versus the poi nt diameter is shown

in Fig 1410 I t is assumed that the correlation is

V1 = 3 0 - D ( 1 4 7)p

where D is in m p

The above equations ie 146 and 147 were assumed for

a later analyses see Fig 14 11 and Fig 1412 The

piles No 1 to 20 were examined taking into account Eqs

14 5 14 6 and 1 4 7 The result of this cal cul ation is

presented in Fig 1 413 to Fig 1 4 18 and in Tab 1 4 2

respectively In Fig 1413 the calculation way for pile

No 2 is shown as an example

In Fig 1414 to Fig 1 417 measured and calculated

values of the point resistance versus settl ement can be

compared In tota l good correlation exists for all the

30

pressure-settlement curves Values of q from static cp

cone penetration tests and generalized values of anda 1

v 1 were considered Only for piles No 17-20 qcp was

assumed as the point resistance for s = 010 D because p

the static penetration test results were inaccessible

The similar comparison is shown in Fig 1417a for piles

in sand based on experimental results (Tuoma Reese 1972

and Wright Reese 1979) where the ultimate case resistance

was assumed as the resistance at a base settlement of 005

D The relative base resistance is the mobilized base p resistance divided by the ultinate base resistance The

curvature of the proposed point resistance settlement shy

curve to mean value proposed by Wright and Reese is excellent

However the constant a 1 and the coefficient v 1 were

determined for sand only In the future they should be

examined especially for gravel and silty sand based on

field tests Until then in the authors opinion the

values of v 1 can be chosen from Eq 147 for all nonshy

cohesive soils But for a 1 there is proposed

at = gt bulla (1 4 8)1

where

gt- 1 = 080 for gravel

gt 2 120 for silty sand

This proposal is shown in Fig 14 11 as dashed lines

A good correlation can be seen with the investigation by I

Kiosimiddotnski for sandy gravel and on the safety side with

the investigation by Tuoma and Reese for silty sand (see

Fig 149)

In Fig 1418 all calcul ations for pile No 1 to 20 are

summarize d The correlation coefficient n is defined as

the calculated point resistance p(s) divided by measured

point resistance p(s) For totally 126 points from 20

curves an average of n = 098 with standard deviation

31

al= 023 was obtained see Fig 1418 A similar result

can be observed for the range usually assumed of the

allowable settlement for sinqle large diameter bored

piles as

for

- for

- for

s

s

s =

10

20

30

mm a

mm

mm

verage n10 II

II

mm 089

095

099

and sd =

and sd

and sd

031

027

026

It can be questioned whether the sonstant a 1 can be deshy

termined in different ways The constant a 1 is the initial

slope of the point resistance-settlement curve as menshy

tioned above Then we can use all methods for determination

of settlement of a pile point The range of validity of

these methods then must be determined This will be shown

later

In order to be able to design the total load settlement

curve the skin friction resistance-settlement relationshy

ship must be determined The ultimate skin resistance of

large diameter bored piles was determined in Chapter 11

(based on static penetration tests) and in Chapter 12

(based on standard penetration tests)

In the past a lot of field tests have been done on the

mobilization of the shaft resistance versus pile settleshy

ment In this subject there is a rather good agreement

in the whole investigation for cohesive and non-cohesive

soil

Some results and opinions on thispresented in the literashy

ture during the last few years are shown below

Ultimate shaft resistance versus settlement

1) BurlandJB Butler FG Duncan P (1969)

-The shaft l oadsettlement curve is derived using a=0 3

with 90 ultimate load being mobilized at 025 in

settlement(~65 mm)

- soil London clay

- see Fig 1 419

32

2) Touma FT Reese LC (1974)

- The failure of the sides of the shaft takes place

at a downward movement of about 04 in (10 mm)

- soil sand

- see Fig 1420

3) Tomlinson HJ (1977)

- The maximum shaft resistance is mobilized at a

settlement of only 10 mm (or j in)

- soil stiff clay

- see Fig 1421

4) Klosinski B ( 1977)

- It was assumed that skin friction increased proshy

portionally to pile settlement up to the limit value

s bull This value depends on soil conditions and pile0 diameter and is usually from 3 to 8 mm For soft

compressible soil it may be grater than 10 mm

- soil cohesive soils

- see Fig 1422

5) Franke E Garbrecht D (1977)

- At settlement of 2 to 3 cm which are normally

allowed in Germany under working loads for buildings

not very sensitive to differential settlementsthe

skin friction is almost always fully mobilized

- soil sand

6) DIN 4014 part 2 (1977) and Franke E (1981)

- The skin friction Tm is approximated as diameter

independent having failure settlements of smf = 2 cm

in sand and 1 cm in clay

- soil sand and clay

- see Fig 1423

33

7) Reese By L (1978) Reese By L Wright SJ (1979)

(1978) The maximum skin friction being developed at

an average downward movement ranging from about 05shy

2 of the shaft diameter The average of six load tests

reported by Whitaker and Cooke (1966) are a lso plotted

for comparison

- soil stiff clays

- see Fig 1424 and Fig 1425a

(1979) The relative settlement is the average settleshy

ment of the butt and base devided by the shaft diameter

The mean curve maximises at a relative settlement of

about 002 D

- soil sand and clay

- see Fig 1425b

8) Tejchman A Gwizda3a K (1979)

- A clear differentiation of the distribution of shaft

and base resistances is observed for changing settleshy

ment For fairly small settlements the shaft resist shy

ance increases quite fast and the ultimate values

are reached soon while the base resistance increases

gradually with increasing loads and settlements withshy

out clearout ultimate values it can be assumed that

complete mobilization of shaft resistance corresponds

to settlements equal to 001 or 002 diameter of pile

- soil cohesive and non-cohesive soils

- see Tab 131 and Fig 1 426

9) Promboon S Brenner R P (1981)

- Load distribution and load transfer curves disclose

that most of the load is carried by shaft friction

which is developed at small displacements in the order

of 10 mm

- soil Bangkok clay

- see Fig 1427

34

10) Prodinger w Veder Ch (1981)

- The maximum value of skin friction resistance

occurred for a total settlement of 12 mm

- soil silty clay and sand

- see Fig 1428

11) Farr JS Aurora RP (1981)

- Ultimate load transfer was recehed (or nearly reached)

at a relative settlement of about 04 in (10 mm)

- soil gravelly sand

- see Fig 1429

12) Decourt (1982)

The skin friction resistance is totally mobilized

with deformations of about 10 mm or at the most 15

mm regardless of shaft dimensions This observation

of ours seems to clash with the opinions of other

authors who seek to relate the deformation necessary

for full skin friction mobilization with the shaft

diameter

- soil cohesive and non-cohesive soil

In Tab 143 all these results are shown Depending on

the kind of soil the following v a lue s of ultimate settleshy

ment for shaft can be assumed

- averages 142 mm (sd 5 3 mm) for sand

- averages 100 mm (sd = 21 mm) for cohesive soil

averages 726 mm (sd 67 mm) for claysand

It can be observed (see Fig 1419 to 1428) that the

shaft friction resistance increases proportionally to

the pile settlement up to the above limit value and

thereafter becomes constant

35

Taking into account what was mentioned earlier on point

resistance settlement relationship and the above results

a relationship between total load point resistance and

shaft resistance on one hand and settlement on the other

can be made see Fig 1430

It is assumed on the safety side that the following

ultimate settlement (S~) exists for the shaft resistance

of large diameter bored piles

SS1 ) 200 mm for non-cohesive soil u SS2) = 100 mm for cohesive soil u SS3) 15 0 mm for claysandu

In Fig 1 430 the curve Q (s) is calculated based on p

the equation 14 5 or 144

The values of psf in equation 144 can be calculated

based on other methods as well

The total load-settlement relationship is obtained by

summing up point and s haft resistance as

Q (s) = Q (s) + Q (s) (149)s p

for each point

Now the allowable load can be determined from equation

133a and versus the allowabl e settlement as

Q (s) = Q (s) + Q (s) (1410)s p

where s lt Sa

Sa= the allowable settlement of the pile

The analysis allows determination of the approximative

load settlement dependence without calculating the settleshy

ment for non-cohesive soil In Fig 1431 it is shown

36

In Tab 144 the settlement for allowable point reshy

sistance q5P according to equation 133a is shown

as well The average settlements= 198 mm (sd=78 mm)

is obtained This value is similar to the assumed ultimate

settlement of shaft for non-cohesive soil The ultimate

settlement for point resistance is assumed s = 010 Dp as mentioned earlier

37

15 Initial slope of pile point resistance shy

settlement curve

Settlement of piles and pile foundations can be cal culated

based on

- empirical correlations

load-transfer methods using measured relationships

between pile resistance and pile movement at various

points along the pile

- theory of elasticity that employs the equations of

Mindlin for subsurface loading within a semi-infinite

mass

- numerical methods and in particular the finite element

method

- use of in-situ tests (Cone Penetration Test Standard

Penetration Test Pressuremeter Test)

The critical slope of the pile point resistance-settlement

curve is important for calculation in chapter 14 The

constant a1 can be determined from all the above mentioned

methods

Comparison is made to Berggrens and Schmertmanns methods

below (see Berggren 1981 as well)

6sIn Tab 151 (No 1 2 3) the values of a 1 =~p for s =

10 mm and s = 20 mm (measured for large diameter bored

piles No 1 to 24) are compared to the calculated values

according to the modified hyperbola method (see Fig 14 6)

It can be seen that these calculated values are between

s = 1U-2u mm but rather closer the measured values for

the settlements= 10 mm see correlation coefficient n 6

and n 7 in Tab 151 respectively The average correlat i on

coefficent for the settlements= 10 mm is n9 = 108 and

the standard deviation is sct = 014 The comparison to

Berggrens and Schmertmanns methods for s = 20 mm ( see

Berggren 1~81 and Tab 151 as well) shows that the

results based om these methods give too high values of a 1 bull

38

The average values are ne= 143 sd = OJ3 and ng= 137

sd = 037 for Berggrens and Schmertmanns methods

respectively A bit better agreement can be observed

for Schmertmanns method

Taking into account the results in Tab 151 ana Tab

15l it must be assumed that for the determination of

a 1 the pile point contact pressure p(a1) should be

assumed as the ultimate point bearing capacity devided

by about 4

p(ai) - ( 1 bull 5 1 )

Most of the methods for determination of settlement are

based on the theory of elasticity The settlement ot the

pile point can be expressed as the average settlement of

a rigid circular foundation from the equation

11-Dp 1-v 2

s = p -4- -E-bull microd (1 ~ 2 J

where

p pile point contact pressure

E Youngs modulus

D diameter ot pile pointp ) = Poissons ratio

microd = depth factor

The range of validity of the pile point contact pressure

was determined in equation 151 Youngs modulus has an

important meaning lt can be determined from triaxial

tests or oedometer tests The relationship between the

constrained (oedometric) modulus Mo and Young s modulus

Eis dependent on Poissons ratio v as expressed by the

equation

E = l 1 + V ) ( 1 - 2 V ) Mo ( 1 bull 1 bull 1)- 1-v

39

TaKing into account the analyses made ny Chaplin (19b1a

1 961bJ Janbu (1 963 1970 1973J Andreassen (1973)

Duncan and Cheng (1970) Tejchman anct Gwizdala (1979)

Gwizdala (1978) Franke (1981) Berggren (1981) Withiam

and Kulhawy (7981) and the present investigation the

calculation of settlement is proposed to be

s = 24 bull p bull ~ D bull 1-v 2 bull micro d (154)Do o E

where s (r1)

p (kPa)

Dp (m)

E (kPa)

D0 =10 m

micro = 05 + 01 vfrac34E (1 5 5)d vs

but 05 lt microd lt 10-tip= p - (J (ovs see Fig 151)vs

E =Et= Kbullpat (Oo )n [1- Rf(1-sinltj) 101 - 03 ) 12 (1 5 6)2 c cosltP + 2o 3 sinltP 1Pat

in which K n and Rf= hyperbolic stress-strain parameters

Pa= atmosferic pressure ando 1 o 3 and o0 are determined by

averaging the concrete and soil vertical and radial stresses

near the pile point according to Fig 151 Then the

stresses at the pile point level are h

(J vs = L

0 Yi h

l vertical stress in the soil

0 hs Ko h

0 vs radial (horizontal) stress in the soil

0 vc L ye h -l

vertical stress in the concrete 0

0 hc K oc a vc radial (horizontal)

concrete stress in the

40

K at rest soil lateral stress coefficient 0

K c lateral stress coefficient for fluid fresh concrete0

K 1 0 oc

and average values

a 05(a +a)V vc vs

1 1 - shy~ = -(a +a+a I = -3 (av+2ahJ the applied mean normal stress0 j Z X y

Assuming this model calculation results for piles No 1-24

(see Tab 11~ as well) are shown in Tab 153

The piles are embedded mainly in medium sand to fine sand

For this kind of soil it can be assumed (soil parameters

from field or laboratory tests were inaccessible)

~ = 35deg c = 0 R~ = 09 n 05 v = 025 K c 10l 0

K = 04 Pat= 1UO kPa ye 24 kNrn 3 y = 14 kNm 3 bull0 C

Moreover in Tab 153 the following symbols are used

p(a1 ) - pile point contact pressure according to equation

1 bull 5 1

s(a1) - settl ement of pi l e point according to equation

143 and Tab 141

pound TT ( 2E = s bull Dp bull i 1-v ) according to equa~ion 152t

E~ Et bull microltl

EI

K = ro~ - according to equation 1 bull 5 6 p bullO middotA2

a~ o

E = E voD middot D middot ~4 ( 1 - v 2 ) according to equationt S p O 0

1 5 4

Et= E microd

K = according to equation 156 V PatmiddotaomiddotA2

41

The calculation results of Youngs modulus E = Et and

dimensionless canpressionrro1ulus for piles to 1-24 are shown

in Fig 152 to 155 using equation 152 and 15b

or equation 1~4 and 156 respectively lt can be obshy

served that the scatter in Fig 153 and Fig 155

where the influence of tne pile diameter is reduced

compare equation 154 is less than in the other figures

The reduced influence was made after observations from

field and laboratory tests while the equation 152 is

taken direct from theory of elasticity These values of

E and K are in good correlation with published values in

literature The values of Youngs modulus versus the

relative density of soil are compared to literature values

see Fig 15b Based on the analysis in this chapter it

can be assumed that

E = 9-ql 3 ( 1 bull 5 7)cp

where qcp is in accordance with equation 117

The calculation results based on this proposal are incluced

in Tab 1 5 3

The c a lculate d s e ttlements based on e q ua tion 154 and

157 are shown in column 23 and the values of the

correlation coef f icie nt (n= Seal ) in column 24 respectshyimeas

ively

The dimensionless canpression modulus can be d e termined as

K = 15Ubullq (qcp in MPa) (1 5 8)cp

see column 25 Tab 153

The calculation results based on the K compression modulus

according to equation 158 156 and 1 5 4 are shown in

columns 25 26 2 7 28 and 29 in Tab 153

42

For comparison and for determination of the range of

validity of this method the caLculation results of

pile point pressure for settlements s = 10 mm s = 20 mm

s = 30 mm (see Tab 141) according to equation 157

and 154 are shown in columns 30 to 35

The results obtained in Tab 153 confirm the possibility

to use the proposed method to calculate the initial part

of the pile point resistance settlement curve of large

diameter bored piles in non-cohesive soil and the initial

slope of this curve as well

A simple model has been proposed based on the theory of

elasticity ana the tangent modulus defined by Janbu (1963)

and Duncan amp Chang (1970)

A new approach according to the pile diameter depth factor

and principal stress is proposed

The settlement of the pile point can be made up to a point

pressure according to equation 151 on up to a settlement

of about s ~ 20 mm (30 mm)

-- The application of v Op in equation 1 5 4 a llows us ing

Youngs modulus as independent of the pile diameter

opposed to Bazants a nd Mosopusts (1981) proposal where

Youngs modulus wa s determined versus the pile diameter

The equation 1 5 6 takes into account the dependence of

Youngs modulus on depth (or overburden pressure) as

well

In the method field test (Cone Penetration Test) or

laboratory tests (hyperbolic stress-strain parameters

can be used

Comparison of the method to 24 availa ble load test r e sults

or large diameter bored piles in sand shows good a greement

to calculated and measured values

43

REFERE~CES

Adamczyk J (1978) Okreslanie udzwigu pali wierconych

za pomoca sondy statycznej (Bearing capacity of bored

piles based on the static sounding) Inz i Bud No 7

pp 253-257

Andreasson L (1973) The compressibility of cohesionless

soils Thesis Chalmers University of Technology

G6teborg (in Swedish)

Appendino M (1973) Comportamento di un palo di grande

diametro strumentato Rivista Italiano di Geotechnica

No 3 pp 115-118

Butterfield R Banerjee P (1971) A rigid disc embedded

in an elastic half space Geotechnical Engineering

Vol 2 pp 35-49

Bozant z Mosopust J (1981) Drilled pier design based

on load settlement curve X ICSMFE Stockholm Vol 2

pp 615-619

Begemann HK (1982) Cone penetration tests pile bearing

capacity and the thesis of Rollberg Proc of the Second

European Symposium on Penetration Testing Amsterdam

pp 433-438

Berggren B (1981) Bored piles on non-cohesive soils shy

settlement and bearing capacity (in Sweden) Thesis

Department of Geotechnical Engineering Chalmers

University of Technology G6teborg

Bergdahl UB (1979 1982) Sonderingen und in situ Messungen

Wien 18-19 Juni 1979 - Private information 19821983

Bustamante M Giane selli L(1982) Pile bearing capacity

prediction by means of static penetrometer CPT Proc

of the Second Europ Symp on PenTest Amsterdam

Vol 2 pp 493-500

Chaplin TK (1961a) An experimental study of the settleshy

ment of footings in sand PhD Thesis Univ of

Birmingham

44

Chaplin TK (1961b) Compressibility of sands and settleshy

ments of model footings and piles in sand 5th Int

Conf on Soil Mech a Found Engng Vol 2 p 33 Paris

Colombo P (1971) Observazoni sul comportamento ltli pali

a grande diametro Rivista Italiana di Geotechnika

No 3 pp 163-172

Dahlberg R (1975) Settlement characteristics of preconshy

solidated natural sands Swedish Council for Building

Research D11975

De Beer EE (1964) Some considerations concerning the

point bearing capacity of piles Proc Syrop Bearing

Capacity of Piles Boorkee I pp 178-204

Decourt L Quaresma AR (1978) Capacidade de Carga de

Carga de Estacas a partir de Valores de SPT VI Conshy

gresso Brasilerio de Mecanica dos Solos e Engenharia

de Fundacoes - Rio de Janerio - ABNS

Decourt L (1982) Prediction of the bearing capacity of

piles based exclusively on N values of the SPT Proc

of the Second Europ Syrop on Penetration Testing

Amsterdam Vol 1 pp 29-34

Duncan MJ Chang CV (1970) Non-linear analysis of stress

and strain in soils Journal Soil Mech Found Div Vol

96 SM5 pp 1629-1651

Durgunoglu HT (1979) Effect of foundation embedment on

stress and deformation distributions Third Int Conf

on Num Meth in Geomechanics Aachen pp 925-928

Farr JS Aurora RP (1981) Behaviour of an instrumented

pier in gravelly sand Proc of a session Drived Piers

and Caissons sponsored by the Geotech Eng Div of the

ASCE Nat Convention St Louis Missouri pp 53-65

Franke E (1981) Point pressure versus length and diameter

of piles X ICSMFE Stockholm Vol 2 pp 717-722

45

Gregersen os Aas G and Dibiagio E (1973) Load tests

on friction piles in loose sand Proc of the Eigth

International Conference on Soil Mech Moscow USSR

Vol 21 pp 109-117

Gwizda1a K (1978) Behaviour of large diameter bored piles

in non-cohesive soil (in Polish) Archiwum Hydrotechniki

Vol XXV No 2 pp 183-217 (English summary)

Huizinga TK (1951) Application of Results of Deep

Penetration Tests to Foundation Piles Building Research

Congress Vol 1 p 173

Janbu N (1963) Soil compressibility as determined by

oedometer and triaxial tests Proc Europ Conf Soil

Mech and Found Eng Vol 1 p 19 Vol 2 (Discussion)

p 17 Wiesbaden

Janbu N (1970) Grunlung i geoteknikk Tapir Forlag NTH

Trondheim

Janbu N Bjerrum L Kjaernsli B (1973) Soil Mechanics

applied to some engineering problems Norw Inst Publ

No 16 Oslo

Japanese Society SMFE (1981) Present state and future trend

of penetration testing in Japan Separate report at

X ICSMFE Stockholm

Kjekstad O Lunne T (1979) Soil parameters used for design

of gravity platforms in the north sea Second Int Conf

on Behaviour of Off-shore structures London Vol 1

pp 175-192

Klosinski B (1977) Bearing capacity of large diameter bored

piles IX ICSMFE Tokyo Vol 1 pp 609-612

Laboratory for soil mechanics Delft (1936) The predetershy

mination of the required and the prediction of the

resistance of piles Proc 1 Int Conf on Soil Mech

and Found Engng Cambridge (Mass) I p 181

46

Matich M and Stermac A (1971) Settlement performance of

the Burlington Bay Skyway Canadian Geotechnical Journal

Val 8 pp 252-271

Mccammon NR and Golder HQ (1970) Some loading tests

on long pipe piles Geotechnique London England

Val 20 pp 171-184

Meigh AC (1971) Some driving and loading tests on piles

in gravel and chalk Proc of the conference on beshy

haviour of piles London England pp 9-16

Mitchell JK Gardner WS (1976) In situ measurement

of volume change characteristics American Society of

Civil Engineers Specialty Conference on In-situ

Measurements of Soil Properties Raleigh 1975 Proc

Val II pp 279-345

Mezenbach E (1961) The determination of the permissible

pointload of piles by means of static penetration tests

Proc 5 Int Conf on Soil Mech and Found Engng

Paris II pp 99-104

Meyerhof CG (1956) Penetration tests and bearing capacity

of cohesionless soils Proc Amer Society of Civ Engng

SM 1 Pap 866 pp 1-19

Meyherhof GG (1 976) Bearing capacity and settlement of

pile foundations Proc Amer Society of Civ Engng

Journal Geotechnical Engineering Division Val 102

No GT3 pp 197-227

Mohan D Jain GS and Kumar V (196 3 ) Load bearing capacity

of piles Geotechn Val XIII pp 76-86

Nixon I (1982) Standard penetration test State of the

art report Proc of the Second Europ Symp on Pen

Test Amsterdam Val 1 pp 3-20

47

Nunes A Vargas M (1953) Computed bearing capacity of

piles in residual soil compared with laboratory and

load tests Proc of the Third International Conference

on Soil Mechanics Zlirich Switzerland Vol 2 pp 75-79

Nordal S Grande L Janbu N (1982) Prediction of offshy

shore pile behaviour The Norwegian Institute of

Technology Trondheim

Ohde J (1939) Zur Theorie der Druckverteilung im Baugrund

Der Bauingenieur Vol 20 No 3334 p 451

Parroth E (1972) Einfache Formel zur Vorausbestimmung der

Tragfahigkeit von Standpfahlen mit Hilfe der Sande

Bautechn 9 pp 312-314

Poulos HG Davis EH (1980) Pile foundation analysis

and design New York - J Wiley and sons

Prodinger W Veder Ch (1981) Bearing capacity of floating

groups of diaphragm walls Proc X ICSMFE Stockholm

Vol 2 pp 809-814

Promboon S Brenner R (1981) Large diameter bored piles

in Bangkok Clay Proc X ICSMFE Stockholm Vol 2 pp

815-818

Reese L (1978) Design and construction of drilled shafts

ASCE JSMFD Vol 104 No OT1 pp 95-116

Rodin s Corbett BO et al (1974) Penetration testing in

United Kingdom state-of-the-art-report Proc Europ

Symp on Penetration Testing 1 Stockholm pp 139-146

Rollberg D (1976) Bestimmung des verhaltens von Pfahlen

aus sandier und rammengebnissen Heft 4 FBG Technische

Hochschule Aachen

Rollberg D (1977) Determination of the bearing capacity

and pile driving resistance of piles using soundings

Publications of the Institute for Found Eng Soil Mech

Rock Mech and Water Ways Construction Aachen Vol 3

48

Schmertmann J (1970) Static cone to compute static

settlement over sand Journal of the Soil Mech and

Found Division ASCE SM3 pp 1011-1043

Schmertmann J Hartman JP Brown PR (1978) Improved

strain influence factor diagrams Journal of the Soil

Mech and Found Division ASCE GT8 pp 1131-1135

Shibata T Hijikuro K and Fominerga M (1973) Settlement

of a blast furnace foundation Proc of the Eighth Int

Conf on Soil Mech Moscow USSR Vol 13 pp 239-242

Spang J (1972) Die Bestimmung der Tragfahigkeit von Grossshy

borhpfahlen (I) Strassen und Tiefbau No 2 pp 339-355

Senneset K (1974) Penetration testing in Norway State-ofshy

the-art-report Proc Europ Symp on Penetration Testing

Stockholm I pp 85-95

Tejchman A Gwizdala K (1979) Analysis of safety factors

of bearing capacity for large diameter piles Proc VII

ECSMFE Brighton Vol 1 pp 293-296

Thorburn s and Mac Vicar R (1971) Pile load tests to

f a ilure in the clyde alluvium Proc of the conference

on behaviour of pile s London England pp 1-7

Trof imenkov JG (1969) Accuracy of determining the bearing

capacity of piles based on results of static penetration

sounding of soils Osnovaniya Fundamenty i Mekhanika

Gruntov 4 (Translation Soil Mechanics and Foundation

Engineering 4 p 248)

Trofimenkov JG (1974) Penetration testing in USSR Stateshy

of-the-art report Proc Europ Symp on Penetration

Testing Stockholm I pp 147-154

Tuoma F and Reese L (1974) Behaviour of bored piles in

sand JSMFD ASCE Vol 100 No GT 7 Proc Paper 10651

July pp 749-761

49

Van der Veen C (1953) The bearing capacity of a pile

Proc 3 Int Conf on Soil Mech and Found Engng

Zlirich II pp 84-90

Van der Veen C and Boersma L (1957) The bearing capacity

of a pile predetermined by a cone penetration test

Proc 4 Int Conf on Soil Mech and Found Engng

London II pp 72-75

Weltrnan AJ Healy PR (1978) Piling in boulder clay

and other glacial tills Construction Industry Research

and Information Association UK-Report PG 5

Withiam J Kulhawy F (1981) Analysis prodecure for

drilled shaft uplift capacity Proc of a session

Drilled piers and caissons ASCE St Louis Missouri

pp 82-97

Woodward R Lundgren R Boitano J (1961) Pile loading

tests in stiff clays Proc of the Fifth International

Conference on Soil Mechanics Paris France Vol 2

pp 177-184

Wright SJ Reese LC (1979) Design of large diameter

bored piles Ground Engineering Vol 12 No 8 pp

17-22

DIN 4014 Cods Teil 2 (1977) Bohrpfahle Grossbohrpfahle

Herstellung Bemessung und zulassige Belastung

Polish Specification (1975) Specification for design and

construction of large diameter bored piles in bridges

Ministry of Transport Warsaw (in Polish)

Polish Specification (1979) Specification for prevision

bearing capacity of the piles on the presiometer test

and static sounding ENERGOPOL Warsaw (In Polish)

Polish Code (1983) Foundations Bearing capacity of piles

and pile foundations

5 1

FIGURES

bull bull

53

Ou

+ sect raquo iir 1

4 + D

h + +Osu

bull + t2 =n- Dp

LDpl r f 1

Opu

Fig 1 1 1 Bearing pi le in the soil

J_

fp

080

070

060

050

0 40

030

020

010

q~ [MPa ]000 -+--~-~-~-~------------------------=-shy

00 20 4fJ 60 80 10 0 120 14fJ 160 180 200

Fig 1 1 2 The point resistance factor fp

(Trofimenkov 1974)

54

ts

160

140

120

100

080

060

040

020

q~5 [ kPa)

0Q0--1------~-~-~-~-~-~ - - ---=- -- shy000 10 20 30 40 50 60 70 80 90 100

Fig 1 1 3 The shaft resistance factor fs middot (TYofimenkov 1974)

f s

200

180

160

140

120

100 2 3 4 5 6 7 8 9

Fig 1 1 4 Shaft friction factor f depenshys

ding of the soil density (Senneset 1974)

55

Q~ [kN]

1500

1000

500

0-r-----------r----~- Q~ [kN] 0 500 1000 1500

Fig 1 1 5 Comparison of the pile resisshytance determined by the results of static sounding and load tests (TYofimenkov 1974)

D f f

0

Fig 1 16 Equivalent cone resisshytance (Bustamante 1982)

56

E u shy0 ~

QI I ltII ltII

~ a C QI

O C

D

w gt

0

Cone res istance Point resistance

80 160 240 320

05

10

15

e d

20

ver y dense Cone resistance 300 kgcm2

Dpcm

a =45 b = 30 C 60 d = 100 e = 150

Fig 1 16a

Cone resistance _ qc

80 160 80 160 qc [ k g cm2 ]p

05

10 10

15 15 e d a

e d20

Dense Medium2 2200 kgcm 100 kgcm

Cone resistance and point resistance of piles versus overburden pressure (Kerisel 1965)

Point resi stance - p(for s=2cm) of the pi le for

15 sett Iement s = 2 cm

10

5

E u

uJ1 o-~----shya er O 804 2500

32 56

I 1

L oose50 -I =25 Very loose L

----~--shy5000 7500 80 98

~-----lmiddotI1--------2 10000 12500 31400 =Flcn)

112 123 200 =Dplcm)

Fig 1 1 6b Point resistance versus cone resistance and pile diameter (Franke 193)

57

1

fp

080 (D Gravel

0 Coarse sand Medium sand 070

reg Fine sond Silty sand

060

050

040

030

020

010

qc [MPa]000-+----r--~-~-~--------r----r----r-~-~-- -shy

oo 20 40 60 80 100 120 140 160 180 200

Fig 1 1 7 Point resistance factor f (proposal) p

58

300

250

200

150

100

qc [MPa I50-+---------------r---r---r---r----r------------- shy

oo 20 40 60 80 100 120 140 160 180 200

Fig 1 1 8 Shaft resistance factor fs (pr oposal)

59

Bustamante (seetab 115 I

l fp

G)

0 Gravel

Coarse sand Medium sand

cl

b)

t-----l

1----1

080 reg Fine sand Silty sand a) D

070 Polish

060 Specification

( 1979) 050

040

030 CD 020 0

reg 010

qc [MPa]0 00 -+-------------------------------------=--shy

oo 20 4o 5o 80 100 120 14o 15o 180 200

Fig 1 19 Point resistance factor f comparisonp

Bustamente ( see tab 116 I 300

a) ~

250 b)~

cl~

200 Polish Specification ( 1979 l

150

100

q [ MPa]504---~--~--~----- ---___

00 20 40 60 80 100 120 140 150 180 200

Fig 1 1 10 Shaft resistance factor fs comparison

60

1 fp

~

080 CD CD Gravel

070 0 reg Coarse sand Medium sand

060 0 Q) Fine sand Silty sand

05

040 Franke (1973)___

030 DIN 4014

020 Part 2 1977

( see tab113 l 0shy

--shy --a - 010 C---0 Piles without enlarged bases

D---0 Piles with enlarged bases qc [MPa ] 000

00 20 4JJ 60 80 90 100 120 140 160 200

Fig 11 11 Point resistance factor f comparison p

fs

DIN 4014 Part 2 1977 ( see tab 114 l

300

~ 5 lt qc lt 10 MPa 50

~ 10 lt qclt 15 MPa

~qcgt15MPa

200

150

CD

100 0 0

qc [ 1Pa] 50-t-----T-~----T-r-~----------------shy

OO 20 40 6JJ 80 100 120 14JJ 160 180 200

Fig 1 1 12 Shaft resistance factor fs comparison

61

Measured p [ MPa]

( s=010 Dp) 10

9

8

7

6

5 0

4 0 61

3

I 2

Calculated qcp [MPa]

0 0 2 3 4 5 6 7 8 9 10

Fig 1 1 13 Comparison of experimental and aomputed values of the pile point resistanae

62

Contact pressure ( MPa ]

2 I 6

50

100

E E 150 Ill

c QI

E Sett lement for QI

calculated qcpai V) 200

Fig 1114 Results from load tests on piles No 1 and 5

Contact pressure [ MPa I 0 2 I 6

01---------------------1

50

E E 100 Ill

Settlement forc QI calculated qcp E ~ ai

I V) 150

Fig 1 1 15 Results from load test on piles No 7 and 5

63

Contact pressure p [ MPa] 0 2 3 4 6

0-t=-----~-~-----

E E

100 1)

c CU E 2 QI V) 150

Fig 1 1 16 Results from load test on piles No 9 10 and 11

Contact pressured p [MPa] 0 1 2 3 4 5

o~~~=------------___-~-shy

50

100

E E

i 150

CU E CU

-a V) 200 2

Fig 1 1 17 Results from load test on piles No 12 and 13

c

-------------- -

64

Contact pressured

0 1 2 3 4 p [ MPo] ~o __L____1_____J_____L___

50

100

150

E

E

IJ) 200

c a

E a

~ 250

Fig 1 1 18 Results f Pom load tests on piles No 2 4 6 and 8

p [MPa]

60

50

tO

30

~

Pile Pile Pile Pile

Pile No18

------+ Pile No17 + ~_ ---0 Pile No 19

bullbull - --bull Pile No 20

- ~middot -shy-shy -(y I Settlement for

20 tO 60

No17 +-middotmiddot- V 70 No 18 bull--- V 9o No19-middot- V 120 No20bull---- V150

qcp 3

80 100 120 140 160 s (mm)

Bose resistance

Fig 1 1 lBa Point Pesistance vePsus settlement (Spang 1972J

65 Cone resistance qc [ MPa]

0 10 20 30

mud

5 ~ lll

0 c 0

c CD

peat

10 sand

Ill N

10=10

D=lOOOmm

1540=40

20__________________

[ml

Fig 1 119 Pile No 1 and results from static cone penetration test

Cone resistance qc [MPa l 0 10 20 30

7N V degW = 0+--------------------i

mud

5

lll

~ C 0

c peat~

10

sand lll N 1D15

15l lD=1500mm

40=60

20l---------=-------__J

[ml

Fig 1 1 20 Pile No 3 and results from static cone penetration test

66 Cone resistance qc [MPa]

10 20 II 3 igt pound ~

mud+peat

fine sand+ silt

50=11

l lo-11oomm

40= 44

10

15l____________c

[ml

Fig 1 1 21 Pile No 5 and results from static cone penetration test

Section Cone resistance Pile

0 0

5 10 15 20 25 30 qc [MPa] -----~-~shy~

Silt

[7r_ ___~ Medium Sand_~-----l

0 ltD

+shy4

0=11

9=

Fine sand + Silt t

30p=

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot1~11+-----E-----

[ml

Fig 1 1 22 Pile No 6 and results from static cone penetration test

Cone resistance qcmiddot 1MPuJ

0 10 20 30 67 01-+-------l--------------i

mud+ peat

fine sand

l1)

N

40=60

15L_____________

[ml Fig 1 1 23 PiZe No 7 and resuZts from static

cone penetr ation test

Section Cone resistance Pi le

0 5 10 15 20 25 30 qc [MPa 1 --~----Y-~-----~

Silt

Fine sand

Medium Sand Bentonite2----1~i

t 3

4

0

0=15

Fine iii ~~= 5

sand t ltD

6 +

Silt 7

3Dp=

63 g

10

11

12

13+------=~---l

[ml

Fig 1 1 24 PiZe No 8 and resuZts f rom static cone penetration test

68

I =3

Cone resistance qc [MPa]

0 10 20 30

C 0 C Cl

(I)

Said

Peat

Sand

l 0=110

D = 11

4 D = 44

Fig 1 125 Pile No 9 and results form static cone penetration test

69

Cone resistance qc[MPa)

0 10 20 30 I ~ II JE Ill= II=E IS

Fine sand QI

U) I

[- I C 0 + C Peat QI

CD

Fine sand 0

Ci D = 1 1

L l D= 110

4D= 4 4

Fig 1 1 25 Pile No 10 and results f rom static cone penetr ation test

70

Cone resistance 9c[MPa]

0 10 20 30

Sand

C 0 Mud peat

+shyc 5 ltII

co

Sand Op= 11

u 10 D= 110 4Dp=44

Fig 1 1 26 Pile No 11 and results foIm static cone penetration test

71

00 a_ N ~

middotu rr QI 0 u ~ C 0

QI ui C iij 0 QI U - 0

0 EN

d 2

Sll 1lOl

C

u (rr

C 0 u~

0

QI - C middot 0 C

U - O 0 EN

~ 0 2

E

ltD a---==-lr---___--~---6-l_-0_012 ~ Lr- - --1---------J J

S9l ls= apound QI -0 gtcc _gmiddot- 0 1) ui I

Fi g 1 1 2 Piles No 14 and 15 and results f r om stat i c cone penetr ation tests

72

Contact pressure p [ MPa] 2 4 6

01lt---------------~

50

E E

111 100 ~ (qcp=30 MPa for No16

~ iqcp =49 MPa for No14

~ 1so~--~~- _ _ __

I _ _

11 I lf--q = 32 MPa for No15

cp

Fig 1 1 28 Results f r om load tests on piles No 14 15 and 16

73

0300--------------~---~--~--shyE

Driven piles in ~ 0 bull Gravel

amp250 bull Sand L QJ X Silt a 1l o Bored piles in

sand -sect 200 0=-- shyC ~ ~ 10 unless ~~ middot D shown 1

ii O

~ ~ o 3 a 1501-----+-------I- --+---laquo-+-- -+------lt

~ sect 5 - 6 6middot 100t----+----+-----_-1---4--__co_--J~__j

-_

~ 0 t7

C

a 50 2 shyg ~ gt

0 20 30 40 50 60

Standard penetration resistanceN in blows per foot

(N 30

Fig 12 1 Emperical relation between ultimate point resistance of piles and standard penetrashytion test in cohesionless soil (Meyerhof 1976)

14 r-------------------r-------b-----q

References and symbols given in Fig121

121-----+---+----+----+------ll------j

- _sect ~ 10t----+----+-_--1-----+---lt~--~H---- 0 lt-~5- _-)0 I() l- I Q---+-----I[08 ~

H -(l () ltj-~C X bulls pound 061------lt----+-----i~- --+-- shy

- bull

-gt Q1pound--I---L---L---L---L--~ 0 10 20 30 40 50 60

Mean standard penetration resistance N in blows per foot ( N30 l

Fig 122 Empirical relation between ultimate skin friction of piles and standard penetration resistance in cohesionless soil (Meyerhof 1976)

74

a) b)0(1 0lt2

10 10

05 05

1 N30OD-+---------__ OD--t-----r-----r----------------ll--Nbull30~ 10 20 30 10 20 30 40 50

Fig 1 2 3 Reduction coefficient a) for impermeable gravels b) form permeablr gravels (Weltman and Healy 1978)

psf [MPo)

Fig 1 2 4 Relation between ultimate point resistance and SPT in cohesionless soil (Polish specification 1975)

75

30 35 40 45 Loo Med Dense Ver dense

50

40

~ E

l)

g 8 1)

middotu

1 ~

QI- bull Touma ~ bull Koizumi

(183)-depth base middotameter5

20 40 60 00 100 N30

30 35 40 45

OG2(294) bull G1 (183)

300 bull us 59 ( 102) bull 88(180)

bull 075 a GT (467)

150

~ 200-+--------+-- t--- --t-----i 130i 0 094 081

014 _- --- -- shy~ E 066bull bull 063 Note -~ ~m~r~s~ ~ 1001---1-r--t---1point is xh QI Ratio ~ Number in ( ) middotn key is h c Ratio s ~

0 20 40 60 00 100

~ig 1 2 5 Ultimate point and shaft resistance versus N30

(Wr ight and Reese 1979)

-----

76

tu Psa

[kPa] [MPa]

200 tu

------ shy150 Psa

1 1

1100 10 1 1

1 50

0+----------T----~---~-N-3J~shy0 20 40 60 80

Relation between ultimate skin friction and SPT (Decourt 1982)

Fig 1 2 6

Psa

[MPa]

8

0----Meyerhof 1976) 0 7

--- - --~ - copy Polish Specifcoti on 1975)6 ~-

~

reg- middot - Reese (1978) middot 5

f41- -- Decourt (1982) -I bull 4 2

----==---______z__ h25m Dp=12m

3 ---shybull

2 7

--shy ----shy~----shy0-t----i----------r-- ----------------------N3l~shy

0 10 20 30 40 so 60 70

Fig 1 2 7 Relation between ultimate point re~istance of large diameter piles and standard peneshytration test (SPT) in cohesionless soil

------

77

tu [kPa)

200 17 Cast under -J bentonite

~----Meyerhof (1976) ~copy -=middotmiddotmiddotmiddot== middotmiddot150 ~------- Wei tman (1978 ) middot Healy middotmiddot ___ Japanese ) 119810 Society

(0 -middotmiddot- Decourt (1982)middot Wright

100

- -middotmiddot -- 11979]reg Reesemiddot Bored piles

~shy50 1 -- shy

-- shy middotmiddot s-shy - --~ ------reg~~ ---~E_==---- ------- shy

N_ ---shy0-+--C--------------r---- ---------~---~-~shyo 10 20 30 40 50 60 70

Fig 12 8 Relation between ultimate skin friction of piles and standard penetration test (SPT)

78

Pst [MPa]

8

7 ---------ist=7MPa

6

5

4

3

2

I N30o~------------------------------+---------__=-shyo 10 20 30 40 50 60 70

Fig 12 9 Relation between ultimate point resistance of large diamter piles and standard peneshytration test (SPT) in cohesionless soil (proposal)

tu [MPa ]

( excavanted and cast

150 under bentonite ) tu=150 kPa

100 tu=90 kPa

I I

50 I I I I I N30

10 20 30 40 50 60 70

Fig 1 2 10 Relation between ultimate skin friction of large diameter piles and standard penetrashytion test (SPT) in sand (proposal)

79

2 3 4 5 p[MPa] 0 2 3 4 5 p[MPa]0

40 40 Cl

80 c 80

c 120 120

Pile No 1 PileNo216 160

200 2

s s c [mm] (mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MPa]

40 40

00 80

120 120

16 160 Pile No 3 Pile No 4

200 200

s s [mm] (mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MAJ]

tgt11 tgt- measured40 40

80 80

120 120

Pile No 5 Pile No 6 160 160

20 200 s s

[mm) [mm)

Fig 1 4 1 Base resistance vs settlement appoximative method piZe No 1- 6

80

0 2 3 6 5 p[MPa) 0 2 3 4 5 p[MPa]

40 40

80 80 6

120 120 6

6160 160

Pi le No 7 Pile No 8 6

200 3J s s

[mm] (mm]

0 2 3 4 5 4 p [ MPo)

6 6 40

6 6

6 80

6 6

6

Pi le No 9 Pile No 10

XJO s s

[mm] [mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MPa)

6 6

40 40 6 6

6

00 80 6

6

12 1Xl 6

160 Pile No 11 160 Pile No 12

200 200 s s

[mm ] [mm]

Fig 1 4 2 Base resistance vs settlement approximative method pile No - 12

81

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MPa]

6 6

40 6 40 6

6

80 6 80 6

120 6 120

Pile No 13 Pile No 141fO 160

200 200 s s

[mm] [mm]

0 2 3 4 5 p [MPa) 0 2 3 4 5 p [MPa)

40 40

80 80

120 120

HiO 160

200 200Pile No 15 Pile No 16

s s (mm) [rrrn 1

0 2 3 4 5 p[MPa] 0 2 3 4 5 p[MPa)

40 40 A A A-measured

680 80 t t

120 c 120 c

1fil Pi le No 17 160 Pile No 18

200 200 s s

[mm] [mm]

Fig 1 4 3 Base r esistance vs settlement approximative method pile No 13- 18

82

0 2 3 4 5 p[MPal 0 2 3 4 5 p (MPa]

D D40 40 c c

80 c 80 c

120 120

160 160

Pile No 19 Pile No 20 200 200

~ml (mm]

Fig 1 4 4 Base resistance vs settlement approximative method pile No 19- 20

LlJ QI

0 average lJ = 098 E sd = 029 C

6 SY = 030

4

2

lJ calculated ________________________ _______ measu red

06 08 10 12 14 16

Fig 1 4 5 Calculated pressure divided by the measured pressure at 20 mn settlement for aZZowabZe

q Zoad Pa= ~p approximative method pile

No 1- 20

8 3

Point resistance p [ MPaJ

a)

p(s) = s a +--sshy1 y qcp

1

SQ100p -- --- ---shy

~ s

[mml

I- 01 s rmm]-l p LMPa b)

f~]

c Cll E ~ i s

[mm)

Fig 146 Definition of the point resistance - settlement curve according to the modified hyperbolic method

84

01 ~ 0

20 0 0

0

16 0

medium 0 value a1 = 905-+ 256 Op 0 0

12 (r=039)

0 0

----0 0

8 0

0 0

0 0

4 0

05 06 07 08 09 10 11 12 f3 14 15 16 17 18 19 20 2 1 Op (ml

Fig 1 4 Initial slope of the base resistance curve vs pile diameter

a1 [p] 0

0020

16 assumed a 1= 28 - 4 qcp

12 0

0 Ct) 0 a = 2659 - 369 qcp8 1

0 0 (r = 0188)0

4

2 3 4 5 (MPa]qcp

Fig 1 4 8 Initial slope of the point resistance curve vs ultimate point resistance on the static cone resistance for pile tests No 1 20

85

a [~ 28

24

20

16

12

8

4

0 2 3 4 5 6 Qcp [MPa]

~ Kiosinski (1977) sand and sandy gravel of mediwn density

~ Klosinski (1977) loose sand ID= 0 3 0 4

o US59 ] t HH Touma p and Reese L (1974) fine sand and silty sand OGl (US59 HH BB - very dense Cl - mediwn dense) 1 BB

DIN 4014 Part 2 (1977)

Fig 1 4 9 Initial s lope of the point res istance curve vs ultimate point resis tance

86

assumed [il =30 -10 Op but )1~ 10 )1 [1 I

u 311-10 Op ( r =0 368)4 1 0

3 0 0

02 0

0 0co 0 8 0 0

0

0

05 06 07 08 09 10 11 12 13 14 15 16 17 19 20 21 Dp [ ml

Fig 14 10 Correction factor for hyperbolic base resistance shysettlement relationship

87

a [~] 28

24

20

16

12

8

4

2 3 4 5 qcp [ MPa]

Fig 14 11 Initial slope of the base resistance curve vs ultimate base resistance (proposal)

v [ 1 ]

3

2 -----G- DP J l 1J I Op lm] J

for Dp ~ 2 0 m ~ u = 1 01

0 --------r----r---r----r-----------------r-------------------------r------r-~-~--shy

05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 Dp[m)

Fig 1 4 12 Correction facto r for hyperbolic base resisshytance - settlement relationship (proposal)

s P ( s)

s +

u qcp

88

a) b)1

bt=o212= 47 MPa a1=1~32 tMWJ s 2 3 4 5 O 1 10 20 30 40 50 60 p [~a]0

0p [ MPa] 40 40

80 80

120 ~

160 b1 = ~ajtg ~= 0 212

~=1132 + 0212middot s

mJ 240 r=0994t t t measured s __ according to Jl s

o o o according to p (bull ll l[mm] [mm]

Pile No 2

slmm) 10 20 30 40 50 60 80 100 125 150 175 2)0 225 Note

p [ MPa] 09 14 17 20 22 24 27 30 32 34 36 38 39

measured

pibull) [ MPa] 074 128 169 202 228 249 282 307 330 347 360 371 380calculated

plbullbull1[MPal 070 125 168 203 233 257 297 327 356 378 396 410 422calculated

1) (bull) ij l099082 091 099 101 104 104 104 102 103 102 100 098 097 sd = 006

ij (HJ1041) (bull10) 078 089 099 102 106 107 110 109 111 111 110 10B 10B sd = 010

plbulll-according to a =1132 [ Jp(s) = s s for pile No21 0 1132 12 39

plbullbulll-according toa =1241 lmiddotGcp=39MPa1 0

~=14 see fig 1411 and fig 14 12 sp(S)=

124+ _ s_ 14middot39

11lbulll11l-J - correlation coefficient calculat~d P5 for

measure p s p(bull) and p(bull) respectively

Fig 1 41 3 Modified hyperboZic point resistance - settZement reZationship for piZe No 2

89

0 2 3 4 5 p(MA1] 0 2 3 4 5 p[MPa)

40 40

80 A 80 A

120 120

160 16 Pile No 1 Pile No 2

20 200 s s

[mm] rnm

0 2 3 4 5 0 2 3 4 5p [MPa] p [MPo]

40 40

80 80

120 1ZJ

lfpound) Pi le No 3 Pile No 4 A

200 A

s s A

[mm) [mm

0 2 3 4 5 p [MPa] 0 2 3 4 5 p [MPa]

40 40 A A A measured ~ calculated

80 80

12

160 160 Pi le No 5 Pile No 6

200 Z)Q

Fig 1 4 14 l3ase resmiddotistance vs settlement pr oposed method pile No 1- 6

90

2 3 4 5 p [MPa] 2 3 4 5 p [ MPa]

40 6

6 40

1 80 80

6

120 120 6

6 160 160

Pile No 7 6

200 200 s

[mm ] s

[mm]

0 2 3 4 5 6 p [MR] 0 2 3 4 5 p [MPa] 0 0

40 40 6

6

80 80

6

120 120

160 160 Pile No9 Pile No 10

200 200

s [mm] [msml I

0 2 3 4 5 6p[MR] 0 2 3 4 5 p [MPa]04--___ ____ ___ ___ ____

0+-=---------------~-~- shy

40 40 c 6 c - measured

0--0-0 shy calculated

80 80

120 120

160 160 Pile No11 Pi le No12

200 200

s [mm]

s [mm]

Fig 1415 Base resistance vs settlement proposed method pile No 7-12

91

0 2 3 4 5 p [MPal 0 2 3 4 5 p [MPa)

40 40

80 80

120

16 Pile No 13 Pile No 14

200 s

tnml [mm]

0 2 3 4 5 p [ MPa] 0 2 3 4 5 p [MPa)

40 40

80 80

120 120

160 1fD

Pi le No 15200 axJ s s

[mm] [mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 6 plMPa ]

A A A measured40 0---0-0 calculated

80

120 120

160 1ED Pile No 17 Pi le No 18

200 200

s s [mm] [mm]

Fig 1 4 16 Base resistance vs settlement proposed method pile No 13- 18

92

0 2 3 4 5 p [MFb] 0 2 3 4 5 p[MPa]

0 6 o -measured40 40 0 0 o -calculated

80 80

120 120

160 160 Pile No 19 Pile No 20

200 200 s s

[mm] [mnil

Fig 1 4 17 Base resistance vs settlement proposed method pile No 19-20

p(s~Psf

15 20

ean

-C 5 w u L Lower ~ confidence

linea 0

a IJl 10

o---o proposed

method I I I

15

Fig 1 4 17a Design curves for estimating developed base resistance in sand (Wr ight and Reese 1979)

93

n (number)

30

28

26

24

22

20

18

16

14

12

10

8

6

4

2

0 02 04

Fig 1 4 18

I= 126

Between 1] = 0 7 - 1 3--- I= 106 ( 84 frac34)

Average ~ = 098 Standard sd =023 deviation

Standard sv =023 veriation

1] (Coefficient Calculated Measured

06 08 10 12 14 16 18

Calculated pressur e divided by the measured pr essure for all pressure - settlement curves pr oposed method pile No 1- 20

94

a) b) Total load

Total load curve

---- _____-- shy- -- -Base load ~- Base load

-0-0 ~

00 00 J

ldeoli zed shaft load J

Shaft sesistanc1---------- 0=0middot30 a= 0 middot 30

025 Settlement IN 025 Settlement IN

Fig 1 419 Proposed method of synthesizing design loadsettlement curve (a) conservative design prodiction b) design prediction- peak in shaft loadsettlement curve (Burland et al 1966)

Cf

-0 0 0

J

0

~-----~--~-~ amp- 2 3 4 5 6 (cm)

a~middotltii -0 lt) cco2 41 -~ -0 1)

vi ~ llloli=----------- ---c~0 1 2 3 4 5 6 7 ( of diameter)1 1 1 1

05 10 15 20 ( in) for 30 in Pile Movemen~ ( 75cm pile)

Fig 1 4 20 Approximate load settlement curves for 30 in bored piles (AB and C represent failure load at 1 in settlement A B and C represent ultimate failure load) (Touma and Reese 194)

95

Load in MN 0 2 3 4 5

25

50E E C

-C 75

-~ ~

-Z 100 lJ

Shaft resistshy

125 once

15 Fig 1 4 21 Load-settlement relationships for largeshydiameter bored piles in stiff clay (Tomlinson 1977)

SettlementSo

Fig 1 4 22 Diagrams of s1iaft and base resistances versus settleshyment assumed in analysis (Kiosinski 1977)

96

0 0 1 ~ r- 025g ~~ 2

1- -shy3 03Sg 14 5 2

Qls =Qpls+Q5 (sQpls) Qs(s-3E

0

degsis __ -- Qpls) a~ C

4

t Sg l

5 Qu Is)

Q(s)in MN-l T

Ouls Q Is) in MN ---

Fig 1 4 23 Construction of load - settlement curves a) for sand b) for cohesive soil (DIN 4014 Part 2 1977 and Franke 1981)

-

s C 5C

Cl

3 0 00 05 10 15 20 Mean settlement I in)

Fig 1 4 24 Load- settlement curves for test shaft S4 (1 in = 25 4 mm 1 ton= 8 90 kN) (Reese 1978)

97

Relative side resistance

0 05 10 15 20 0E=--t----+---+--~

c QI lt) ~ 2 C

I itaker c

QI amp Cooke3E QI-j

c-en 4

C QI

E us 59o

5 QI gt

SA0 w 0 6

Fig 1425a Relative side resistance for clay vesus relative midlength settlement (Reese 1978)

degs (Osl u l t 0 05 10 15 2 0

Mean

2 Lower ~ C QI u

confidence line

~ 3 a

0

~4 E

()

5

6 __ _ ______ ________ __1

Fig 1 4 25b Design curves for esti mating developed side resistance (~Jy1nht ReertP- 1987 J

98 Load Q

8 - 15 mm

1- 2 of p ile diameter

100-200 10-15 of pile Os Ot diameter Shaft Total

Settlement S Resistshy Resist- Load ance once

Fig 1426 Dependence of total load base resistance and shaft resistance on settlement of lar-ge diameter pile (Tejchman Gwizdala 1979)

6

5 Shaft load

4

3

2

z ~

-0

g Pile EF- 56 J 0

0 0 20 30 Butt settlement (mm)

Fig 1 4 27 Deveiopment of shaft and base resistance with settiement (Promboon Brenner 1981)

99

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 0 r-=-1---J__-----------------------~----_shy

Load [ k N l5

10

20

( I

Skin friction ----1 I I

~ 40 QI E

fQI

50 I

Q) I () ICOntinuos fost deolading

Fig 1428 Load-Settlement-Diagram Testelement III (Diaphragm-Wall 0515 m 244 m deep) Portion of Skin Friction and Base Resistance (Prodinger Veder 1981)

Qs (QJ max

0 05 10

Upper Limit of Data

Farr and Aurora (1981J C

~ 2 - shy -+shy - Mean of Data

I QI

Lower Limit of Data a

0 - 3 E

Vl

4

Smid = Approximate shaft buff movement ignoring the elastic compression of upper halt of the shaft

D = Shaft diameter

Q Mobi Ii zed shaft resistance

Qs1max = Maximum shaft resistance

Fig 1 4 29 Relative shaft resistance vs relative movement (Farr and Aurora 1981)

100 Load Q (s) [ MN]

Su5 s s 20 mm for non- cohesive soil u

s s 10 mm f or cohesive soil u

s s 15 mm for claysand u

Q (s) + Q (s)s p

Qs(s)

-C ltII E s ~- [mm]-ltII IJ)

Fig 1 430 Dependence of total load Q(s) point res i stance Q (s) and shaft resistance Q (s) versus settlement p s

~ 3 Usu Qpu Qu Q(s) [ MN]

Sus= 20

1J

60

80

100

120

degs (s ) 140

5 P=Ol Op

1EO

C -ltII E 180 ~ ] 200

s [mm]

Approximative dependence of total load point resistance and shaft resistance versus settlement fny non-cohesive soil

Fig 1 4 31

101

113 3 ~fic0P Ye hY

1 Ground water

D

I y

yh C

Fig 1 5 1 Determination of 01 and 03 for settlement analysis of lar ge diameter bored piles

102

I

E=Et [MPa]

160 0

140

120 0

100

80

6

40

--- --shy 0

0

8 0

0

0

20

2 3 4

I 0 15

Fig 1 5 2

E = Et [MPa]

120

100

80

60

40

I I 0 35 065 085

0

Et= 17 81 qcp0844

( r = 0 128)

5

100

6 qcplMPo]

Calculated values of Young s modulus for piles No 1shy24 according to equation 1 5 2 and 1 56

0

0 0

E =898qcp127 (r= 0314)

E = 9 middot qcp 13 0

20 shy 0

0 0

0 1 2

loJ

I 0 35

3 I

065

4

I 085

5

100

6 qcp [MPo]

Fig 1 5 3 Calculated valueBof Young s modulus for piles No 1shy24 according to equation 1 5 4 and 1 5 6

I K 10 3

( 1 ] 1832

1400 0

1200 0

0

1000 0

800 0

m=2821 qcp0621

600 0

(r=0057)

400 0 0 0 0 0

200

2 3 4 5 6 qcp (MPa]

I 035

I 065

I 085 100 Io

Fig 15 4 Calculated valuesof the dimensionless compress ion modulus K for piles No 1- 24 according to equation 1 5 2 and 1 56

K ( 1 ]

0

1400

1200 0 0

1000

800

600

0

0 0

0

0 0

0 K= 1422 qcpl05

(r=0181)

0 K= 150 qcp

400 0

3)0 0 0

2 3 4 5 6 qcp(MPa)

I I -J 035 065 085 100 Io

Fig 1 5 5 Calculated values of the dimensionless compression modulus K for pile~ No 1-24 according to equation 1 5 2 and 1 5 6

104

120

100

2 3 4 5

I I I rv 0 15 035 065 085 100 lo

Bergdahl (1982) for shallow foundation

o----o Bozant Masopust (1981) D= 1 0 rn h=10 rn large diameter bored piles in noncohesive so il

0----0 Proposal according to current anal ysis

Klosinski (1977) D=090 to 125 rn large diameter bored piles in sand and sandy grave l

Mitchell Gardner (1976) very dense sand E=(35)q (it depends on sand density and stress history) c

Fig 1 5 6 Composision of Young s moduius

105

TABLES

0 Tab 1 11 Methods for detemination of the bearing capacity of bored piles (Ro llberg 1977)

Cl

Nol -- I Soil Areas of Q) Q) Editor Determination of Coefficients 5 type influenceqP qs p ~ C C 11 12 fP I fs

1 all Lab f Soil Mech (1936) l qp at the elevashy 1 0

2 all Huizinga (1951) ~ t~on of the pile 14 point

3 all Van der Veen (1953) ) 18 1 h+l14 all Van der Veen 1 0 Dpl375 D~ 15-- J qcmiddotdhBoersma (1957)

~ 11 +12 h - 12

5 12 all Menzenbach ( 1961) qc at the elevashy~ tion of pile point

6 18 all Mohan Jain Kuman (1963)1 average of qc over 1 h Q) h ~qcmiddotdhl 10 Dpj 3 75 Dj 15 50_micro

and 1 2C 11

7 I amp all de Beer ( 1964) graphically from 10 Q) qc 0 1 h+l18 u C

sand Soviet norm SNIP II 9ct9cp I4 bull O Dp I10 DP l66-1 083shyu clay B5- 67 Trofimenkov (1969) 2 50 1 251 +l J qc middotdh micro middot h middot-l l 2h-~ _micro

9 _micro u all Paproth (1972) at the elevation 3 5 I shy

) of pile point (Dpgt0 5 m 7 D8DpE

E-lt p 1 h+l1 1 h Dplt 5 m u l+l J qcmiddotdh h f qcmiddotd~ 30 Dpl 50 Dp 2 0 100shy10 sand Norwegian method

0l 2 h-12 200Senneseth (1974)

11 lall Soviet method h+l (20-0lqgl - 101 1 q middotdhTrofimenkov (1974) -- f C UpUsmiddotQct

l1+l2 h - 1212 Qct-Qcp 40 D~ 10 Dp 1 33- 0 67shyUsbullh 4 00 2 50

13 English method 10 DFJ 375Dp 10 I

Rodin Corbett Shershywood Thorburn (1974)

3 7 5 Dcl 8 0 DP 10h+l1 _1_ J qcmiddotdh 1 h

qcmiddotdh 20011 +12 h - 12 hb

1 h qcmiddotdh 150hf

0

Observations

fp I f (qp)fs C

Dp E = 1 cm Qbu = 2 Qpa (approx )

s fs=f (qc)

q=~g Us 0 h

fp=f(q~)

fs=f(qgl

bull fine grained non- cohesive soil loosely packed

bull fine grained non- cohesive soil medium dense comp

fine grained non- cohesive soil

Tab 111 (cont)

h+h bE 14 non-cohe- Meyerhof ( 1956 poundti J N 3o middot dh CtME fN3 o dh 1 0 DP 4 0 DP 10 100 etM= l 2

sive soil 1976) lJ +12 h - li hE o hgp taken into consi der ~ Ul (I)

E-lt

C 0

~E = 1 kgbull 30 cm

(statistical limit depth of the pile) hE - clamping length of

pile micro rrJ l-l micro (I)

15 C (I) p

sand Norwegian method

- irm - - - 10 IT

m = diagram O l-l Senneset (1 974) rrJO C

16 rrJ micro gravel English meth it 3 middot N30 - - - 10 - Jf 3 + diagram U) ~

E-lt p U)

iiouiu Coruett Sherwood Thorshyburn (1974 )

(NJQat the elevashytion of pile point1

0 -i

108

Tab 11 2

Results of calculati o n of p i le point load pile shaft load and total pile load from static con e penetration test (Rol l berg 1977)

~ gt

~ gt Ultima te Ultimate Ult imate

No Method micro micro poi nt skin bearing 080lt17nlt1 50 Q) -l

-l middot-i resistanceuro resistance r esistancE

middot-i p 0

(J n1 n n2 n n3 n n1 n2 n3

1

2

Lab fSoil Mech

Hu izinga (1951)

(1936 ) 430

307 i 3 Van der Veen (1953) 239

49

4

5

Van der VeenBoersma

Menzenbach (1961)

(1957) -l middot-i 0

2 4 7

1 57 1-CJ)

6

7

8

Mohan Jain Kumen

de Beer (1964)

Sovi et Norm (1969)

(1963) CJ) Q)

-l middot-i 0

lJ Q)

Q)

gt- CJ) Q)

c 0

2 44

1 37

183

47

t I

49

487

0 18

47

16

3 02

0 85 1

47

16

137

08

9

10

Paproth ( 1972)

Norw Method (1974)

~ 0

0

u I

C 0 C

1 8 1

180 l 46

1- - -_L~ 46 167 46 1 19

1 1 Soviet Method ( 1974) [1 1 41 46 1 62 13 083 13 1 14 0 8

12 Engl Method (1974) 2 66 35 128 35 2 30 35 1 28

Note

cal Q a) n = --- mean value of the rat i o between calculat ed pile loads and those n Q determined f r om loading test

b) n = number of piles

109

Tab 113

Point resistance of large diameter piles (DIN 4014 Part 2 1977)

Settlement Point pressure 1 Factor -fshy

(cm) (MPa) cf=lOMPa I i=15 MPa C C

Piles without enlarged base

1 05 005 003 2 08 008 005 3 11 0 11 007

15 34 034 023

Piles with enlarged base

1 035 0 04 002 2 065 0 07 004 3 0 90 009 006

15 2 40 0 24 0 16

Note 10 lt qp lt 15 (MPa)C

Tab 114

Skin friction resistance of large diameter piles (DIN 4014 1977)

Strength Static cone pen- Depth below Skin frict ion Factor of sand etration resist surface

(MPa) (m) (MPa) fs

Very small lt 5 - 0

Small 5 to 10 0 to 2 0 2 to 5 003 ln6 to 333

gt 5 005 100 to 200

Medium I I 10 to 15 0 to 2 0 I

I 2 to 7 5

gt 75 I 0045 0075

222 to 133 to

333 200

High I I

i

l

gt 15 0 2

to 2 to 10 gt 10

I I I

I

i

0 006 0 10

gt gt

250 150

Note Skin friction is assumpted as linear until s =2 cm and constant for s gt 2 cm

11 0

Tab 115

Values of the inverse of the point resistance factor (Bustamante 1982) fp

Soil type qPC I 1

Factor - shyfp(MPa)

for piles group

a) Silt and loose sand lt 5 0 40 -b) Moderately compact

5 - 12 040sand and gravel

c) Compact to very gt 12 i 030compact sand and gravel I

Tab 116

Values of the shaft resistance factor fs (Bustamante 1982)

Factor fs

Soil type qs

C Category I(MPa) I A I B I II A III BI

I a) Silt and loose lt 5 60

i 150 I 60 I 120-

sand

b) Moderately corn- I pact sand and 5 - 12 100 200 100 200 gravel i

Icl Compact to very

compact sand gt 12 150 i I 300 150 I 200I

I I and gravel i

I

111

Tab 117

Point resistance factor (proposal)

-

1-fp

qc (MPa)

Gravel

Coarse sand Medium sand

Fine sand Silty sand

25

080

0 70

060

5 0

0 65

055

047

75

054

045

039

10 0

045

036

031

150

035

027

022

200

030

0 23

018

Tab 118

Shaf t r e sistance factor (proposal)

fs

qc (MPa)

Gravel

Coarse sand Medium sand

Fine sand Silty sand

25

80

100

130

10 0

120

150

190

I 200

180

230

300

11 2

Tab 119

Calculated values qcp

for large diameter piles

Pile Literature Length Diameter (m) Measured p Cr1 lcul Settlement Note Authcr(year) No (ml D Dp (MPa)

(s=0 10Dp) (MPa)p ~~JL__

s s ()(mm) Dp

1 Franke (1977) 1 13 11 36 38 117 106 Garbrecht

2

3

2

3

13

14

11

15

1 58 36

37

38

40

215

185

136

123

) qg accord to Franke

4 4 13 15 204 3 2 33 220 108 and Garshy

5 5 6 11 33 35 127 11 5 brecht (1977)

6 6 6 11 153 36 35 146 9 5

7 7 6 1 5 34 35 158 105

8 -shy 8 6 15 2 1 41 3 0 109 52

9 10 9 11 39 52 47

10 11 95 11 43 35 77 70

11 12 9 11 49 66 60

12 13 10 11 15 5 1 4 0 77 5 1

13 14 9 11 1 5 4 8 46 115 77--shy14 Pranke ( 1973) 15 115 18 4 9

) ) average 88

15 13$ 13 5 1 3 19 -2 5 3 2 sd=3 0

16 - - 165 16 5 13 19 30 sv=0 34

17

18

Spang (1972)

llXJ

V90

6 6

6 75

0 7

09

3 2

4 2

32X

42X

x) s =0 10 D p

19 VlaJ 720 1 2 39 3 9X

20 - - VlsJ 6 5 1 5 3 0 3 ox

21 Touma and US59 9 9 o 76 8 0 Reese ( 1977)

22 HH 75 0 61 8 0

23 Gl 180 091 - 2 5

24 BB 137 o 76

sd = standard deviation

sv = standard variation

Tab 1 2 1

Ultimate point resistance coarse and medium sand psf (MPal (Pol ish Specification 1975)

Depth h

Medium sand r = 0 40 N = 200 30 Base diam (Op) and depthbase diam (hDp)

Dense sand r 0 Base diam (Op)

= 0 80 = 50N30 and dpethbase diam (hDp)

(ml Dp = 0 6 m Dp = 1 0 m Dp =12 m Dp = 1 5 m Dp = 0 6 m DP = 10 m DP = 12 m DP = 15 m

Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp

5 10 83 0 85 5 0 075 42 07 33 20 8 3 16 50 14 42 13 3 3

7 14 11 7 1 2 70 11 5 8 10 4 7 2 8 11 7 22 70 2 0 5 8 1 8 47

10 18 16 7 15 10 0 14 8 3 1 3 67 35 167 28 100 2 5 83 2 2 67

15 18 250 18 15 0 16 12 5 15 100 4 2 25 0 3 4 15 0 30 125 27 100

20 2 4 333 2 0 200 185 167 1 7 133 4 7 333 3 8 200 33 167 30 13 3

25 26 41 7 2 2 25 0 20 208 19 167 5 0 41 7 4 0 250 3 5 20 8 3 2 167

w

11 4

Tab 131

Partial safety factors for resistance to axial load for bored piles (Wright Reese 1979)

Partial safety Normal Poor factor for control control

Unit skin resistance 1 70 185

(no load test)

Unit skin resistance 160 1 70

(from load test)

End bearing 165 180

Tab 1 3 2

Probability of failure of bored piles under normal design conditions (Wright Reese 1979)

Probability of Factor of Structure failure safety classification

5 10-3 25 monumental

210shy 22 permanent- 2

5 middot 10 2 0 110shy 1 85

temporary 5 bull 10-l 165

11 5

Tab 133 Results of field tests (Tejchman Gwizdara 1979)

L

II C C C 0 0 0

micro micro

micro micro micro For universal safe~y F2u u CUNo micro C C ~ ~g~ middot- C

~ Permisible micro micro i ~c -i micro

cmiddot-~ micro~ L

micro oo ~ load ~t~ ~~ omicro micro ~ ~ 3Z~ ~ ~ micro

-~~

~ e ~ --middot--

middot- ~ obull 0

~ g ~~ ~~ ~

~ L

o Jl i5 sect~ =gt L Q~ = yen t p Qp Qp

D h Q~ Srrx s tm p s E~ iQ~lQ~cm ~~ KN X ll1l kPa kPa kN kN kN Jl ~e ~ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 70 6 60 4081 1550 2531 38 0 1182 10 4040 175 2041 245 1796 632 141 120

2 90 6 75 5082 3041 2041 598 1785 10 4782 107 2541 1079 1462 282 140 42 5

3 120 720 7259 4041 3218 557 1035 10 3576 119 3630 2158 1472 187 2 19 594

4 150 650 8643 4454 4189 51 5 928 20 2521 136 4326 2158 2168 3 10 166 253

5 130190 195 7750 3011 4709 392 805 10 1075 - 3875 981 2894 3 10 166 253

6 130190 165 9516 5101 4415 536 522 20 1800 - 4758 1962 2796 260 158 412

7 130190 135 8044 5199 2845 646 114 4 15 1834 - 4022 2109 1913 2 47 149 524

8 180 115 11380 4415 6965 388 792 15 1735 - 5690 2747 2943 161 2 37 483

9 76 980 6867 4316 2551 628 110 13 9529 109 3534 1128 2306 383 111 32 8

10 61 7 60 7161 2747 44 14 383 67 15 9404 303 3581 392 3188 700 169 109

11 92 180 4807 883 3924 184 20 8 1329 76 2404 196 2207 450 178 82

12 76 24 5 6769 736 6033 109 20 8 1623 103 3385 147 3238 500 186 43

13 76 137 5396 2060 3336 38 2 63 8 4535 102 2698 589 1109 350 t 58 218

14 120 23 5297 1854 3443 35 0 960 10 1640 39 2649 196 2453 945 130 7 4

15 135 16 7 13489 7554 5935 560 181 10 5260 83 6749 2060 4689 367 127 305

16 170 46 0 8829 2943 5886 333 17 10 3466 39 4415 1373 3042 2 14 1 94 31 1

Average Fi 387 166 Standard deviation Sd 2 1 5 034 Standard variation sv= 0 56 0 20

1234 Spang1972 567 8 Franke 1976 9 10 111 2 1 3 Touma Reese 1974

14 Colombo 1971 15 Kerisel Simons 1962 16 Appendino 1973

11 6

Tab 134

Results of model

SafetyScheme factor

medium F ssand

F p

loose F s

samd Fp

F 3 55 sd _P F 1 32 sd

s

tests (Tejchman Gwizdara 1979)

Diameter D (mm)

30 60 90 133

145 129 108 112

280 3 08 307 294

140 154 153 112

594 3 04 324 426

107 sv 030

0 19 sv 0 14

117

Tab 135

Individual safety factors according to literature

Literature proposal ofLiterature individual safety factor

Fs Fb

Polish Specification (1974) 100 250

Tejchman Gwizdala (1979) 150 400

Bustamante Gianeselli 200 300 (1982)

Decourt ( 1982) 130 400

average 145 3 38

TAB 141 0)

Load settlement curves - measured

Pile No

Settlement 1 c 3 4 5 6 7 8 9 10 11 12

s p s p p s

p p s P

p s P

p s p p s

P p s

P p s

p p s p p S

p I i p s

p p s p

mm MPa rrrn lifl5a MPa mm

lifl5a MPa

mm lifl5a MPa mm

RPa mmMPa nwa MPa mm

RPa MPa mm RPa MPa mm

RPa MPa mm RPa MPa mm

RPa MPa mm RPa MPa mm

RPa 10 045 222 09 1 1 05 20 07 143 06 167 08 125 0 5 20 08 125 10 100 08 12 5 15 67 16 63 20 092 21 7 14 43 08 25 10 20 0 1 1 182 12 167 0 9 22 2 12 167 18 111 14 143 24 83 22 9 1 30 125 240 1 7 I 7 6 1 1 273 1 2 250 14 214 15 200 1 2 250 15 200 25 12 0 19 15 8 30 100 26 11 5 40 1ti 250 20 10 0 14 28 6 14 286 1 7 235 18 222 1 4 286 18 22 2 3 2 12 5 23 174 36 111 3 0 133 50 20 250 22 ~27 1 7 294 1 5 333 20 250 2 1 ~38 1 7 294 1 9 263 37 135 27 18 5 4 2 11 9 33 152 60 2 2 273 24 ~5o 20 300 1 7 353 23 61 22 ~73 18 333 21 286 43 140 30 20 0 46 13 0 36 16 7 80 271 295 27 796 24 333 20 400 27 ~96 25 1320 22 364 25 32 0 53 15 1 36 222 41 195

100 322 31 1 30 333 28 357 22 454 31 1323 29 345 26 385 28 357 60 16 7 40 25 0 45 22 2 125 38 329 32 391 32 391 25 500 32 139 1 30 41 7 32 39 1 4 6 272 48 ~6 0 150 14 2 357 34 1441 36 41 7 27 555 36 ~1 7 34 44 1 36 41 7 175 36 486 39 449 30 583 38 ~61 38 461 200 38 526 42 476 32 625 225 39 577 33 682

(mmMPa) ( 1 MPa)

1

1=2074

t 1=O ~01 =0 98S

a1=1132

b1 =0 212 V =0994

a1=2217

b1=O 131

V =Q 978

a1=1860 b1=0233

V =Q966

a1=1562

b1=0174 V =Q983

a1=1382

b1=O195

V =0975

a1 =20 37

b1 =C 174

V =0957

a1=1443

b1=(l 193 v =O 961

a1=965

b1= 0071 V =0 990

a1=1 91

b1 =o 128

V =0 993

a1=5 83

b1=C124

v =O 981

a1=6 1 4

b1=01 64 v =U 985

li(MPa) ~9 4 7 76 43 57 middot5 1 57 5 2 141 78 81 61 cp (MPa) B8 39 40 33 35 35 35 3 0 39 3 5 49 40 __Ef ~-6 1 2 1 9 1 3 16 15 16 1 7 36 22 16 15 qcp

TAB 141 (continue) Load settlement curves - measured

Pi le No 3ettlement 13 14 15 1 17 18 19 20 21 22 23 24

s p s T5

p s T5

p s T5

p s P

p s P

p s P

p s P

p s P

p s T5

p s T5

p s p p s

p mm MPa lll1l

HPa MPa mm HPa MPa mm

fWa MPa mm fWa MPa lll1l

HPa MPa mm HPa MPa mm

MPa MPa lll1l NT5a MPa HPa MPa 111111

HPa MPa 111111

HPa MPa 1)1111

mra 10 1 7 59 075 133 06 167 075 133 ~95 105 09 11 1 07 143 3 76 1 7 59 08 133 10 100 20 2 4 83 130 154 095 21 1 1 15 17 4 1 75 114 16 125 12 167 ~7 74 33 6 2 1 3 15 3 1 9 103 30 29 103 1 7 176 1 2 250 15 200 r55 118 22 136 16 18 8 38 79 46 66 1 7 182 27 110 40 33 12 1 20 200 1 35 29 6 1 75 229 ~O 133 26 154 175 229 49 82 58 6 9 1 9 21 1 35 115 50 36 139 235 21 3 145 34 5 1 95 256 24 208 ~-4 147 28 17 9 20 250 gt8 86 6 9 72 2 2 233 4 2 11 8 60 39 154 265 22 6 1 55 387 2 15 279 28 214 ~6 16 7 30 120 0 2 2 27 3 o 8 89 80 7 5 2 3 262 80 43 186 31 258 1 7 47 1 36 222 14 05 198 33 124 2 25 320 B 1 98 25 327

100 45 222 18 556 39~ 253 ~-5 222 36 1278 27 370 ~8 113 125 47 26 6 20 625 42 29 8 149 255 28 1446 t50 22 682 3 0 500 175 200 225

(mmMPa) a1=479 a1=1206 a1=14 51 a1=1113 a1=1406 ~=836 a1=843 a1=1176 ~=64 a =561 a1=10 0 a1=9 5 (1MPa) b1=0175 b1=0 178 b1=0 382 b=0287 b1=O 119 p 1=0 137 h1 =o 193 b=0258 p1=0 049 b1=0032 b1=0 276 b1 =0 048

hf (MPa)

v =0998 57

v =0-987 5 6

v =0989 26

v =0992 35

v =0933 Iv =0991 84 73

v =0993 5 2

v =0998 tJ

3 9 =0944 v =0998 v =0996 v =0981

qcp (MPa) 46 39 32 30 32 14 2 39 30

lL 12 1 1 08 12 26 1 7 1 3 13 qcp

lD

N 0

TAB 142

Calculated point resistance curves

Setlement (mm) p(s)

1

n p(s)

Calculated value of the p(s) for pile No

2 3 4 5

n p(s) n p(s) n p(s) n p(s) 6

(MPa)

n p(s)

7

n p(s) 8

n p(s) 9

n p(s)

10 20 30 50 80

100

150 200 225

070 128 177 253 335

375 446 493

157 140 141

127

123

1 16 106

070 1 25 168 232

297

327 378 410

422

078 089 099 1 06

1 10

109 1 11 108

108

073 1 30 176 246

315 349

405 441

146 163

160 145

1 32 125

113 105

056 096

1 26

167 205 222

249 265

271

0 80 096

105

1 11 100 101

092 0 83

082

065

118 162 233

308 345

412 456

108 108

1 16 116 114 111

064

1 12 151 2 10 2 69

298

346 3 76

078 P63 093 tt 13 101 tt 53 100 I 13

108 ~75

103 ~04 096 ~ 55

~ 87

1 26 125 127 126

125

1 17 1 04

052 088

1 15 153

188 2 03 227 242

065 0 74

o 77 0 81 0 75

0 73

063

072 122

1 83 262 347 388

463 5 11

073

0 74

073 0 71 0 65 065

064 1 18

162 233 309

3 46

41 3 4 57

Dp (m) 1 1 Qcp (MPa) 38 (mmMPa) h2 8 1 1 9 Qcpbullv1(MPa) 72

158

39

124 14 55

15

40

n20 15 60

204

33 148 10 33

1 1

35

tt 4o 1 9 67

1 53 3 5

tt 4 0 1 5 51

15

13 5

114 0 15 i-gt 3

2 1

30

tt 6 0 10 3 0

1 1

3 9

12 4 1 9 74

1 1

3 5 h40

1 9 67

Note n = condition coefficient calculated p(s) measured p(s)

10

n

081

084 0 85 0 86 0 85

087

TAB 142 (continue)

Calculated point resistance curves

Calculated value of the p(s) for pile No (MPa) Setlement 11 12 13 14 15 16 17 18 19 20

(mm) p(s) ll p(s) n p(s) ll p(s) n p(s) n p(s) n p(s) n p(s) n p(s n p(s) n

10 106 070 0 71 045 091 054 099 1 32 055 092 053 070 060 081 085 0 72 080 055 078

20 1 90 079 130 059 160 067 1 70 1 30 096 101 091 079 1 12 148 085 1 31 082 098 082

30 258 086 1 76 068 2 15 074 222 1 31 1 26 105 120 080 156 205 081 180 082 132 083

50 363 086 246 075 297 082 296 1 26 1 70 117 161 082 228 095 295 087 256 0 91 184 092

80 471 316 o 77 3 77 088 364 1 18 2 1 o 1 24 199 308 085 393 097 336 1 02 237 095

100 522 349 078 415 092 394 228 1 27 2 16 348 088 442 098 375 104 262 097

150 611 405 479 443 258 117 244 423 529 443 304 101

200 669 441 518 473 276 261 474 587 488 331

Dp (MPa) 1 1 1 5 1 5 18 1 9 19 070 090 12 15

qcp (MPa) 49 4 0 46 49 32 30 32 42 39 30 12 a1 mmMPa) 84 h20 96 84 152 160 152 124 160

IV1 1 9 1 5 15 12 11 1 1 23 21 18 15

qcpmiddotv1 (MPa) 93 60 69 59 35 33 74 88 70 45

- 12287 average = ~ = 098

standard deviation sd = 023 standard variation sv = 023

N

122

TAB 143 Ultimate settlement for shaft resistance - summing up

Ultimate settlements (mm)Literature sand cohesive claysand

soil

Burland Butler Dunican (1966) 7

Touma Reese (1974) 10 Tomlinson (1977) 10 Klosinski (1977) 8

Francke Gerbrecht (1977) 20-30 DIN 4014 part 2 (1977) 20 10 Francke (1981) Reese (1978) (1979) 05-2 of 05-2 of Farr Aurora (1981) shaft dia~ shaft diam

5-20 mm 5-20 mm Tejchman Gwizdala (1979) - Spang (1972) 10

10 10 20

- Francke (1976) 10 20 15 15

- Touma Reese (1974) 13 8 15 8

8 - Colombo (1971) 10

- Kerisel Simons (1962) 20 - Appendino (1973) 10 Promboon Brenner (1981) 10 Prodinger Veder (1981) 12 Decourt (1982) 10-15 10-15

-average s = 14 1 10 126

standard deviation sd = 53 2 1 47

standard variation sv = 038 021 037

123

TABLE 14 4 Al l owab l e base resistance versus sett lement

Pile Li terature ength Diameter (m) Calculated qcp=qcp Settl ement Fp-3- sa (mm)No Aut hor No (m) D DP qcp (MPa) for qcp3(MPa)

1 Francke ( 1977) 1 13 11 38 127 25 Garbrecht

II2 2 13 11 158 39 130 19

II3 3 14 15 40 133 33

II4 4 13 15 204 33 110 23

II5 5 6 11 35 117 22

II6 6 6 11 153 35 117 19

II

8

7 7 6 15 35 1 17 25

II 8 6 15 21 30 100 21

II9 10 9 11 39 130 13

II10 11 95 11 35 117 15

II11 12 9 11 39 163 11

II12 13 10 11 15 40 133 7

II13 14 9 11 15 46 153 9

14 Francke ( 1973) 115 11 5 18 30 100 15

II15 135 135 13 19 32 107 29

II16 165 165 13 19 49 163 35

17 Spang (1972) V70 660 070 32 107 28

18 II V90 675 0 90 42 140 16

II19 V120 720 1 20 3 9 130 16

II20 V15C 650 150 30 100 16 average for pi les 198

standard dev sd = 78

standard var sv = 039

)assumed qc = p for s = 010 Op sonding meRsurement were not availab le

IV

TA~LE 15 1

Comparison of the initial sl ope of the pile point resistance - settlement curve

Accardi ng to 1 2 3 4

In i t i ~l 5

slope a1 for the pile No

6 7 8 9

(mmMPa)

10 11 12 13 14 15 Note

a 1 for s=10 mm 222 11 1 a1 for s=20 mm 21 7 14 3 calculated 207 113see Tab 14 1 Bo Berggren (198 )230s=20 mm

Schmertmann s method (see 202B Berggren 1981)s=20 mm

No 1 _ llNo - 6 1 97 098

202 250

22 2

400

30 8

090

14 3

200

186

076

167

182 156

286

18 2

107

125

167 138

091

20 0

222

204

426

263

098

125

167

144

087

100

11 1 9 7

182

23 5

1 03

12 5

14 3

11 9

174

164

105

67 83

58

14 6

125

1 16

63

9 1

61

103

59

8 3 48

123

13 3

15 4 12 1

1 10

167 21 1

aceto hypershy14 5 bola type curve

1 15

No 2 NQj = n1

No 4Noz ~ na No 5Naz= T]g

105 1 27

106

093

1 13

160

1 23

108 1 17

157

100

121 109

1 92

118

1 16 1 14

164

2 12

120

122

1 15

143

1 76

151

149 1 73 1 27 146

TAllLE 151 (continue)

Compa ri son of the initial slope of the pile point resistance - settl ement curve

Initial slope a1 for the pile No (mmMPa)According Note to 16 17 18 19 20 21 22 23 24 -a1 for s=10 mm 133 - 105 11 1 143 76 59 133 100 a1 for s=20 mm 174 - 114 125 167 74 62 153 10 3 calculated see 11 1 146 84 84 118 64 56 100 95Tab 141

Bo Berggren 198 67 78 25 0 114s=20 mm Schmertmann s method (see B 136 67 250 146 Berggren 1981) s = 20 mm

nG = 108 No 1NoJ = n 1 20 125 1 32 121 1 19 105 1 33 105 sd = 0 14

SY= 013 No 2 i) = 1 29ro1 = n1 157 136 149 142 1 16 1 11 1 53 108 sd = 019

SY= 015 No 4 iis = 143 INo2 = ns 091 126 1 63 111 sd = 033

SY= 0 23 No 5 ii9 = 1 37183 108 163 142INoz = n9 sd = 0 37

SY = 027

N Vl

126

TABLE 152

Measured and calculated pile point resistance

Pile Calculated Measured Measured No qcp P for

s=10 mm P for s=20 mm

~ 10 mm ~ 20 mm

- (MPa) (MPa) (MPa) - -

1 38 045 092 84 41 2 39 09 14 43 28

3 40 05 08 80 50 4 33 07 10 47 33 5 35 06 11 58 30 6 35 08 12 44 29 7 35 05 09 70 39 8 30 08 12 38 25 9 39 10 18 39 22

10 35 08 14 44 25 11 49 15 24 33 20 12 40 16 22 25 18 13 46 1 7 2 4 27 19 14 30 075 13 40 23 15 32 06 095 53 34 16 49 075 115 65 43 17 32 - - - -18 42 095 1 75 44 24 19 39 09 160 4 3 23 20 3 0 07 12 43 25

average= 484 291

sd 163 088 sv 034 030

Tab 153 Results of calculation for piles No 1-24

Pile No

Length (m)

Overburden pressure 0 vs

0hs (kPa)

0ve (kPa)

0 nc (kPa)

- -ov=o1 (kPa)

- -OV=03 ( kPa)

00 (kPa)

p(a il ( kPa)

s (a 1) (mm)

A2 ( 1 )

E t

(kPa)

Md ( 1 )

K (1)

E I

t (kPa)

( kPa) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

l 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

13 12 14 13 6 6 6 6 9 95 9

10 95

11 5 135 165 66 675 72 65 99 75

180 137

l 33 133 123 116

70 70 70 70

104 102 95

102 95 94

106 139 95

101 106 97

180 137 221 215

53 53 49 46 28 28 28 28 42 41 38 41 38 38 42 56 38 40 42 39 72 55 88 86

202 202 216 202 1114 104 104 104 146 153 146 160 153 181 209 251 120 128 134 123 238 180 305 277

202 202 216 202 104 104 104 104 146 153 146 160 153 181 209 251 120 128 134 123 238 180 305 277

168 Hi8 170 159 87 87 87 87

125 128 121 131 124 138 158 195 108 115 120 110 209 159 263 246

128 128 133 124 66 66 66 66 94 97 92

101 96

110 126 154 79 84 88 81

155 118 197 182

141 141 145 136

73 73 73 73

104 107 104 111 105 119 137 117 89 94 99 91

173 132 219 203

950 975

1000 825 875 875 875 750 975 875

1225 1000 1150 750 800

1225 800

1050 975 750

2000 2000 625

1500

218 139 255 190 16 1 146 210 12 7 10 1 11 7 84 73 69

104 167 210 124 103 10 1 109 142 120 76

153

0802 0802 0822 0820 0798 0798 0798 0798 0791 0798 0800 0811 0814 0837 0837 0830 0769 0 768 0771 0 775 0 780 0 781 0 788 o 779

35296 81603 43312 65222 44019 67515 4609 91313 78186 60572

118115 15129 5 184075 95577 67017 81607 33252 67554 85294 75994 78816 74857 55101 54862

075 075 0 77 075 084 084 084 081 079 078 084 080 083 076 076 078 0 77 081 079 076 082 087 064 0 74

278 643 337 512 542 832 567

1085 766 572

1216 1417 1832

796 520 709 353 735 878 781 630 726 302 366

26472 61202 33350 48917 36976 56713 38656 73964 61767 47246 99217

121036 152782

72639 51932 63653 25604 54719 67382 57755 64629 65126 35265 40598

a=282l a =l781 y=axs S=0621 B=0 844

V=0 057 V=0 128 _ Iv -J

~

N co

Tab l53 Results of calculation for piles No 7-24

Pile No

17

1 2 3 4 5 6 7 8 9

70 11 72 13 74 75 16 17 78 79 20 27 22 23 24

Ground water

18

-20 m b s

-28 m -335 m -330 m -3 15 m dry dry -53 m -85 m

E t (kPa)

19

33653 64979 35364 45664 47969 54583 37574 63072 74548 57753

71 2618 123531 150297

71239 48619 59204 39744 77208 77863 62049 90407 95844 57762 62937

vxEt=E Md (kPa)

20

25240 48689 27230 34248 35254 45849 31562 51040 58893 45047 94599 98825

724747 54142 36950 46179 30603 57678 61572 47157 47734 83384 36968 46569

a=898 S=l 27 =0314

K (l )

21

265 511 275 358 517 672 463 749 730 546

1160 1157 7496

593 377 514 422 775 802 638 723 929 377 420

a=l422 S=l 05 =0187

E=E = t1 3

g-gcp (kPa)

22

51046 52799 54566 42492 45870 45870 45870 37547 52799 45870 77039 54566 65438 52799 40826 71039 40926 58739 52799 37541 82549 82549 40826 59945

Calculated s

(mm)

23

708 128 72 7 15 3 724 146 144 17 3 71 3 11 5 11 2 732 13 2 707 1 5 1 13 7 93

102 118 137 728 12 l 69

11 9

s__caL n=smeos

() 24

050 092 050 087 0 77 7 00 069 l36 l 12 098 133 l81 l97 103 090 065 0 75 099 117 126 090 101 097 078

ri=l00 sd=035 sv=035

K = l50gcp

25

570 585 600 495 525 525 525 450 585 525 735 600 690 450 480 735 480 630 585 450 825 825 1180 645

E l

(kPa)

26

67684 69465 72250 57726 44856 44856 44856 38448 59659 54306 74956 63214 70704 49089 56783 79502 45283 61081 58207 42927

708572 94785 71033 91898

E = t E middotA2

l

(kPa)

27

54283 5571 l 59389 47336 35795 35795 35795 30682 47790 43336 59964 51266 57553 47088 47024 65987 34823 46970 44877 33269 84639 74027 55974 71589

Calculated s

(mm)

28

l O l 12 l 11 7 737 15 9 18 7 185 21 1 12 6 12 2 133 14 l 150 13 7 13 l 14 7 709 12 7 738 755 12 4 735 50

100

- -

Tab l53 Results of calculation for piles No l-24

Pile

29

l 2 3 4 5 6 7 8 9

10 ll 12 13 14 15 76 17 78 19 20 21 22 23 24

sea l n= middotshy

smeas

28 TT

30

0 46 087 046 0 72 099 l 28 088 l 66 l 25 l 04 l 58 l 93 2 17 l 32 078 0 70 088 l 23 l 37 l42 087 l l 3 066 065

n=l 10 sd=0 44 sv=040

s seal for p n=s=lOrnn ac cording to s = 70mm

(mm)

37 32

5 l 0 51 ll 8 l18 64 064

13 0 l30 85 0 85

13 3 l 33 83 0 83

184 l84 ll6 l l 6 105 l05 137 l 37 21 3 2 12 19 4 l94 107 l06 l l 3 l l 3 84 084

92 092 l 0 9 l09 128 l28 83 083

l 0 3 l03 88 088 79 0 79

n=1 73 sd=025 sv=027

s for p according to s = 20mm

(mm)

33

10 4 184 102 18 6 15 6 200 14 9 276 209 18 4 219 292 274 185 17 9 12 9 -

169 194 219 172 200 143 15 0

seal n=s=20rnn

34

052 092 051 093 078 l00 075 l 38 l 05 092 l l 0 l46 l 37 093 090 065

-085 097 l1 0 086 l00 072 075

n=093 sd=025 sv=0 27

s for p according to s = 30rnn

(mm)

35

142 223 14 l 22 3 198 249 142 34 5 290 249 274 345 33 l 243 22 6 168 -

24 7 26 6 293 24 3 279 187 213

seal n=s=30rnn

36

047 0 74 047 0 74 066 083 047 l 15 0 97 083 091 l 15 l10 0 81 075 056 -

082 089 098 081 093 062 0 71

n=o80 sd=020 _ sv=0 25 N

IO

APPENDIXES

APPENDIX 1 1 1

Pi le No 1 Length 13 m D 10 m

Areas of influence

-

qe

(MPa)

1 fp

___9c_ f

(MPR) zyen

(MPf) qcp (MPa)

Soil type

22 20 18 16 14 1 2

l 2 (m)

10

1 0 08 06

16 15 16

026 027 026

42 41 42 Sand

04 14 U28 39 02 14 028 39 41

02 16 0 26 42 04 16 026 42 06 16 026 42 08 14 028 39 Sand 1 0 13 030 39 12 15 027 4 1 38 14 13 030 39 16 12 032 38 18 12 032 38

40 20 10 036 36 22 10 036 36 24 9 U39 35 2 6 8 043 34 28 10 036 36 30 10 036 36 3 2 10 036 36 34 10 0 36 36 36 11 0 34 37 38 11 034 37

l 1 (m)

40

42 44

11 0 34 37 15 1

46 48 50 52 54 56 58 60 62 64 66 68 70 7 2 74 76 78 8 0

APPENDIX 112

Pile No 2

to little depth of sounding

q~ = middle values for 11 = 2 Op

q~ = 145 MAa (Francke Garbrecht 1977 Tab 2 p 50) (Fi g No 2)

for sand

qcp = 0275middot145 = 40 MPa q~p =V ~~s) middot 40 = 097middot40 = 39 MPa

Pile No 4

q~ = 120 MPa sand (Fig No 4)

q = 0 315middot12 = 3 8 MPa q bull 38 = 086middot38 = 33 MPa=V Jmiddot54

1

cp middot bull cp

Pile No 12

qg = 155 MPa sand (Fig No 13)

qcp = 026middot155 = 4 03 MPa

Pile No 13

q~ = 200 MPa sand (Fig No 14)

q = 0 23middot20 = 46 MPacp

APPENDIX 113

PileNo3 Length 14 m D 15 m

Areas of influence

-

qe

(MPa)

1 Tp

----9cf

(t-1Pf) r~

(MPf) qcp (MPa)

Soil type

22 2D 18 16 17 025 43 14 17 II II

L 2 17 II II

12 (m)

16 10 08 06

17 17 17

o

II

II

II

II

Sand 04 17 II II

02 19 024 46 b9

02 19 024 46 04 17 025 43 06 15 027 41 08 13 030 48 1 0 12 032 38 12 11 033 36 14 13 0 30 39 16 14 028 39 18 12 032 38 40 20 16 026 42 2 2 16 026 42 24 11 033 36 26 11 033 36

60 28 30

10 10

036 036

36 36

Sand

32 10 036 36 34 12 032 3 8 3 6 12 032 38 38 12 032 38

1 1 (m)

40

4 2 4 4

13

14 16

030

028 026

39

39 42

46 13 030 39 48 12 032 38 50 14 028 39 52 10 036 36 54 13 030 39 56 14 028 39 58 15 027 41 60 15 027 ~-1 236 62 64 66 68 70 72 74 76 7 8 80

APPENDIX 114

Pi l e No 5 Length 6 0m D 11 m Dp 11 m

Area s of i nfluence

-

qc

(MPa)

1 Tp

-3Lf

( MPf) l ~

(MP~) qcp (MPa)

Soil type

2 2 2 0 18 1 6 14 1 2 155 U i1 33

l 2 (m)

1 2 10 08 06

15 14 12

022 023 0 27

3 3 32 32

Fine sand

+ silt

04 125 026 33 02 16 0 21 34 39

02 16 021 34 04 13 025 33 06 08 10

15 5 17 20

022 0 20 018

34 34 36

35 Fi ne sand

1 2 20 0 18 36 14 20 018 36 + s ilt 16 20 0 18 36 18 165 020 32 20 165 0 20 32 22 17 0 20 34 24 26 2 8 30 32 3 36 38 4 0

19 21 5 21 5 21 5 20 19 5 19 5 20 215

01 9 ---

018 018 0 18 0 18 -

3 6 40 40 40 36 35 3 5 36 4 0

l 1 (m) 4 2

44 20 19

018 01 9

36 3 6 157

46 48 50 5 2 54 56 58 6 0 62 64 66 68 70 7 2 74 76 7 8 8 0

APPENDIX 1 15

Pi le No 6 Lengt h6 0 m D 11 m

Areas of qc 1 __9_c_ qcp Soil typei nfluence fp f 1 yen (MPa) (MPf ) (MPf) (MPa)

-2 2 20 18 16 t 4---0 14 75 038 29 L2 20 018 36 Fi ne sand

1ti 10 30 40 + s i lt12 08 19 0 19 36(m) 06 17 020 34 04 14 023 32 02 9 034 31 56

02 6 043 26 04 12 026 3 1 06 17 020 34 08 11 028 3 1 1 0 14 023 32 35 1 2 17 020 34 Fi ne sand14 19 019 35 16 20 018 36 + silt18 18 0 19 34 20 14 023 32

46 22 12 026 31 24 12 026 31 26 15 022 33 28 18 019 34 30 20 018 36 3 20 0 18 36 34 20 018 36 3G 20 018 36 38 20 018 36 4 0 20 018 36

l 1 42 22 40

(m) 44 22 40 46 L2 4 0 158 48 50 52 54 56 q =V ~ - 3 b =0 99middot35 = 35 MPp cp 53 58 6 0 62 64 66 68 70 72 74 76 78 80

APPENDIX 116

Pi leNo7 Length 60 m 0 15 m

Areas of influence

-

qe

(MPa)

1 Tp ~

(MPg) r~

(MPf) qcp (MPa)

Soil type

22 20 18 16 9 U33 30 14 10 031 31 12 135 024 32

l 2 (m)

16 10 08 06 04 02

13 12 6

10 175

025 026 043 0 31 020

33 31 26 3 1 35 50

Fine sand

+ silt

02 04 06

17 10 115

0 20 0 31 027

34 31 3 1

08 10

145 185

023 019

33 35 3 5

1 2 14

20 19

018 0 19

36 36 Fine sand

l 1 (m)

60

16 18 20 22 24 26 28 30 3 2 34 36 38 40

42 44 46 48 50 52 54 56 58 6 0

185 125 125 165 17 19 21 215 205 20 21 20 20

24 22 20 215 22 22 21 19 18 22

0 19 026 0 26 020 020 019 --

018 018 -

018 01 8 --

018 ----

0 19 0 19

35 33 33 33 34 36 40 40 37 36 40 36 36

40 40 36 40 40 40 40 36 34 40 219

+ silt

62 64 66 68 70 72 74 76 78 80

APPENDIX 117

Pile No 8 Length60 m D 15 m Dp 2 1 m

Areas of influence

-

qe

(MPa)

1 r +

(MPg) r~

(MPf) qcp (MPa)

Soil type

22 18 019 34 20 16 021 34 18 125 026 3 3 16 115 027 31 14 11 028 3 1 12 11 028 3 1

l 2 (m)

10 08 06

105 11 145

D29 028 023

30 31 33

Fine sand

+ silt

04 18 0 19 34 02 18 019 34 71

02 15 022 33 04 11 0 28 31 06 13 0 25 33 08 20 0 18 36 10 15 022 33 12 13 025 33 14 175 020 35 16 18 20 22

20 21 20 15

018 -

018 0 22

36 40 36 33

35 Fine sand

+ s i lt

24 26 28 30 3 =

13 16 175 19 20 20

025 021 020 0 18 018 018

33 34 3 5 34 36 36

36 38 4 0

20 20 21

018 0 18 -

36 36 40

11 (m)

4 2 4 4 4 6 48 50 5 2 5 4 56 5 8 60 6 2 6 4

20 20 21 22 21 20 19 175 19 20 25 28

018 0 18 ---

01 8 01 9 0 20 0 19 018

36 36 40 40 40 36 36 35 36 36 40 4 0 23 0

6 6 68 70 72 74 76 78

qcp 1f5=v 2T middot35 = b85 middot35 = 30 MPa

80

APPENDIX 118

Pi le No 9 Le ngth 90 m D 11 m m

Areas of 1Qe -9c qcp Soil typeinfluence Tp f ryen (MPa) (MPg) (MPf) (MPa)

-

2 2 2 0 18 16 14 lc 11 034 37

12 10 10 036 36 12 08 9 039 35 Medium(m) 06 10 036 36 sand04 10 036 36

02 11 034 37 43

02 12 032 38 04 12 0 32 38 06 12 0 32 38 08 13 030 39 10 13 030 39 12 13 030 39 14 14 028 39 16 14 028 39

44 18 14 028 39 20 14 028 39 39 Med ium 22 15 027 4 1 sand 24 16 026 4 2 26 17 025 43 28 13 0 30 39 3 0 9 039 35 32 13 030 39 34 16 026 42 36 17 025 43 38 17 025 43 40 19 024 4 6

11 42 17 025 43

(m) 44 15 027 41 17 7 46 48 50 52 54 56 58 60 6 2 64 66 68 7 0 7 2 74 76 78 80

APPENDIX 119

Pi 1 e No 10 Length 95m D 11 m m

Areas of influence

-

qe

(MPa)

1 fp

-9c f

(t-1Pf) [~

(MPf)

qcp

(MPa)

Soil type

22 20 1 8 16 14 L 2 13 Uti 3J

l 2 (m) 12

10 08 06 04

18 18 28 19

0 19 019 0 19 019

34 34 34 34

Fine

sand

02 21 40 42

02 20 4 0 04 17 020 34 06 21 40 0 8 10

23 22

40 40 Fine

1 2 14 16 18

21 20 16 15

0 21 022

4 0 4 0 34 33

sand

44

20 2 2 24 26 28 30 32 34 36 38 40

14 14 13 11 11 14 17 14 12 13 12

023 023 025 0 28 028 023 020 023 027 025 027

32 32 33 31 31 32 34 3 2 32 3 3 32

l 1 (m) 42

44 12 13

0 27 025

32 33 15 2

46 48 50 5 2 5 4 56 5 8 6 0 6 2 6 4 66 6 8 70 72 74 76 78 80

APPENDIX 11 10

Pi 1 e No 11 Lengt h 9 0m D 11 m m

Area s of influence

-

Qe

(MPa)

1 fp

__k_ f

(MP~) ryen

(MPf) qcp (MPa)

Soi l type

22 20 18 16 14 12 lb 55

12 (m)

1 0 08 06 04

23 19 20 21

024 023

55 46 46 55

Medium

sand

02 22 55 62

0 2 04

24 25

55 55

06 08

27 28

55 55

10 12 14

28 28 28

55 55 55 49

16 26 55

44

18 20 22 24 26 28 30 3 34 36 38 40

24 19 18 17 22 21 17 11 13 12 11 9

024 024 025

025 0 34 030 032 034 039

55 46 43 43 55 55 4 3 37 39 38 3 7 35

1 1 (m) 42

Ll Ll

12 16

032 0 26

38 4 2 209

46 48 50 5 2 54 56 58 60 62 64 66 68 70 72 74 76 78 80

APPENDIX 141

0 2 3 4 p [MPa)

PILES WITH 40 ENLARGED BASES

80

120

160 C----0

200 IN4014 s (1977)

[mm]

P s calculateds P p(s)(mm) (MPa)(mmMPa)(MPa) ()

10 035 286 046 20 065 308 080 30 090 333 104

150 24 625 214 200 229

ai = 2605 (mmMPa) b1 = 0243 1MPa V 1000 bi = 1b = 411 MPa

_ 411 MP Vi - 24 a

() assumed

average Dp = 18 m

qcp = 24 MPa ai = 184 (mmMPa) (28-4middot24)

Vi = 1 2 (3-18)

qcpmiddotvi = 29 MPa

40

80

120

160

200 s

[mm]

DIN 4014 Part 2 ( 1977)

0 1 2 3 4 5 p [MPal

PILES WITHOUT ENLARGED BASES

C----0

DIN 4014 ( 1977

s calculated s p -p- p(s)

(mm) (MPa)mmMPa)(MPa) ()

10 05 20 062 20 08 25 113 30 11 27 3 155

150 34 441 385 200 424

ai = 2085 (mmMPa) bi= 0 157 1MPa V = 0970

bi= 1s = 637 MPa

Vi 187=3f =

() assumed

average Dp = 12 m

qcp = 34 MPa a1 = 144 (mmMPa)

Vi = 18

qcpmiddotvi = 61 MPa

Range qc = 10-15 MPa

(28-4bull34)

(3-12)

1 1 q = r -r- = 036 for qc = 10 MPaCp p Ip+= 027 for qc = 15 MPa

qcp = 36-405 MPa P

APPENDIX 142

Touma F and Reese L (1974)

Soil parameters pile parameters and base resistance see fig bullbullbullbull

TAB

Measured load settlement curves

Settlement s

mm

10 20 30 40 50 60 80

100 120

a 1 (mmMPa) bi(MPa) V

N3u

q =04 -N30 (cMPa) ()

1 qCp=--rpbullqC

Pile No 21 (US 59) 22 (HH) 23 (G1) 24 (BB) Notep Sp p S p p S p f Sp MPa mmMPa MPa mmMPa MPa mmMPa Mla mmMPa

131 76 169 59 075 133 100 100 269 74 325 62 131 153 1 94 103 381 79 456 66 165 182 273 11 0 488 82 581 69 1 90 21 1 349 115 581 86 694 72 2 15 233 424 118 675 89 800 75 229 262 813 98 245 327 884 113 925 130

64 56 100 95 U049 0032 0276 0048 0944 0998 0996 0981

80 gt100 30 60 32 gt 40 12 24 ()

Bergdahl (1982)

gt5 5 gt55 32 4 3

(0 18middot32) (018middot40) (0265middot12) (018middot24)

CONTACT PRESSURE p [ MPa]

0 2 4 6 8 100 N-------r---------------(us 59) ( HH) ( BBi

E E SQ-------lt+-----+--------------lt

VI

1shyz UJ

~ 100 1---------i----+----+----+------l------I -J I shyI shyUJ V)

so~----~--~-- ~--~

APPENDIX 143

us 59 fYJo 0 50 00

ff-t r-=-~c~=~-r~c_---_---l-~e-J-C~ 0 ------

CLAY

FINE SANO

J lD- 760 mm

f5m~--~--~

Pile US 59 and results from penetration test

HH IV_l() so 100 r=-=-==-==-r-~--=-=- 0 0 II 15- flf ~ II~ Ibull If t f

CLAY SAND

Sm

)

= -middotl lo - GtOmm

~ JI

SILTY SANO tOm

Pile HH and results from penetration t est

APPENDIX 14 4

61 NJO 50 --------00

11 1 =f J - 1 -- 0

CLAYSILT

E ~ Sm ltrj

SILTY SAND

q I lDmiddot 910 mrn tom

I) t bull

Pile G1 and results from penetration test

88

0 50 too ~1-e I q 111bull - Q

CLAY

SIL TY SAND 5m

]

l lDmiddot760mrn

Om

Pile BB and results from penetration test

APPENDIX 145

Klosinski B (1977)

Loading tests 50 bored piles 09-125 m diameter average Op= 11 m On t he sett l ement of rigid pla te the settlement of t he pi le base is given by

PmiddotOSp = T-K b

where Mb - equivalent deformability modu lus

1) Sand and sandy gravel of medium density

Mb = 25-50 MPa

According to Bergdahl (1979) medium sand is between

q(l) 5 MPa (Io=035)c2)

ql = 10 MPa (Io=065)C

from fig 117 rp1 = 055 for qc = 5 MPa 1Tp = 036 for qc = 10 MPa

q(l)= 0 55middot5 = 2 75 MPacp bull

q(2= 0 36middot10 = 360 MPacp

allowable p~ 1)= ~p = yen = 092 MPa and p~2) = ~ = 120 MPa

settlement of the pi l e base

5(1)= o 92 middot 1bull1 = O 0135 m = 13 5 mm p 325 middot middot

5( 2)= 1bull2bull1middot 1 = O 0088 m = 8 8 m p 350 bull bull

1) _ s _ 135 _ 14 7 (mm) a(2) _ 88 _ a 1 - p - o---92 - bull NPa bull 1 - T-7 - 733 (Wa)

2) Loose sand lo= 030-040

Mb = 12- 25 MPa

q~l) = 44 MPa q~2)= 58 MPa

1Tp = 058 and 052

q(3) = 0 58middot4 4 = 2 55 MPa middot q( 4) = 0 52middot5 8 = 3 02 MPa cp bull middot bull cp bull middot middot

allowable p~ 3)= 4i = 085 MPa p~4)= yenl = 101 MPa

s(3)_ 085-11 = 26 mmmiddot s(4)_ 101middot11 = 148 mm p - 312 p - 3 25

STATENS GEOTEKNISKA INSTITUT Swedish Geotechnical Institute S-581 01 Linkoping Tel 01311 51 00

Serien Rapport ersatter vara tidigare serier Proceedings (27 nr) Sartryck och Preliminara rapporter (60 nr) samt Meddelanden (10 nr)

The series Report supersedes the previous series Proceedings (27 Nos) Reprints and Preliminary Reports (60 Nos) and Meddelanden (10 Nos)

RAPPORT REPORT Pris kr

No Ar (Swcrs)

1 Grundvattensankning till foljd av 1977 50shytunnelsprangning P Ahlberg T Lundgren

2 Pahangskrafter pa langa betongpalar 1977 50shyL Bjerin

3 Methods for reducing undrained 1977 30shyshear strength of soft clay K V Helenelund

4 Basic behaviour of Scandinavian soft 1977 40shyclays R Larsson

5 Snabba odometerforsok 1978 25 shyR Karlsson L Viberg

6 Skredriskbedomningar med hjalp av 1978 40shyelektromagnetisk faltstyrkematning - provning av ny metod J Ingands

7 Forebyggande av sattningar i 1979 40shyledningsgravar - en forstudie U Bergdahl R Fogelstrom K - G Larsson P Liljekvist

8 Grundlaggningskostnadernas fordelning 1979 25 shyB Carlsson

9 Horisontalarmerade fyllningar pa los 1981 50 shyjord J Belfrage

RAPPORTREPORT

No

10 Tuveskredet 1977-11-30 Inlagg om skredets orsaker

11a Tuveskredet geoteknik

l1b Tuveskredet geologi

11 c Tuveskredet hydrogeologi

12 Drained behaviour of Swedish clays

R Larsson

13 Long term consolidation beneath the test fills at Vasby Sweden YCE Chang

14 Bentonittatning mot lakvatten T Lundgren L Karlqvist U Qvarfort

15 Kartering och klassificering av leromradens stabilitetsforutshysattningar L Viberg

16 Geotekniska faltundersokningar Metoder - Erfarenheter - FoU-behov E Ottosson (red)

17 Symposium on Slopes on Soft Clays

18 The Landslide at Tuve November 30 1 977 R Larsson M Jansson

19 Slantstabilitetsberakningar i lera Skall man anvanda total spanningsanalys effektivspanningsanalys eller kombinerad analys R Larsson

20 Portrycksvariationer i leror i Gateshyborgsregionen J Berntson

21 Tekniska egenskaper hos restproshydukter fran kolforbranning shyen laboratoriestudie B Moller G Nilson

Ar

1981

1981

1981

1981

1981

1982

1982

1982

1983

1982

1983

1983

1983

Pris kr (Swcrs)

50shy

50shy

40shy

50shy

100shy

60shy

80shy

60shy

190shy

75shy

60shy

150shy

65shy

RAPPORTREPORT

No Ar Pri s kr (Sw crs)

22 Bestamning av jordegenskaper med sondering - en litteraturstudie U Bergdahl U Eriksson

1983 75 shy

23 Geobildtolkn ing L Vi berg

av grova moraner 1984 70 -

24 Radon i jord -Exhal ation- vatten kvot -Arstidsvariationer - Permeabilitet A Lindmar k B Rosen

1984 75 shy

25 Geoteknisk terrangklassificering for fysisk planering L Viber g

1984 120shy

26 Large diameter bored piles in nonshycohesive soils Determination of the bearing capacity and settlement from results of static penetration tests (CPT) and standard penetration test (SPT) K Gwizdala

1984 85shy

14

It must be underlined that the best correlation for

the pile point is obtained with the Soviet method

101 for 94 driven piles in non-cohesive soil

- 172 114 for 46 bored piles in non-cohesive soil

Trofimenkov 19731974 showed the results of comparison

of the ultimate loads determined by formula (114a)

Q~ and by pile load tests Q~ for 153 driven friction

piles at the 57 various sites see Fig 115

In Germany a lot of investigations were made before

establishing the DIN 4014 part 2 (1977) on large diameter

piles

In Table 113 and 114 the results from these investigashy

tions are generalized

The data in the tables were obtained from 35 test loadings

(4 of which were published by Franke 1973 The diameter

of the piles was from 08 to 25 m the length from 5 m

to 34 m and the cone penetrometer resistance varied from

10 MPa to 15 MPa

Bustamente and Gianeselli 1982 proposed a prediction

of the pile bearing capacity by means of the static

penetrometer Their proposal was based on the intershy

pretation of a series of 197 full scale static loading

tests In this paper the results from tests of 55 bored

piles are chosen The diameter of the piles varies from

042 m to 150 m and the length from 6 m to 44 m The

equivalent cone resistance was determined as showed in

Fig 116 The authors have noticed that the point

resistance factor f depends on the nature of the soil p and its compactness but also on the different pile placeshy

ment techniques (see Tab 115)

Piles of category group I

- Plain bored piles - Cased bored piles

- Mud bored piles - Hollow auger bored piles

- Type I micropiles - Piers (grouted under low - Barrettespressure)

15

In Tab 116 values of the shaft resistance factor

fs are given

Category IA

- Plain bored piles - Mud bored piles

- Hollow auger bored piles - Cast screwed piles

- Type I micropiles - Piers

- Barrettes

Category IB

- Cased bored piles - Driven cast piles (concrete or metal shaft)

Category IIA

- Driven precast piles - Prestressed tubular piles

- Jacked concrete piles

Category IIB

- Driven metal piles - Jacked metal piles

It can be noted that the values in Tab 116 are in

genera l of the same range for the driven and the

bored piles

According to the Polish Specification 1979 the point

and shaft resistance factor are given by

1-f- = kmiddota

p p

where

ap 035 for sand

k coefficent of unhomogeneity k qcp min

qcp

= 0065 for sandfrac12

1

16

Similar results can be observed in Fig 116a and

Fig 116b It was showed by Kerisel (1965) and Franke

(1973) that the harder soil the more loosening at

excavation and thus relatively smaller bearing capacity

Taking into account the Franke diagrams we will have

for D = 125mand settlements= 2 cm p

Cone resistance qc (MPa) 1 5 50 1 0 15 22

qc p for s=2 cm 3 6 8 12 14

(see Fia 1 1 6b )

taking safety factor for pile base F = 3 the point resis~ance

33-10 ~-05

380375 lo 212 bull lo 2114 bull

factors- shy are p

The above anal ysis shows that it is possible to determine

ultimate point and shaft resistance of bored piles from

static cone sounding But it is very important and must

be taken into account type of pile kind of soil and

degree of compaction

Bel ow calculation method for large diameter bored piles

based on the static cone penetrometer resistance (CPT)

is proposed Equation (117) can be used directly for

the base diameter D lt 15 m For larger diameters p shyD gt 15 m the values should be multiplied by the

p ff t ITscoe icen Y~ as pi

( 1 1 5 )

where

qcp = according to equation (117)

D = diameter of the pile base D gt 15 mpi pi

17

This value q~p should be put into equation 116

The value qc s in equation 118 is independent on the

pile diameter

Proposed calculation method

(116)

where)

1 1 40 ~ 11 3 for piles wit h a nd enlarged bases12 10 12 = ~

h+h

q (h) dh (117)qcp l1+l2 f -f- Ch-li p

h 1 f 1

qcs = o -f- qc (h) dh (118)h s

1 -f- = f(q kind of soil ) -+- see Fig 11 7 and Tab 1 1 7

C p

f (q kind of soil ) -+- see Fig 1 1 8 and Tab 1 1 8 fs C

Note

a) the point resistance q for qc gt 20 MPa is assumed cp to be maximum as

- Gravel 70 MPa - Coarse sand medium sand 55 MPa - Fine sand s il ty sand 40 MPa

b ) The shaft resistance qcs for qc gt 20 MPa is assumed to

be maximum as

- Gravel 110 kPa - Coarse sand medium sand 90 kPa - Fine sand s ilty sand 70 kPa

These proposed values are compared with results by

Bustamente (1 982) and the Polish Specification (1978)

Fig 11 9 and F i g 1110 A similar comparison for DIN

4014 1 977 is shown in Fig 1111 and Fig 1112

) In this paper was used the above values 1 1 and l z But it can be used in practice 11 =30 D and h =2Dp respectively The results shall be very simi l ar to the above onPs

18

The proposed method has been examined with field test

results This is shown in Fig 1113 to Fig 1128

and Appendix 1 11 to 1110 and Tab 119

The comparison shows that the value of q in equationcp (117) corresponds to the settlement -10 of the base

diameter (s=010 DP) see Fig 1113 and Tab 119

(average sDp=88 and standard deviation sd=3)

Later in this paper the allowable load and dependence of

the load versus settlement will be determined

12 Determination of bearing capacity of the large

diameter bored piles from results of the Standard

Penetration Tests (SPT)

There are little published on pile tests coupled with

results from Standard Penetration Test (SPT) Among the

authors who have published material in the subject are

- Meyerhof 1956 1976

- Senneset 1974 (Norwegian method)

- Rodin Corbett Sherwood Thorburn 1974 (English method)

- Polish Specification 1975

- Weltman Healy 197 8

- Reese 1978

- Japanese Society 1981

- Decourt 1978 1982

The Norwegian method is valid o nly for concrete andor

wooden piles the English method only for gravel It is

very important to underline that the Norwegian a nd the

English methods use of the SPT resul ts intermediate by

the static cone penetrometer resistance (q ) as well C

Below methods are presented that are using the results of

SPT directly Meyerhof s method in total can also be used

on driven piles in non-cohesive soil Although we could

have found some proposes for bored piles Eqs (121 and

122) see Fig 121 and Fig 1 22 as well

19

Ultimate point resistance (psf)

12 N 3 omiddotH lt 120 N 30

(kPa) (1 2 1)Psf D

where

N30 the average standard penetration resistance

in blows per 03 m

H depth in bearing stratum

Ultimate skin friction tu

for bored piles tu N~ o (kPa) (1 22a)

for driven pil estu 2N30 (kPa) (1 2 2b)

where

N30 the average standard penetration resistance

in blows per 03 m within embedded length

of pile

Weltman and Healy (1978) taking into account Meherhofs

proposition for driven piles have introduced two coefshy

ficents for bored piles in gravels (glacial soil) Equ

123 and Fig 1 23

t = a 2 N30 (kPa ) (1 2 3)U 1

where

ai a 1 for impermeable gravels see Fig 123a

ai a 2 for permeable gravels see Fig 123b

The Polish Specification ( Specification for Design and

Construction of Large Diameter Bored Piles in Bridges

1975 Ministry of Transport) gives the ultimat e point

resistance in dependence of N30 base diameter and depth

see Tab 12 1 The Tab 121 contains values for coarse

and medium sand For other non-cohesive soils the following

coefficients are proposed

p f = S bull p f (medium sand) ( 1 2 4)S 1 S

20

where

S1 1 20 for grave lSi

f 132 080 for fine sand

13 3 070 for silty sand13i

In Fig 124 values of psf are shown for h = 10 m DP

06 m DP= 15 m and h = 20 m DP= 06 m DP 1 5 m

respectively

A few of the instrumented piles were tested and analyzed

by Wright and Reese (1979) The ultimate point and shaft

resistance in the fine and silty sand as a function of

blow count from SPT is shown in Fig 125 Results from

two additional tests reported by Koizumi (1971) are also

introduced in the figure The ultimate point resistance

is assumed to exist at a settlement equal to 5 of the

base diameter

Methods of prediction of the bearing capacity of piles

based exclusively on N30 values were presented by Decourt

1982 Below a proposition for high capacity piles excavated

and cast under bentoni te is presented

The ultimate skin friction is determined by the expression

(see Fig 126)

t = 33 N30 + 1 0 (kPa) ( 1 bull 2 5 ) u

where

N30 average value of N30 along the shaft

- for N30 lt 3 must be taken as = 3N30 - for N3o gt 5 0 must be taken as NJo= 50

The allowable point resistance can be obtained in a n

expedite way as

Psa = 33 N30 (kPa) (1 2 6)

where

N30 = average of Nat point level one metre above

and one metre below

Psa allowable point resistance

21

Decourt proposed a safety factor for the point of F = p

40 Therefore the ultimate point resistance can be

determined by the expression

(kPa) (1 2 7)

In Fig 12 7 and Fig 1 28 the above values for base

and skin friction resistance are compared respectively

Taking into account the type of soil thereis a good

correlation for ultimate point resistance The result for

ultimate skin friction is scattered but only apparently

The values for large diameter bored piles are between

the line 1a and 1b in Fig 128 Large diameter piles

have a high ultimate skin friction in relation to driven

piles (see points for bored piles in Fig 122 and DIN

4014 Part 2 1977 as well) The high values for piles

excavated and cast under bentonite have had a strong base

on the load tests (Decourt 1978 1982 and Wright and

Reese 1979)

Below the proposals are given for determination of the

values of the ultimate point resistance and the ultimate

skin friction Eqs 128 to 1214 and Fig129 1210

The ultimate point resistance

- gravel psf = 140 N30 (kPa) ( 1 bull 2 8)

for N~ 0 gt 50 blows3O cm Psf 7 MPa

- coarse sand and medium sand

(kPa) ( 1 2 9)

for N30 gt 50 blows3O cm Psf 55 MPa

- fine sand and silty sand

psf = 80 Nio (kPa ) (1210)

for N30 gt 50 blows3O cm p f = 40 MPa 5

where N3 o the average of N value near the point level as

22

h+l1

f N3o(h)dh ( 1 2 11 ) h-12

3DP see Fig 1 1 1 D

p

The ultimate skin friction for coarse sand and medium sand

tu = 1 8 N 3 o (kPa) (1212)

t (kPa) (excavated and cast (1213)u under bentonite)

where

N30= the average value of N along the shaft as h

N -

3 o = h1 f N 3 o ( h) dh ( 1 bull 2 bull 1 4 ) 0

The ultimate skin friction for N30 gt 50 blows30 cm is

assumed to be maximum as tu = 90 kPa and t = 150 kPa u

13 Allowable load of large diameter bored piles

The allowable load Qa of large diameter piles has been

expressed as

OuQa ( 1 3 1)Ft

Qa Q(s)=Qb(s) + Os(s) ( 1 3 2)

Opu + Osu (1 3 3)Qa Fp Fs

Qr lt mmiddotQf ( 1 bull 3 4)-

= universal safety factor

individual safety factor for ultimate resistance of the pile point

individual safety factor for ultimate resistance of the pile shaft

= load according to the allowable settlement

calculated load

m coefficient

calculated ultimate bearing load of the pile

23

The equations from (131) to (134) are used as

1) equation (131)

a) DIN 4014 - 1977 Ft= 2 175 15 (depending on the kind of load)

b) Polish Specification 1975 Ft = 18 16 ( -- )

1c) Trofimenkov 1974 Ft = 14307

2) equation (132)

a) DIN 4014-1977 i Q(s) = Qb(s) + Q (s) = A middotp(s) + E tAsmiddott(s)

s p 0

where Qbs) and Qs(s) are described in Fig 1423

3) equation (133)

a) Polish Specification 1974

F 25 22 depending on the kind of load p

F 1 bull 0 s

b) Wright SJ Reese LC 1979

The ultimate capacity or resistance is considered as a

random value and represented by a frequency distribution

The distribution can be described by a mean value and a

variance The distribution of the load applied to the

foundation can be described similarly The coefshy

ficients used to factor resistance and loads are called

partial safety factors Some recommended partial safety

factors for resistance under normal conditions of design

and construction are given in Tab 131 Normal control

is defined as a condition where the coefficient of variation

is less than about 035

Typical values for partial safety factors for loads are

in the range 1 to 2 depending on the type of load and

how it is applied The overall factor of safety Ft can

then be calculated from the equation

Ft = y RbullY S

24

where

YR the par tial sa f ety fac t or for resistance and

Ys the partial safety factor fo r load

The probability of fa i lur e of the foundation can be r eshy

lat ed to the factor of safety for a parti cular degree of

uncert ainty (see Tab 13 2)

c ) Tejchman Gwizdala 1979

The authors discuss adequate safety factors based on fie l d

test s by Spang (1 972) Franke (1976) Touma and Reese (1974)

Colombo (1971) Kerisel and Simons (1962) Appendirno (1973)

see Tab 1 33 Taking into account the universal safety

factor Ft= 2 0 for the tota l load settlement curves it

was estimated

i) F in the range of 111 to 237 with the average value s F = 166 and standard deviation sd = 034 s (see column 16 Tab 133)

ii) Fb in the range of 161 to 945 with the average

value Fb = 387 and standard deviation sd = 2 15

For model core d piles in laboratory conditions values of

Fs = 108 to 154 (average Fs = 132 s~ = 019) and

values of F = 280 to 5 94 (average F = 3 55 sd = 1 07)p p

see Tab 1 3 4

As a conclusion it was assumed that Fb = 40 and F 1 5 s

for l arge diameter bored piles

The investi gation has shown that for the above safety

factors settlements of piles under permissibl e loads are

10 to 20 mm There was assumed a maximum load on large

diameter piles corresponding to a settlement of 010

diameter of the piles

25

d) Bustamente Gianeselli 1 982

e) 0ecourt 1982

The safety factor is given by

F = FgmiddotFfmiddotFamiddotFw where

F 11 - skin friction g F 135 - point bearing capacity

g

Ff safety factor related to the formulation adapted

Ff= 10 for Decourts method

Fd safety factor related to excessive deformation

Fd = 10 for skin friction

As for the point Fa= 2 to 3 depending on the

pile diameter For usual cases 25 is suggested

Fw safety factor related to working load

Decourt recommends 12

Thus we will have

- for skin friction

Fs = 11bull10middot10middot12 132 - 13

- for the point

F = 135bull10bull25middot 1 2 = 405 = 40 p

4) equation (134)

a ) Polish Code 1983

Q lt mbullN r shy

where

total load coefficient (depending on the kind of load For foundation we can assume Yf = 12 )= code load

correction coeffic i ent

09 for pile foundations

m 08 for two piles

m 07 for single pile

26

N ymmiddotQu

ym material (soil) coefficient

ym 08 to 09 (Polish Code 1981)

Thus we will have

QnmiddotYf lt mmiddotym middotQu-

Yf9uFt = On m bull Ym

1 2 max = 2 14Ft 0 7 bull 0 8

1 2min = 1 48Ft 0909

The above analysis has shown different ways to determine

the allowable load The analysis is in direct connection

with mobilization of the load (versus settlement) The

dependence of total load point resistance and shaft reshy

sistance will be discussed in detail in Chapter 14

In the authors opinion taking into account the above

analysis the allowable load should be determined based

on the equation 133 ie based on individual safety

factors for ultimate point and shaft resistance Proposed

values of F and F in literature are shown in Tab 135 s p The average values are Fs = 145 and Fp = 3 38 respectively

Taking into account that the bearing capacity is determined

based on the results from sounding measurements direct from

a place near the piling without a ny indirect correlation

the allowable load of large diameter bored piles is given

by the equation (133a)

( 1 3 3a)

where F = 30 and F 13 are proposedp s

27

14 Determination of settlement of larqe diameter bored

piles based on static cone penetration tests CPT

Determination of ultimate point and skin friction resistance

based on static cone penetration tests has been discussed

in Chapter 11 above Based on the results of this calcushy

lation and on Chapter 13 we can establish an approximate

relation between point resistance shaft resistance and

total load on one hand and settlement on the other However

the approximation gives a wide scatter especially for base

resistance as can be observed in Fig 141 to Fig 144

Only the first part of the point resistance - settlement

curves are in good agreement with measured values It can

be observed in Fig 145 that the average correlation

coefficient n = 098 and standard deviation sd= 029

This way of calculation can be used only for rough calcushy

lation (see Chapter 13)

In Chapter 11 also measured point resistance - settlement

curves were shown The base resistance increases gradually

with increasing pressure and settlement Below the cur7

vature of the point resistance - settl ement curve will be

examined It is assumed that this curve can be described

as a part of the hyperbola curve Thus if the ratio of

the measured settlement (s ) to the point resistance (p)

is plotted against the measured settlement the result

will fall closely to a straight line with the equation

( 1 4 1)

where a 1 and b 1 are constants (see Fig 1 46a and Fig

14 6b)

Then the point resistance - settlement realtionship can be

expressed as a hyperbola

s p = ( 1 bull 4 2)

The constant is the initial s lope of the point resistanceshya 1

settlement curve ie a 1 = t~a The inverse of the constant

28

b 1 is the vertical tangent (asymptote) to the curve 1ie for s = 00

bf= ~ If the ultimate point reshy1

sistance psf is equal to bf (psf=bf) the whole point

resistance settlement curve will be a hyperbola type

Now the Eq 1 4 2 can be written as

s s ( 1 4 3)a) p s or b) p = a+__sect_a1 + 1 Psfbf

If the ultimate point resistance is smaller than bf only

a part of the hyperbola curve ought to be considered

Further the Eq 14 3 will be written as

p ( 1 4 4)

where

poundf_ correction factor for hyperbola point Psf resistance-settlement relationship

Taking into account the discussion in Chapter 11 the

ultimate point resistance psf = qcp based on the CPT measurements

Therefore the relationship between the point resistance

the sett l ement and the CPT result can be expressed as

s p (1 4 5)s

The correction coefficient v 1 will cause a change of the

position of the vertical asymptote bf in r elation to the

ultimate point resistance q bull This means that we take cp into account a different part of the hyperbola curve for

the description of the point resistance-settlement relationshy

ship

Now if we want to use the equation (145) in practice

we must determine the constant and the coefficienta 1 v 1 (assumed that q is determined ear l ier Chapter 11)cp

29

The constant a 1 and t h e coefficient Vi have been detershy

mined based on fi e ld tests according to pi l es No 1 - 20

see Tab 14 1 and Tab 1 1 9 as wel l The values of

a 1 versus the point diameter D and the ul timate pointp

resistance respectively are shown in F i g 147 and Fig

148 Fig 1 47 shows that a 1 is independent of the

point diameter D Based on Fig 148 it can be assumed p

that

28-4bullq (1 4 6)cp

This correlation has been examined with data of the

literature see Fig 1 49 and Appendix 141 to 1 45

(Note there were no static penetration tests and qcp was determined based on a correlation made by Bergdahl

(1982))

A good correlation with equation 146 can be seen taking

into account the safety factor in the DIN 4014 Part 2

(1977) bull

The correction factor v 1 versus the poi nt diameter is shown

in Fig 1410 I t is assumed that the correlation is

V1 = 3 0 - D ( 1 4 7)p

where D is in m p

The above equations ie 146 and 147 were assumed for

a later analyses see Fig 14 11 and Fig 1412 The

piles No 1 to 20 were examined taking into account Eqs

14 5 14 6 and 1 4 7 The result of this cal cul ation is

presented in Fig 1 413 to Fig 1 4 18 and in Tab 1 4 2

respectively In Fig 1413 the calculation way for pile

No 2 is shown as an example

In Fig 1414 to Fig 1 417 measured and calculated

values of the point resistance versus settl ement can be

compared In tota l good correlation exists for all the

30

pressure-settlement curves Values of q from static cp

cone penetration tests and generalized values of anda 1

v 1 were considered Only for piles No 17-20 qcp was

assumed as the point resistance for s = 010 D because p

the static penetration test results were inaccessible

The similar comparison is shown in Fig 1417a for piles

in sand based on experimental results (Tuoma Reese 1972

and Wright Reese 1979) where the ultimate case resistance

was assumed as the resistance at a base settlement of 005

D The relative base resistance is the mobilized base p resistance divided by the ultinate base resistance The

curvature of the proposed point resistance settlement shy

curve to mean value proposed by Wright and Reese is excellent

However the constant a 1 and the coefficient v 1 were

determined for sand only In the future they should be

examined especially for gravel and silty sand based on

field tests Until then in the authors opinion the

values of v 1 can be chosen from Eq 147 for all nonshy

cohesive soils But for a 1 there is proposed

at = gt bulla (1 4 8)1

where

gt- 1 = 080 for gravel

gt 2 120 for silty sand

This proposal is shown in Fig 14 11 as dashed lines

A good correlation can be seen with the investigation by I

Kiosimiddotnski for sandy gravel and on the safety side with

the investigation by Tuoma and Reese for silty sand (see

Fig 149)

In Fig 1418 all calcul ations for pile No 1 to 20 are

summarize d The correlation coefficient n is defined as

the calculated point resistance p(s) divided by measured

point resistance p(s) For totally 126 points from 20

curves an average of n = 098 with standard deviation

31

al= 023 was obtained see Fig 1418 A similar result

can be observed for the range usually assumed of the

allowable settlement for sinqle large diameter bored

piles as

for

- for

- for

s

s

s =

10

20

30

mm a

mm

mm

verage n10 II

II

mm 089

095

099

and sd =

and sd

and sd

031

027

026

It can be questioned whether the sonstant a 1 can be deshy

termined in different ways The constant a 1 is the initial

slope of the point resistance-settlement curve as menshy

tioned above Then we can use all methods for determination

of settlement of a pile point The range of validity of

these methods then must be determined This will be shown

later

In order to be able to design the total load settlement

curve the skin friction resistance-settlement relationshy

ship must be determined The ultimate skin resistance of

large diameter bored piles was determined in Chapter 11

(based on static penetration tests) and in Chapter 12

(based on standard penetration tests)

In the past a lot of field tests have been done on the

mobilization of the shaft resistance versus pile settleshy

ment In this subject there is a rather good agreement

in the whole investigation for cohesive and non-cohesive

soil

Some results and opinions on thispresented in the literashy

ture during the last few years are shown below

Ultimate shaft resistance versus settlement

1) BurlandJB Butler FG Duncan P (1969)

-The shaft l oadsettlement curve is derived using a=0 3

with 90 ultimate load being mobilized at 025 in

settlement(~65 mm)

- soil London clay

- see Fig 1 419

32

2) Touma FT Reese LC (1974)

- The failure of the sides of the shaft takes place

at a downward movement of about 04 in (10 mm)

- soil sand

- see Fig 1420

3) Tomlinson HJ (1977)

- The maximum shaft resistance is mobilized at a

settlement of only 10 mm (or j in)

- soil stiff clay

- see Fig 1421

4) Klosinski B ( 1977)

- It was assumed that skin friction increased proshy

portionally to pile settlement up to the limit value

s bull This value depends on soil conditions and pile0 diameter and is usually from 3 to 8 mm For soft

compressible soil it may be grater than 10 mm

- soil cohesive soils

- see Fig 1422

5) Franke E Garbrecht D (1977)

- At settlement of 2 to 3 cm which are normally

allowed in Germany under working loads for buildings

not very sensitive to differential settlementsthe

skin friction is almost always fully mobilized

- soil sand

6) DIN 4014 part 2 (1977) and Franke E (1981)

- The skin friction Tm is approximated as diameter

independent having failure settlements of smf = 2 cm

in sand and 1 cm in clay

- soil sand and clay

- see Fig 1423

33

7) Reese By L (1978) Reese By L Wright SJ (1979)

(1978) The maximum skin friction being developed at

an average downward movement ranging from about 05shy

2 of the shaft diameter The average of six load tests

reported by Whitaker and Cooke (1966) are a lso plotted

for comparison

- soil stiff clays

- see Fig 1424 and Fig 1425a

(1979) The relative settlement is the average settleshy

ment of the butt and base devided by the shaft diameter

The mean curve maximises at a relative settlement of

about 002 D

- soil sand and clay

- see Fig 1425b

8) Tejchman A Gwizda3a K (1979)

- A clear differentiation of the distribution of shaft

and base resistances is observed for changing settleshy

ment For fairly small settlements the shaft resist shy

ance increases quite fast and the ultimate values

are reached soon while the base resistance increases

gradually with increasing loads and settlements withshy

out clearout ultimate values it can be assumed that

complete mobilization of shaft resistance corresponds

to settlements equal to 001 or 002 diameter of pile

- soil cohesive and non-cohesive soils

- see Tab 131 and Fig 1 426

9) Promboon S Brenner R P (1981)

- Load distribution and load transfer curves disclose

that most of the load is carried by shaft friction

which is developed at small displacements in the order

of 10 mm

- soil Bangkok clay

- see Fig 1427

34

10) Prodinger w Veder Ch (1981)

- The maximum value of skin friction resistance

occurred for a total settlement of 12 mm

- soil silty clay and sand

- see Fig 1428

11) Farr JS Aurora RP (1981)

- Ultimate load transfer was recehed (or nearly reached)

at a relative settlement of about 04 in (10 mm)

- soil gravelly sand

- see Fig 1429

12) Decourt (1982)

The skin friction resistance is totally mobilized

with deformations of about 10 mm or at the most 15

mm regardless of shaft dimensions This observation

of ours seems to clash with the opinions of other

authors who seek to relate the deformation necessary

for full skin friction mobilization with the shaft

diameter

- soil cohesive and non-cohesive soil

In Tab 143 all these results are shown Depending on

the kind of soil the following v a lue s of ultimate settleshy

ment for shaft can be assumed

- averages 142 mm (sd 5 3 mm) for sand

- averages 100 mm (sd = 21 mm) for cohesive soil

averages 726 mm (sd 67 mm) for claysand

It can be observed (see Fig 1419 to 1428) that the

shaft friction resistance increases proportionally to

the pile settlement up to the above limit value and

thereafter becomes constant

35

Taking into account what was mentioned earlier on point

resistance settlement relationship and the above results

a relationship between total load point resistance and

shaft resistance on one hand and settlement on the other

can be made see Fig 1430

It is assumed on the safety side that the following

ultimate settlement (S~) exists for the shaft resistance

of large diameter bored piles

SS1 ) 200 mm for non-cohesive soil u SS2) = 100 mm for cohesive soil u SS3) 15 0 mm for claysandu

In Fig 1 430 the curve Q (s) is calculated based on p

the equation 14 5 or 144

The values of psf in equation 144 can be calculated

based on other methods as well

The total load-settlement relationship is obtained by

summing up point and s haft resistance as

Q (s) = Q (s) + Q (s) (149)s p

for each point

Now the allowable load can be determined from equation

133a and versus the allowabl e settlement as

Q (s) = Q (s) + Q (s) (1410)s p

where s lt Sa

Sa= the allowable settlement of the pile

The analysis allows determination of the approximative

load settlement dependence without calculating the settleshy

ment for non-cohesive soil In Fig 1431 it is shown

36

In Tab 144 the settlement for allowable point reshy

sistance q5P according to equation 133a is shown

as well The average settlements= 198 mm (sd=78 mm)

is obtained This value is similar to the assumed ultimate

settlement of shaft for non-cohesive soil The ultimate

settlement for point resistance is assumed s = 010 Dp as mentioned earlier

37

15 Initial slope of pile point resistance shy

settlement curve

Settlement of piles and pile foundations can be cal culated

based on

- empirical correlations

load-transfer methods using measured relationships

between pile resistance and pile movement at various

points along the pile

- theory of elasticity that employs the equations of

Mindlin for subsurface loading within a semi-infinite

mass

- numerical methods and in particular the finite element

method

- use of in-situ tests (Cone Penetration Test Standard

Penetration Test Pressuremeter Test)

The critical slope of the pile point resistance-settlement

curve is important for calculation in chapter 14 The

constant a1 can be determined from all the above mentioned

methods

Comparison is made to Berggrens and Schmertmanns methods

below (see Berggren 1981 as well)

6sIn Tab 151 (No 1 2 3) the values of a 1 =~p for s =

10 mm and s = 20 mm (measured for large diameter bored

piles No 1 to 24) are compared to the calculated values

according to the modified hyperbola method (see Fig 14 6)

It can be seen that these calculated values are between

s = 1U-2u mm but rather closer the measured values for

the settlements= 10 mm see correlation coefficient n 6

and n 7 in Tab 151 respectively The average correlat i on

coefficent for the settlements= 10 mm is n9 = 108 and

the standard deviation is sct = 014 The comparison to

Berggrens and Schmertmanns methods for s = 20 mm ( see

Berggren 1~81 and Tab 151 as well) shows that the

results based om these methods give too high values of a 1 bull

38

The average values are ne= 143 sd = OJ3 and ng= 137

sd = 037 for Berggrens and Schmertmanns methods

respectively A bit better agreement can be observed

for Schmertmanns method

Taking into account the results in Tab 151 ana Tab

15l it must be assumed that for the determination of

a 1 the pile point contact pressure p(a1) should be

assumed as the ultimate point bearing capacity devided

by about 4

p(ai) - ( 1 bull 5 1 )

Most of the methods for determination of settlement are

based on the theory of elasticity The settlement ot the

pile point can be expressed as the average settlement of

a rigid circular foundation from the equation

11-Dp 1-v 2

s = p -4- -E-bull microd (1 ~ 2 J

where

p pile point contact pressure

E Youngs modulus

D diameter ot pile pointp ) = Poissons ratio

microd = depth factor

The range of validity of the pile point contact pressure

was determined in equation 151 Youngs modulus has an

important meaning lt can be determined from triaxial

tests or oedometer tests The relationship between the

constrained (oedometric) modulus Mo and Young s modulus

Eis dependent on Poissons ratio v as expressed by the

equation

E = l 1 + V ) ( 1 - 2 V ) Mo ( 1 bull 1 bull 1)- 1-v

39

TaKing into account the analyses made ny Chaplin (19b1a

1 961bJ Janbu (1 963 1970 1973J Andreassen (1973)

Duncan and Cheng (1970) Tejchman anct Gwizdala (1979)

Gwizdala (1978) Franke (1981) Berggren (1981) Withiam

and Kulhawy (7981) and the present investigation the

calculation of settlement is proposed to be

s = 24 bull p bull ~ D bull 1-v 2 bull micro d (154)Do o E

where s (r1)

p (kPa)

Dp (m)

E (kPa)

D0 =10 m

micro = 05 + 01 vfrac34E (1 5 5)d vs

but 05 lt microd lt 10-tip= p - (J (ovs see Fig 151)vs

E =Et= Kbullpat (Oo )n [1- Rf(1-sinltj) 101 - 03 ) 12 (1 5 6)2 c cosltP + 2o 3 sinltP 1Pat

in which K n and Rf= hyperbolic stress-strain parameters

Pa= atmosferic pressure ando 1 o 3 and o0 are determined by

averaging the concrete and soil vertical and radial stresses

near the pile point according to Fig 151 Then the

stresses at the pile point level are h

(J vs = L

0 Yi h

l vertical stress in the soil

0 hs Ko h

0 vs radial (horizontal) stress in the soil

0 vc L ye h -l

vertical stress in the concrete 0

0 hc K oc a vc radial (horizontal)

concrete stress in the

40

K at rest soil lateral stress coefficient 0

K c lateral stress coefficient for fluid fresh concrete0

K 1 0 oc

and average values

a 05(a +a)V vc vs

1 1 - shy~ = -(a +a+a I = -3 (av+2ahJ the applied mean normal stress0 j Z X y

Assuming this model calculation results for piles No 1-24

(see Tab 11~ as well) are shown in Tab 153

The piles are embedded mainly in medium sand to fine sand

For this kind of soil it can be assumed (soil parameters

from field or laboratory tests were inaccessible)

~ = 35deg c = 0 R~ = 09 n 05 v = 025 K c 10l 0

K = 04 Pat= 1UO kPa ye 24 kNrn 3 y = 14 kNm 3 bull0 C

Moreover in Tab 153 the following symbols are used

p(a1 ) - pile point contact pressure according to equation

1 bull 5 1

s(a1) - settl ement of pi l e point according to equation

143 and Tab 141

pound TT ( 2E = s bull Dp bull i 1-v ) according to equa~ion 152t

E~ Et bull microltl

EI

K = ro~ - according to equation 1 bull 5 6 p bullO middotA2

a~ o

E = E voD middot D middot ~4 ( 1 - v 2 ) according to equationt S p O 0

1 5 4

Et= E microd

K = according to equation 156 V PatmiddotaomiddotA2

41

The calculation results of Youngs modulus E = Et and

dimensionless canpressionrro1ulus for piles to 1-24 are shown

in Fig 152 to 155 using equation 152 and 15b

or equation 1~4 and 156 respectively lt can be obshy

served that the scatter in Fig 153 and Fig 155

where the influence of tne pile diameter is reduced

compare equation 154 is less than in the other figures

The reduced influence was made after observations from

field and laboratory tests while the equation 152 is

taken direct from theory of elasticity These values of

E and K are in good correlation with published values in

literature The values of Youngs modulus versus the

relative density of soil are compared to literature values

see Fig 15b Based on the analysis in this chapter it

can be assumed that

E = 9-ql 3 ( 1 bull 5 7)cp

where qcp is in accordance with equation 117

The calculation results based on this proposal are incluced

in Tab 1 5 3

The c a lculate d s e ttlements based on e q ua tion 154 and

157 are shown in column 23 and the values of the

correlation coef f icie nt (n= Seal ) in column 24 respectshyimeas

ively

The dimensionless canpression modulus can be d e termined as

K = 15Ubullq (qcp in MPa) (1 5 8)cp

see column 25 Tab 153

The calculation results based on the K compression modulus

according to equation 158 156 and 1 5 4 are shown in

columns 25 26 2 7 28 and 29 in Tab 153

42

For comparison and for determination of the range of

validity of this method the caLculation results of

pile point pressure for settlements s = 10 mm s = 20 mm

s = 30 mm (see Tab 141) according to equation 157

and 154 are shown in columns 30 to 35

The results obtained in Tab 153 confirm the possibility

to use the proposed method to calculate the initial part

of the pile point resistance settlement curve of large

diameter bored piles in non-cohesive soil and the initial

slope of this curve as well

A simple model has been proposed based on the theory of

elasticity ana the tangent modulus defined by Janbu (1963)

and Duncan amp Chang (1970)

A new approach according to the pile diameter depth factor

and principal stress is proposed

The settlement of the pile point can be made up to a point

pressure according to equation 151 on up to a settlement

of about s ~ 20 mm (30 mm)

-- The application of v Op in equation 1 5 4 a llows us ing

Youngs modulus as independent of the pile diameter

opposed to Bazants a nd Mosopusts (1981) proposal where

Youngs modulus wa s determined versus the pile diameter

The equation 1 5 6 takes into account the dependence of

Youngs modulus on depth (or overburden pressure) as

well

In the method field test (Cone Penetration Test) or

laboratory tests (hyperbolic stress-strain parameters

can be used

Comparison of the method to 24 availa ble load test r e sults

or large diameter bored piles in sand shows good a greement

to calculated and measured values

43

REFERE~CES

Adamczyk J (1978) Okreslanie udzwigu pali wierconych

za pomoca sondy statycznej (Bearing capacity of bored

piles based on the static sounding) Inz i Bud No 7

pp 253-257

Andreasson L (1973) The compressibility of cohesionless

soils Thesis Chalmers University of Technology

G6teborg (in Swedish)

Appendino M (1973) Comportamento di un palo di grande

diametro strumentato Rivista Italiano di Geotechnica

No 3 pp 115-118

Butterfield R Banerjee P (1971) A rigid disc embedded

in an elastic half space Geotechnical Engineering

Vol 2 pp 35-49

Bozant z Mosopust J (1981) Drilled pier design based

on load settlement curve X ICSMFE Stockholm Vol 2

pp 615-619

Begemann HK (1982) Cone penetration tests pile bearing

capacity and the thesis of Rollberg Proc of the Second

European Symposium on Penetration Testing Amsterdam

pp 433-438

Berggren B (1981) Bored piles on non-cohesive soils shy

settlement and bearing capacity (in Sweden) Thesis

Department of Geotechnical Engineering Chalmers

University of Technology G6teborg

Bergdahl UB (1979 1982) Sonderingen und in situ Messungen

Wien 18-19 Juni 1979 - Private information 19821983

Bustamante M Giane selli L(1982) Pile bearing capacity

prediction by means of static penetrometer CPT Proc

of the Second Europ Symp on PenTest Amsterdam

Vol 2 pp 493-500

Chaplin TK (1961a) An experimental study of the settleshy

ment of footings in sand PhD Thesis Univ of

Birmingham

44

Chaplin TK (1961b) Compressibility of sands and settleshy

ments of model footings and piles in sand 5th Int

Conf on Soil Mech a Found Engng Vol 2 p 33 Paris

Colombo P (1971) Observazoni sul comportamento ltli pali

a grande diametro Rivista Italiana di Geotechnika

No 3 pp 163-172

Dahlberg R (1975) Settlement characteristics of preconshy

solidated natural sands Swedish Council for Building

Research D11975

De Beer EE (1964) Some considerations concerning the

point bearing capacity of piles Proc Syrop Bearing

Capacity of Piles Boorkee I pp 178-204

Decourt L Quaresma AR (1978) Capacidade de Carga de

Carga de Estacas a partir de Valores de SPT VI Conshy

gresso Brasilerio de Mecanica dos Solos e Engenharia

de Fundacoes - Rio de Janerio - ABNS

Decourt L (1982) Prediction of the bearing capacity of

piles based exclusively on N values of the SPT Proc

of the Second Europ Syrop on Penetration Testing

Amsterdam Vol 1 pp 29-34

Duncan MJ Chang CV (1970) Non-linear analysis of stress

and strain in soils Journal Soil Mech Found Div Vol

96 SM5 pp 1629-1651

Durgunoglu HT (1979) Effect of foundation embedment on

stress and deformation distributions Third Int Conf

on Num Meth in Geomechanics Aachen pp 925-928

Farr JS Aurora RP (1981) Behaviour of an instrumented

pier in gravelly sand Proc of a session Drived Piers

and Caissons sponsored by the Geotech Eng Div of the

ASCE Nat Convention St Louis Missouri pp 53-65

Franke E (1981) Point pressure versus length and diameter

of piles X ICSMFE Stockholm Vol 2 pp 717-722

45

Gregersen os Aas G and Dibiagio E (1973) Load tests

on friction piles in loose sand Proc of the Eigth

International Conference on Soil Mech Moscow USSR

Vol 21 pp 109-117

Gwizda1a K (1978) Behaviour of large diameter bored piles

in non-cohesive soil (in Polish) Archiwum Hydrotechniki

Vol XXV No 2 pp 183-217 (English summary)

Huizinga TK (1951) Application of Results of Deep

Penetration Tests to Foundation Piles Building Research

Congress Vol 1 p 173

Janbu N (1963) Soil compressibility as determined by

oedometer and triaxial tests Proc Europ Conf Soil

Mech and Found Eng Vol 1 p 19 Vol 2 (Discussion)

p 17 Wiesbaden

Janbu N (1970) Grunlung i geoteknikk Tapir Forlag NTH

Trondheim

Janbu N Bjerrum L Kjaernsli B (1973) Soil Mechanics

applied to some engineering problems Norw Inst Publ

No 16 Oslo

Japanese Society SMFE (1981) Present state and future trend

of penetration testing in Japan Separate report at

X ICSMFE Stockholm

Kjekstad O Lunne T (1979) Soil parameters used for design

of gravity platforms in the north sea Second Int Conf

on Behaviour of Off-shore structures London Vol 1

pp 175-192

Klosinski B (1977) Bearing capacity of large diameter bored

piles IX ICSMFE Tokyo Vol 1 pp 609-612

Laboratory for soil mechanics Delft (1936) The predetershy

mination of the required and the prediction of the

resistance of piles Proc 1 Int Conf on Soil Mech

and Found Engng Cambridge (Mass) I p 181

46

Matich M and Stermac A (1971) Settlement performance of

the Burlington Bay Skyway Canadian Geotechnical Journal

Val 8 pp 252-271

Mccammon NR and Golder HQ (1970) Some loading tests

on long pipe piles Geotechnique London England

Val 20 pp 171-184

Meigh AC (1971) Some driving and loading tests on piles

in gravel and chalk Proc of the conference on beshy

haviour of piles London England pp 9-16

Mitchell JK Gardner WS (1976) In situ measurement

of volume change characteristics American Society of

Civil Engineers Specialty Conference on In-situ

Measurements of Soil Properties Raleigh 1975 Proc

Val II pp 279-345

Mezenbach E (1961) The determination of the permissible

pointload of piles by means of static penetration tests

Proc 5 Int Conf on Soil Mech and Found Engng

Paris II pp 99-104

Meyerhof CG (1956) Penetration tests and bearing capacity

of cohesionless soils Proc Amer Society of Civ Engng

SM 1 Pap 866 pp 1-19

Meyherhof GG (1 976) Bearing capacity and settlement of

pile foundations Proc Amer Society of Civ Engng

Journal Geotechnical Engineering Division Val 102

No GT3 pp 197-227

Mohan D Jain GS and Kumar V (196 3 ) Load bearing capacity

of piles Geotechn Val XIII pp 76-86

Nixon I (1982) Standard penetration test State of the

art report Proc of the Second Europ Symp on Pen

Test Amsterdam Val 1 pp 3-20

47

Nunes A Vargas M (1953) Computed bearing capacity of

piles in residual soil compared with laboratory and

load tests Proc of the Third International Conference

on Soil Mechanics Zlirich Switzerland Vol 2 pp 75-79

Nordal S Grande L Janbu N (1982) Prediction of offshy

shore pile behaviour The Norwegian Institute of

Technology Trondheim

Ohde J (1939) Zur Theorie der Druckverteilung im Baugrund

Der Bauingenieur Vol 20 No 3334 p 451

Parroth E (1972) Einfache Formel zur Vorausbestimmung der

Tragfahigkeit von Standpfahlen mit Hilfe der Sande

Bautechn 9 pp 312-314

Poulos HG Davis EH (1980) Pile foundation analysis

and design New York - J Wiley and sons

Prodinger W Veder Ch (1981) Bearing capacity of floating

groups of diaphragm walls Proc X ICSMFE Stockholm

Vol 2 pp 809-814

Promboon S Brenner R (1981) Large diameter bored piles

in Bangkok Clay Proc X ICSMFE Stockholm Vol 2 pp

815-818

Reese L (1978) Design and construction of drilled shafts

ASCE JSMFD Vol 104 No OT1 pp 95-116

Rodin s Corbett BO et al (1974) Penetration testing in

United Kingdom state-of-the-art-report Proc Europ

Symp on Penetration Testing 1 Stockholm pp 139-146

Rollberg D (1976) Bestimmung des verhaltens von Pfahlen

aus sandier und rammengebnissen Heft 4 FBG Technische

Hochschule Aachen

Rollberg D (1977) Determination of the bearing capacity

and pile driving resistance of piles using soundings

Publications of the Institute for Found Eng Soil Mech

Rock Mech and Water Ways Construction Aachen Vol 3

48

Schmertmann J (1970) Static cone to compute static

settlement over sand Journal of the Soil Mech and

Found Division ASCE SM3 pp 1011-1043

Schmertmann J Hartman JP Brown PR (1978) Improved

strain influence factor diagrams Journal of the Soil

Mech and Found Division ASCE GT8 pp 1131-1135

Shibata T Hijikuro K and Fominerga M (1973) Settlement

of a blast furnace foundation Proc of the Eighth Int

Conf on Soil Mech Moscow USSR Vol 13 pp 239-242

Spang J (1972) Die Bestimmung der Tragfahigkeit von Grossshy

borhpfahlen (I) Strassen und Tiefbau No 2 pp 339-355

Senneset K (1974) Penetration testing in Norway State-ofshy

the-art-report Proc Europ Symp on Penetration Testing

Stockholm I pp 85-95

Tejchman A Gwizdala K (1979) Analysis of safety factors

of bearing capacity for large diameter piles Proc VII

ECSMFE Brighton Vol 1 pp 293-296

Thorburn s and Mac Vicar R (1971) Pile load tests to

f a ilure in the clyde alluvium Proc of the conference

on behaviour of pile s London England pp 1-7

Trof imenkov JG (1969) Accuracy of determining the bearing

capacity of piles based on results of static penetration

sounding of soils Osnovaniya Fundamenty i Mekhanika

Gruntov 4 (Translation Soil Mechanics and Foundation

Engineering 4 p 248)

Trofimenkov JG (1974) Penetration testing in USSR Stateshy

of-the-art report Proc Europ Symp on Penetration

Testing Stockholm I pp 147-154

Tuoma F and Reese L (1974) Behaviour of bored piles in

sand JSMFD ASCE Vol 100 No GT 7 Proc Paper 10651

July pp 749-761

49

Van der Veen C (1953) The bearing capacity of a pile

Proc 3 Int Conf on Soil Mech and Found Engng

Zlirich II pp 84-90

Van der Veen C and Boersma L (1957) The bearing capacity

of a pile predetermined by a cone penetration test

Proc 4 Int Conf on Soil Mech and Found Engng

London II pp 72-75

Weltrnan AJ Healy PR (1978) Piling in boulder clay

and other glacial tills Construction Industry Research

and Information Association UK-Report PG 5

Withiam J Kulhawy F (1981) Analysis prodecure for

drilled shaft uplift capacity Proc of a session

Drilled piers and caissons ASCE St Louis Missouri

pp 82-97

Woodward R Lundgren R Boitano J (1961) Pile loading

tests in stiff clays Proc of the Fifth International

Conference on Soil Mechanics Paris France Vol 2

pp 177-184

Wright SJ Reese LC (1979) Design of large diameter

bored piles Ground Engineering Vol 12 No 8 pp

17-22

DIN 4014 Cods Teil 2 (1977) Bohrpfahle Grossbohrpfahle

Herstellung Bemessung und zulassige Belastung

Polish Specification (1975) Specification for design and

construction of large diameter bored piles in bridges

Ministry of Transport Warsaw (in Polish)

Polish Specification (1979) Specification for prevision

bearing capacity of the piles on the presiometer test

and static sounding ENERGOPOL Warsaw (In Polish)

Polish Code (1983) Foundations Bearing capacity of piles

and pile foundations

5 1

FIGURES

bull bull

53

Ou

+ sect raquo iir 1

4 + D

h + +Osu

bull + t2 =n- Dp

LDpl r f 1

Opu

Fig 1 1 1 Bearing pi le in the soil

J_

fp

080

070

060

050

0 40

030

020

010

q~ [MPa ]000 -+--~-~-~-~------------------------=-shy

00 20 4fJ 60 80 10 0 120 14fJ 160 180 200

Fig 1 1 2 The point resistance factor fp

(Trofimenkov 1974)

54

ts

160

140

120

100

080

060

040

020

q~5 [ kPa)

0Q0--1------~-~-~-~-~-~ - - ---=- -- shy000 10 20 30 40 50 60 70 80 90 100

Fig 1 1 3 The shaft resistance factor fs middot (TYofimenkov 1974)

f s

200

180

160

140

120

100 2 3 4 5 6 7 8 9

Fig 1 1 4 Shaft friction factor f depenshys

ding of the soil density (Senneset 1974)

55

Q~ [kN]

1500

1000

500

0-r-----------r----~- Q~ [kN] 0 500 1000 1500

Fig 1 1 5 Comparison of the pile resisshytance determined by the results of static sounding and load tests (TYofimenkov 1974)

D f f

0

Fig 1 16 Equivalent cone resisshytance (Bustamante 1982)

56

E u shy0 ~

QI I ltII ltII

~ a C QI

O C

D

w gt

0

Cone res istance Point resistance

80 160 240 320

05

10

15

e d

20

ver y dense Cone resistance 300 kgcm2

Dpcm

a =45 b = 30 C 60 d = 100 e = 150

Fig 1 16a

Cone resistance _ qc

80 160 80 160 qc [ k g cm2 ]p

05

10 10

15 15 e d a

e d20

Dense Medium2 2200 kgcm 100 kgcm

Cone resistance and point resistance of piles versus overburden pressure (Kerisel 1965)

Point resi stance - p(for s=2cm) of the pi le for

15 sett Iement s = 2 cm

10

5

E u

uJ1 o-~----shya er O 804 2500

32 56

I 1

L oose50 -I =25 Very loose L

----~--shy5000 7500 80 98

~-----lmiddotI1--------2 10000 12500 31400 =Flcn)

112 123 200 =Dplcm)

Fig 1 1 6b Point resistance versus cone resistance and pile diameter (Franke 193)

57

1

fp

080 (D Gravel

0 Coarse sand Medium sand 070

reg Fine sond Silty sand

060

050

040

030

020

010

qc [MPa]000-+----r--~-~-~--------r----r----r-~-~-- -shy

oo 20 40 60 80 100 120 140 160 180 200

Fig 1 1 7 Point resistance factor f (proposal) p

58

300

250

200

150

100

qc [MPa I50-+---------------r---r---r---r----r------------- shy

oo 20 40 60 80 100 120 140 160 180 200

Fig 1 1 8 Shaft resistance factor fs (pr oposal)

59

Bustamante (seetab 115 I

l fp

G)

0 Gravel

Coarse sand Medium sand

cl

b)

t-----l

1----1

080 reg Fine sand Silty sand a) D

070 Polish

060 Specification

( 1979) 050

040

030 CD 020 0

reg 010

qc [MPa]0 00 -+-------------------------------------=--shy

oo 20 4o 5o 80 100 120 14o 15o 180 200

Fig 1 19 Point resistance factor f comparisonp

Bustamente ( see tab 116 I 300

a) ~

250 b)~

cl~

200 Polish Specification ( 1979 l

150

100

q [ MPa]504---~--~--~----- ---___

00 20 40 60 80 100 120 140 150 180 200

Fig 1 1 10 Shaft resistance factor fs comparison

60

1 fp

~

080 CD CD Gravel

070 0 reg Coarse sand Medium sand

060 0 Q) Fine sand Silty sand

05

040 Franke (1973)___

030 DIN 4014

020 Part 2 1977

( see tab113 l 0shy

--shy --a - 010 C---0 Piles without enlarged bases

D---0 Piles with enlarged bases qc [MPa ] 000

00 20 4JJ 60 80 90 100 120 140 160 200

Fig 11 11 Point resistance factor f comparison p

fs

DIN 4014 Part 2 1977 ( see tab 114 l

300

~ 5 lt qc lt 10 MPa 50

~ 10 lt qclt 15 MPa

~qcgt15MPa

200

150

CD

100 0 0

qc [ 1Pa] 50-t-----T-~----T-r-~----------------shy

OO 20 40 6JJ 80 100 120 14JJ 160 180 200

Fig 1 1 12 Shaft resistance factor fs comparison

61

Measured p [ MPa]

( s=010 Dp) 10

9

8

7

6

5 0

4 0 61

3

I 2

Calculated qcp [MPa]

0 0 2 3 4 5 6 7 8 9 10

Fig 1 1 13 Comparison of experimental and aomputed values of the pile point resistanae

62

Contact pressure ( MPa ]

2 I 6

50

100

E E 150 Ill

c QI

E Sett lement for QI

calculated qcpai V) 200

Fig 1114 Results from load tests on piles No 1 and 5

Contact pressure [ MPa I 0 2 I 6

01---------------------1

50

E E 100 Ill

Settlement forc QI calculated qcp E ~ ai

I V) 150

Fig 1 1 15 Results from load test on piles No 7 and 5

63

Contact pressure p [ MPa] 0 2 3 4 6

0-t=-----~-~-----

E E

100 1)

c CU E 2 QI V) 150

Fig 1 1 16 Results from load test on piles No 9 10 and 11

Contact pressured p [MPa] 0 1 2 3 4 5

o~~~=------------___-~-shy

50

100

E E

i 150

CU E CU

-a V) 200 2

Fig 1 1 17 Results from load test on piles No 12 and 13

c

-------------- -

64

Contact pressured

0 1 2 3 4 p [ MPo] ~o __L____1_____J_____L___

50

100

150

E

E

IJ) 200

c a

E a

~ 250

Fig 1 1 18 Results f Pom load tests on piles No 2 4 6 and 8

p [MPa]

60

50

tO

30

~

Pile Pile Pile Pile

Pile No18

------+ Pile No17 + ~_ ---0 Pile No 19

bullbull - --bull Pile No 20

- ~middot -shy-shy -(y I Settlement for

20 tO 60

No17 +-middotmiddot- V 70 No 18 bull--- V 9o No19-middot- V 120 No20bull---- V150

qcp 3

80 100 120 140 160 s (mm)

Bose resistance

Fig 1 1 lBa Point Pesistance vePsus settlement (Spang 1972J

65 Cone resistance qc [ MPa]

0 10 20 30

mud

5 ~ lll

0 c 0

c CD

peat

10 sand

Ill N

10=10

D=lOOOmm

1540=40

20__________________

[ml

Fig 1 119 Pile No 1 and results from static cone penetration test

Cone resistance qc [MPa l 0 10 20 30

7N V degW = 0+--------------------i

mud

5

lll

~ C 0

c peat~

10

sand lll N 1D15

15l lD=1500mm

40=60

20l---------=-------__J

[ml

Fig 1 1 20 Pile No 3 and results from static cone penetration test

66 Cone resistance qc [MPa]

10 20 II 3 igt pound ~

mud+peat

fine sand+ silt

50=11

l lo-11oomm

40= 44

10

15l____________c

[ml

Fig 1 1 21 Pile No 5 and results from static cone penetration test

Section Cone resistance Pile

0 0

5 10 15 20 25 30 qc [MPa] -----~-~shy~

Silt

[7r_ ___~ Medium Sand_~-----l

0 ltD

+shy4

0=11

9=

Fine sand + Silt t

30p=

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot1~11+-----E-----

[ml

Fig 1 1 22 Pile No 6 and results from static cone penetration test

Cone resistance qcmiddot 1MPuJ

0 10 20 30 67 01-+-------l--------------i

mud+ peat

fine sand

l1)

N

40=60

15L_____________

[ml Fig 1 1 23 PiZe No 7 and resuZts from static

cone penetr ation test

Section Cone resistance Pi le

0 5 10 15 20 25 30 qc [MPa 1 --~----Y-~-----~

Silt

Fine sand

Medium Sand Bentonite2----1~i

t 3

4

0

0=15

Fine iii ~~= 5

sand t ltD

6 +

Silt 7

3Dp=

63 g

10

11

12

13+------=~---l

[ml

Fig 1 1 24 PiZe No 8 and resuZts f rom static cone penetration test

68

I =3

Cone resistance qc [MPa]

0 10 20 30

C 0 C Cl

(I)

Said

Peat

Sand

l 0=110

D = 11

4 D = 44

Fig 1 125 Pile No 9 and results form static cone penetration test

69

Cone resistance qc[MPa)

0 10 20 30 I ~ II JE Ill= II=E IS

Fine sand QI

U) I

[- I C 0 + C Peat QI

CD

Fine sand 0

Ci D = 1 1

L l D= 110

4D= 4 4

Fig 1 1 25 Pile No 10 and results f rom static cone penetr ation test

70

Cone resistance 9c[MPa]

0 10 20 30

Sand

C 0 Mud peat

+shyc 5 ltII

co

Sand Op= 11

u 10 D= 110 4Dp=44

Fig 1 1 26 Pile No 11 and results foIm static cone penetration test

71

00 a_ N ~

middotu rr QI 0 u ~ C 0

QI ui C iij 0 QI U - 0

0 EN

d 2

Sll 1lOl

C

u (rr

C 0 u~

0

QI - C middot 0 C

U - O 0 EN

~ 0 2

E

ltD a---==-lr---___--~---6-l_-0_012 ~ Lr- - --1---------J J

S9l ls= apound QI -0 gtcc _gmiddot- 0 1) ui I

Fi g 1 1 2 Piles No 14 and 15 and results f r om stat i c cone penetr ation tests

72

Contact pressure p [ MPa] 2 4 6

01lt---------------~

50

E E

111 100 ~ (qcp=30 MPa for No16

~ iqcp =49 MPa for No14

~ 1so~--~~- _ _ __

I _ _

11 I lf--q = 32 MPa for No15

cp

Fig 1 1 28 Results f r om load tests on piles No 14 15 and 16

73

0300--------------~---~--~--shyE

Driven piles in ~ 0 bull Gravel

amp250 bull Sand L QJ X Silt a 1l o Bored piles in

sand -sect 200 0=-- shyC ~ ~ 10 unless ~~ middot D shown 1

ii O

~ ~ o 3 a 1501-----+-------I- --+---laquo-+-- -+------lt

~ sect 5 - 6 6middot 100t----+----+-----_-1---4--__co_--J~__j

-_

~ 0 t7

C

a 50 2 shyg ~ gt

0 20 30 40 50 60

Standard penetration resistanceN in blows per foot

(N 30

Fig 12 1 Emperical relation between ultimate point resistance of piles and standard penetrashytion test in cohesionless soil (Meyerhof 1976)

14 r-------------------r-------b-----q

References and symbols given in Fig121

121-----+---+----+----+------ll------j

- _sect ~ 10t----+----+-_--1-----+---lt~--~H---- 0 lt-~5- _-)0 I() l- I Q---+-----I[08 ~

H -(l () ltj-~C X bulls pound 061------lt----+-----i~- --+-- shy

- bull

-gt Q1pound--I---L---L---L---L--~ 0 10 20 30 40 50 60

Mean standard penetration resistance N in blows per foot ( N30 l

Fig 122 Empirical relation between ultimate skin friction of piles and standard penetration resistance in cohesionless soil (Meyerhof 1976)

74

a) b)0(1 0lt2

10 10

05 05

1 N30OD-+---------__ OD--t-----r-----r----------------ll--Nbull30~ 10 20 30 10 20 30 40 50

Fig 1 2 3 Reduction coefficient a) for impermeable gravels b) form permeablr gravels (Weltman and Healy 1978)

psf [MPo)

Fig 1 2 4 Relation between ultimate point resistance and SPT in cohesionless soil (Polish specification 1975)

75

30 35 40 45 Loo Med Dense Ver dense

50

40

~ E

l)

g 8 1)

middotu

1 ~

QI- bull Touma ~ bull Koizumi

(183)-depth base middotameter5

20 40 60 00 100 N30

30 35 40 45

OG2(294) bull G1 (183)

300 bull us 59 ( 102) bull 88(180)

bull 075 a GT (467)

150

~ 200-+--------+-- t--- --t-----i 130i 0 094 081

014 _- --- -- shy~ E 066bull bull 063 Note -~ ~m~r~s~ ~ 1001---1-r--t---1point is xh QI Ratio ~ Number in ( ) middotn key is h c Ratio s ~

0 20 40 60 00 100

~ig 1 2 5 Ultimate point and shaft resistance versus N30

(Wr ight and Reese 1979)

-----

76

tu Psa

[kPa] [MPa]

200 tu

------ shy150 Psa

1 1

1100 10 1 1

1 50

0+----------T----~---~-N-3J~shy0 20 40 60 80

Relation between ultimate skin friction and SPT (Decourt 1982)

Fig 1 2 6

Psa

[MPa]

8

0----Meyerhof 1976) 0 7

--- - --~ - copy Polish Specifcoti on 1975)6 ~-

~

reg- middot - Reese (1978) middot 5

f41- -- Decourt (1982) -I bull 4 2

----==---______z__ h25m Dp=12m

3 ---shybull

2 7

--shy ----shy~----shy0-t----i----------r-- ----------------------N3l~shy

0 10 20 30 40 so 60 70

Fig 1 2 7 Relation between ultimate point re~istance of large diameter piles and standard peneshytration test (SPT) in cohesionless soil

------

77

tu [kPa)

200 17 Cast under -J bentonite

~----Meyerhof (1976) ~copy -=middotmiddotmiddotmiddot== middotmiddot150 ~------- Wei tman (1978 ) middot Healy middotmiddot ___ Japanese ) 119810 Society

(0 -middotmiddot- Decourt (1982)middot Wright

100

- -middotmiddot -- 11979]reg Reesemiddot Bored piles

~shy50 1 -- shy

-- shy middotmiddot s-shy - --~ ------reg~~ ---~E_==---- ------- shy

N_ ---shy0-+--C--------------r---- ---------~---~-~shyo 10 20 30 40 50 60 70

Fig 12 8 Relation between ultimate skin friction of piles and standard penetration test (SPT)

78

Pst [MPa]

8

7 ---------ist=7MPa

6

5

4

3

2

I N30o~------------------------------+---------__=-shyo 10 20 30 40 50 60 70

Fig 12 9 Relation between ultimate point resistance of large diamter piles and standard peneshytration test (SPT) in cohesionless soil (proposal)

tu [MPa ]

( excavanted and cast

150 under bentonite ) tu=150 kPa

100 tu=90 kPa

I I

50 I I I I I N30

10 20 30 40 50 60 70

Fig 1 2 10 Relation between ultimate skin friction of large diameter piles and standard penetrashytion test (SPT) in sand (proposal)

79

2 3 4 5 p[MPa] 0 2 3 4 5 p[MPa]0

40 40 Cl

80 c 80

c 120 120

Pile No 1 PileNo216 160

200 2

s s c [mm] (mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MPa]

40 40

00 80

120 120

16 160 Pile No 3 Pile No 4

200 200

s s [mm] (mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MAJ]

tgt11 tgt- measured40 40

80 80

120 120

Pile No 5 Pile No 6 160 160

20 200 s s

[mm) [mm)

Fig 1 4 1 Base resistance vs settlement appoximative method piZe No 1- 6

80

0 2 3 6 5 p[MPa) 0 2 3 4 5 p[MPa]

40 40

80 80 6

120 120 6

6160 160

Pi le No 7 Pile No 8 6

200 3J s s

[mm] (mm]

0 2 3 4 5 4 p [ MPo)

6 6 40

6 6

6 80

6 6

6

Pi le No 9 Pile No 10

XJO s s

[mm] [mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MPa)

6 6

40 40 6 6

6

00 80 6

6

12 1Xl 6

160 Pile No 11 160 Pile No 12

200 200 s s

[mm ] [mm]

Fig 1 4 2 Base resistance vs settlement approximative method pile No - 12

81

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MPa]

6 6

40 6 40 6

6

80 6 80 6

120 6 120

Pile No 13 Pile No 141fO 160

200 200 s s

[mm] [mm]

0 2 3 4 5 p [MPa) 0 2 3 4 5 p [MPa)

40 40

80 80

120 120

HiO 160

200 200Pile No 15 Pile No 16

s s (mm) [rrrn 1

0 2 3 4 5 p[MPa] 0 2 3 4 5 p[MPa)

40 40 A A A-measured

680 80 t t

120 c 120 c

1fil Pi le No 17 160 Pile No 18

200 200 s s

[mm] [mm]

Fig 1 4 3 Base r esistance vs settlement approximative method pile No 13- 18

82

0 2 3 4 5 p[MPal 0 2 3 4 5 p (MPa]

D D40 40 c c

80 c 80 c

120 120

160 160

Pile No 19 Pile No 20 200 200

~ml (mm]

Fig 1 4 4 Base resistance vs settlement approximative method pile No 19- 20

LlJ QI

0 average lJ = 098 E sd = 029 C

6 SY = 030

4

2

lJ calculated ________________________ _______ measu red

06 08 10 12 14 16

Fig 1 4 5 Calculated pressure divided by the measured pressure at 20 mn settlement for aZZowabZe

q Zoad Pa= ~p approximative method pile

No 1- 20

8 3

Point resistance p [ MPaJ

a)

p(s) = s a +--sshy1 y qcp

1

SQ100p -- --- ---shy

~ s

[mml

I- 01 s rmm]-l p LMPa b)

f~]

c Cll E ~ i s

[mm)

Fig 146 Definition of the point resistance - settlement curve according to the modified hyperbolic method

84

01 ~ 0

20 0 0

0

16 0

medium 0 value a1 = 905-+ 256 Op 0 0

12 (r=039)

0 0

----0 0

8 0

0 0

0 0

4 0

05 06 07 08 09 10 11 12 f3 14 15 16 17 18 19 20 2 1 Op (ml

Fig 1 4 Initial slope of the base resistance curve vs pile diameter

a1 [p] 0

0020

16 assumed a 1= 28 - 4 qcp

12 0

0 Ct) 0 a = 2659 - 369 qcp8 1

0 0 (r = 0188)0

4

2 3 4 5 (MPa]qcp

Fig 1 4 8 Initial slope of the point resistance curve vs ultimate point resistance on the static cone resistance for pile tests No 1 20

85

a [~ 28

24

20

16

12

8

4

0 2 3 4 5 6 Qcp [MPa]

~ Kiosinski (1977) sand and sandy gravel of mediwn density

~ Klosinski (1977) loose sand ID= 0 3 0 4

o US59 ] t HH Touma p and Reese L (1974) fine sand and silty sand OGl (US59 HH BB - very dense Cl - mediwn dense) 1 BB

DIN 4014 Part 2 (1977)

Fig 1 4 9 Initial s lope of the point res istance curve vs ultimate point resis tance

86

assumed [il =30 -10 Op but )1~ 10 )1 [1 I

u 311-10 Op ( r =0 368)4 1 0

3 0 0

02 0

0 0co 0 8 0 0

0

0

05 06 07 08 09 10 11 12 13 14 15 16 17 19 20 21 Dp [ ml

Fig 14 10 Correction factor for hyperbolic base resistance shysettlement relationship

87

a [~] 28

24

20

16

12

8

4

2 3 4 5 qcp [ MPa]

Fig 14 11 Initial slope of the base resistance curve vs ultimate base resistance (proposal)

v [ 1 ]

3

2 -----G- DP J l 1J I Op lm] J

for Dp ~ 2 0 m ~ u = 1 01

0 --------r----r---r----r-----------------r-------------------------r------r-~-~--shy

05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 Dp[m)

Fig 1 4 12 Correction facto r for hyperbolic base resisshytance - settlement relationship (proposal)

s P ( s)

s +

u qcp

88

a) b)1

bt=o212= 47 MPa a1=1~32 tMWJ s 2 3 4 5 O 1 10 20 30 40 50 60 p [~a]0

0p [ MPa] 40 40

80 80

120 ~

160 b1 = ~ajtg ~= 0 212

~=1132 + 0212middot s

mJ 240 r=0994t t t measured s __ according to Jl s

o o o according to p (bull ll l[mm] [mm]

Pile No 2

slmm) 10 20 30 40 50 60 80 100 125 150 175 2)0 225 Note

p [ MPa] 09 14 17 20 22 24 27 30 32 34 36 38 39

measured

pibull) [ MPa] 074 128 169 202 228 249 282 307 330 347 360 371 380calculated

plbullbull1[MPal 070 125 168 203 233 257 297 327 356 378 396 410 422calculated

1) (bull) ij l099082 091 099 101 104 104 104 102 103 102 100 098 097 sd = 006

ij (HJ1041) (bull10) 078 089 099 102 106 107 110 109 111 111 110 10B 10B sd = 010

plbulll-according to a =1132 [ Jp(s) = s s for pile No21 0 1132 12 39

plbullbulll-according toa =1241 lmiddotGcp=39MPa1 0

~=14 see fig 1411 and fig 14 12 sp(S)=

124+ _ s_ 14middot39

11lbulll11l-J - correlation coefficient calculat~d P5 for

measure p s p(bull) and p(bull) respectively

Fig 1 41 3 Modified hyperboZic point resistance - settZement reZationship for piZe No 2

89

0 2 3 4 5 p(MA1] 0 2 3 4 5 p[MPa)

40 40

80 A 80 A

120 120

160 16 Pile No 1 Pile No 2

20 200 s s

[mm] rnm

0 2 3 4 5 0 2 3 4 5p [MPa] p [MPo]

40 40

80 80

120 1ZJ

lfpound) Pi le No 3 Pile No 4 A

200 A

s s A

[mm) [mm

0 2 3 4 5 p [MPa] 0 2 3 4 5 p [MPa]

40 40 A A A measured ~ calculated

80 80

12

160 160 Pi le No 5 Pile No 6

200 Z)Q

Fig 1 4 14 l3ase resmiddotistance vs settlement pr oposed method pile No 1- 6

90

2 3 4 5 p [MPa] 2 3 4 5 p [ MPa]

40 6

6 40

1 80 80

6

120 120 6

6 160 160

Pile No 7 6

200 200 s

[mm ] s

[mm]

0 2 3 4 5 6 p [MR] 0 2 3 4 5 p [MPa] 0 0

40 40 6

6

80 80

6

120 120

160 160 Pile No9 Pile No 10

200 200

s [mm] [msml I

0 2 3 4 5 6p[MR] 0 2 3 4 5 p [MPa]04--___ ____ ___ ___ ____

0+-=---------------~-~- shy

40 40 c 6 c - measured

0--0-0 shy calculated

80 80

120 120

160 160 Pile No11 Pi le No12

200 200

s [mm]

s [mm]

Fig 1415 Base resistance vs settlement proposed method pile No 7-12

91

0 2 3 4 5 p [MPal 0 2 3 4 5 p [MPa)

40 40

80 80

120

16 Pile No 13 Pile No 14

200 s

tnml [mm]

0 2 3 4 5 p [ MPa] 0 2 3 4 5 p [MPa)

40 40

80 80

120 120

160 1fD

Pi le No 15200 axJ s s

[mm] [mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 6 plMPa ]

A A A measured40 0---0-0 calculated

80

120 120

160 1ED Pile No 17 Pi le No 18

200 200

s s [mm] [mm]

Fig 1 4 16 Base resistance vs settlement proposed method pile No 13- 18

92

0 2 3 4 5 p [MFb] 0 2 3 4 5 p[MPa]

0 6 o -measured40 40 0 0 o -calculated

80 80

120 120

160 160 Pile No 19 Pile No 20

200 200 s s

[mm] [mnil

Fig 1 4 17 Base resistance vs settlement proposed method pile No 19-20

p(s~Psf

15 20

ean

-C 5 w u L Lower ~ confidence

linea 0

a IJl 10

o---o proposed

method I I I

15

Fig 1 4 17a Design curves for estimating developed base resistance in sand (Wr ight and Reese 1979)

93

n (number)

30

28

26

24

22

20

18

16

14

12

10

8

6

4

2

0 02 04

Fig 1 4 18

I= 126

Between 1] = 0 7 - 1 3--- I= 106 ( 84 frac34)

Average ~ = 098 Standard sd =023 deviation

Standard sv =023 veriation

1] (Coefficient Calculated Measured

06 08 10 12 14 16 18

Calculated pressur e divided by the measured pr essure for all pressure - settlement curves pr oposed method pile No 1- 20

94

a) b) Total load

Total load curve

---- _____-- shy- -- -Base load ~- Base load

-0-0 ~

00 00 J

ldeoli zed shaft load J

Shaft sesistanc1---------- 0=0middot30 a= 0 middot 30

025 Settlement IN 025 Settlement IN

Fig 1 419 Proposed method of synthesizing design loadsettlement curve (a) conservative design prodiction b) design prediction- peak in shaft loadsettlement curve (Burland et al 1966)

Cf

-0 0 0

J

0

~-----~--~-~ amp- 2 3 4 5 6 (cm)

a~middotltii -0 lt) cco2 41 -~ -0 1)

vi ~ llloli=----------- ---c~0 1 2 3 4 5 6 7 ( of diameter)1 1 1 1

05 10 15 20 ( in) for 30 in Pile Movemen~ ( 75cm pile)

Fig 1 4 20 Approximate load settlement curves for 30 in bored piles (AB and C represent failure load at 1 in settlement A B and C represent ultimate failure load) (Touma and Reese 194)

95

Load in MN 0 2 3 4 5

25

50E E C

-C 75

-~ ~

-Z 100 lJ

Shaft resistshy

125 once

15 Fig 1 4 21 Load-settlement relationships for largeshydiameter bored piles in stiff clay (Tomlinson 1977)

SettlementSo

Fig 1 4 22 Diagrams of s1iaft and base resistances versus settleshyment assumed in analysis (Kiosinski 1977)

96

0 0 1 ~ r- 025g ~~ 2

1- -shy3 03Sg 14 5 2

Qls =Qpls+Q5 (sQpls) Qs(s-3E

0

degsis __ -- Qpls) a~ C

4

t Sg l

5 Qu Is)

Q(s)in MN-l T

Ouls Q Is) in MN ---

Fig 1 4 23 Construction of load - settlement curves a) for sand b) for cohesive soil (DIN 4014 Part 2 1977 and Franke 1981)

-

s C 5C

Cl

3 0 00 05 10 15 20 Mean settlement I in)

Fig 1 4 24 Load- settlement curves for test shaft S4 (1 in = 25 4 mm 1 ton= 8 90 kN) (Reese 1978)

97

Relative side resistance

0 05 10 15 20 0E=--t----+---+--~

c QI lt) ~ 2 C

I itaker c

QI amp Cooke3E QI-j

c-en 4

C QI

E us 59o

5 QI gt

SA0 w 0 6

Fig 1425a Relative side resistance for clay vesus relative midlength settlement (Reese 1978)

degs (Osl u l t 0 05 10 15 2 0

Mean

2 Lower ~ C QI u

confidence line

~ 3 a

0

~4 E

()

5

6 __ _ ______ ________ __1

Fig 1 4 25b Design curves for esti mating developed side resistance (~Jy1nht ReertP- 1987 J

98 Load Q

8 - 15 mm

1- 2 of p ile diameter

100-200 10-15 of pile Os Ot diameter Shaft Total

Settlement S Resistshy Resist- Load ance once

Fig 1426 Dependence of total load base resistance and shaft resistance on settlement of lar-ge diameter pile (Tejchman Gwizdala 1979)

6

5 Shaft load

4

3

2

z ~

-0

g Pile EF- 56 J 0

0 0 20 30 Butt settlement (mm)

Fig 1 4 27 Deveiopment of shaft and base resistance with settiement (Promboon Brenner 1981)

99

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 0 r-=-1---J__-----------------------~----_shy

Load [ k N l5

10

20

( I

Skin friction ----1 I I

~ 40 QI E

fQI

50 I

Q) I () ICOntinuos fost deolading

Fig 1428 Load-Settlement-Diagram Testelement III (Diaphragm-Wall 0515 m 244 m deep) Portion of Skin Friction and Base Resistance (Prodinger Veder 1981)

Qs (QJ max

0 05 10

Upper Limit of Data

Farr and Aurora (1981J C

~ 2 - shy -+shy - Mean of Data

I QI

Lower Limit of Data a

0 - 3 E

Vl

4

Smid = Approximate shaft buff movement ignoring the elastic compression of upper halt of the shaft

D = Shaft diameter

Q Mobi Ii zed shaft resistance

Qs1max = Maximum shaft resistance

Fig 1 4 29 Relative shaft resistance vs relative movement (Farr and Aurora 1981)

100 Load Q (s) [ MN]

Su5 s s 20 mm for non- cohesive soil u

s s 10 mm f or cohesive soil u

s s 15 mm for claysand u

Q (s) + Q (s)s p

Qs(s)

-C ltII E s ~- [mm]-ltII IJ)

Fig 1 430 Dependence of total load Q(s) point res i stance Q (s) and shaft resistance Q (s) versus settlement p s

~ 3 Usu Qpu Qu Q(s) [ MN]

Sus= 20

1J

60

80

100

120

degs (s ) 140

5 P=Ol Op

1EO

C -ltII E 180 ~ ] 200

s [mm]

Approximative dependence of total load point resistance and shaft resistance versus settlement fny non-cohesive soil

Fig 1 4 31

101

113 3 ~fic0P Ye hY

1 Ground water

D

I y

yh C

Fig 1 5 1 Determination of 01 and 03 for settlement analysis of lar ge diameter bored piles

102

I

E=Et [MPa]

160 0

140

120 0

100

80

6

40

--- --shy 0

0

8 0

0

0

20

2 3 4

I 0 15

Fig 1 5 2

E = Et [MPa]

120

100

80

60

40

I I 0 35 065 085

0

Et= 17 81 qcp0844

( r = 0 128)

5

100

6 qcplMPo]

Calculated values of Young s modulus for piles No 1shy24 according to equation 1 5 2 and 1 56

0

0 0

E =898qcp127 (r= 0314)

E = 9 middot qcp 13 0

20 shy 0

0 0

0 1 2

loJ

I 0 35

3 I

065

4

I 085

5

100

6 qcp [MPo]

Fig 1 5 3 Calculated valueBof Young s modulus for piles No 1shy24 according to equation 1 5 4 and 1 5 6

I K 10 3

( 1 ] 1832

1400 0

1200 0

0

1000 0

800 0

m=2821 qcp0621

600 0

(r=0057)

400 0 0 0 0 0

200

2 3 4 5 6 qcp (MPa]

I 035

I 065

I 085 100 Io

Fig 15 4 Calculated valuesof the dimensionless compress ion modulus K for piles No 1- 24 according to equation 1 5 2 and 1 56

K ( 1 ]

0

1400

1200 0 0

1000

800

600

0

0 0

0

0 0

0 K= 1422 qcpl05

(r=0181)

0 K= 150 qcp

400 0

3)0 0 0

2 3 4 5 6 qcp(MPa)

I I -J 035 065 085 100 Io

Fig 1 5 5 Calculated values of the dimensionless compression modulus K for pile~ No 1-24 according to equation 1 5 2 and 1 5 6

104

120

100

2 3 4 5

I I I rv 0 15 035 065 085 100 lo

Bergdahl (1982) for shallow foundation

o----o Bozant Masopust (1981) D= 1 0 rn h=10 rn large diameter bored piles in noncohesive so il

0----0 Proposal according to current anal ysis

Klosinski (1977) D=090 to 125 rn large diameter bored piles in sand and sandy grave l

Mitchell Gardner (1976) very dense sand E=(35)q (it depends on sand density and stress history) c

Fig 1 5 6 Composision of Young s moduius

105

TABLES

0 Tab 1 11 Methods for detemination of the bearing capacity of bored piles (Ro llberg 1977)

Cl

Nol -- I Soil Areas of Q) Q) Editor Determination of Coefficients 5 type influenceqP qs p ~ C C 11 12 fP I fs

1 all Lab f Soil Mech (1936) l qp at the elevashy 1 0

2 all Huizinga (1951) ~ t~on of the pile 14 point

3 all Van der Veen (1953) ) 18 1 h+l14 all Van der Veen 1 0 Dpl375 D~ 15-- J qcmiddotdhBoersma (1957)

~ 11 +12 h - 12

5 12 all Menzenbach ( 1961) qc at the elevashy~ tion of pile point

6 18 all Mohan Jain Kuman (1963)1 average of qc over 1 h Q) h ~qcmiddotdhl 10 Dpj 3 75 Dj 15 50_micro

and 1 2C 11

7 I amp all de Beer ( 1964) graphically from 10 Q) qc 0 1 h+l18 u C

sand Soviet norm SNIP II 9ct9cp I4 bull O Dp I10 DP l66-1 083shyu clay B5- 67 Trofimenkov (1969) 2 50 1 251 +l J qc middotdh micro middot h middot-l l 2h-~ _micro

9 _micro u all Paproth (1972) at the elevation 3 5 I shy

) of pile point (Dpgt0 5 m 7 D8DpE

E-lt p 1 h+l1 1 h Dplt 5 m u l+l J qcmiddotdh h f qcmiddotd~ 30 Dpl 50 Dp 2 0 100shy10 sand Norwegian method

0l 2 h-12 200Senneseth (1974)

11 lall Soviet method h+l (20-0lqgl - 101 1 q middotdhTrofimenkov (1974) -- f C UpUsmiddotQct

l1+l2 h - 1212 Qct-Qcp 40 D~ 10 Dp 1 33- 0 67shyUsbullh 4 00 2 50

13 English method 10 DFJ 375Dp 10 I

Rodin Corbett Shershywood Thorburn (1974)

3 7 5 Dcl 8 0 DP 10h+l1 _1_ J qcmiddotdh 1 h

qcmiddotdh 20011 +12 h - 12 hb

1 h qcmiddotdh 150hf

0

Observations

fp I f (qp)fs C

Dp E = 1 cm Qbu = 2 Qpa (approx )

s fs=f (qc)

q=~g Us 0 h

fp=f(q~)

fs=f(qgl

bull fine grained non- cohesive soil loosely packed

bull fine grained non- cohesive soil medium dense comp

fine grained non- cohesive soil

Tab 111 (cont)

h+h bE 14 non-cohe- Meyerhof ( 1956 poundti J N 3o middot dh CtME fN3 o dh 1 0 DP 4 0 DP 10 100 etM= l 2

sive soil 1976) lJ +12 h - li hE o hgp taken into consi der ~ Ul (I)

E-lt

C 0

~E = 1 kgbull 30 cm

(statistical limit depth of the pile) hE - clamping length of

pile micro rrJ l-l micro (I)

15 C (I) p

sand Norwegian method

- irm - - - 10 IT

m = diagram O l-l Senneset (1 974) rrJO C

16 rrJ micro gravel English meth it 3 middot N30 - - - 10 - Jf 3 + diagram U) ~

E-lt p U)

iiouiu Coruett Sherwood Thorshyburn (1974 )

(NJQat the elevashytion of pile point1

0 -i

108

Tab 11 2

Results of calculati o n of p i le point load pile shaft load and total pile load from static con e penetration test (Rol l berg 1977)

~ gt

~ gt Ultima te Ultimate Ult imate

No Method micro micro poi nt skin bearing 080lt17nlt1 50 Q) -l

-l middot-i resistanceuro resistance r esistancE

middot-i p 0

(J n1 n n2 n n3 n n1 n2 n3

1

2

Lab fSoil Mech

Hu izinga (1951)

(1936 ) 430

307 i 3 Van der Veen (1953) 239

49

4

5

Van der VeenBoersma

Menzenbach (1961)

(1957) -l middot-i 0

2 4 7

1 57 1-CJ)

6

7

8

Mohan Jain Kumen

de Beer (1964)

Sovi et Norm (1969)

(1963) CJ) Q)

-l middot-i 0

lJ Q)

Q)

gt- CJ) Q)

c 0

2 44

1 37

183

47

t I

49

487

0 18

47

16

3 02

0 85 1

47

16

137

08

9

10

Paproth ( 1972)

Norw Method (1974)

~ 0

0

u I

C 0 C

1 8 1

180 l 46

1- - -_L~ 46 167 46 1 19

1 1 Soviet Method ( 1974) [1 1 41 46 1 62 13 083 13 1 14 0 8

12 Engl Method (1974) 2 66 35 128 35 2 30 35 1 28

Note

cal Q a) n = --- mean value of the rat i o between calculat ed pile loads and those n Q determined f r om loading test

b) n = number of piles

109

Tab 113

Point resistance of large diameter piles (DIN 4014 Part 2 1977)

Settlement Point pressure 1 Factor -fshy

(cm) (MPa) cf=lOMPa I i=15 MPa C C

Piles without enlarged base

1 05 005 003 2 08 008 005 3 11 0 11 007

15 34 034 023

Piles with enlarged base

1 035 0 04 002 2 065 0 07 004 3 0 90 009 006

15 2 40 0 24 0 16

Note 10 lt qp lt 15 (MPa)C

Tab 114

Skin friction resistance of large diameter piles (DIN 4014 1977)

Strength Static cone pen- Depth below Skin frict ion Factor of sand etration resist surface

(MPa) (m) (MPa) fs

Very small lt 5 - 0

Small 5 to 10 0 to 2 0 2 to 5 003 ln6 to 333

gt 5 005 100 to 200

Medium I I 10 to 15 0 to 2 0 I

I 2 to 7 5

gt 75 I 0045 0075

222 to 133 to

333 200

High I I

i

l

gt 15 0 2

to 2 to 10 gt 10

I I I

I

i

0 006 0 10

gt gt

250 150

Note Skin friction is assumpted as linear until s =2 cm and constant for s gt 2 cm

11 0

Tab 115

Values of the inverse of the point resistance factor (Bustamante 1982) fp

Soil type qPC I 1

Factor - shyfp(MPa)

for piles group

a) Silt and loose sand lt 5 0 40 -b) Moderately compact

5 - 12 040sand and gravel

c) Compact to very gt 12 i 030compact sand and gravel I

Tab 116

Values of the shaft resistance factor fs (Bustamante 1982)

Factor fs

Soil type qs

C Category I(MPa) I A I B I II A III BI

I a) Silt and loose lt 5 60

i 150 I 60 I 120-

sand

b) Moderately corn- I pact sand and 5 - 12 100 200 100 200 gravel i

Icl Compact to very

compact sand gt 12 150 i I 300 150 I 200I

I I and gravel i

I

111

Tab 117

Point resistance factor (proposal)

-

1-fp

qc (MPa)

Gravel

Coarse sand Medium sand

Fine sand Silty sand

25

080

0 70

060

5 0

0 65

055

047

75

054

045

039

10 0

045

036

031

150

035

027

022

200

030

0 23

018

Tab 118

Shaf t r e sistance factor (proposal)

fs

qc (MPa)

Gravel

Coarse sand Medium sand

Fine sand Silty sand

25

80

100

130

10 0

120

150

190

I 200

180

230

300

11 2

Tab 119

Calculated values qcp

for large diameter piles

Pile Literature Length Diameter (m) Measured p Cr1 lcul Settlement Note Authcr(year) No (ml D Dp (MPa)

(s=0 10Dp) (MPa)p ~~JL__

s s ()(mm) Dp

1 Franke (1977) 1 13 11 36 38 117 106 Garbrecht

2

3

2

3

13

14

11

15

1 58 36

37

38

40

215

185

136

123

) qg accord to Franke

4 4 13 15 204 3 2 33 220 108 and Garshy

5 5 6 11 33 35 127 11 5 brecht (1977)

6 6 6 11 153 36 35 146 9 5

7 7 6 1 5 34 35 158 105

8 -shy 8 6 15 2 1 41 3 0 109 52

9 10 9 11 39 52 47

10 11 95 11 43 35 77 70

11 12 9 11 49 66 60

12 13 10 11 15 5 1 4 0 77 5 1

13 14 9 11 1 5 4 8 46 115 77--shy14 Pranke ( 1973) 15 115 18 4 9

) ) average 88

15 13$ 13 5 1 3 19 -2 5 3 2 sd=3 0

16 - - 165 16 5 13 19 30 sv=0 34

17

18

Spang (1972)

llXJ

V90

6 6

6 75

0 7

09

3 2

4 2

32X

42X

x) s =0 10 D p

19 VlaJ 720 1 2 39 3 9X

20 - - VlsJ 6 5 1 5 3 0 3 ox

21 Touma and US59 9 9 o 76 8 0 Reese ( 1977)

22 HH 75 0 61 8 0

23 Gl 180 091 - 2 5

24 BB 137 o 76

sd = standard deviation

sv = standard variation

Tab 1 2 1

Ultimate point resistance coarse and medium sand psf (MPal (Pol ish Specification 1975)

Depth h

Medium sand r = 0 40 N = 200 30 Base diam (Op) and depthbase diam (hDp)

Dense sand r 0 Base diam (Op)

= 0 80 = 50N30 and dpethbase diam (hDp)

(ml Dp = 0 6 m Dp = 1 0 m Dp =12 m Dp = 1 5 m Dp = 0 6 m DP = 10 m DP = 12 m DP = 15 m

Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp

5 10 83 0 85 5 0 075 42 07 33 20 8 3 16 50 14 42 13 3 3

7 14 11 7 1 2 70 11 5 8 10 4 7 2 8 11 7 22 70 2 0 5 8 1 8 47

10 18 16 7 15 10 0 14 8 3 1 3 67 35 167 28 100 2 5 83 2 2 67

15 18 250 18 15 0 16 12 5 15 100 4 2 25 0 3 4 15 0 30 125 27 100

20 2 4 333 2 0 200 185 167 1 7 133 4 7 333 3 8 200 33 167 30 13 3

25 26 41 7 2 2 25 0 20 208 19 167 5 0 41 7 4 0 250 3 5 20 8 3 2 167

w

11 4

Tab 131

Partial safety factors for resistance to axial load for bored piles (Wright Reese 1979)

Partial safety Normal Poor factor for control control

Unit skin resistance 1 70 185

(no load test)

Unit skin resistance 160 1 70

(from load test)

End bearing 165 180

Tab 1 3 2

Probability of failure of bored piles under normal design conditions (Wright Reese 1979)

Probability of Factor of Structure failure safety classification

5 10-3 25 monumental

210shy 22 permanent- 2

5 middot 10 2 0 110shy 1 85

temporary 5 bull 10-l 165

11 5

Tab 133 Results of field tests (Tejchman Gwizdara 1979)

L

II C C C 0 0 0

micro micro

micro micro micro For universal safe~y F2u u CUNo micro C C ~ ~g~ middot- C

~ Permisible micro micro i ~c -i micro

cmiddot-~ micro~ L

micro oo ~ load ~t~ ~~ omicro micro ~ ~ 3Z~ ~ ~ micro

-~~

~ e ~ --middot--

middot- ~ obull 0

~ g ~~ ~~ ~

~ L

o Jl i5 sect~ =gt L Q~ = yen t p Qp Qp

D h Q~ Srrx s tm p s E~ iQ~lQ~cm ~~ KN X ll1l kPa kPa kN kN kN Jl ~e ~ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 70 6 60 4081 1550 2531 38 0 1182 10 4040 175 2041 245 1796 632 141 120

2 90 6 75 5082 3041 2041 598 1785 10 4782 107 2541 1079 1462 282 140 42 5

3 120 720 7259 4041 3218 557 1035 10 3576 119 3630 2158 1472 187 2 19 594

4 150 650 8643 4454 4189 51 5 928 20 2521 136 4326 2158 2168 3 10 166 253

5 130190 195 7750 3011 4709 392 805 10 1075 - 3875 981 2894 3 10 166 253

6 130190 165 9516 5101 4415 536 522 20 1800 - 4758 1962 2796 260 158 412

7 130190 135 8044 5199 2845 646 114 4 15 1834 - 4022 2109 1913 2 47 149 524

8 180 115 11380 4415 6965 388 792 15 1735 - 5690 2747 2943 161 2 37 483

9 76 980 6867 4316 2551 628 110 13 9529 109 3534 1128 2306 383 111 32 8

10 61 7 60 7161 2747 44 14 383 67 15 9404 303 3581 392 3188 700 169 109

11 92 180 4807 883 3924 184 20 8 1329 76 2404 196 2207 450 178 82

12 76 24 5 6769 736 6033 109 20 8 1623 103 3385 147 3238 500 186 43

13 76 137 5396 2060 3336 38 2 63 8 4535 102 2698 589 1109 350 t 58 218

14 120 23 5297 1854 3443 35 0 960 10 1640 39 2649 196 2453 945 130 7 4

15 135 16 7 13489 7554 5935 560 181 10 5260 83 6749 2060 4689 367 127 305

16 170 46 0 8829 2943 5886 333 17 10 3466 39 4415 1373 3042 2 14 1 94 31 1

Average Fi 387 166 Standard deviation Sd 2 1 5 034 Standard variation sv= 0 56 0 20

1234 Spang1972 567 8 Franke 1976 9 10 111 2 1 3 Touma Reese 1974

14 Colombo 1971 15 Kerisel Simons 1962 16 Appendino 1973

11 6

Tab 134

Results of model

SafetyScheme factor

medium F ssand

F p

loose F s

samd Fp

F 3 55 sd _P F 1 32 sd

s

tests (Tejchman Gwizdara 1979)

Diameter D (mm)

30 60 90 133

145 129 108 112

280 3 08 307 294

140 154 153 112

594 3 04 324 426

107 sv 030

0 19 sv 0 14

117

Tab 135

Individual safety factors according to literature

Literature proposal ofLiterature individual safety factor

Fs Fb

Polish Specification (1974) 100 250

Tejchman Gwizdala (1979) 150 400

Bustamante Gianeselli 200 300 (1982)

Decourt ( 1982) 130 400

average 145 3 38

TAB 141 0)

Load settlement curves - measured

Pile No

Settlement 1 c 3 4 5 6 7 8 9 10 11 12

s p s p p s

p p s P

p s P

p s p p s

P p s

P p s

p p s p p S

p I i p s

p p s p

mm MPa rrrn lifl5a MPa mm

lifl5a MPa

mm lifl5a MPa mm

RPa mmMPa nwa MPa mm

RPa MPa mm RPa MPa mm

RPa MPa mm RPa MPa mm

RPa MPa mm RPa MPa mm

RPa 10 045 222 09 1 1 05 20 07 143 06 167 08 125 0 5 20 08 125 10 100 08 12 5 15 67 16 63 20 092 21 7 14 43 08 25 10 20 0 1 1 182 12 167 0 9 22 2 12 167 18 111 14 143 24 83 22 9 1 30 125 240 1 7 I 7 6 1 1 273 1 2 250 14 214 15 200 1 2 250 15 200 25 12 0 19 15 8 30 100 26 11 5 40 1ti 250 20 10 0 14 28 6 14 286 1 7 235 18 222 1 4 286 18 22 2 3 2 12 5 23 174 36 111 3 0 133 50 20 250 22 ~27 1 7 294 1 5 333 20 250 2 1 ~38 1 7 294 1 9 263 37 135 27 18 5 4 2 11 9 33 152 60 2 2 273 24 ~5o 20 300 1 7 353 23 61 22 ~73 18 333 21 286 43 140 30 20 0 46 13 0 36 16 7 80 271 295 27 796 24 333 20 400 27 ~96 25 1320 22 364 25 32 0 53 15 1 36 222 41 195

100 322 31 1 30 333 28 357 22 454 31 1323 29 345 26 385 28 357 60 16 7 40 25 0 45 22 2 125 38 329 32 391 32 391 25 500 32 139 1 30 41 7 32 39 1 4 6 272 48 ~6 0 150 14 2 357 34 1441 36 41 7 27 555 36 ~1 7 34 44 1 36 41 7 175 36 486 39 449 30 583 38 ~61 38 461 200 38 526 42 476 32 625 225 39 577 33 682

(mmMPa) ( 1 MPa)

1

1=2074

t 1=O ~01 =0 98S

a1=1132

b1 =0 212 V =0994

a1=2217

b1=O 131

V =Q 978

a1=1860 b1=0233

V =Q966

a1=1562

b1=0174 V =Q983

a1=1382

b1=O195

V =0975

a1 =20 37

b1 =C 174

V =0957

a1=1443

b1=(l 193 v =O 961

a1=965

b1= 0071 V =0 990

a1=1 91

b1 =o 128

V =0 993

a1=5 83

b1=C124

v =O 981

a1=6 1 4

b1=01 64 v =U 985

li(MPa) ~9 4 7 76 43 57 middot5 1 57 5 2 141 78 81 61 cp (MPa) B8 39 40 33 35 35 35 3 0 39 3 5 49 40 __Ef ~-6 1 2 1 9 1 3 16 15 16 1 7 36 22 16 15 qcp

TAB 141 (continue) Load settlement curves - measured

Pi le No 3ettlement 13 14 15 1 17 18 19 20 21 22 23 24

s p s T5

p s T5

p s T5

p s P

p s P

p s P

p s P

p s P

p s T5

p s T5

p s p p s

p mm MPa lll1l

HPa MPa mm HPa MPa mm

fWa MPa mm fWa MPa lll1l

HPa MPa mm HPa MPa mm

MPa MPa lll1l NT5a MPa HPa MPa 111111

HPa MPa 111111

HPa MPa 1)1111

mra 10 1 7 59 075 133 06 167 075 133 ~95 105 09 11 1 07 143 3 76 1 7 59 08 133 10 100 20 2 4 83 130 154 095 21 1 1 15 17 4 1 75 114 16 125 12 167 ~7 74 33 6 2 1 3 15 3 1 9 103 30 29 103 1 7 176 1 2 250 15 200 r55 118 22 136 16 18 8 38 79 46 66 1 7 182 27 110 40 33 12 1 20 200 1 35 29 6 1 75 229 ~O 133 26 154 175 229 49 82 58 6 9 1 9 21 1 35 115 50 36 139 235 21 3 145 34 5 1 95 256 24 208 ~-4 147 28 17 9 20 250 gt8 86 6 9 72 2 2 233 4 2 11 8 60 39 154 265 22 6 1 55 387 2 15 279 28 214 ~6 16 7 30 120 0 2 2 27 3 o 8 89 80 7 5 2 3 262 80 43 186 31 258 1 7 47 1 36 222 14 05 198 33 124 2 25 320 B 1 98 25 327

100 45 222 18 556 39~ 253 ~-5 222 36 1278 27 370 ~8 113 125 47 26 6 20 625 42 29 8 149 255 28 1446 t50 22 682 3 0 500 175 200 225

(mmMPa) a1=479 a1=1206 a1=14 51 a1=1113 a1=1406 ~=836 a1=843 a1=1176 ~=64 a =561 a1=10 0 a1=9 5 (1MPa) b1=0175 b1=0 178 b1=0 382 b=0287 b1=O 119 p 1=0 137 h1 =o 193 b=0258 p1=0 049 b1=0032 b1=0 276 b1 =0 048

hf (MPa)

v =0998 57

v =0-987 5 6

v =0989 26

v =0992 35

v =0933 Iv =0991 84 73

v =0993 5 2

v =0998 tJ

3 9 =0944 v =0998 v =0996 v =0981

qcp (MPa) 46 39 32 30 32 14 2 39 30

lL 12 1 1 08 12 26 1 7 1 3 13 qcp

lD

N 0

TAB 142

Calculated point resistance curves

Setlement (mm) p(s)

1

n p(s)

Calculated value of the p(s) for pile No

2 3 4 5

n p(s) n p(s) n p(s) n p(s) 6

(MPa)

n p(s)

7

n p(s) 8

n p(s) 9

n p(s)

10 20 30 50 80

100

150 200 225

070 128 177 253 335

375 446 493

157 140 141

127

123

1 16 106

070 1 25 168 232

297

327 378 410

422

078 089 099 1 06

1 10

109 1 11 108

108

073 1 30 176 246

315 349

405 441

146 163

160 145

1 32 125

113 105

056 096

1 26

167 205 222

249 265

271

0 80 096

105

1 11 100 101

092 0 83

082

065

118 162 233

308 345

412 456

108 108

1 16 116 114 111

064

1 12 151 2 10 2 69

298

346 3 76

078 P63 093 tt 13 101 tt 53 100 I 13

108 ~75

103 ~04 096 ~ 55

~ 87

1 26 125 127 126

125

1 17 1 04

052 088

1 15 153

188 2 03 227 242

065 0 74

o 77 0 81 0 75

0 73

063

072 122

1 83 262 347 388

463 5 11

073

0 74

073 0 71 0 65 065

064 1 18

162 233 309

3 46

41 3 4 57

Dp (m) 1 1 Qcp (MPa) 38 (mmMPa) h2 8 1 1 9 Qcpbullv1(MPa) 72

158

39

124 14 55

15

40

n20 15 60

204

33 148 10 33

1 1

35

tt 4o 1 9 67

1 53 3 5

tt 4 0 1 5 51

15

13 5

114 0 15 i-gt 3

2 1

30

tt 6 0 10 3 0

1 1

3 9

12 4 1 9 74

1 1

3 5 h40

1 9 67

Note n = condition coefficient calculated p(s) measured p(s)

10

n

081

084 0 85 0 86 0 85

087

TAB 142 (continue)

Calculated point resistance curves

Calculated value of the p(s) for pile No (MPa) Setlement 11 12 13 14 15 16 17 18 19 20

(mm) p(s) ll p(s) n p(s) ll p(s) n p(s) n p(s) n p(s) n p(s) n p(s n p(s) n

10 106 070 0 71 045 091 054 099 1 32 055 092 053 070 060 081 085 0 72 080 055 078

20 1 90 079 130 059 160 067 1 70 1 30 096 101 091 079 1 12 148 085 1 31 082 098 082

30 258 086 1 76 068 2 15 074 222 1 31 1 26 105 120 080 156 205 081 180 082 132 083

50 363 086 246 075 297 082 296 1 26 1 70 117 161 082 228 095 295 087 256 0 91 184 092

80 471 316 o 77 3 77 088 364 1 18 2 1 o 1 24 199 308 085 393 097 336 1 02 237 095

100 522 349 078 415 092 394 228 1 27 2 16 348 088 442 098 375 104 262 097

150 611 405 479 443 258 117 244 423 529 443 304 101

200 669 441 518 473 276 261 474 587 488 331

Dp (MPa) 1 1 1 5 1 5 18 1 9 19 070 090 12 15

qcp (MPa) 49 4 0 46 49 32 30 32 42 39 30 12 a1 mmMPa) 84 h20 96 84 152 160 152 124 160

IV1 1 9 1 5 15 12 11 1 1 23 21 18 15

qcpmiddotv1 (MPa) 93 60 69 59 35 33 74 88 70 45

- 12287 average = ~ = 098

standard deviation sd = 023 standard variation sv = 023

N

122

TAB 143 Ultimate settlement for shaft resistance - summing up

Ultimate settlements (mm)Literature sand cohesive claysand

soil

Burland Butler Dunican (1966) 7

Touma Reese (1974) 10 Tomlinson (1977) 10 Klosinski (1977) 8

Francke Gerbrecht (1977) 20-30 DIN 4014 part 2 (1977) 20 10 Francke (1981) Reese (1978) (1979) 05-2 of 05-2 of Farr Aurora (1981) shaft dia~ shaft diam

5-20 mm 5-20 mm Tejchman Gwizdala (1979) - Spang (1972) 10

10 10 20

- Francke (1976) 10 20 15 15

- Touma Reese (1974) 13 8 15 8

8 - Colombo (1971) 10

- Kerisel Simons (1962) 20 - Appendino (1973) 10 Promboon Brenner (1981) 10 Prodinger Veder (1981) 12 Decourt (1982) 10-15 10-15

-average s = 14 1 10 126

standard deviation sd = 53 2 1 47

standard variation sv = 038 021 037

123

TABLE 14 4 Al l owab l e base resistance versus sett lement

Pile Li terature ength Diameter (m) Calculated qcp=qcp Settl ement Fp-3- sa (mm)No Aut hor No (m) D DP qcp (MPa) for qcp3(MPa)

1 Francke ( 1977) 1 13 11 38 127 25 Garbrecht

II2 2 13 11 158 39 130 19

II3 3 14 15 40 133 33

II4 4 13 15 204 33 110 23

II5 5 6 11 35 117 22

II6 6 6 11 153 35 117 19

II

8

7 7 6 15 35 1 17 25

II 8 6 15 21 30 100 21

II9 10 9 11 39 130 13

II10 11 95 11 35 117 15

II11 12 9 11 39 163 11

II12 13 10 11 15 40 133 7

II13 14 9 11 15 46 153 9

14 Francke ( 1973) 115 11 5 18 30 100 15

II15 135 135 13 19 32 107 29

II16 165 165 13 19 49 163 35

17 Spang (1972) V70 660 070 32 107 28

18 II V90 675 0 90 42 140 16

II19 V120 720 1 20 3 9 130 16

II20 V15C 650 150 30 100 16 average for pi les 198

standard dev sd = 78

standard var sv = 039

)assumed qc = p for s = 010 Op sonding meRsurement were not availab le

IV

TA~LE 15 1

Comparison of the initial sl ope of the pile point resistance - settlement curve

Accardi ng to 1 2 3 4

In i t i ~l 5

slope a1 for the pile No

6 7 8 9

(mmMPa)

10 11 12 13 14 15 Note

a 1 for s=10 mm 222 11 1 a1 for s=20 mm 21 7 14 3 calculated 207 113see Tab 14 1 Bo Berggren (198 )230s=20 mm

Schmertmann s method (see 202B Berggren 1981)s=20 mm

No 1 _ llNo - 6 1 97 098

202 250

22 2

400

30 8

090

14 3

200

186

076

167

182 156

286

18 2

107

125

167 138

091

20 0

222

204

426

263

098

125

167

144

087

100

11 1 9 7

182

23 5

1 03

12 5

14 3

11 9

174

164

105

67 83

58

14 6

125

1 16

63

9 1

61

103

59

8 3 48

123

13 3

15 4 12 1

1 10

167 21 1

aceto hypershy14 5 bola type curve

1 15

No 2 NQj = n1

No 4Noz ~ na No 5Naz= T]g

105 1 27

106

093

1 13

160

1 23

108 1 17

157

100

121 109

1 92

118

1 16 1 14

164

2 12

120

122

1 15

143

1 76

151

149 1 73 1 27 146

TAllLE 151 (continue)

Compa ri son of the initial slope of the pile point resistance - settl ement curve

Initial slope a1 for the pile No (mmMPa)According Note to 16 17 18 19 20 21 22 23 24 -a1 for s=10 mm 133 - 105 11 1 143 76 59 133 100 a1 for s=20 mm 174 - 114 125 167 74 62 153 10 3 calculated see 11 1 146 84 84 118 64 56 100 95Tab 141

Bo Berggren 198 67 78 25 0 114s=20 mm Schmertmann s method (see B 136 67 250 146 Berggren 1981) s = 20 mm

nG = 108 No 1NoJ = n 1 20 125 1 32 121 1 19 105 1 33 105 sd = 0 14

SY= 013 No 2 i) = 1 29ro1 = n1 157 136 149 142 1 16 1 11 1 53 108 sd = 019

SY= 015 No 4 iis = 143 INo2 = ns 091 126 1 63 111 sd = 033

SY= 0 23 No 5 ii9 = 1 37183 108 163 142INoz = n9 sd = 0 37

SY = 027

N Vl

126

TABLE 152

Measured and calculated pile point resistance

Pile Calculated Measured Measured No qcp P for

s=10 mm P for s=20 mm

~ 10 mm ~ 20 mm

- (MPa) (MPa) (MPa) - -

1 38 045 092 84 41 2 39 09 14 43 28

3 40 05 08 80 50 4 33 07 10 47 33 5 35 06 11 58 30 6 35 08 12 44 29 7 35 05 09 70 39 8 30 08 12 38 25 9 39 10 18 39 22

10 35 08 14 44 25 11 49 15 24 33 20 12 40 16 22 25 18 13 46 1 7 2 4 27 19 14 30 075 13 40 23 15 32 06 095 53 34 16 49 075 115 65 43 17 32 - - - -18 42 095 1 75 44 24 19 39 09 160 4 3 23 20 3 0 07 12 43 25

average= 484 291

sd 163 088 sv 034 030

Tab 153 Results of calculation for piles No 1-24

Pile No

Length (m)

Overburden pressure 0 vs

0hs (kPa)

0ve (kPa)

0 nc (kPa)

- -ov=o1 (kPa)

- -OV=03 ( kPa)

00 (kPa)

p(a il ( kPa)

s (a 1) (mm)

A2 ( 1 )

E t

(kPa)

Md ( 1 )

K (1)

E I

t (kPa)

( kPa) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

l 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

13 12 14 13 6 6 6 6 9 95 9

10 95

11 5 135 165 66 675 72 65 99 75

180 137

l 33 133 123 116

70 70 70 70

104 102 95

102 95 94

106 139 95

101 106 97

180 137 221 215

53 53 49 46 28 28 28 28 42 41 38 41 38 38 42 56 38 40 42 39 72 55 88 86

202 202 216 202 1114 104 104 104 146 153 146 160 153 181 209 251 120 128 134 123 238 180 305 277

202 202 216 202 104 104 104 104 146 153 146 160 153 181 209 251 120 128 134 123 238 180 305 277

168 Hi8 170 159 87 87 87 87

125 128 121 131 124 138 158 195 108 115 120 110 209 159 263 246

128 128 133 124 66 66 66 66 94 97 92

101 96

110 126 154 79 84 88 81

155 118 197 182

141 141 145 136

73 73 73 73

104 107 104 111 105 119 137 117 89 94 99 91

173 132 219 203

950 975

1000 825 875 875 875 750 975 875

1225 1000 1150 750 800

1225 800

1050 975 750

2000 2000 625

1500

218 139 255 190 16 1 146 210 12 7 10 1 11 7 84 73 69

104 167 210 124 103 10 1 109 142 120 76

153

0802 0802 0822 0820 0798 0798 0798 0798 0791 0798 0800 0811 0814 0837 0837 0830 0769 0 768 0771 0 775 0 780 0 781 0 788 o 779

35296 81603 43312 65222 44019 67515 4609 91313 78186 60572

118115 15129 5 184075 95577 67017 81607 33252 67554 85294 75994 78816 74857 55101 54862

075 075 0 77 075 084 084 084 081 079 078 084 080 083 076 076 078 0 77 081 079 076 082 087 064 0 74

278 643 337 512 542 832 567

1085 766 572

1216 1417 1832

796 520 709 353 735 878 781 630 726 302 366

26472 61202 33350 48917 36976 56713 38656 73964 61767 47246 99217

121036 152782

72639 51932 63653 25604 54719 67382 57755 64629 65126 35265 40598

a=282l a =l781 y=axs S=0621 B=0 844

V=0 057 V=0 128 _ Iv -J

~

N co

Tab l53 Results of calculation for piles No 7-24

Pile No

17

1 2 3 4 5 6 7 8 9

70 11 72 13 74 75 16 17 78 79 20 27 22 23 24

Ground water

18

-20 m b s

-28 m -335 m -330 m -3 15 m dry dry -53 m -85 m

E t (kPa)

19

33653 64979 35364 45664 47969 54583 37574 63072 74548 57753

71 2618 123531 150297

71239 48619 59204 39744 77208 77863 62049 90407 95844 57762 62937

vxEt=E Md (kPa)

20

25240 48689 27230 34248 35254 45849 31562 51040 58893 45047 94599 98825

724747 54142 36950 46179 30603 57678 61572 47157 47734 83384 36968 46569

a=898 S=l 27 =0314

K (l )

21

265 511 275 358 517 672 463 749 730 546

1160 1157 7496

593 377 514 422 775 802 638 723 929 377 420

a=l422 S=l 05 =0187

E=E = t1 3

g-gcp (kPa)

22

51046 52799 54566 42492 45870 45870 45870 37547 52799 45870 77039 54566 65438 52799 40826 71039 40926 58739 52799 37541 82549 82549 40826 59945

Calculated s

(mm)

23

708 128 72 7 15 3 724 146 144 17 3 71 3 11 5 11 2 732 13 2 707 1 5 1 13 7 93

102 118 137 728 12 l 69

11 9

s__caL n=smeos

() 24

050 092 050 087 0 77 7 00 069 l36 l 12 098 133 l81 l97 103 090 065 0 75 099 117 126 090 101 097 078

ri=l00 sd=035 sv=035

K = l50gcp

25

570 585 600 495 525 525 525 450 585 525 735 600 690 450 480 735 480 630 585 450 825 825 1180 645

E l

(kPa)

26

67684 69465 72250 57726 44856 44856 44856 38448 59659 54306 74956 63214 70704 49089 56783 79502 45283 61081 58207 42927

708572 94785 71033 91898

E = t E middotA2

l

(kPa)

27

54283 5571 l 59389 47336 35795 35795 35795 30682 47790 43336 59964 51266 57553 47088 47024 65987 34823 46970 44877 33269 84639 74027 55974 71589

Calculated s

(mm)

28

l O l 12 l 11 7 737 15 9 18 7 185 21 1 12 6 12 2 133 14 l 150 13 7 13 l 14 7 709 12 7 738 755 12 4 735 50

100

- -

Tab l53 Results of calculation for piles No l-24

Pile

29

l 2 3 4 5 6 7 8 9

10 ll 12 13 14 15 76 17 78 19 20 21 22 23 24

sea l n= middotshy

smeas

28 TT

30

0 46 087 046 0 72 099 l 28 088 l 66 l 25 l 04 l 58 l 93 2 17 l 32 078 0 70 088 l 23 l 37 l42 087 l l 3 066 065

n=l 10 sd=0 44 sv=040

s seal for p n=s=lOrnn ac cording to s = 70mm

(mm)

37 32

5 l 0 51 ll 8 l18 64 064

13 0 l30 85 0 85

13 3 l 33 83 0 83

184 l84 ll6 l l 6 105 l05 137 l 37 21 3 2 12 19 4 l94 107 l06 l l 3 l l 3 84 084

92 092 l 0 9 l09 128 l28 83 083

l 0 3 l03 88 088 79 0 79

n=1 73 sd=025 sv=027

s for p according to s = 20mm

(mm)

33

10 4 184 102 18 6 15 6 200 14 9 276 209 18 4 219 292 274 185 17 9 12 9 -

169 194 219 172 200 143 15 0

seal n=s=20rnn

34

052 092 051 093 078 l00 075 l 38 l 05 092 l l 0 l46 l 37 093 090 065

-085 097 l1 0 086 l00 072 075

n=093 sd=025 sv=0 27

s for p according to s = 30rnn

(mm)

35

142 223 14 l 22 3 198 249 142 34 5 290 249 274 345 33 l 243 22 6 168 -

24 7 26 6 293 24 3 279 187 213

seal n=s=30rnn

36

047 0 74 047 0 74 066 083 047 l 15 0 97 083 091 l 15 l10 0 81 075 056 -

082 089 098 081 093 062 0 71

n=o80 sd=020 _ sv=0 25 N

IO

APPENDIXES

APPENDIX 1 1 1

Pi le No 1 Length 13 m D 10 m

Areas of influence

-

qe

(MPa)

1 fp

___9c_ f

(MPR) zyen

(MPf) qcp (MPa)

Soil type

22 20 18 16 14 1 2

l 2 (m)

10

1 0 08 06

16 15 16

026 027 026

42 41 42 Sand

04 14 U28 39 02 14 028 39 41

02 16 0 26 42 04 16 026 42 06 16 026 42 08 14 028 39 Sand 1 0 13 030 39 12 15 027 4 1 38 14 13 030 39 16 12 032 38 18 12 032 38

40 20 10 036 36 22 10 036 36 24 9 U39 35 2 6 8 043 34 28 10 036 36 30 10 036 36 3 2 10 036 36 34 10 0 36 36 36 11 0 34 37 38 11 034 37

l 1 (m)

40

42 44

11 0 34 37 15 1

46 48 50 52 54 56 58 60 62 64 66 68 70 7 2 74 76 78 8 0

APPENDIX 112

Pile No 2

to little depth of sounding

q~ = middle values for 11 = 2 Op

q~ = 145 MAa (Francke Garbrecht 1977 Tab 2 p 50) (Fi g No 2)

for sand

qcp = 0275middot145 = 40 MPa q~p =V ~~s) middot 40 = 097middot40 = 39 MPa

Pile No 4

q~ = 120 MPa sand (Fig No 4)

q = 0 315middot12 = 3 8 MPa q bull 38 = 086middot38 = 33 MPa=V Jmiddot54

1

cp middot bull cp

Pile No 12

qg = 155 MPa sand (Fig No 13)

qcp = 026middot155 = 4 03 MPa

Pile No 13

q~ = 200 MPa sand (Fig No 14)

q = 0 23middot20 = 46 MPacp

APPENDIX 113

PileNo3 Length 14 m D 15 m

Areas of influence

-

qe

(MPa)

1 Tp

----9cf

(t-1Pf) r~

(MPf) qcp (MPa)

Soil type

22 2D 18 16 17 025 43 14 17 II II

L 2 17 II II

12 (m)

16 10 08 06

17 17 17

o

II

II

II

II

Sand 04 17 II II

02 19 024 46 b9

02 19 024 46 04 17 025 43 06 15 027 41 08 13 030 48 1 0 12 032 38 12 11 033 36 14 13 0 30 39 16 14 028 39 18 12 032 38 40 20 16 026 42 2 2 16 026 42 24 11 033 36 26 11 033 36

60 28 30

10 10

036 036

36 36

Sand

32 10 036 36 34 12 032 3 8 3 6 12 032 38 38 12 032 38

1 1 (m)

40

4 2 4 4

13

14 16

030

028 026

39

39 42

46 13 030 39 48 12 032 38 50 14 028 39 52 10 036 36 54 13 030 39 56 14 028 39 58 15 027 41 60 15 027 ~-1 236 62 64 66 68 70 72 74 76 7 8 80

APPENDIX 114

Pi l e No 5 Length 6 0m D 11 m Dp 11 m

Area s of i nfluence

-

qc

(MPa)

1 Tp

-3Lf

( MPf) l ~

(MP~) qcp (MPa)

Soil type

2 2 2 0 18 1 6 14 1 2 155 U i1 33

l 2 (m)

1 2 10 08 06

15 14 12

022 023 0 27

3 3 32 32

Fine sand

+ silt

04 125 026 33 02 16 0 21 34 39

02 16 021 34 04 13 025 33 06 08 10

15 5 17 20

022 0 20 018

34 34 36

35 Fi ne sand

1 2 20 0 18 36 14 20 018 36 + s ilt 16 20 0 18 36 18 165 020 32 20 165 0 20 32 22 17 0 20 34 24 26 2 8 30 32 3 36 38 4 0

19 21 5 21 5 21 5 20 19 5 19 5 20 215

01 9 ---

018 018 0 18 0 18 -

3 6 40 40 40 36 35 3 5 36 4 0

l 1 (m) 4 2

44 20 19

018 01 9

36 3 6 157

46 48 50 5 2 54 56 58 6 0 62 64 66 68 70 7 2 74 76 7 8 8 0

APPENDIX 1 15

Pi le No 6 Lengt h6 0 m D 11 m

Areas of qc 1 __9_c_ qcp Soil typei nfluence fp f 1 yen (MPa) (MPf ) (MPf) (MPa)

-2 2 20 18 16 t 4---0 14 75 038 29 L2 20 018 36 Fi ne sand

1ti 10 30 40 + s i lt12 08 19 0 19 36(m) 06 17 020 34 04 14 023 32 02 9 034 31 56

02 6 043 26 04 12 026 3 1 06 17 020 34 08 11 028 3 1 1 0 14 023 32 35 1 2 17 020 34 Fi ne sand14 19 019 35 16 20 018 36 + silt18 18 0 19 34 20 14 023 32

46 22 12 026 31 24 12 026 31 26 15 022 33 28 18 019 34 30 20 018 36 3 20 0 18 36 34 20 018 36 3G 20 018 36 38 20 018 36 4 0 20 018 36

l 1 42 22 40

(m) 44 22 40 46 L2 4 0 158 48 50 52 54 56 q =V ~ - 3 b =0 99middot35 = 35 MPp cp 53 58 6 0 62 64 66 68 70 72 74 76 78 80

APPENDIX 116

Pi leNo7 Length 60 m 0 15 m

Areas of influence

-

qe

(MPa)

1 Tp ~

(MPg) r~

(MPf) qcp (MPa)

Soil type

22 20 18 16 9 U33 30 14 10 031 31 12 135 024 32

l 2 (m)

16 10 08 06 04 02

13 12 6

10 175

025 026 043 0 31 020

33 31 26 3 1 35 50

Fine sand

+ silt

02 04 06

17 10 115

0 20 0 31 027

34 31 3 1

08 10

145 185

023 019

33 35 3 5

1 2 14

20 19

018 0 19

36 36 Fine sand

l 1 (m)

60

16 18 20 22 24 26 28 30 3 2 34 36 38 40

42 44 46 48 50 52 54 56 58 6 0

185 125 125 165 17 19 21 215 205 20 21 20 20

24 22 20 215 22 22 21 19 18 22

0 19 026 0 26 020 020 019 --

018 018 -

018 01 8 --

018 ----

0 19 0 19

35 33 33 33 34 36 40 40 37 36 40 36 36

40 40 36 40 40 40 40 36 34 40 219

+ silt

62 64 66 68 70 72 74 76 78 80

APPENDIX 117

Pile No 8 Length60 m D 15 m Dp 2 1 m

Areas of influence

-

qe

(MPa)

1 r +

(MPg) r~

(MPf) qcp (MPa)

Soil type

22 18 019 34 20 16 021 34 18 125 026 3 3 16 115 027 31 14 11 028 3 1 12 11 028 3 1

l 2 (m)

10 08 06

105 11 145

D29 028 023

30 31 33

Fine sand

+ silt

04 18 0 19 34 02 18 019 34 71

02 15 022 33 04 11 0 28 31 06 13 0 25 33 08 20 0 18 36 10 15 022 33 12 13 025 33 14 175 020 35 16 18 20 22

20 21 20 15

018 -

018 0 22

36 40 36 33

35 Fine sand

+ s i lt

24 26 28 30 3 =

13 16 175 19 20 20

025 021 020 0 18 018 018

33 34 3 5 34 36 36

36 38 4 0

20 20 21

018 0 18 -

36 36 40

11 (m)

4 2 4 4 4 6 48 50 5 2 5 4 56 5 8 60 6 2 6 4

20 20 21 22 21 20 19 175 19 20 25 28

018 0 18 ---

01 8 01 9 0 20 0 19 018

36 36 40 40 40 36 36 35 36 36 40 4 0 23 0

6 6 68 70 72 74 76 78

qcp 1f5=v 2T middot35 = b85 middot35 = 30 MPa

80

APPENDIX 118

Pi le No 9 Le ngth 90 m D 11 m m

Areas of 1Qe -9c qcp Soil typeinfluence Tp f ryen (MPa) (MPg) (MPf) (MPa)

-

2 2 2 0 18 16 14 lc 11 034 37

12 10 10 036 36 12 08 9 039 35 Medium(m) 06 10 036 36 sand04 10 036 36

02 11 034 37 43

02 12 032 38 04 12 0 32 38 06 12 0 32 38 08 13 030 39 10 13 030 39 12 13 030 39 14 14 028 39 16 14 028 39

44 18 14 028 39 20 14 028 39 39 Med ium 22 15 027 4 1 sand 24 16 026 4 2 26 17 025 43 28 13 0 30 39 3 0 9 039 35 32 13 030 39 34 16 026 42 36 17 025 43 38 17 025 43 40 19 024 4 6

11 42 17 025 43

(m) 44 15 027 41 17 7 46 48 50 52 54 56 58 60 6 2 64 66 68 7 0 7 2 74 76 78 80

APPENDIX 119

Pi 1 e No 10 Length 95m D 11 m m

Areas of influence

-

qe

(MPa)

1 fp

-9c f

(t-1Pf) [~

(MPf)

qcp

(MPa)

Soil type

22 20 1 8 16 14 L 2 13 Uti 3J

l 2 (m) 12

10 08 06 04

18 18 28 19

0 19 019 0 19 019

34 34 34 34

Fine

sand

02 21 40 42

02 20 4 0 04 17 020 34 06 21 40 0 8 10

23 22

40 40 Fine

1 2 14 16 18

21 20 16 15

0 21 022

4 0 4 0 34 33

sand

44

20 2 2 24 26 28 30 32 34 36 38 40

14 14 13 11 11 14 17 14 12 13 12

023 023 025 0 28 028 023 020 023 027 025 027

32 32 33 31 31 32 34 3 2 32 3 3 32

l 1 (m) 42

44 12 13

0 27 025

32 33 15 2

46 48 50 5 2 5 4 56 5 8 6 0 6 2 6 4 66 6 8 70 72 74 76 78 80

APPENDIX 11 10

Pi 1 e No 11 Lengt h 9 0m D 11 m m

Area s of influence

-

Qe

(MPa)

1 fp

__k_ f

(MP~) ryen

(MPf) qcp (MPa)

Soi l type

22 20 18 16 14 12 lb 55

12 (m)

1 0 08 06 04

23 19 20 21

024 023

55 46 46 55

Medium

sand

02 22 55 62

0 2 04

24 25

55 55

06 08

27 28

55 55

10 12 14

28 28 28

55 55 55 49

16 26 55

44

18 20 22 24 26 28 30 3 34 36 38 40

24 19 18 17 22 21 17 11 13 12 11 9

024 024 025

025 0 34 030 032 034 039

55 46 43 43 55 55 4 3 37 39 38 3 7 35

1 1 (m) 42

Ll Ll

12 16

032 0 26

38 4 2 209

46 48 50 5 2 54 56 58 60 62 64 66 68 70 72 74 76 78 80

APPENDIX 141

0 2 3 4 p [MPa)

PILES WITH 40 ENLARGED BASES

80

120

160 C----0

200 IN4014 s (1977)

[mm]

P s calculateds P p(s)(mm) (MPa)(mmMPa)(MPa) ()

10 035 286 046 20 065 308 080 30 090 333 104

150 24 625 214 200 229

ai = 2605 (mmMPa) b1 = 0243 1MPa V 1000 bi = 1b = 411 MPa

_ 411 MP Vi - 24 a

() assumed

average Dp = 18 m

qcp = 24 MPa ai = 184 (mmMPa) (28-4middot24)

Vi = 1 2 (3-18)

qcpmiddotvi = 29 MPa

40

80

120

160

200 s

[mm]

DIN 4014 Part 2 ( 1977)

0 1 2 3 4 5 p [MPal

PILES WITHOUT ENLARGED BASES

C----0

DIN 4014 ( 1977

s calculated s p -p- p(s)

(mm) (MPa)mmMPa)(MPa) ()

10 05 20 062 20 08 25 113 30 11 27 3 155

150 34 441 385 200 424

ai = 2085 (mmMPa) bi= 0 157 1MPa V = 0970

bi= 1s = 637 MPa

Vi 187=3f =

() assumed

average Dp = 12 m

qcp = 34 MPa a1 = 144 (mmMPa)

Vi = 18

qcpmiddotvi = 61 MPa

Range qc = 10-15 MPa

(28-4bull34)

(3-12)

1 1 q = r -r- = 036 for qc = 10 MPaCp p Ip+= 027 for qc = 15 MPa

qcp = 36-405 MPa P

APPENDIX 142

Touma F and Reese L (1974)

Soil parameters pile parameters and base resistance see fig bullbullbullbull

TAB

Measured load settlement curves

Settlement s

mm

10 20 30 40 50 60 80

100 120

a 1 (mmMPa) bi(MPa) V

N3u

q =04 -N30 (cMPa) ()

1 qCp=--rpbullqC

Pile No 21 (US 59) 22 (HH) 23 (G1) 24 (BB) Notep Sp p S p p S p f Sp MPa mmMPa MPa mmMPa MPa mmMPa Mla mmMPa

131 76 169 59 075 133 100 100 269 74 325 62 131 153 1 94 103 381 79 456 66 165 182 273 11 0 488 82 581 69 1 90 21 1 349 115 581 86 694 72 2 15 233 424 118 675 89 800 75 229 262 813 98 245 327 884 113 925 130

64 56 100 95 U049 0032 0276 0048 0944 0998 0996 0981

80 gt100 30 60 32 gt 40 12 24 ()

Bergdahl (1982)

gt5 5 gt55 32 4 3

(0 18middot32) (018middot40) (0265middot12) (018middot24)

CONTACT PRESSURE p [ MPa]

0 2 4 6 8 100 N-------r---------------(us 59) ( HH) ( BBi

E E SQ-------lt+-----+--------------lt

VI

1shyz UJ

~ 100 1---------i----+----+----+------l------I -J I shyI shyUJ V)

so~----~--~-- ~--~

APPENDIX 143

us 59 fYJo 0 50 00

ff-t r-=-~c~=~-r~c_---_---l-~e-J-C~ 0 ------

CLAY

FINE SANO

J lD- 760 mm

f5m~--~--~

Pile US 59 and results from penetration test

HH IV_l() so 100 r=-=-==-==-r-~--=-=- 0 0 II 15- flf ~ II~ Ibull If t f

CLAY SAND

Sm

)

= -middotl lo - GtOmm

~ JI

SILTY SANO tOm

Pile HH and results from penetration t est

APPENDIX 14 4

61 NJO 50 --------00

11 1 =f J - 1 -- 0

CLAYSILT

E ~ Sm ltrj

SILTY SAND

q I lDmiddot 910 mrn tom

I) t bull

Pile G1 and results from penetration test

88

0 50 too ~1-e I q 111bull - Q

CLAY

SIL TY SAND 5m

]

l lDmiddot760mrn

Om

Pile BB and results from penetration test

APPENDIX 145

Klosinski B (1977)

Loading tests 50 bored piles 09-125 m diameter average Op= 11 m On t he sett l ement of rigid pla te the settlement of t he pi le base is given by

PmiddotOSp = T-K b

where Mb - equivalent deformability modu lus

1) Sand and sandy gravel of medium density

Mb = 25-50 MPa

According to Bergdahl (1979) medium sand is between

q(l) 5 MPa (Io=035)c2)

ql = 10 MPa (Io=065)C

from fig 117 rp1 = 055 for qc = 5 MPa 1Tp = 036 for qc = 10 MPa

q(l)= 0 55middot5 = 2 75 MPacp bull

q(2= 0 36middot10 = 360 MPacp

allowable p~ 1)= ~p = yen = 092 MPa and p~2) = ~ = 120 MPa

settlement of the pi l e base

5(1)= o 92 middot 1bull1 = O 0135 m = 13 5 mm p 325 middot middot

5( 2)= 1bull2bull1middot 1 = O 0088 m = 8 8 m p 350 bull bull

1) _ s _ 135 _ 14 7 (mm) a(2) _ 88 _ a 1 - p - o---92 - bull NPa bull 1 - T-7 - 733 (Wa)

2) Loose sand lo= 030-040

Mb = 12- 25 MPa

q~l) = 44 MPa q~2)= 58 MPa

1Tp = 058 and 052

q(3) = 0 58middot4 4 = 2 55 MPa middot q( 4) = 0 52middot5 8 = 3 02 MPa cp bull middot bull cp bull middot middot

allowable p~ 3)= 4i = 085 MPa p~4)= yenl = 101 MPa

s(3)_ 085-11 = 26 mmmiddot s(4)_ 101middot11 = 148 mm p - 312 p - 3 25

STATENS GEOTEKNISKA INSTITUT Swedish Geotechnical Institute S-581 01 Linkoping Tel 01311 51 00

Serien Rapport ersatter vara tidigare serier Proceedings (27 nr) Sartryck och Preliminara rapporter (60 nr) samt Meddelanden (10 nr)

The series Report supersedes the previous series Proceedings (27 Nos) Reprints and Preliminary Reports (60 Nos) and Meddelanden (10 Nos)

RAPPORT REPORT Pris kr

No Ar (Swcrs)

1 Grundvattensankning till foljd av 1977 50shytunnelsprangning P Ahlberg T Lundgren

2 Pahangskrafter pa langa betongpalar 1977 50shyL Bjerin

3 Methods for reducing undrained 1977 30shyshear strength of soft clay K V Helenelund

4 Basic behaviour of Scandinavian soft 1977 40shyclays R Larsson

5 Snabba odometerforsok 1978 25 shyR Karlsson L Viberg

6 Skredriskbedomningar med hjalp av 1978 40shyelektromagnetisk faltstyrkematning - provning av ny metod J Ingands

7 Forebyggande av sattningar i 1979 40shyledningsgravar - en forstudie U Bergdahl R Fogelstrom K - G Larsson P Liljekvist

8 Grundlaggningskostnadernas fordelning 1979 25 shyB Carlsson

9 Horisontalarmerade fyllningar pa los 1981 50 shyjord J Belfrage

RAPPORTREPORT

No

10 Tuveskredet 1977-11-30 Inlagg om skredets orsaker

11a Tuveskredet geoteknik

l1b Tuveskredet geologi

11 c Tuveskredet hydrogeologi

12 Drained behaviour of Swedish clays

R Larsson

13 Long term consolidation beneath the test fills at Vasby Sweden YCE Chang

14 Bentonittatning mot lakvatten T Lundgren L Karlqvist U Qvarfort

15 Kartering och klassificering av leromradens stabilitetsforutshysattningar L Viberg

16 Geotekniska faltundersokningar Metoder - Erfarenheter - FoU-behov E Ottosson (red)

17 Symposium on Slopes on Soft Clays

18 The Landslide at Tuve November 30 1 977 R Larsson M Jansson

19 Slantstabilitetsberakningar i lera Skall man anvanda total spanningsanalys effektivspanningsanalys eller kombinerad analys R Larsson

20 Portrycksvariationer i leror i Gateshyborgsregionen J Berntson

21 Tekniska egenskaper hos restproshydukter fran kolforbranning shyen laboratoriestudie B Moller G Nilson

Ar

1981

1981

1981

1981

1981

1982

1982

1982

1983

1982

1983

1983

1983

Pris kr (Swcrs)

50shy

50shy

40shy

50shy

100shy

60shy

80shy

60shy

190shy

75shy

60shy

150shy

65shy

RAPPORTREPORT

No Ar Pri s kr (Sw crs)

22 Bestamning av jordegenskaper med sondering - en litteraturstudie U Bergdahl U Eriksson

1983 75 shy

23 Geobildtolkn ing L Vi berg

av grova moraner 1984 70 -

24 Radon i jord -Exhal ation- vatten kvot -Arstidsvariationer - Permeabilitet A Lindmar k B Rosen

1984 75 shy

25 Geoteknisk terrangklassificering for fysisk planering L Viber g

1984 120shy

26 Large diameter bored piles in nonshycohesive soils Determination of the bearing capacity and settlement from results of static penetration tests (CPT) and standard penetration test (SPT) K Gwizdala

1984 85shy

15

In Tab 116 values of the shaft resistance factor

fs are given

Category IA

- Plain bored piles - Mud bored piles

- Hollow auger bored piles - Cast screwed piles

- Type I micropiles - Piers

- Barrettes

Category IB

- Cased bored piles - Driven cast piles (concrete or metal shaft)

Category IIA

- Driven precast piles - Prestressed tubular piles

- Jacked concrete piles

Category IIB

- Driven metal piles - Jacked metal piles

It can be noted that the values in Tab 116 are in

genera l of the same range for the driven and the

bored piles

According to the Polish Specification 1979 the point

and shaft resistance factor are given by

1-f- = kmiddota

p p

where

ap 035 for sand

k coefficent of unhomogeneity k qcp min

qcp

= 0065 for sandfrac12

1

16

Similar results can be observed in Fig 116a and

Fig 116b It was showed by Kerisel (1965) and Franke

(1973) that the harder soil the more loosening at

excavation and thus relatively smaller bearing capacity

Taking into account the Franke diagrams we will have

for D = 125mand settlements= 2 cm p

Cone resistance qc (MPa) 1 5 50 1 0 15 22

qc p for s=2 cm 3 6 8 12 14

(see Fia 1 1 6b )

taking safety factor for pile base F = 3 the point resis~ance

33-10 ~-05

380375 lo 212 bull lo 2114 bull

factors- shy are p

The above anal ysis shows that it is possible to determine

ultimate point and shaft resistance of bored piles from

static cone sounding But it is very important and must

be taken into account type of pile kind of soil and

degree of compaction

Bel ow calculation method for large diameter bored piles

based on the static cone penetrometer resistance (CPT)

is proposed Equation (117) can be used directly for

the base diameter D lt 15 m For larger diameters p shyD gt 15 m the values should be multiplied by the

p ff t ITscoe icen Y~ as pi

( 1 1 5 )

where

qcp = according to equation (117)

D = diameter of the pile base D gt 15 mpi pi

17

This value q~p should be put into equation 116

The value qc s in equation 118 is independent on the

pile diameter

Proposed calculation method

(116)

where)

1 1 40 ~ 11 3 for piles wit h a nd enlarged bases12 10 12 = ~

h+h

q (h) dh (117)qcp l1+l2 f -f- Ch-li p

h 1 f 1

qcs = o -f- qc (h) dh (118)h s

1 -f- = f(q kind of soil ) -+- see Fig 11 7 and Tab 1 1 7

C p

f (q kind of soil ) -+- see Fig 1 1 8 and Tab 1 1 8 fs C

Note

a) the point resistance q for qc gt 20 MPa is assumed cp to be maximum as

- Gravel 70 MPa - Coarse sand medium sand 55 MPa - Fine sand s il ty sand 40 MPa

b ) The shaft resistance qcs for qc gt 20 MPa is assumed to

be maximum as

- Gravel 110 kPa - Coarse sand medium sand 90 kPa - Fine sand s ilty sand 70 kPa

These proposed values are compared with results by

Bustamente (1 982) and the Polish Specification (1978)

Fig 11 9 and F i g 1110 A similar comparison for DIN

4014 1 977 is shown in Fig 1111 and Fig 1112

) In this paper was used the above values 1 1 and l z But it can be used in practice 11 =30 D and h =2Dp respectively The results shall be very simi l ar to the above onPs

18

The proposed method has been examined with field test

results This is shown in Fig 1113 to Fig 1128

and Appendix 1 11 to 1110 and Tab 119

The comparison shows that the value of q in equationcp (117) corresponds to the settlement -10 of the base

diameter (s=010 DP) see Fig 1113 and Tab 119

(average sDp=88 and standard deviation sd=3)

Later in this paper the allowable load and dependence of

the load versus settlement will be determined

12 Determination of bearing capacity of the large

diameter bored piles from results of the Standard

Penetration Tests (SPT)

There are little published on pile tests coupled with

results from Standard Penetration Test (SPT) Among the

authors who have published material in the subject are

- Meyerhof 1956 1976

- Senneset 1974 (Norwegian method)

- Rodin Corbett Sherwood Thorburn 1974 (English method)

- Polish Specification 1975

- Weltman Healy 197 8

- Reese 1978

- Japanese Society 1981

- Decourt 1978 1982

The Norwegian method is valid o nly for concrete andor

wooden piles the English method only for gravel It is

very important to underline that the Norwegian a nd the

English methods use of the SPT resul ts intermediate by

the static cone penetrometer resistance (q ) as well C

Below methods are presented that are using the results of

SPT directly Meyerhof s method in total can also be used

on driven piles in non-cohesive soil Although we could

have found some proposes for bored piles Eqs (121 and

122) see Fig 121 and Fig 1 22 as well

19

Ultimate point resistance (psf)

12 N 3 omiddotH lt 120 N 30

(kPa) (1 2 1)Psf D

where

N30 the average standard penetration resistance

in blows per 03 m

H depth in bearing stratum

Ultimate skin friction tu

for bored piles tu N~ o (kPa) (1 22a)

for driven pil estu 2N30 (kPa) (1 2 2b)

where

N30 the average standard penetration resistance

in blows per 03 m within embedded length

of pile

Weltman and Healy (1978) taking into account Meherhofs

proposition for driven piles have introduced two coefshy

ficents for bored piles in gravels (glacial soil) Equ

123 and Fig 1 23

t = a 2 N30 (kPa ) (1 2 3)U 1

where

ai a 1 for impermeable gravels see Fig 123a

ai a 2 for permeable gravels see Fig 123b

The Polish Specification ( Specification for Design and

Construction of Large Diameter Bored Piles in Bridges

1975 Ministry of Transport) gives the ultimat e point

resistance in dependence of N30 base diameter and depth

see Tab 12 1 The Tab 121 contains values for coarse

and medium sand For other non-cohesive soils the following

coefficients are proposed

p f = S bull p f (medium sand) ( 1 2 4)S 1 S

20

where

S1 1 20 for grave lSi

f 132 080 for fine sand

13 3 070 for silty sand13i

In Fig 124 values of psf are shown for h = 10 m DP

06 m DP= 15 m and h = 20 m DP= 06 m DP 1 5 m

respectively

A few of the instrumented piles were tested and analyzed

by Wright and Reese (1979) The ultimate point and shaft

resistance in the fine and silty sand as a function of

blow count from SPT is shown in Fig 125 Results from

two additional tests reported by Koizumi (1971) are also

introduced in the figure The ultimate point resistance

is assumed to exist at a settlement equal to 5 of the

base diameter

Methods of prediction of the bearing capacity of piles

based exclusively on N30 values were presented by Decourt

1982 Below a proposition for high capacity piles excavated

and cast under bentoni te is presented

The ultimate skin friction is determined by the expression

(see Fig 126)

t = 33 N30 + 1 0 (kPa) ( 1 bull 2 5 ) u

where

N30 average value of N30 along the shaft

- for N30 lt 3 must be taken as = 3N30 - for N3o gt 5 0 must be taken as NJo= 50

The allowable point resistance can be obtained in a n

expedite way as

Psa = 33 N30 (kPa) (1 2 6)

where

N30 = average of Nat point level one metre above

and one metre below

Psa allowable point resistance

21

Decourt proposed a safety factor for the point of F = p

40 Therefore the ultimate point resistance can be

determined by the expression

(kPa) (1 2 7)

In Fig 12 7 and Fig 1 28 the above values for base

and skin friction resistance are compared respectively

Taking into account the type of soil thereis a good

correlation for ultimate point resistance The result for

ultimate skin friction is scattered but only apparently

The values for large diameter bored piles are between

the line 1a and 1b in Fig 128 Large diameter piles

have a high ultimate skin friction in relation to driven

piles (see points for bored piles in Fig 122 and DIN

4014 Part 2 1977 as well) The high values for piles

excavated and cast under bentonite have had a strong base

on the load tests (Decourt 1978 1982 and Wright and

Reese 1979)

Below the proposals are given for determination of the

values of the ultimate point resistance and the ultimate

skin friction Eqs 128 to 1214 and Fig129 1210

The ultimate point resistance

- gravel psf = 140 N30 (kPa) ( 1 bull 2 8)

for N~ 0 gt 50 blows3O cm Psf 7 MPa

- coarse sand and medium sand

(kPa) ( 1 2 9)

for N30 gt 50 blows3O cm Psf 55 MPa

- fine sand and silty sand

psf = 80 Nio (kPa ) (1210)

for N30 gt 50 blows3O cm p f = 40 MPa 5

where N3 o the average of N value near the point level as

22

h+l1

f N3o(h)dh ( 1 2 11 ) h-12

3DP see Fig 1 1 1 D

p

The ultimate skin friction for coarse sand and medium sand

tu = 1 8 N 3 o (kPa) (1212)

t (kPa) (excavated and cast (1213)u under bentonite)

where

N30= the average value of N along the shaft as h

N -

3 o = h1 f N 3 o ( h) dh ( 1 bull 2 bull 1 4 ) 0

The ultimate skin friction for N30 gt 50 blows30 cm is

assumed to be maximum as tu = 90 kPa and t = 150 kPa u

13 Allowable load of large diameter bored piles

The allowable load Qa of large diameter piles has been

expressed as

OuQa ( 1 3 1)Ft

Qa Q(s)=Qb(s) + Os(s) ( 1 3 2)

Opu + Osu (1 3 3)Qa Fp Fs

Qr lt mmiddotQf ( 1 bull 3 4)-

= universal safety factor

individual safety factor for ultimate resistance of the pile point

individual safety factor for ultimate resistance of the pile shaft

= load according to the allowable settlement

calculated load

m coefficient

calculated ultimate bearing load of the pile

23

The equations from (131) to (134) are used as

1) equation (131)

a) DIN 4014 - 1977 Ft= 2 175 15 (depending on the kind of load)

b) Polish Specification 1975 Ft = 18 16 ( -- )

1c) Trofimenkov 1974 Ft = 14307

2) equation (132)

a) DIN 4014-1977 i Q(s) = Qb(s) + Q (s) = A middotp(s) + E tAsmiddott(s)

s p 0

where Qbs) and Qs(s) are described in Fig 1423

3) equation (133)

a) Polish Specification 1974

F 25 22 depending on the kind of load p

F 1 bull 0 s

b) Wright SJ Reese LC 1979

The ultimate capacity or resistance is considered as a

random value and represented by a frequency distribution

The distribution can be described by a mean value and a

variance The distribution of the load applied to the

foundation can be described similarly The coefshy

ficients used to factor resistance and loads are called

partial safety factors Some recommended partial safety

factors for resistance under normal conditions of design

and construction are given in Tab 131 Normal control

is defined as a condition where the coefficient of variation

is less than about 035

Typical values for partial safety factors for loads are

in the range 1 to 2 depending on the type of load and

how it is applied The overall factor of safety Ft can

then be calculated from the equation

Ft = y RbullY S

24

where

YR the par tial sa f ety fac t or for resistance and

Ys the partial safety factor fo r load

The probability of fa i lur e of the foundation can be r eshy

lat ed to the factor of safety for a parti cular degree of

uncert ainty (see Tab 13 2)

c ) Tejchman Gwizdala 1979

The authors discuss adequate safety factors based on fie l d

test s by Spang (1 972) Franke (1976) Touma and Reese (1974)

Colombo (1971) Kerisel and Simons (1962) Appendirno (1973)

see Tab 1 33 Taking into account the universal safety

factor Ft= 2 0 for the tota l load settlement curves it

was estimated

i) F in the range of 111 to 237 with the average value s F = 166 and standard deviation sd = 034 s (see column 16 Tab 133)

ii) Fb in the range of 161 to 945 with the average

value Fb = 387 and standard deviation sd = 2 15

For model core d piles in laboratory conditions values of

Fs = 108 to 154 (average Fs = 132 s~ = 019) and

values of F = 280 to 5 94 (average F = 3 55 sd = 1 07)p p

see Tab 1 3 4

As a conclusion it was assumed that Fb = 40 and F 1 5 s

for l arge diameter bored piles

The investi gation has shown that for the above safety

factors settlements of piles under permissibl e loads are

10 to 20 mm There was assumed a maximum load on large

diameter piles corresponding to a settlement of 010

diameter of the piles

25

d) Bustamente Gianeselli 1 982

e) 0ecourt 1982

The safety factor is given by

F = FgmiddotFfmiddotFamiddotFw where

F 11 - skin friction g F 135 - point bearing capacity

g

Ff safety factor related to the formulation adapted

Ff= 10 for Decourts method

Fd safety factor related to excessive deformation

Fd = 10 for skin friction

As for the point Fa= 2 to 3 depending on the

pile diameter For usual cases 25 is suggested

Fw safety factor related to working load

Decourt recommends 12

Thus we will have

- for skin friction

Fs = 11bull10middot10middot12 132 - 13

- for the point

F = 135bull10bull25middot 1 2 = 405 = 40 p

4) equation (134)

a ) Polish Code 1983

Q lt mbullN r shy

where

total load coefficient (depending on the kind of load For foundation we can assume Yf = 12 )= code load

correction coeffic i ent

09 for pile foundations

m 08 for two piles

m 07 for single pile

26

N ymmiddotQu

ym material (soil) coefficient

ym 08 to 09 (Polish Code 1981)

Thus we will have

QnmiddotYf lt mmiddotym middotQu-

Yf9uFt = On m bull Ym

1 2 max = 2 14Ft 0 7 bull 0 8

1 2min = 1 48Ft 0909

The above analysis has shown different ways to determine

the allowable load The analysis is in direct connection

with mobilization of the load (versus settlement) The

dependence of total load point resistance and shaft reshy

sistance will be discussed in detail in Chapter 14

In the authors opinion taking into account the above

analysis the allowable load should be determined based

on the equation 133 ie based on individual safety

factors for ultimate point and shaft resistance Proposed

values of F and F in literature are shown in Tab 135 s p The average values are Fs = 145 and Fp = 3 38 respectively

Taking into account that the bearing capacity is determined

based on the results from sounding measurements direct from

a place near the piling without a ny indirect correlation

the allowable load of large diameter bored piles is given

by the equation (133a)

( 1 3 3a)

where F = 30 and F 13 are proposedp s

27

14 Determination of settlement of larqe diameter bored

piles based on static cone penetration tests CPT

Determination of ultimate point and skin friction resistance

based on static cone penetration tests has been discussed

in Chapter 11 above Based on the results of this calcushy

lation and on Chapter 13 we can establish an approximate

relation between point resistance shaft resistance and

total load on one hand and settlement on the other However

the approximation gives a wide scatter especially for base

resistance as can be observed in Fig 141 to Fig 144

Only the first part of the point resistance - settlement

curves are in good agreement with measured values It can

be observed in Fig 145 that the average correlation

coefficient n = 098 and standard deviation sd= 029

This way of calculation can be used only for rough calcushy

lation (see Chapter 13)

In Chapter 11 also measured point resistance - settlement

curves were shown The base resistance increases gradually

with increasing pressure and settlement Below the cur7

vature of the point resistance - settl ement curve will be

examined It is assumed that this curve can be described

as a part of the hyperbola curve Thus if the ratio of

the measured settlement (s ) to the point resistance (p)

is plotted against the measured settlement the result

will fall closely to a straight line with the equation

( 1 4 1)

where a 1 and b 1 are constants (see Fig 1 46a and Fig

14 6b)

Then the point resistance - settlement realtionship can be

expressed as a hyperbola

s p = ( 1 bull 4 2)

The constant is the initial s lope of the point resistanceshya 1

settlement curve ie a 1 = t~a The inverse of the constant

28

b 1 is the vertical tangent (asymptote) to the curve 1ie for s = 00

bf= ~ If the ultimate point reshy1

sistance psf is equal to bf (psf=bf) the whole point

resistance settlement curve will be a hyperbola type

Now the Eq 1 4 2 can be written as

s s ( 1 4 3)a) p s or b) p = a+__sect_a1 + 1 Psfbf

If the ultimate point resistance is smaller than bf only

a part of the hyperbola curve ought to be considered

Further the Eq 14 3 will be written as

p ( 1 4 4)

where

poundf_ correction factor for hyperbola point Psf resistance-settlement relationship

Taking into account the discussion in Chapter 11 the

ultimate point resistance psf = qcp based on the CPT measurements

Therefore the relationship between the point resistance

the sett l ement and the CPT result can be expressed as

s p (1 4 5)s

The correction coefficient v 1 will cause a change of the

position of the vertical asymptote bf in r elation to the

ultimate point resistance q bull This means that we take cp into account a different part of the hyperbola curve for

the description of the point resistance-settlement relationshy

ship

Now if we want to use the equation (145) in practice

we must determine the constant and the coefficienta 1 v 1 (assumed that q is determined ear l ier Chapter 11)cp

29

The constant a 1 and t h e coefficient Vi have been detershy

mined based on fi e ld tests according to pi l es No 1 - 20

see Tab 14 1 and Tab 1 1 9 as wel l The values of

a 1 versus the point diameter D and the ul timate pointp

resistance respectively are shown in F i g 147 and Fig

148 Fig 1 47 shows that a 1 is independent of the

point diameter D Based on Fig 148 it can be assumed p

that

28-4bullq (1 4 6)cp

This correlation has been examined with data of the

literature see Fig 1 49 and Appendix 141 to 1 45

(Note there were no static penetration tests and qcp was determined based on a correlation made by Bergdahl

(1982))

A good correlation with equation 146 can be seen taking

into account the safety factor in the DIN 4014 Part 2

(1977) bull

The correction factor v 1 versus the poi nt diameter is shown

in Fig 1410 I t is assumed that the correlation is

V1 = 3 0 - D ( 1 4 7)p

where D is in m p

The above equations ie 146 and 147 were assumed for

a later analyses see Fig 14 11 and Fig 1412 The

piles No 1 to 20 were examined taking into account Eqs

14 5 14 6 and 1 4 7 The result of this cal cul ation is

presented in Fig 1 413 to Fig 1 4 18 and in Tab 1 4 2

respectively In Fig 1413 the calculation way for pile

No 2 is shown as an example

In Fig 1414 to Fig 1 417 measured and calculated

values of the point resistance versus settl ement can be

compared In tota l good correlation exists for all the

30

pressure-settlement curves Values of q from static cp

cone penetration tests and generalized values of anda 1

v 1 were considered Only for piles No 17-20 qcp was

assumed as the point resistance for s = 010 D because p

the static penetration test results were inaccessible

The similar comparison is shown in Fig 1417a for piles

in sand based on experimental results (Tuoma Reese 1972

and Wright Reese 1979) where the ultimate case resistance

was assumed as the resistance at a base settlement of 005

D The relative base resistance is the mobilized base p resistance divided by the ultinate base resistance The

curvature of the proposed point resistance settlement shy

curve to mean value proposed by Wright and Reese is excellent

However the constant a 1 and the coefficient v 1 were

determined for sand only In the future they should be

examined especially for gravel and silty sand based on

field tests Until then in the authors opinion the

values of v 1 can be chosen from Eq 147 for all nonshy

cohesive soils But for a 1 there is proposed

at = gt bulla (1 4 8)1

where

gt- 1 = 080 for gravel

gt 2 120 for silty sand

This proposal is shown in Fig 14 11 as dashed lines

A good correlation can be seen with the investigation by I

Kiosimiddotnski for sandy gravel and on the safety side with

the investigation by Tuoma and Reese for silty sand (see

Fig 149)

In Fig 1418 all calcul ations for pile No 1 to 20 are

summarize d The correlation coefficient n is defined as

the calculated point resistance p(s) divided by measured

point resistance p(s) For totally 126 points from 20

curves an average of n = 098 with standard deviation

31

al= 023 was obtained see Fig 1418 A similar result

can be observed for the range usually assumed of the

allowable settlement for sinqle large diameter bored

piles as

for

- for

- for

s

s

s =

10

20

30

mm a

mm

mm

verage n10 II

II

mm 089

095

099

and sd =

and sd

and sd

031

027

026

It can be questioned whether the sonstant a 1 can be deshy

termined in different ways The constant a 1 is the initial

slope of the point resistance-settlement curve as menshy

tioned above Then we can use all methods for determination

of settlement of a pile point The range of validity of

these methods then must be determined This will be shown

later

In order to be able to design the total load settlement

curve the skin friction resistance-settlement relationshy

ship must be determined The ultimate skin resistance of

large diameter bored piles was determined in Chapter 11

(based on static penetration tests) and in Chapter 12

(based on standard penetration tests)

In the past a lot of field tests have been done on the

mobilization of the shaft resistance versus pile settleshy

ment In this subject there is a rather good agreement

in the whole investigation for cohesive and non-cohesive

soil

Some results and opinions on thispresented in the literashy

ture during the last few years are shown below

Ultimate shaft resistance versus settlement

1) BurlandJB Butler FG Duncan P (1969)

-The shaft l oadsettlement curve is derived using a=0 3

with 90 ultimate load being mobilized at 025 in

settlement(~65 mm)

- soil London clay

- see Fig 1 419

32

2) Touma FT Reese LC (1974)

- The failure of the sides of the shaft takes place

at a downward movement of about 04 in (10 mm)

- soil sand

- see Fig 1420

3) Tomlinson HJ (1977)

- The maximum shaft resistance is mobilized at a

settlement of only 10 mm (or j in)

- soil stiff clay

- see Fig 1421

4) Klosinski B ( 1977)

- It was assumed that skin friction increased proshy

portionally to pile settlement up to the limit value

s bull This value depends on soil conditions and pile0 diameter and is usually from 3 to 8 mm For soft

compressible soil it may be grater than 10 mm

- soil cohesive soils

- see Fig 1422

5) Franke E Garbrecht D (1977)

- At settlement of 2 to 3 cm which are normally

allowed in Germany under working loads for buildings

not very sensitive to differential settlementsthe

skin friction is almost always fully mobilized

- soil sand

6) DIN 4014 part 2 (1977) and Franke E (1981)

- The skin friction Tm is approximated as diameter

independent having failure settlements of smf = 2 cm

in sand and 1 cm in clay

- soil sand and clay

- see Fig 1423

33

7) Reese By L (1978) Reese By L Wright SJ (1979)

(1978) The maximum skin friction being developed at

an average downward movement ranging from about 05shy

2 of the shaft diameter The average of six load tests

reported by Whitaker and Cooke (1966) are a lso plotted

for comparison

- soil stiff clays

- see Fig 1424 and Fig 1425a

(1979) The relative settlement is the average settleshy

ment of the butt and base devided by the shaft diameter

The mean curve maximises at a relative settlement of

about 002 D

- soil sand and clay

- see Fig 1425b

8) Tejchman A Gwizda3a K (1979)

- A clear differentiation of the distribution of shaft

and base resistances is observed for changing settleshy

ment For fairly small settlements the shaft resist shy

ance increases quite fast and the ultimate values

are reached soon while the base resistance increases

gradually with increasing loads and settlements withshy

out clearout ultimate values it can be assumed that

complete mobilization of shaft resistance corresponds

to settlements equal to 001 or 002 diameter of pile

- soil cohesive and non-cohesive soils

- see Tab 131 and Fig 1 426

9) Promboon S Brenner R P (1981)

- Load distribution and load transfer curves disclose

that most of the load is carried by shaft friction

which is developed at small displacements in the order

of 10 mm

- soil Bangkok clay

- see Fig 1427

34

10) Prodinger w Veder Ch (1981)

- The maximum value of skin friction resistance

occurred for a total settlement of 12 mm

- soil silty clay and sand

- see Fig 1428

11) Farr JS Aurora RP (1981)

- Ultimate load transfer was recehed (or nearly reached)

at a relative settlement of about 04 in (10 mm)

- soil gravelly sand

- see Fig 1429

12) Decourt (1982)

The skin friction resistance is totally mobilized

with deformations of about 10 mm or at the most 15

mm regardless of shaft dimensions This observation

of ours seems to clash with the opinions of other

authors who seek to relate the deformation necessary

for full skin friction mobilization with the shaft

diameter

- soil cohesive and non-cohesive soil

In Tab 143 all these results are shown Depending on

the kind of soil the following v a lue s of ultimate settleshy

ment for shaft can be assumed

- averages 142 mm (sd 5 3 mm) for sand

- averages 100 mm (sd = 21 mm) for cohesive soil

averages 726 mm (sd 67 mm) for claysand

It can be observed (see Fig 1419 to 1428) that the

shaft friction resistance increases proportionally to

the pile settlement up to the above limit value and

thereafter becomes constant

35

Taking into account what was mentioned earlier on point

resistance settlement relationship and the above results

a relationship between total load point resistance and

shaft resistance on one hand and settlement on the other

can be made see Fig 1430

It is assumed on the safety side that the following

ultimate settlement (S~) exists for the shaft resistance

of large diameter bored piles

SS1 ) 200 mm for non-cohesive soil u SS2) = 100 mm for cohesive soil u SS3) 15 0 mm for claysandu

In Fig 1 430 the curve Q (s) is calculated based on p

the equation 14 5 or 144

The values of psf in equation 144 can be calculated

based on other methods as well

The total load-settlement relationship is obtained by

summing up point and s haft resistance as

Q (s) = Q (s) + Q (s) (149)s p

for each point

Now the allowable load can be determined from equation

133a and versus the allowabl e settlement as

Q (s) = Q (s) + Q (s) (1410)s p

where s lt Sa

Sa= the allowable settlement of the pile

The analysis allows determination of the approximative

load settlement dependence without calculating the settleshy

ment for non-cohesive soil In Fig 1431 it is shown

36

In Tab 144 the settlement for allowable point reshy

sistance q5P according to equation 133a is shown

as well The average settlements= 198 mm (sd=78 mm)

is obtained This value is similar to the assumed ultimate

settlement of shaft for non-cohesive soil The ultimate

settlement for point resistance is assumed s = 010 Dp as mentioned earlier

37

15 Initial slope of pile point resistance shy

settlement curve

Settlement of piles and pile foundations can be cal culated

based on

- empirical correlations

load-transfer methods using measured relationships

between pile resistance and pile movement at various

points along the pile

- theory of elasticity that employs the equations of

Mindlin for subsurface loading within a semi-infinite

mass

- numerical methods and in particular the finite element

method

- use of in-situ tests (Cone Penetration Test Standard

Penetration Test Pressuremeter Test)

The critical slope of the pile point resistance-settlement

curve is important for calculation in chapter 14 The

constant a1 can be determined from all the above mentioned

methods

Comparison is made to Berggrens and Schmertmanns methods

below (see Berggren 1981 as well)

6sIn Tab 151 (No 1 2 3) the values of a 1 =~p for s =

10 mm and s = 20 mm (measured for large diameter bored

piles No 1 to 24) are compared to the calculated values

according to the modified hyperbola method (see Fig 14 6)

It can be seen that these calculated values are between

s = 1U-2u mm but rather closer the measured values for

the settlements= 10 mm see correlation coefficient n 6

and n 7 in Tab 151 respectively The average correlat i on

coefficent for the settlements= 10 mm is n9 = 108 and

the standard deviation is sct = 014 The comparison to

Berggrens and Schmertmanns methods for s = 20 mm ( see

Berggren 1~81 and Tab 151 as well) shows that the

results based om these methods give too high values of a 1 bull

38

The average values are ne= 143 sd = OJ3 and ng= 137

sd = 037 for Berggrens and Schmertmanns methods

respectively A bit better agreement can be observed

for Schmertmanns method

Taking into account the results in Tab 151 ana Tab

15l it must be assumed that for the determination of

a 1 the pile point contact pressure p(a1) should be

assumed as the ultimate point bearing capacity devided

by about 4

p(ai) - ( 1 bull 5 1 )

Most of the methods for determination of settlement are

based on the theory of elasticity The settlement ot the

pile point can be expressed as the average settlement of

a rigid circular foundation from the equation

11-Dp 1-v 2

s = p -4- -E-bull microd (1 ~ 2 J

where

p pile point contact pressure

E Youngs modulus

D diameter ot pile pointp ) = Poissons ratio

microd = depth factor

The range of validity of the pile point contact pressure

was determined in equation 151 Youngs modulus has an

important meaning lt can be determined from triaxial

tests or oedometer tests The relationship between the

constrained (oedometric) modulus Mo and Young s modulus

Eis dependent on Poissons ratio v as expressed by the

equation

E = l 1 + V ) ( 1 - 2 V ) Mo ( 1 bull 1 bull 1)- 1-v

39

TaKing into account the analyses made ny Chaplin (19b1a

1 961bJ Janbu (1 963 1970 1973J Andreassen (1973)

Duncan and Cheng (1970) Tejchman anct Gwizdala (1979)

Gwizdala (1978) Franke (1981) Berggren (1981) Withiam

and Kulhawy (7981) and the present investigation the

calculation of settlement is proposed to be

s = 24 bull p bull ~ D bull 1-v 2 bull micro d (154)Do o E

where s (r1)

p (kPa)

Dp (m)

E (kPa)

D0 =10 m

micro = 05 + 01 vfrac34E (1 5 5)d vs

but 05 lt microd lt 10-tip= p - (J (ovs see Fig 151)vs

E =Et= Kbullpat (Oo )n [1- Rf(1-sinltj) 101 - 03 ) 12 (1 5 6)2 c cosltP + 2o 3 sinltP 1Pat

in which K n and Rf= hyperbolic stress-strain parameters

Pa= atmosferic pressure ando 1 o 3 and o0 are determined by

averaging the concrete and soil vertical and radial stresses

near the pile point according to Fig 151 Then the

stresses at the pile point level are h

(J vs = L

0 Yi h

l vertical stress in the soil

0 hs Ko h

0 vs radial (horizontal) stress in the soil

0 vc L ye h -l

vertical stress in the concrete 0

0 hc K oc a vc radial (horizontal)

concrete stress in the

40

K at rest soil lateral stress coefficient 0

K c lateral stress coefficient for fluid fresh concrete0

K 1 0 oc

and average values

a 05(a +a)V vc vs

1 1 - shy~ = -(a +a+a I = -3 (av+2ahJ the applied mean normal stress0 j Z X y

Assuming this model calculation results for piles No 1-24

(see Tab 11~ as well) are shown in Tab 153

The piles are embedded mainly in medium sand to fine sand

For this kind of soil it can be assumed (soil parameters

from field or laboratory tests were inaccessible)

~ = 35deg c = 0 R~ = 09 n 05 v = 025 K c 10l 0

K = 04 Pat= 1UO kPa ye 24 kNrn 3 y = 14 kNm 3 bull0 C

Moreover in Tab 153 the following symbols are used

p(a1 ) - pile point contact pressure according to equation

1 bull 5 1

s(a1) - settl ement of pi l e point according to equation

143 and Tab 141

pound TT ( 2E = s bull Dp bull i 1-v ) according to equa~ion 152t

E~ Et bull microltl

EI

K = ro~ - according to equation 1 bull 5 6 p bullO middotA2

a~ o

E = E voD middot D middot ~4 ( 1 - v 2 ) according to equationt S p O 0

1 5 4

Et= E microd

K = according to equation 156 V PatmiddotaomiddotA2

41

The calculation results of Youngs modulus E = Et and

dimensionless canpressionrro1ulus for piles to 1-24 are shown

in Fig 152 to 155 using equation 152 and 15b

or equation 1~4 and 156 respectively lt can be obshy

served that the scatter in Fig 153 and Fig 155

where the influence of tne pile diameter is reduced

compare equation 154 is less than in the other figures

The reduced influence was made after observations from

field and laboratory tests while the equation 152 is

taken direct from theory of elasticity These values of

E and K are in good correlation with published values in

literature The values of Youngs modulus versus the

relative density of soil are compared to literature values

see Fig 15b Based on the analysis in this chapter it

can be assumed that

E = 9-ql 3 ( 1 bull 5 7)cp

where qcp is in accordance with equation 117

The calculation results based on this proposal are incluced

in Tab 1 5 3

The c a lculate d s e ttlements based on e q ua tion 154 and

157 are shown in column 23 and the values of the

correlation coef f icie nt (n= Seal ) in column 24 respectshyimeas

ively

The dimensionless canpression modulus can be d e termined as

K = 15Ubullq (qcp in MPa) (1 5 8)cp

see column 25 Tab 153

The calculation results based on the K compression modulus

according to equation 158 156 and 1 5 4 are shown in

columns 25 26 2 7 28 and 29 in Tab 153

42

For comparison and for determination of the range of

validity of this method the caLculation results of

pile point pressure for settlements s = 10 mm s = 20 mm

s = 30 mm (see Tab 141) according to equation 157

and 154 are shown in columns 30 to 35

The results obtained in Tab 153 confirm the possibility

to use the proposed method to calculate the initial part

of the pile point resistance settlement curve of large

diameter bored piles in non-cohesive soil and the initial

slope of this curve as well

A simple model has been proposed based on the theory of

elasticity ana the tangent modulus defined by Janbu (1963)

and Duncan amp Chang (1970)

A new approach according to the pile diameter depth factor

and principal stress is proposed

The settlement of the pile point can be made up to a point

pressure according to equation 151 on up to a settlement

of about s ~ 20 mm (30 mm)

-- The application of v Op in equation 1 5 4 a llows us ing

Youngs modulus as independent of the pile diameter

opposed to Bazants a nd Mosopusts (1981) proposal where

Youngs modulus wa s determined versus the pile diameter

The equation 1 5 6 takes into account the dependence of

Youngs modulus on depth (or overburden pressure) as

well

In the method field test (Cone Penetration Test) or

laboratory tests (hyperbolic stress-strain parameters

can be used

Comparison of the method to 24 availa ble load test r e sults

or large diameter bored piles in sand shows good a greement

to calculated and measured values

43

REFERE~CES

Adamczyk J (1978) Okreslanie udzwigu pali wierconych

za pomoca sondy statycznej (Bearing capacity of bored

piles based on the static sounding) Inz i Bud No 7

pp 253-257

Andreasson L (1973) The compressibility of cohesionless

soils Thesis Chalmers University of Technology

G6teborg (in Swedish)

Appendino M (1973) Comportamento di un palo di grande

diametro strumentato Rivista Italiano di Geotechnica

No 3 pp 115-118

Butterfield R Banerjee P (1971) A rigid disc embedded

in an elastic half space Geotechnical Engineering

Vol 2 pp 35-49

Bozant z Mosopust J (1981) Drilled pier design based

on load settlement curve X ICSMFE Stockholm Vol 2

pp 615-619

Begemann HK (1982) Cone penetration tests pile bearing

capacity and the thesis of Rollberg Proc of the Second

European Symposium on Penetration Testing Amsterdam

pp 433-438

Berggren B (1981) Bored piles on non-cohesive soils shy

settlement and bearing capacity (in Sweden) Thesis

Department of Geotechnical Engineering Chalmers

University of Technology G6teborg

Bergdahl UB (1979 1982) Sonderingen und in situ Messungen

Wien 18-19 Juni 1979 - Private information 19821983

Bustamante M Giane selli L(1982) Pile bearing capacity

prediction by means of static penetrometer CPT Proc

of the Second Europ Symp on PenTest Amsterdam

Vol 2 pp 493-500

Chaplin TK (1961a) An experimental study of the settleshy

ment of footings in sand PhD Thesis Univ of

Birmingham

44

Chaplin TK (1961b) Compressibility of sands and settleshy

ments of model footings and piles in sand 5th Int

Conf on Soil Mech a Found Engng Vol 2 p 33 Paris

Colombo P (1971) Observazoni sul comportamento ltli pali

a grande diametro Rivista Italiana di Geotechnika

No 3 pp 163-172

Dahlberg R (1975) Settlement characteristics of preconshy

solidated natural sands Swedish Council for Building

Research D11975

De Beer EE (1964) Some considerations concerning the

point bearing capacity of piles Proc Syrop Bearing

Capacity of Piles Boorkee I pp 178-204

Decourt L Quaresma AR (1978) Capacidade de Carga de

Carga de Estacas a partir de Valores de SPT VI Conshy

gresso Brasilerio de Mecanica dos Solos e Engenharia

de Fundacoes - Rio de Janerio - ABNS

Decourt L (1982) Prediction of the bearing capacity of

piles based exclusively on N values of the SPT Proc

of the Second Europ Syrop on Penetration Testing

Amsterdam Vol 1 pp 29-34

Duncan MJ Chang CV (1970) Non-linear analysis of stress

and strain in soils Journal Soil Mech Found Div Vol

96 SM5 pp 1629-1651

Durgunoglu HT (1979) Effect of foundation embedment on

stress and deformation distributions Third Int Conf

on Num Meth in Geomechanics Aachen pp 925-928

Farr JS Aurora RP (1981) Behaviour of an instrumented

pier in gravelly sand Proc of a session Drived Piers

and Caissons sponsored by the Geotech Eng Div of the

ASCE Nat Convention St Louis Missouri pp 53-65

Franke E (1981) Point pressure versus length and diameter

of piles X ICSMFE Stockholm Vol 2 pp 717-722

45

Gregersen os Aas G and Dibiagio E (1973) Load tests

on friction piles in loose sand Proc of the Eigth

International Conference on Soil Mech Moscow USSR

Vol 21 pp 109-117

Gwizda1a K (1978) Behaviour of large diameter bored piles

in non-cohesive soil (in Polish) Archiwum Hydrotechniki

Vol XXV No 2 pp 183-217 (English summary)

Huizinga TK (1951) Application of Results of Deep

Penetration Tests to Foundation Piles Building Research

Congress Vol 1 p 173

Janbu N (1963) Soil compressibility as determined by

oedometer and triaxial tests Proc Europ Conf Soil

Mech and Found Eng Vol 1 p 19 Vol 2 (Discussion)

p 17 Wiesbaden

Janbu N (1970) Grunlung i geoteknikk Tapir Forlag NTH

Trondheim

Janbu N Bjerrum L Kjaernsli B (1973) Soil Mechanics

applied to some engineering problems Norw Inst Publ

No 16 Oslo

Japanese Society SMFE (1981) Present state and future trend

of penetration testing in Japan Separate report at

X ICSMFE Stockholm

Kjekstad O Lunne T (1979) Soil parameters used for design

of gravity platforms in the north sea Second Int Conf

on Behaviour of Off-shore structures London Vol 1

pp 175-192

Klosinski B (1977) Bearing capacity of large diameter bored

piles IX ICSMFE Tokyo Vol 1 pp 609-612

Laboratory for soil mechanics Delft (1936) The predetershy

mination of the required and the prediction of the

resistance of piles Proc 1 Int Conf on Soil Mech

and Found Engng Cambridge (Mass) I p 181

46

Matich M and Stermac A (1971) Settlement performance of

the Burlington Bay Skyway Canadian Geotechnical Journal

Val 8 pp 252-271

Mccammon NR and Golder HQ (1970) Some loading tests

on long pipe piles Geotechnique London England

Val 20 pp 171-184

Meigh AC (1971) Some driving and loading tests on piles

in gravel and chalk Proc of the conference on beshy

haviour of piles London England pp 9-16

Mitchell JK Gardner WS (1976) In situ measurement

of volume change characteristics American Society of

Civil Engineers Specialty Conference on In-situ

Measurements of Soil Properties Raleigh 1975 Proc

Val II pp 279-345

Mezenbach E (1961) The determination of the permissible

pointload of piles by means of static penetration tests

Proc 5 Int Conf on Soil Mech and Found Engng

Paris II pp 99-104

Meyerhof CG (1956) Penetration tests and bearing capacity

of cohesionless soils Proc Amer Society of Civ Engng

SM 1 Pap 866 pp 1-19

Meyherhof GG (1 976) Bearing capacity and settlement of

pile foundations Proc Amer Society of Civ Engng

Journal Geotechnical Engineering Division Val 102

No GT3 pp 197-227

Mohan D Jain GS and Kumar V (196 3 ) Load bearing capacity

of piles Geotechn Val XIII pp 76-86

Nixon I (1982) Standard penetration test State of the

art report Proc of the Second Europ Symp on Pen

Test Amsterdam Val 1 pp 3-20

47

Nunes A Vargas M (1953) Computed bearing capacity of

piles in residual soil compared with laboratory and

load tests Proc of the Third International Conference

on Soil Mechanics Zlirich Switzerland Vol 2 pp 75-79

Nordal S Grande L Janbu N (1982) Prediction of offshy

shore pile behaviour The Norwegian Institute of

Technology Trondheim

Ohde J (1939) Zur Theorie der Druckverteilung im Baugrund

Der Bauingenieur Vol 20 No 3334 p 451

Parroth E (1972) Einfache Formel zur Vorausbestimmung der

Tragfahigkeit von Standpfahlen mit Hilfe der Sande

Bautechn 9 pp 312-314

Poulos HG Davis EH (1980) Pile foundation analysis

and design New York - J Wiley and sons

Prodinger W Veder Ch (1981) Bearing capacity of floating

groups of diaphragm walls Proc X ICSMFE Stockholm

Vol 2 pp 809-814

Promboon S Brenner R (1981) Large diameter bored piles

in Bangkok Clay Proc X ICSMFE Stockholm Vol 2 pp

815-818

Reese L (1978) Design and construction of drilled shafts

ASCE JSMFD Vol 104 No OT1 pp 95-116

Rodin s Corbett BO et al (1974) Penetration testing in

United Kingdom state-of-the-art-report Proc Europ

Symp on Penetration Testing 1 Stockholm pp 139-146

Rollberg D (1976) Bestimmung des verhaltens von Pfahlen

aus sandier und rammengebnissen Heft 4 FBG Technische

Hochschule Aachen

Rollberg D (1977) Determination of the bearing capacity

and pile driving resistance of piles using soundings

Publications of the Institute for Found Eng Soil Mech

Rock Mech and Water Ways Construction Aachen Vol 3

48

Schmertmann J (1970) Static cone to compute static

settlement over sand Journal of the Soil Mech and

Found Division ASCE SM3 pp 1011-1043

Schmertmann J Hartman JP Brown PR (1978) Improved

strain influence factor diagrams Journal of the Soil

Mech and Found Division ASCE GT8 pp 1131-1135

Shibata T Hijikuro K and Fominerga M (1973) Settlement

of a blast furnace foundation Proc of the Eighth Int

Conf on Soil Mech Moscow USSR Vol 13 pp 239-242

Spang J (1972) Die Bestimmung der Tragfahigkeit von Grossshy

borhpfahlen (I) Strassen und Tiefbau No 2 pp 339-355

Senneset K (1974) Penetration testing in Norway State-ofshy

the-art-report Proc Europ Symp on Penetration Testing

Stockholm I pp 85-95

Tejchman A Gwizdala K (1979) Analysis of safety factors

of bearing capacity for large diameter piles Proc VII

ECSMFE Brighton Vol 1 pp 293-296

Thorburn s and Mac Vicar R (1971) Pile load tests to

f a ilure in the clyde alluvium Proc of the conference

on behaviour of pile s London England pp 1-7

Trof imenkov JG (1969) Accuracy of determining the bearing

capacity of piles based on results of static penetration

sounding of soils Osnovaniya Fundamenty i Mekhanika

Gruntov 4 (Translation Soil Mechanics and Foundation

Engineering 4 p 248)

Trofimenkov JG (1974) Penetration testing in USSR Stateshy

of-the-art report Proc Europ Symp on Penetration

Testing Stockholm I pp 147-154

Tuoma F and Reese L (1974) Behaviour of bored piles in

sand JSMFD ASCE Vol 100 No GT 7 Proc Paper 10651

July pp 749-761

49

Van der Veen C (1953) The bearing capacity of a pile

Proc 3 Int Conf on Soil Mech and Found Engng

Zlirich II pp 84-90

Van der Veen C and Boersma L (1957) The bearing capacity

of a pile predetermined by a cone penetration test

Proc 4 Int Conf on Soil Mech and Found Engng

London II pp 72-75

Weltrnan AJ Healy PR (1978) Piling in boulder clay

and other glacial tills Construction Industry Research

and Information Association UK-Report PG 5

Withiam J Kulhawy F (1981) Analysis prodecure for

drilled shaft uplift capacity Proc of a session

Drilled piers and caissons ASCE St Louis Missouri

pp 82-97

Woodward R Lundgren R Boitano J (1961) Pile loading

tests in stiff clays Proc of the Fifth International

Conference on Soil Mechanics Paris France Vol 2

pp 177-184

Wright SJ Reese LC (1979) Design of large diameter

bored piles Ground Engineering Vol 12 No 8 pp

17-22

DIN 4014 Cods Teil 2 (1977) Bohrpfahle Grossbohrpfahle

Herstellung Bemessung und zulassige Belastung

Polish Specification (1975) Specification for design and

construction of large diameter bored piles in bridges

Ministry of Transport Warsaw (in Polish)

Polish Specification (1979) Specification for prevision

bearing capacity of the piles on the presiometer test

and static sounding ENERGOPOL Warsaw (In Polish)

Polish Code (1983) Foundations Bearing capacity of piles

and pile foundations

5 1

FIGURES

bull bull

53

Ou

+ sect raquo iir 1

4 + D

h + +Osu

bull + t2 =n- Dp

LDpl r f 1

Opu

Fig 1 1 1 Bearing pi le in the soil

J_

fp

080

070

060

050

0 40

030

020

010

q~ [MPa ]000 -+--~-~-~-~------------------------=-shy

00 20 4fJ 60 80 10 0 120 14fJ 160 180 200

Fig 1 1 2 The point resistance factor fp

(Trofimenkov 1974)

54

ts

160

140

120

100

080

060

040

020

q~5 [ kPa)

0Q0--1------~-~-~-~-~-~ - - ---=- -- shy000 10 20 30 40 50 60 70 80 90 100

Fig 1 1 3 The shaft resistance factor fs middot (TYofimenkov 1974)

f s

200

180

160

140

120

100 2 3 4 5 6 7 8 9

Fig 1 1 4 Shaft friction factor f depenshys

ding of the soil density (Senneset 1974)

55

Q~ [kN]

1500

1000

500

0-r-----------r----~- Q~ [kN] 0 500 1000 1500

Fig 1 1 5 Comparison of the pile resisshytance determined by the results of static sounding and load tests (TYofimenkov 1974)

D f f

0

Fig 1 16 Equivalent cone resisshytance (Bustamante 1982)

56

E u shy0 ~

QI I ltII ltII

~ a C QI

O C

D

w gt

0

Cone res istance Point resistance

80 160 240 320

05

10

15

e d

20

ver y dense Cone resistance 300 kgcm2

Dpcm

a =45 b = 30 C 60 d = 100 e = 150

Fig 1 16a

Cone resistance _ qc

80 160 80 160 qc [ k g cm2 ]p

05

10 10

15 15 e d a

e d20

Dense Medium2 2200 kgcm 100 kgcm

Cone resistance and point resistance of piles versus overburden pressure (Kerisel 1965)

Point resi stance - p(for s=2cm) of the pi le for

15 sett Iement s = 2 cm

10

5

E u

uJ1 o-~----shya er O 804 2500

32 56

I 1

L oose50 -I =25 Very loose L

----~--shy5000 7500 80 98

~-----lmiddotI1--------2 10000 12500 31400 =Flcn)

112 123 200 =Dplcm)

Fig 1 1 6b Point resistance versus cone resistance and pile diameter (Franke 193)

57

1

fp

080 (D Gravel

0 Coarse sand Medium sand 070

reg Fine sond Silty sand

060

050

040

030

020

010

qc [MPa]000-+----r--~-~-~--------r----r----r-~-~-- -shy

oo 20 40 60 80 100 120 140 160 180 200

Fig 1 1 7 Point resistance factor f (proposal) p

58

300

250

200

150

100

qc [MPa I50-+---------------r---r---r---r----r------------- shy

oo 20 40 60 80 100 120 140 160 180 200

Fig 1 1 8 Shaft resistance factor fs (pr oposal)

59

Bustamante (seetab 115 I

l fp

G)

0 Gravel

Coarse sand Medium sand

cl

b)

t-----l

1----1

080 reg Fine sand Silty sand a) D

070 Polish

060 Specification

( 1979) 050

040

030 CD 020 0

reg 010

qc [MPa]0 00 -+-------------------------------------=--shy

oo 20 4o 5o 80 100 120 14o 15o 180 200

Fig 1 19 Point resistance factor f comparisonp

Bustamente ( see tab 116 I 300

a) ~

250 b)~

cl~

200 Polish Specification ( 1979 l

150

100

q [ MPa]504---~--~--~----- ---___

00 20 40 60 80 100 120 140 150 180 200

Fig 1 1 10 Shaft resistance factor fs comparison

60

1 fp

~

080 CD CD Gravel

070 0 reg Coarse sand Medium sand

060 0 Q) Fine sand Silty sand

05

040 Franke (1973)___

030 DIN 4014

020 Part 2 1977

( see tab113 l 0shy

--shy --a - 010 C---0 Piles without enlarged bases

D---0 Piles with enlarged bases qc [MPa ] 000

00 20 4JJ 60 80 90 100 120 140 160 200

Fig 11 11 Point resistance factor f comparison p

fs

DIN 4014 Part 2 1977 ( see tab 114 l

300

~ 5 lt qc lt 10 MPa 50

~ 10 lt qclt 15 MPa

~qcgt15MPa

200

150

CD

100 0 0

qc [ 1Pa] 50-t-----T-~----T-r-~----------------shy

OO 20 40 6JJ 80 100 120 14JJ 160 180 200

Fig 1 1 12 Shaft resistance factor fs comparison

61

Measured p [ MPa]

( s=010 Dp) 10

9

8

7

6

5 0

4 0 61

3

I 2

Calculated qcp [MPa]

0 0 2 3 4 5 6 7 8 9 10

Fig 1 1 13 Comparison of experimental and aomputed values of the pile point resistanae

62

Contact pressure ( MPa ]

2 I 6

50

100

E E 150 Ill

c QI

E Sett lement for QI

calculated qcpai V) 200

Fig 1114 Results from load tests on piles No 1 and 5

Contact pressure [ MPa I 0 2 I 6

01---------------------1

50

E E 100 Ill

Settlement forc QI calculated qcp E ~ ai

I V) 150

Fig 1 1 15 Results from load test on piles No 7 and 5

63

Contact pressure p [ MPa] 0 2 3 4 6

0-t=-----~-~-----

E E

100 1)

c CU E 2 QI V) 150

Fig 1 1 16 Results from load test on piles No 9 10 and 11

Contact pressured p [MPa] 0 1 2 3 4 5

o~~~=------------___-~-shy

50

100

E E

i 150

CU E CU

-a V) 200 2

Fig 1 1 17 Results from load test on piles No 12 and 13

c

-------------- -

64

Contact pressured

0 1 2 3 4 p [ MPo] ~o __L____1_____J_____L___

50

100

150

E

E

IJ) 200

c a

E a

~ 250

Fig 1 1 18 Results f Pom load tests on piles No 2 4 6 and 8

p [MPa]

60

50

tO

30

~

Pile Pile Pile Pile

Pile No18

------+ Pile No17 + ~_ ---0 Pile No 19

bullbull - --bull Pile No 20

- ~middot -shy-shy -(y I Settlement for

20 tO 60

No17 +-middotmiddot- V 70 No 18 bull--- V 9o No19-middot- V 120 No20bull---- V150

qcp 3

80 100 120 140 160 s (mm)

Bose resistance

Fig 1 1 lBa Point Pesistance vePsus settlement (Spang 1972J

65 Cone resistance qc [ MPa]

0 10 20 30

mud

5 ~ lll

0 c 0

c CD

peat

10 sand

Ill N

10=10

D=lOOOmm

1540=40

20__________________

[ml

Fig 1 119 Pile No 1 and results from static cone penetration test

Cone resistance qc [MPa l 0 10 20 30

7N V degW = 0+--------------------i

mud

5

lll

~ C 0

c peat~

10

sand lll N 1D15

15l lD=1500mm

40=60

20l---------=-------__J

[ml

Fig 1 1 20 Pile No 3 and results from static cone penetration test

66 Cone resistance qc [MPa]

10 20 II 3 igt pound ~

mud+peat

fine sand+ silt

50=11

l lo-11oomm

40= 44

10

15l____________c

[ml

Fig 1 1 21 Pile No 5 and results from static cone penetration test

Section Cone resistance Pile

0 0

5 10 15 20 25 30 qc [MPa] -----~-~shy~

Silt

[7r_ ___~ Medium Sand_~-----l

0 ltD

+shy4

0=11

9=

Fine sand + Silt t

30p=

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot1~11+-----E-----

[ml

Fig 1 1 22 Pile No 6 and results from static cone penetration test

Cone resistance qcmiddot 1MPuJ

0 10 20 30 67 01-+-------l--------------i

mud+ peat

fine sand

l1)

N

40=60

15L_____________

[ml Fig 1 1 23 PiZe No 7 and resuZts from static

cone penetr ation test

Section Cone resistance Pi le

0 5 10 15 20 25 30 qc [MPa 1 --~----Y-~-----~

Silt

Fine sand

Medium Sand Bentonite2----1~i

t 3

4

0

0=15

Fine iii ~~= 5

sand t ltD

6 +

Silt 7

3Dp=

63 g

10

11

12

13+------=~---l

[ml

Fig 1 1 24 PiZe No 8 and resuZts f rom static cone penetration test

68

I =3

Cone resistance qc [MPa]

0 10 20 30

C 0 C Cl

(I)

Said

Peat

Sand

l 0=110

D = 11

4 D = 44

Fig 1 125 Pile No 9 and results form static cone penetration test

69

Cone resistance qc[MPa)

0 10 20 30 I ~ II JE Ill= II=E IS

Fine sand QI

U) I

[- I C 0 + C Peat QI

CD

Fine sand 0

Ci D = 1 1

L l D= 110

4D= 4 4

Fig 1 1 25 Pile No 10 and results f rom static cone penetr ation test

70

Cone resistance 9c[MPa]

0 10 20 30

Sand

C 0 Mud peat

+shyc 5 ltII

co

Sand Op= 11

u 10 D= 110 4Dp=44

Fig 1 1 26 Pile No 11 and results foIm static cone penetration test

71

00 a_ N ~

middotu rr QI 0 u ~ C 0

QI ui C iij 0 QI U - 0

0 EN

d 2

Sll 1lOl

C

u (rr

C 0 u~

0

QI - C middot 0 C

U - O 0 EN

~ 0 2

E

ltD a---==-lr---___--~---6-l_-0_012 ~ Lr- - --1---------J J

S9l ls= apound QI -0 gtcc _gmiddot- 0 1) ui I

Fi g 1 1 2 Piles No 14 and 15 and results f r om stat i c cone penetr ation tests

72

Contact pressure p [ MPa] 2 4 6

01lt---------------~

50

E E

111 100 ~ (qcp=30 MPa for No16

~ iqcp =49 MPa for No14

~ 1so~--~~- _ _ __

I _ _

11 I lf--q = 32 MPa for No15

cp

Fig 1 1 28 Results f r om load tests on piles No 14 15 and 16

73

0300--------------~---~--~--shyE

Driven piles in ~ 0 bull Gravel

amp250 bull Sand L QJ X Silt a 1l o Bored piles in

sand -sect 200 0=-- shyC ~ ~ 10 unless ~~ middot D shown 1

ii O

~ ~ o 3 a 1501-----+-------I- --+---laquo-+-- -+------lt

~ sect 5 - 6 6middot 100t----+----+-----_-1---4--__co_--J~__j

-_

~ 0 t7

C

a 50 2 shyg ~ gt

0 20 30 40 50 60

Standard penetration resistanceN in blows per foot

(N 30

Fig 12 1 Emperical relation between ultimate point resistance of piles and standard penetrashytion test in cohesionless soil (Meyerhof 1976)

14 r-------------------r-------b-----q

References and symbols given in Fig121

121-----+---+----+----+------ll------j

- _sect ~ 10t----+----+-_--1-----+---lt~--~H---- 0 lt-~5- _-)0 I() l- I Q---+-----I[08 ~

H -(l () ltj-~C X bulls pound 061------lt----+-----i~- --+-- shy

- bull

-gt Q1pound--I---L---L---L---L--~ 0 10 20 30 40 50 60

Mean standard penetration resistance N in blows per foot ( N30 l

Fig 122 Empirical relation between ultimate skin friction of piles and standard penetration resistance in cohesionless soil (Meyerhof 1976)

74

a) b)0(1 0lt2

10 10

05 05

1 N30OD-+---------__ OD--t-----r-----r----------------ll--Nbull30~ 10 20 30 10 20 30 40 50

Fig 1 2 3 Reduction coefficient a) for impermeable gravels b) form permeablr gravels (Weltman and Healy 1978)

psf [MPo)

Fig 1 2 4 Relation between ultimate point resistance and SPT in cohesionless soil (Polish specification 1975)

75

30 35 40 45 Loo Med Dense Ver dense

50

40

~ E

l)

g 8 1)

middotu

1 ~

QI- bull Touma ~ bull Koizumi

(183)-depth base middotameter5

20 40 60 00 100 N30

30 35 40 45

OG2(294) bull G1 (183)

300 bull us 59 ( 102) bull 88(180)

bull 075 a GT (467)

150

~ 200-+--------+-- t--- --t-----i 130i 0 094 081

014 _- --- -- shy~ E 066bull bull 063 Note -~ ~m~r~s~ ~ 1001---1-r--t---1point is xh QI Ratio ~ Number in ( ) middotn key is h c Ratio s ~

0 20 40 60 00 100

~ig 1 2 5 Ultimate point and shaft resistance versus N30

(Wr ight and Reese 1979)

-----

76

tu Psa

[kPa] [MPa]

200 tu

------ shy150 Psa

1 1

1100 10 1 1

1 50

0+----------T----~---~-N-3J~shy0 20 40 60 80

Relation between ultimate skin friction and SPT (Decourt 1982)

Fig 1 2 6

Psa

[MPa]

8

0----Meyerhof 1976) 0 7

--- - --~ - copy Polish Specifcoti on 1975)6 ~-

~

reg- middot - Reese (1978) middot 5

f41- -- Decourt (1982) -I bull 4 2

----==---______z__ h25m Dp=12m

3 ---shybull

2 7

--shy ----shy~----shy0-t----i----------r-- ----------------------N3l~shy

0 10 20 30 40 so 60 70

Fig 1 2 7 Relation between ultimate point re~istance of large diameter piles and standard peneshytration test (SPT) in cohesionless soil

------

77

tu [kPa)

200 17 Cast under -J bentonite

~----Meyerhof (1976) ~copy -=middotmiddotmiddotmiddot== middotmiddot150 ~------- Wei tman (1978 ) middot Healy middotmiddot ___ Japanese ) 119810 Society

(0 -middotmiddot- Decourt (1982)middot Wright

100

- -middotmiddot -- 11979]reg Reesemiddot Bored piles

~shy50 1 -- shy

-- shy middotmiddot s-shy - --~ ------reg~~ ---~E_==---- ------- shy

N_ ---shy0-+--C--------------r---- ---------~---~-~shyo 10 20 30 40 50 60 70

Fig 12 8 Relation between ultimate skin friction of piles and standard penetration test (SPT)

78

Pst [MPa]

8

7 ---------ist=7MPa

6

5

4

3

2

I N30o~------------------------------+---------__=-shyo 10 20 30 40 50 60 70

Fig 12 9 Relation between ultimate point resistance of large diamter piles and standard peneshytration test (SPT) in cohesionless soil (proposal)

tu [MPa ]

( excavanted and cast

150 under bentonite ) tu=150 kPa

100 tu=90 kPa

I I

50 I I I I I N30

10 20 30 40 50 60 70

Fig 1 2 10 Relation between ultimate skin friction of large diameter piles and standard penetrashytion test (SPT) in sand (proposal)

79

2 3 4 5 p[MPa] 0 2 3 4 5 p[MPa]0

40 40 Cl

80 c 80

c 120 120

Pile No 1 PileNo216 160

200 2

s s c [mm] (mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MPa]

40 40

00 80

120 120

16 160 Pile No 3 Pile No 4

200 200

s s [mm] (mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MAJ]

tgt11 tgt- measured40 40

80 80

120 120

Pile No 5 Pile No 6 160 160

20 200 s s

[mm) [mm)

Fig 1 4 1 Base resistance vs settlement appoximative method piZe No 1- 6

80

0 2 3 6 5 p[MPa) 0 2 3 4 5 p[MPa]

40 40

80 80 6

120 120 6

6160 160

Pi le No 7 Pile No 8 6

200 3J s s

[mm] (mm]

0 2 3 4 5 4 p [ MPo)

6 6 40

6 6

6 80

6 6

6

Pi le No 9 Pile No 10

XJO s s

[mm] [mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MPa)

6 6

40 40 6 6

6

00 80 6

6

12 1Xl 6

160 Pile No 11 160 Pile No 12

200 200 s s

[mm ] [mm]

Fig 1 4 2 Base resistance vs settlement approximative method pile No - 12

81

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MPa]

6 6

40 6 40 6

6

80 6 80 6

120 6 120

Pile No 13 Pile No 141fO 160

200 200 s s

[mm] [mm]

0 2 3 4 5 p [MPa) 0 2 3 4 5 p [MPa)

40 40

80 80

120 120

HiO 160

200 200Pile No 15 Pile No 16

s s (mm) [rrrn 1

0 2 3 4 5 p[MPa] 0 2 3 4 5 p[MPa)

40 40 A A A-measured

680 80 t t

120 c 120 c

1fil Pi le No 17 160 Pile No 18

200 200 s s

[mm] [mm]

Fig 1 4 3 Base r esistance vs settlement approximative method pile No 13- 18

82

0 2 3 4 5 p[MPal 0 2 3 4 5 p (MPa]

D D40 40 c c

80 c 80 c

120 120

160 160

Pile No 19 Pile No 20 200 200

~ml (mm]

Fig 1 4 4 Base resistance vs settlement approximative method pile No 19- 20

LlJ QI

0 average lJ = 098 E sd = 029 C

6 SY = 030

4

2

lJ calculated ________________________ _______ measu red

06 08 10 12 14 16

Fig 1 4 5 Calculated pressure divided by the measured pressure at 20 mn settlement for aZZowabZe

q Zoad Pa= ~p approximative method pile

No 1- 20

8 3

Point resistance p [ MPaJ

a)

p(s) = s a +--sshy1 y qcp

1

SQ100p -- --- ---shy

~ s

[mml

I- 01 s rmm]-l p LMPa b)

f~]

c Cll E ~ i s

[mm)

Fig 146 Definition of the point resistance - settlement curve according to the modified hyperbolic method

84

01 ~ 0

20 0 0

0

16 0

medium 0 value a1 = 905-+ 256 Op 0 0

12 (r=039)

0 0

----0 0

8 0

0 0

0 0

4 0

05 06 07 08 09 10 11 12 f3 14 15 16 17 18 19 20 2 1 Op (ml

Fig 1 4 Initial slope of the base resistance curve vs pile diameter

a1 [p] 0

0020

16 assumed a 1= 28 - 4 qcp

12 0

0 Ct) 0 a = 2659 - 369 qcp8 1

0 0 (r = 0188)0

4

2 3 4 5 (MPa]qcp

Fig 1 4 8 Initial slope of the point resistance curve vs ultimate point resistance on the static cone resistance for pile tests No 1 20

85

a [~ 28

24

20

16

12

8

4

0 2 3 4 5 6 Qcp [MPa]

~ Kiosinski (1977) sand and sandy gravel of mediwn density

~ Klosinski (1977) loose sand ID= 0 3 0 4

o US59 ] t HH Touma p and Reese L (1974) fine sand and silty sand OGl (US59 HH BB - very dense Cl - mediwn dense) 1 BB

DIN 4014 Part 2 (1977)

Fig 1 4 9 Initial s lope of the point res istance curve vs ultimate point resis tance

86

assumed [il =30 -10 Op but )1~ 10 )1 [1 I

u 311-10 Op ( r =0 368)4 1 0

3 0 0

02 0

0 0co 0 8 0 0

0

0

05 06 07 08 09 10 11 12 13 14 15 16 17 19 20 21 Dp [ ml

Fig 14 10 Correction factor for hyperbolic base resistance shysettlement relationship

87

a [~] 28

24

20

16

12

8

4

2 3 4 5 qcp [ MPa]

Fig 14 11 Initial slope of the base resistance curve vs ultimate base resistance (proposal)

v [ 1 ]

3

2 -----G- DP J l 1J I Op lm] J

for Dp ~ 2 0 m ~ u = 1 01

0 --------r----r---r----r-----------------r-------------------------r------r-~-~--shy

05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 Dp[m)

Fig 1 4 12 Correction facto r for hyperbolic base resisshytance - settlement relationship (proposal)

s P ( s)

s +

u qcp

88

a) b)1

bt=o212= 47 MPa a1=1~32 tMWJ s 2 3 4 5 O 1 10 20 30 40 50 60 p [~a]0

0p [ MPa] 40 40

80 80

120 ~

160 b1 = ~ajtg ~= 0 212

~=1132 + 0212middot s

mJ 240 r=0994t t t measured s __ according to Jl s

o o o according to p (bull ll l[mm] [mm]

Pile No 2

slmm) 10 20 30 40 50 60 80 100 125 150 175 2)0 225 Note

p [ MPa] 09 14 17 20 22 24 27 30 32 34 36 38 39

measured

pibull) [ MPa] 074 128 169 202 228 249 282 307 330 347 360 371 380calculated

plbullbull1[MPal 070 125 168 203 233 257 297 327 356 378 396 410 422calculated

1) (bull) ij l099082 091 099 101 104 104 104 102 103 102 100 098 097 sd = 006

ij (HJ1041) (bull10) 078 089 099 102 106 107 110 109 111 111 110 10B 10B sd = 010

plbulll-according to a =1132 [ Jp(s) = s s for pile No21 0 1132 12 39

plbullbulll-according toa =1241 lmiddotGcp=39MPa1 0

~=14 see fig 1411 and fig 14 12 sp(S)=

124+ _ s_ 14middot39

11lbulll11l-J - correlation coefficient calculat~d P5 for

measure p s p(bull) and p(bull) respectively

Fig 1 41 3 Modified hyperboZic point resistance - settZement reZationship for piZe No 2

89

0 2 3 4 5 p(MA1] 0 2 3 4 5 p[MPa)

40 40

80 A 80 A

120 120

160 16 Pile No 1 Pile No 2

20 200 s s

[mm] rnm

0 2 3 4 5 0 2 3 4 5p [MPa] p [MPo]

40 40

80 80

120 1ZJ

lfpound) Pi le No 3 Pile No 4 A

200 A

s s A

[mm) [mm

0 2 3 4 5 p [MPa] 0 2 3 4 5 p [MPa]

40 40 A A A measured ~ calculated

80 80

12

160 160 Pi le No 5 Pile No 6

200 Z)Q

Fig 1 4 14 l3ase resmiddotistance vs settlement pr oposed method pile No 1- 6

90

2 3 4 5 p [MPa] 2 3 4 5 p [ MPa]

40 6

6 40

1 80 80

6

120 120 6

6 160 160

Pile No 7 6

200 200 s

[mm ] s

[mm]

0 2 3 4 5 6 p [MR] 0 2 3 4 5 p [MPa] 0 0

40 40 6

6

80 80

6

120 120

160 160 Pile No9 Pile No 10

200 200

s [mm] [msml I

0 2 3 4 5 6p[MR] 0 2 3 4 5 p [MPa]04--___ ____ ___ ___ ____

0+-=---------------~-~- shy

40 40 c 6 c - measured

0--0-0 shy calculated

80 80

120 120

160 160 Pile No11 Pi le No12

200 200

s [mm]

s [mm]

Fig 1415 Base resistance vs settlement proposed method pile No 7-12

91

0 2 3 4 5 p [MPal 0 2 3 4 5 p [MPa)

40 40

80 80

120

16 Pile No 13 Pile No 14

200 s

tnml [mm]

0 2 3 4 5 p [ MPa] 0 2 3 4 5 p [MPa)

40 40

80 80

120 120

160 1fD

Pi le No 15200 axJ s s

[mm] [mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 6 plMPa ]

A A A measured40 0---0-0 calculated

80

120 120

160 1ED Pile No 17 Pi le No 18

200 200

s s [mm] [mm]

Fig 1 4 16 Base resistance vs settlement proposed method pile No 13- 18

92

0 2 3 4 5 p [MFb] 0 2 3 4 5 p[MPa]

0 6 o -measured40 40 0 0 o -calculated

80 80

120 120

160 160 Pile No 19 Pile No 20

200 200 s s

[mm] [mnil

Fig 1 4 17 Base resistance vs settlement proposed method pile No 19-20

p(s~Psf

15 20

ean

-C 5 w u L Lower ~ confidence

linea 0

a IJl 10

o---o proposed

method I I I

15

Fig 1 4 17a Design curves for estimating developed base resistance in sand (Wr ight and Reese 1979)

93

n (number)

30

28

26

24

22

20

18

16

14

12

10

8

6

4

2

0 02 04

Fig 1 4 18

I= 126

Between 1] = 0 7 - 1 3--- I= 106 ( 84 frac34)

Average ~ = 098 Standard sd =023 deviation

Standard sv =023 veriation

1] (Coefficient Calculated Measured

06 08 10 12 14 16 18

Calculated pressur e divided by the measured pr essure for all pressure - settlement curves pr oposed method pile No 1- 20

94

a) b) Total load

Total load curve

---- _____-- shy- -- -Base load ~- Base load

-0-0 ~

00 00 J

ldeoli zed shaft load J

Shaft sesistanc1---------- 0=0middot30 a= 0 middot 30

025 Settlement IN 025 Settlement IN

Fig 1 419 Proposed method of synthesizing design loadsettlement curve (a) conservative design prodiction b) design prediction- peak in shaft loadsettlement curve (Burland et al 1966)

Cf

-0 0 0

J

0

~-----~--~-~ amp- 2 3 4 5 6 (cm)

a~middotltii -0 lt) cco2 41 -~ -0 1)

vi ~ llloli=----------- ---c~0 1 2 3 4 5 6 7 ( of diameter)1 1 1 1

05 10 15 20 ( in) for 30 in Pile Movemen~ ( 75cm pile)

Fig 1 4 20 Approximate load settlement curves for 30 in bored piles (AB and C represent failure load at 1 in settlement A B and C represent ultimate failure load) (Touma and Reese 194)

95

Load in MN 0 2 3 4 5

25

50E E C

-C 75

-~ ~

-Z 100 lJ

Shaft resistshy

125 once

15 Fig 1 4 21 Load-settlement relationships for largeshydiameter bored piles in stiff clay (Tomlinson 1977)

SettlementSo

Fig 1 4 22 Diagrams of s1iaft and base resistances versus settleshyment assumed in analysis (Kiosinski 1977)

96

0 0 1 ~ r- 025g ~~ 2

1- -shy3 03Sg 14 5 2

Qls =Qpls+Q5 (sQpls) Qs(s-3E

0

degsis __ -- Qpls) a~ C

4

t Sg l

5 Qu Is)

Q(s)in MN-l T

Ouls Q Is) in MN ---

Fig 1 4 23 Construction of load - settlement curves a) for sand b) for cohesive soil (DIN 4014 Part 2 1977 and Franke 1981)

-

s C 5C

Cl

3 0 00 05 10 15 20 Mean settlement I in)

Fig 1 4 24 Load- settlement curves for test shaft S4 (1 in = 25 4 mm 1 ton= 8 90 kN) (Reese 1978)

97

Relative side resistance

0 05 10 15 20 0E=--t----+---+--~

c QI lt) ~ 2 C

I itaker c

QI amp Cooke3E QI-j

c-en 4

C QI

E us 59o

5 QI gt

SA0 w 0 6

Fig 1425a Relative side resistance for clay vesus relative midlength settlement (Reese 1978)

degs (Osl u l t 0 05 10 15 2 0

Mean

2 Lower ~ C QI u

confidence line

~ 3 a

0

~4 E

()

5

6 __ _ ______ ________ __1

Fig 1 4 25b Design curves for esti mating developed side resistance (~Jy1nht ReertP- 1987 J

98 Load Q

8 - 15 mm

1- 2 of p ile diameter

100-200 10-15 of pile Os Ot diameter Shaft Total

Settlement S Resistshy Resist- Load ance once

Fig 1426 Dependence of total load base resistance and shaft resistance on settlement of lar-ge diameter pile (Tejchman Gwizdala 1979)

6

5 Shaft load

4

3

2

z ~

-0

g Pile EF- 56 J 0

0 0 20 30 Butt settlement (mm)

Fig 1 4 27 Deveiopment of shaft and base resistance with settiement (Promboon Brenner 1981)

99

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 0 r-=-1---J__-----------------------~----_shy

Load [ k N l5

10

20

( I

Skin friction ----1 I I

~ 40 QI E

fQI

50 I

Q) I () ICOntinuos fost deolading

Fig 1428 Load-Settlement-Diagram Testelement III (Diaphragm-Wall 0515 m 244 m deep) Portion of Skin Friction and Base Resistance (Prodinger Veder 1981)

Qs (QJ max

0 05 10

Upper Limit of Data

Farr and Aurora (1981J C

~ 2 - shy -+shy - Mean of Data

I QI

Lower Limit of Data a

0 - 3 E

Vl

4

Smid = Approximate shaft buff movement ignoring the elastic compression of upper halt of the shaft

D = Shaft diameter

Q Mobi Ii zed shaft resistance

Qs1max = Maximum shaft resistance

Fig 1 4 29 Relative shaft resistance vs relative movement (Farr and Aurora 1981)

100 Load Q (s) [ MN]

Su5 s s 20 mm for non- cohesive soil u

s s 10 mm f or cohesive soil u

s s 15 mm for claysand u

Q (s) + Q (s)s p

Qs(s)

-C ltII E s ~- [mm]-ltII IJ)

Fig 1 430 Dependence of total load Q(s) point res i stance Q (s) and shaft resistance Q (s) versus settlement p s

~ 3 Usu Qpu Qu Q(s) [ MN]

Sus= 20

1J

60

80

100

120

degs (s ) 140

5 P=Ol Op

1EO

C -ltII E 180 ~ ] 200

s [mm]

Approximative dependence of total load point resistance and shaft resistance versus settlement fny non-cohesive soil

Fig 1 4 31

101

113 3 ~fic0P Ye hY

1 Ground water

D

I y

yh C

Fig 1 5 1 Determination of 01 and 03 for settlement analysis of lar ge diameter bored piles

102

I

E=Et [MPa]

160 0

140

120 0

100

80

6

40

--- --shy 0

0

8 0

0

0

20

2 3 4

I 0 15

Fig 1 5 2

E = Et [MPa]

120

100

80

60

40

I I 0 35 065 085

0

Et= 17 81 qcp0844

( r = 0 128)

5

100

6 qcplMPo]

Calculated values of Young s modulus for piles No 1shy24 according to equation 1 5 2 and 1 56

0

0 0

E =898qcp127 (r= 0314)

E = 9 middot qcp 13 0

20 shy 0

0 0

0 1 2

loJ

I 0 35

3 I

065

4

I 085

5

100

6 qcp [MPo]

Fig 1 5 3 Calculated valueBof Young s modulus for piles No 1shy24 according to equation 1 5 4 and 1 5 6

I K 10 3

( 1 ] 1832

1400 0

1200 0

0

1000 0

800 0

m=2821 qcp0621

600 0

(r=0057)

400 0 0 0 0 0

200

2 3 4 5 6 qcp (MPa]

I 035

I 065

I 085 100 Io

Fig 15 4 Calculated valuesof the dimensionless compress ion modulus K for piles No 1- 24 according to equation 1 5 2 and 1 56

K ( 1 ]

0

1400

1200 0 0

1000

800

600

0

0 0

0

0 0

0 K= 1422 qcpl05

(r=0181)

0 K= 150 qcp

400 0

3)0 0 0

2 3 4 5 6 qcp(MPa)

I I -J 035 065 085 100 Io

Fig 1 5 5 Calculated values of the dimensionless compression modulus K for pile~ No 1-24 according to equation 1 5 2 and 1 5 6

104

120

100

2 3 4 5

I I I rv 0 15 035 065 085 100 lo

Bergdahl (1982) for shallow foundation

o----o Bozant Masopust (1981) D= 1 0 rn h=10 rn large diameter bored piles in noncohesive so il

0----0 Proposal according to current anal ysis

Klosinski (1977) D=090 to 125 rn large diameter bored piles in sand and sandy grave l

Mitchell Gardner (1976) very dense sand E=(35)q (it depends on sand density and stress history) c

Fig 1 5 6 Composision of Young s moduius

105

TABLES

0 Tab 1 11 Methods for detemination of the bearing capacity of bored piles (Ro llberg 1977)

Cl

Nol -- I Soil Areas of Q) Q) Editor Determination of Coefficients 5 type influenceqP qs p ~ C C 11 12 fP I fs

1 all Lab f Soil Mech (1936) l qp at the elevashy 1 0

2 all Huizinga (1951) ~ t~on of the pile 14 point

3 all Van der Veen (1953) ) 18 1 h+l14 all Van der Veen 1 0 Dpl375 D~ 15-- J qcmiddotdhBoersma (1957)

~ 11 +12 h - 12

5 12 all Menzenbach ( 1961) qc at the elevashy~ tion of pile point

6 18 all Mohan Jain Kuman (1963)1 average of qc over 1 h Q) h ~qcmiddotdhl 10 Dpj 3 75 Dj 15 50_micro

and 1 2C 11

7 I amp all de Beer ( 1964) graphically from 10 Q) qc 0 1 h+l18 u C

sand Soviet norm SNIP II 9ct9cp I4 bull O Dp I10 DP l66-1 083shyu clay B5- 67 Trofimenkov (1969) 2 50 1 251 +l J qc middotdh micro middot h middot-l l 2h-~ _micro

9 _micro u all Paproth (1972) at the elevation 3 5 I shy

) of pile point (Dpgt0 5 m 7 D8DpE

E-lt p 1 h+l1 1 h Dplt 5 m u l+l J qcmiddotdh h f qcmiddotd~ 30 Dpl 50 Dp 2 0 100shy10 sand Norwegian method

0l 2 h-12 200Senneseth (1974)

11 lall Soviet method h+l (20-0lqgl - 101 1 q middotdhTrofimenkov (1974) -- f C UpUsmiddotQct

l1+l2 h - 1212 Qct-Qcp 40 D~ 10 Dp 1 33- 0 67shyUsbullh 4 00 2 50

13 English method 10 DFJ 375Dp 10 I

Rodin Corbett Shershywood Thorburn (1974)

3 7 5 Dcl 8 0 DP 10h+l1 _1_ J qcmiddotdh 1 h

qcmiddotdh 20011 +12 h - 12 hb

1 h qcmiddotdh 150hf

0

Observations

fp I f (qp)fs C

Dp E = 1 cm Qbu = 2 Qpa (approx )

s fs=f (qc)

q=~g Us 0 h

fp=f(q~)

fs=f(qgl

bull fine grained non- cohesive soil loosely packed

bull fine grained non- cohesive soil medium dense comp

fine grained non- cohesive soil

Tab 111 (cont)

h+h bE 14 non-cohe- Meyerhof ( 1956 poundti J N 3o middot dh CtME fN3 o dh 1 0 DP 4 0 DP 10 100 etM= l 2

sive soil 1976) lJ +12 h - li hE o hgp taken into consi der ~ Ul (I)

E-lt

C 0

~E = 1 kgbull 30 cm

(statistical limit depth of the pile) hE - clamping length of

pile micro rrJ l-l micro (I)

15 C (I) p

sand Norwegian method

- irm - - - 10 IT

m = diagram O l-l Senneset (1 974) rrJO C

16 rrJ micro gravel English meth it 3 middot N30 - - - 10 - Jf 3 + diagram U) ~

E-lt p U)

iiouiu Coruett Sherwood Thorshyburn (1974 )

(NJQat the elevashytion of pile point1

0 -i

108

Tab 11 2

Results of calculati o n of p i le point load pile shaft load and total pile load from static con e penetration test (Rol l berg 1977)

~ gt

~ gt Ultima te Ultimate Ult imate

No Method micro micro poi nt skin bearing 080lt17nlt1 50 Q) -l

-l middot-i resistanceuro resistance r esistancE

middot-i p 0

(J n1 n n2 n n3 n n1 n2 n3

1

2

Lab fSoil Mech

Hu izinga (1951)

(1936 ) 430

307 i 3 Van der Veen (1953) 239

49

4

5

Van der VeenBoersma

Menzenbach (1961)

(1957) -l middot-i 0

2 4 7

1 57 1-CJ)

6

7

8

Mohan Jain Kumen

de Beer (1964)

Sovi et Norm (1969)

(1963) CJ) Q)

-l middot-i 0

lJ Q)

Q)

gt- CJ) Q)

c 0

2 44

1 37

183

47

t I

49

487

0 18

47

16

3 02

0 85 1

47

16

137

08

9

10

Paproth ( 1972)

Norw Method (1974)

~ 0

0

u I

C 0 C

1 8 1

180 l 46

1- - -_L~ 46 167 46 1 19

1 1 Soviet Method ( 1974) [1 1 41 46 1 62 13 083 13 1 14 0 8

12 Engl Method (1974) 2 66 35 128 35 2 30 35 1 28

Note

cal Q a) n = --- mean value of the rat i o between calculat ed pile loads and those n Q determined f r om loading test

b) n = number of piles

109

Tab 113

Point resistance of large diameter piles (DIN 4014 Part 2 1977)

Settlement Point pressure 1 Factor -fshy

(cm) (MPa) cf=lOMPa I i=15 MPa C C

Piles without enlarged base

1 05 005 003 2 08 008 005 3 11 0 11 007

15 34 034 023

Piles with enlarged base

1 035 0 04 002 2 065 0 07 004 3 0 90 009 006

15 2 40 0 24 0 16

Note 10 lt qp lt 15 (MPa)C

Tab 114

Skin friction resistance of large diameter piles (DIN 4014 1977)

Strength Static cone pen- Depth below Skin frict ion Factor of sand etration resist surface

(MPa) (m) (MPa) fs

Very small lt 5 - 0

Small 5 to 10 0 to 2 0 2 to 5 003 ln6 to 333

gt 5 005 100 to 200

Medium I I 10 to 15 0 to 2 0 I

I 2 to 7 5

gt 75 I 0045 0075

222 to 133 to

333 200

High I I

i

l

gt 15 0 2

to 2 to 10 gt 10

I I I

I

i

0 006 0 10

gt gt

250 150

Note Skin friction is assumpted as linear until s =2 cm and constant for s gt 2 cm

11 0

Tab 115

Values of the inverse of the point resistance factor (Bustamante 1982) fp

Soil type qPC I 1

Factor - shyfp(MPa)

for piles group

a) Silt and loose sand lt 5 0 40 -b) Moderately compact

5 - 12 040sand and gravel

c) Compact to very gt 12 i 030compact sand and gravel I

Tab 116

Values of the shaft resistance factor fs (Bustamante 1982)

Factor fs

Soil type qs

C Category I(MPa) I A I B I II A III BI

I a) Silt and loose lt 5 60

i 150 I 60 I 120-

sand

b) Moderately corn- I pact sand and 5 - 12 100 200 100 200 gravel i

Icl Compact to very

compact sand gt 12 150 i I 300 150 I 200I

I I and gravel i

I

111

Tab 117

Point resistance factor (proposal)

-

1-fp

qc (MPa)

Gravel

Coarse sand Medium sand

Fine sand Silty sand

25

080

0 70

060

5 0

0 65

055

047

75

054

045

039

10 0

045

036

031

150

035

027

022

200

030

0 23

018

Tab 118

Shaf t r e sistance factor (proposal)

fs

qc (MPa)

Gravel

Coarse sand Medium sand

Fine sand Silty sand

25

80

100

130

10 0

120

150

190

I 200

180

230

300

11 2

Tab 119

Calculated values qcp

for large diameter piles

Pile Literature Length Diameter (m) Measured p Cr1 lcul Settlement Note Authcr(year) No (ml D Dp (MPa)

(s=0 10Dp) (MPa)p ~~JL__

s s ()(mm) Dp

1 Franke (1977) 1 13 11 36 38 117 106 Garbrecht

2

3

2

3

13

14

11

15

1 58 36

37

38

40

215

185

136

123

) qg accord to Franke

4 4 13 15 204 3 2 33 220 108 and Garshy

5 5 6 11 33 35 127 11 5 brecht (1977)

6 6 6 11 153 36 35 146 9 5

7 7 6 1 5 34 35 158 105

8 -shy 8 6 15 2 1 41 3 0 109 52

9 10 9 11 39 52 47

10 11 95 11 43 35 77 70

11 12 9 11 49 66 60

12 13 10 11 15 5 1 4 0 77 5 1

13 14 9 11 1 5 4 8 46 115 77--shy14 Pranke ( 1973) 15 115 18 4 9

) ) average 88

15 13$ 13 5 1 3 19 -2 5 3 2 sd=3 0

16 - - 165 16 5 13 19 30 sv=0 34

17

18

Spang (1972)

llXJ

V90

6 6

6 75

0 7

09

3 2

4 2

32X

42X

x) s =0 10 D p

19 VlaJ 720 1 2 39 3 9X

20 - - VlsJ 6 5 1 5 3 0 3 ox

21 Touma and US59 9 9 o 76 8 0 Reese ( 1977)

22 HH 75 0 61 8 0

23 Gl 180 091 - 2 5

24 BB 137 o 76

sd = standard deviation

sv = standard variation

Tab 1 2 1

Ultimate point resistance coarse and medium sand psf (MPal (Pol ish Specification 1975)

Depth h

Medium sand r = 0 40 N = 200 30 Base diam (Op) and depthbase diam (hDp)

Dense sand r 0 Base diam (Op)

= 0 80 = 50N30 and dpethbase diam (hDp)

(ml Dp = 0 6 m Dp = 1 0 m Dp =12 m Dp = 1 5 m Dp = 0 6 m DP = 10 m DP = 12 m DP = 15 m

Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp

5 10 83 0 85 5 0 075 42 07 33 20 8 3 16 50 14 42 13 3 3

7 14 11 7 1 2 70 11 5 8 10 4 7 2 8 11 7 22 70 2 0 5 8 1 8 47

10 18 16 7 15 10 0 14 8 3 1 3 67 35 167 28 100 2 5 83 2 2 67

15 18 250 18 15 0 16 12 5 15 100 4 2 25 0 3 4 15 0 30 125 27 100

20 2 4 333 2 0 200 185 167 1 7 133 4 7 333 3 8 200 33 167 30 13 3

25 26 41 7 2 2 25 0 20 208 19 167 5 0 41 7 4 0 250 3 5 20 8 3 2 167

w

11 4

Tab 131

Partial safety factors for resistance to axial load for bored piles (Wright Reese 1979)

Partial safety Normal Poor factor for control control

Unit skin resistance 1 70 185

(no load test)

Unit skin resistance 160 1 70

(from load test)

End bearing 165 180

Tab 1 3 2

Probability of failure of bored piles under normal design conditions (Wright Reese 1979)

Probability of Factor of Structure failure safety classification

5 10-3 25 monumental

210shy 22 permanent- 2

5 middot 10 2 0 110shy 1 85

temporary 5 bull 10-l 165

11 5

Tab 133 Results of field tests (Tejchman Gwizdara 1979)

L

II C C C 0 0 0

micro micro

micro micro micro For universal safe~y F2u u CUNo micro C C ~ ~g~ middot- C

~ Permisible micro micro i ~c -i micro

cmiddot-~ micro~ L

micro oo ~ load ~t~ ~~ omicro micro ~ ~ 3Z~ ~ ~ micro

-~~

~ e ~ --middot--

middot- ~ obull 0

~ g ~~ ~~ ~

~ L

o Jl i5 sect~ =gt L Q~ = yen t p Qp Qp

D h Q~ Srrx s tm p s E~ iQ~lQ~cm ~~ KN X ll1l kPa kPa kN kN kN Jl ~e ~ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 70 6 60 4081 1550 2531 38 0 1182 10 4040 175 2041 245 1796 632 141 120

2 90 6 75 5082 3041 2041 598 1785 10 4782 107 2541 1079 1462 282 140 42 5

3 120 720 7259 4041 3218 557 1035 10 3576 119 3630 2158 1472 187 2 19 594

4 150 650 8643 4454 4189 51 5 928 20 2521 136 4326 2158 2168 3 10 166 253

5 130190 195 7750 3011 4709 392 805 10 1075 - 3875 981 2894 3 10 166 253

6 130190 165 9516 5101 4415 536 522 20 1800 - 4758 1962 2796 260 158 412

7 130190 135 8044 5199 2845 646 114 4 15 1834 - 4022 2109 1913 2 47 149 524

8 180 115 11380 4415 6965 388 792 15 1735 - 5690 2747 2943 161 2 37 483

9 76 980 6867 4316 2551 628 110 13 9529 109 3534 1128 2306 383 111 32 8

10 61 7 60 7161 2747 44 14 383 67 15 9404 303 3581 392 3188 700 169 109

11 92 180 4807 883 3924 184 20 8 1329 76 2404 196 2207 450 178 82

12 76 24 5 6769 736 6033 109 20 8 1623 103 3385 147 3238 500 186 43

13 76 137 5396 2060 3336 38 2 63 8 4535 102 2698 589 1109 350 t 58 218

14 120 23 5297 1854 3443 35 0 960 10 1640 39 2649 196 2453 945 130 7 4

15 135 16 7 13489 7554 5935 560 181 10 5260 83 6749 2060 4689 367 127 305

16 170 46 0 8829 2943 5886 333 17 10 3466 39 4415 1373 3042 2 14 1 94 31 1

Average Fi 387 166 Standard deviation Sd 2 1 5 034 Standard variation sv= 0 56 0 20

1234 Spang1972 567 8 Franke 1976 9 10 111 2 1 3 Touma Reese 1974

14 Colombo 1971 15 Kerisel Simons 1962 16 Appendino 1973

11 6

Tab 134

Results of model

SafetyScheme factor

medium F ssand

F p

loose F s

samd Fp

F 3 55 sd _P F 1 32 sd

s

tests (Tejchman Gwizdara 1979)

Diameter D (mm)

30 60 90 133

145 129 108 112

280 3 08 307 294

140 154 153 112

594 3 04 324 426

107 sv 030

0 19 sv 0 14

117

Tab 135

Individual safety factors according to literature

Literature proposal ofLiterature individual safety factor

Fs Fb

Polish Specification (1974) 100 250

Tejchman Gwizdala (1979) 150 400

Bustamante Gianeselli 200 300 (1982)

Decourt ( 1982) 130 400

average 145 3 38

TAB 141 0)

Load settlement curves - measured

Pile No

Settlement 1 c 3 4 5 6 7 8 9 10 11 12

s p s p p s

p p s P

p s P

p s p p s

P p s

P p s

p p s p p S

p I i p s

p p s p

mm MPa rrrn lifl5a MPa mm

lifl5a MPa

mm lifl5a MPa mm

RPa mmMPa nwa MPa mm

RPa MPa mm RPa MPa mm

RPa MPa mm RPa MPa mm

RPa MPa mm RPa MPa mm

RPa 10 045 222 09 1 1 05 20 07 143 06 167 08 125 0 5 20 08 125 10 100 08 12 5 15 67 16 63 20 092 21 7 14 43 08 25 10 20 0 1 1 182 12 167 0 9 22 2 12 167 18 111 14 143 24 83 22 9 1 30 125 240 1 7 I 7 6 1 1 273 1 2 250 14 214 15 200 1 2 250 15 200 25 12 0 19 15 8 30 100 26 11 5 40 1ti 250 20 10 0 14 28 6 14 286 1 7 235 18 222 1 4 286 18 22 2 3 2 12 5 23 174 36 111 3 0 133 50 20 250 22 ~27 1 7 294 1 5 333 20 250 2 1 ~38 1 7 294 1 9 263 37 135 27 18 5 4 2 11 9 33 152 60 2 2 273 24 ~5o 20 300 1 7 353 23 61 22 ~73 18 333 21 286 43 140 30 20 0 46 13 0 36 16 7 80 271 295 27 796 24 333 20 400 27 ~96 25 1320 22 364 25 32 0 53 15 1 36 222 41 195

100 322 31 1 30 333 28 357 22 454 31 1323 29 345 26 385 28 357 60 16 7 40 25 0 45 22 2 125 38 329 32 391 32 391 25 500 32 139 1 30 41 7 32 39 1 4 6 272 48 ~6 0 150 14 2 357 34 1441 36 41 7 27 555 36 ~1 7 34 44 1 36 41 7 175 36 486 39 449 30 583 38 ~61 38 461 200 38 526 42 476 32 625 225 39 577 33 682

(mmMPa) ( 1 MPa)

1

1=2074

t 1=O ~01 =0 98S

a1=1132

b1 =0 212 V =0994

a1=2217

b1=O 131

V =Q 978

a1=1860 b1=0233

V =Q966

a1=1562

b1=0174 V =Q983

a1=1382

b1=O195

V =0975

a1 =20 37

b1 =C 174

V =0957

a1=1443

b1=(l 193 v =O 961

a1=965

b1= 0071 V =0 990

a1=1 91

b1 =o 128

V =0 993

a1=5 83

b1=C124

v =O 981

a1=6 1 4

b1=01 64 v =U 985

li(MPa) ~9 4 7 76 43 57 middot5 1 57 5 2 141 78 81 61 cp (MPa) B8 39 40 33 35 35 35 3 0 39 3 5 49 40 __Ef ~-6 1 2 1 9 1 3 16 15 16 1 7 36 22 16 15 qcp

TAB 141 (continue) Load settlement curves - measured

Pi le No 3ettlement 13 14 15 1 17 18 19 20 21 22 23 24

s p s T5

p s T5

p s T5

p s P

p s P

p s P

p s P

p s P

p s T5

p s T5

p s p p s

p mm MPa lll1l

HPa MPa mm HPa MPa mm

fWa MPa mm fWa MPa lll1l

HPa MPa mm HPa MPa mm

MPa MPa lll1l NT5a MPa HPa MPa 111111

HPa MPa 111111

HPa MPa 1)1111

mra 10 1 7 59 075 133 06 167 075 133 ~95 105 09 11 1 07 143 3 76 1 7 59 08 133 10 100 20 2 4 83 130 154 095 21 1 1 15 17 4 1 75 114 16 125 12 167 ~7 74 33 6 2 1 3 15 3 1 9 103 30 29 103 1 7 176 1 2 250 15 200 r55 118 22 136 16 18 8 38 79 46 66 1 7 182 27 110 40 33 12 1 20 200 1 35 29 6 1 75 229 ~O 133 26 154 175 229 49 82 58 6 9 1 9 21 1 35 115 50 36 139 235 21 3 145 34 5 1 95 256 24 208 ~-4 147 28 17 9 20 250 gt8 86 6 9 72 2 2 233 4 2 11 8 60 39 154 265 22 6 1 55 387 2 15 279 28 214 ~6 16 7 30 120 0 2 2 27 3 o 8 89 80 7 5 2 3 262 80 43 186 31 258 1 7 47 1 36 222 14 05 198 33 124 2 25 320 B 1 98 25 327

100 45 222 18 556 39~ 253 ~-5 222 36 1278 27 370 ~8 113 125 47 26 6 20 625 42 29 8 149 255 28 1446 t50 22 682 3 0 500 175 200 225

(mmMPa) a1=479 a1=1206 a1=14 51 a1=1113 a1=1406 ~=836 a1=843 a1=1176 ~=64 a =561 a1=10 0 a1=9 5 (1MPa) b1=0175 b1=0 178 b1=0 382 b=0287 b1=O 119 p 1=0 137 h1 =o 193 b=0258 p1=0 049 b1=0032 b1=0 276 b1 =0 048

hf (MPa)

v =0998 57

v =0-987 5 6

v =0989 26

v =0992 35

v =0933 Iv =0991 84 73

v =0993 5 2

v =0998 tJ

3 9 =0944 v =0998 v =0996 v =0981

qcp (MPa) 46 39 32 30 32 14 2 39 30

lL 12 1 1 08 12 26 1 7 1 3 13 qcp

lD

N 0

TAB 142

Calculated point resistance curves

Setlement (mm) p(s)

1

n p(s)

Calculated value of the p(s) for pile No

2 3 4 5

n p(s) n p(s) n p(s) n p(s) 6

(MPa)

n p(s)

7

n p(s) 8

n p(s) 9

n p(s)

10 20 30 50 80

100

150 200 225

070 128 177 253 335

375 446 493

157 140 141

127

123

1 16 106

070 1 25 168 232

297

327 378 410

422

078 089 099 1 06

1 10

109 1 11 108

108

073 1 30 176 246

315 349

405 441

146 163

160 145

1 32 125

113 105

056 096

1 26

167 205 222

249 265

271

0 80 096

105

1 11 100 101

092 0 83

082

065

118 162 233

308 345

412 456

108 108

1 16 116 114 111

064

1 12 151 2 10 2 69

298

346 3 76

078 P63 093 tt 13 101 tt 53 100 I 13

108 ~75

103 ~04 096 ~ 55

~ 87

1 26 125 127 126

125

1 17 1 04

052 088

1 15 153

188 2 03 227 242

065 0 74

o 77 0 81 0 75

0 73

063

072 122

1 83 262 347 388

463 5 11

073

0 74

073 0 71 0 65 065

064 1 18

162 233 309

3 46

41 3 4 57

Dp (m) 1 1 Qcp (MPa) 38 (mmMPa) h2 8 1 1 9 Qcpbullv1(MPa) 72

158

39

124 14 55

15

40

n20 15 60

204

33 148 10 33

1 1

35

tt 4o 1 9 67

1 53 3 5

tt 4 0 1 5 51

15

13 5

114 0 15 i-gt 3

2 1

30

tt 6 0 10 3 0

1 1

3 9

12 4 1 9 74

1 1

3 5 h40

1 9 67

Note n = condition coefficient calculated p(s) measured p(s)

10

n

081

084 0 85 0 86 0 85

087

TAB 142 (continue)

Calculated point resistance curves

Calculated value of the p(s) for pile No (MPa) Setlement 11 12 13 14 15 16 17 18 19 20

(mm) p(s) ll p(s) n p(s) ll p(s) n p(s) n p(s) n p(s) n p(s) n p(s n p(s) n

10 106 070 0 71 045 091 054 099 1 32 055 092 053 070 060 081 085 0 72 080 055 078

20 1 90 079 130 059 160 067 1 70 1 30 096 101 091 079 1 12 148 085 1 31 082 098 082

30 258 086 1 76 068 2 15 074 222 1 31 1 26 105 120 080 156 205 081 180 082 132 083

50 363 086 246 075 297 082 296 1 26 1 70 117 161 082 228 095 295 087 256 0 91 184 092

80 471 316 o 77 3 77 088 364 1 18 2 1 o 1 24 199 308 085 393 097 336 1 02 237 095

100 522 349 078 415 092 394 228 1 27 2 16 348 088 442 098 375 104 262 097

150 611 405 479 443 258 117 244 423 529 443 304 101

200 669 441 518 473 276 261 474 587 488 331

Dp (MPa) 1 1 1 5 1 5 18 1 9 19 070 090 12 15

qcp (MPa) 49 4 0 46 49 32 30 32 42 39 30 12 a1 mmMPa) 84 h20 96 84 152 160 152 124 160

IV1 1 9 1 5 15 12 11 1 1 23 21 18 15

qcpmiddotv1 (MPa) 93 60 69 59 35 33 74 88 70 45

- 12287 average = ~ = 098

standard deviation sd = 023 standard variation sv = 023

N

122

TAB 143 Ultimate settlement for shaft resistance - summing up

Ultimate settlements (mm)Literature sand cohesive claysand

soil

Burland Butler Dunican (1966) 7

Touma Reese (1974) 10 Tomlinson (1977) 10 Klosinski (1977) 8

Francke Gerbrecht (1977) 20-30 DIN 4014 part 2 (1977) 20 10 Francke (1981) Reese (1978) (1979) 05-2 of 05-2 of Farr Aurora (1981) shaft dia~ shaft diam

5-20 mm 5-20 mm Tejchman Gwizdala (1979) - Spang (1972) 10

10 10 20

- Francke (1976) 10 20 15 15

- Touma Reese (1974) 13 8 15 8

8 - Colombo (1971) 10

- Kerisel Simons (1962) 20 - Appendino (1973) 10 Promboon Brenner (1981) 10 Prodinger Veder (1981) 12 Decourt (1982) 10-15 10-15

-average s = 14 1 10 126

standard deviation sd = 53 2 1 47

standard variation sv = 038 021 037

123

TABLE 14 4 Al l owab l e base resistance versus sett lement

Pile Li terature ength Diameter (m) Calculated qcp=qcp Settl ement Fp-3- sa (mm)No Aut hor No (m) D DP qcp (MPa) for qcp3(MPa)

1 Francke ( 1977) 1 13 11 38 127 25 Garbrecht

II2 2 13 11 158 39 130 19

II3 3 14 15 40 133 33

II4 4 13 15 204 33 110 23

II5 5 6 11 35 117 22

II6 6 6 11 153 35 117 19

II

8

7 7 6 15 35 1 17 25

II 8 6 15 21 30 100 21

II9 10 9 11 39 130 13

II10 11 95 11 35 117 15

II11 12 9 11 39 163 11

II12 13 10 11 15 40 133 7

II13 14 9 11 15 46 153 9

14 Francke ( 1973) 115 11 5 18 30 100 15

II15 135 135 13 19 32 107 29

II16 165 165 13 19 49 163 35

17 Spang (1972) V70 660 070 32 107 28

18 II V90 675 0 90 42 140 16

II19 V120 720 1 20 3 9 130 16

II20 V15C 650 150 30 100 16 average for pi les 198

standard dev sd = 78

standard var sv = 039

)assumed qc = p for s = 010 Op sonding meRsurement were not availab le

IV

TA~LE 15 1

Comparison of the initial sl ope of the pile point resistance - settlement curve

Accardi ng to 1 2 3 4

In i t i ~l 5

slope a1 for the pile No

6 7 8 9

(mmMPa)

10 11 12 13 14 15 Note

a 1 for s=10 mm 222 11 1 a1 for s=20 mm 21 7 14 3 calculated 207 113see Tab 14 1 Bo Berggren (198 )230s=20 mm

Schmertmann s method (see 202B Berggren 1981)s=20 mm

No 1 _ llNo - 6 1 97 098

202 250

22 2

400

30 8

090

14 3

200

186

076

167

182 156

286

18 2

107

125

167 138

091

20 0

222

204

426

263

098

125

167

144

087

100

11 1 9 7

182

23 5

1 03

12 5

14 3

11 9

174

164

105

67 83

58

14 6

125

1 16

63

9 1

61

103

59

8 3 48

123

13 3

15 4 12 1

1 10

167 21 1

aceto hypershy14 5 bola type curve

1 15

No 2 NQj = n1

No 4Noz ~ na No 5Naz= T]g

105 1 27

106

093

1 13

160

1 23

108 1 17

157

100

121 109

1 92

118

1 16 1 14

164

2 12

120

122

1 15

143

1 76

151

149 1 73 1 27 146

TAllLE 151 (continue)

Compa ri son of the initial slope of the pile point resistance - settl ement curve

Initial slope a1 for the pile No (mmMPa)According Note to 16 17 18 19 20 21 22 23 24 -a1 for s=10 mm 133 - 105 11 1 143 76 59 133 100 a1 for s=20 mm 174 - 114 125 167 74 62 153 10 3 calculated see 11 1 146 84 84 118 64 56 100 95Tab 141

Bo Berggren 198 67 78 25 0 114s=20 mm Schmertmann s method (see B 136 67 250 146 Berggren 1981) s = 20 mm

nG = 108 No 1NoJ = n 1 20 125 1 32 121 1 19 105 1 33 105 sd = 0 14

SY= 013 No 2 i) = 1 29ro1 = n1 157 136 149 142 1 16 1 11 1 53 108 sd = 019

SY= 015 No 4 iis = 143 INo2 = ns 091 126 1 63 111 sd = 033

SY= 0 23 No 5 ii9 = 1 37183 108 163 142INoz = n9 sd = 0 37

SY = 027

N Vl

126

TABLE 152

Measured and calculated pile point resistance

Pile Calculated Measured Measured No qcp P for

s=10 mm P for s=20 mm

~ 10 mm ~ 20 mm

- (MPa) (MPa) (MPa) - -

1 38 045 092 84 41 2 39 09 14 43 28

3 40 05 08 80 50 4 33 07 10 47 33 5 35 06 11 58 30 6 35 08 12 44 29 7 35 05 09 70 39 8 30 08 12 38 25 9 39 10 18 39 22

10 35 08 14 44 25 11 49 15 24 33 20 12 40 16 22 25 18 13 46 1 7 2 4 27 19 14 30 075 13 40 23 15 32 06 095 53 34 16 49 075 115 65 43 17 32 - - - -18 42 095 1 75 44 24 19 39 09 160 4 3 23 20 3 0 07 12 43 25

average= 484 291

sd 163 088 sv 034 030

Tab 153 Results of calculation for piles No 1-24

Pile No

Length (m)

Overburden pressure 0 vs

0hs (kPa)

0ve (kPa)

0 nc (kPa)

- -ov=o1 (kPa)

- -OV=03 ( kPa)

00 (kPa)

p(a il ( kPa)

s (a 1) (mm)

A2 ( 1 )

E t

(kPa)

Md ( 1 )

K (1)

E I

t (kPa)

( kPa) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

l 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

13 12 14 13 6 6 6 6 9 95 9

10 95

11 5 135 165 66 675 72 65 99 75

180 137

l 33 133 123 116

70 70 70 70

104 102 95

102 95 94

106 139 95

101 106 97

180 137 221 215

53 53 49 46 28 28 28 28 42 41 38 41 38 38 42 56 38 40 42 39 72 55 88 86

202 202 216 202 1114 104 104 104 146 153 146 160 153 181 209 251 120 128 134 123 238 180 305 277

202 202 216 202 104 104 104 104 146 153 146 160 153 181 209 251 120 128 134 123 238 180 305 277

168 Hi8 170 159 87 87 87 87

125 128 121 131 124 138 158 195 108 115 120 110 209 159 263 246

128 128 133 124 66 66 66 66 94 97 92

101 96

110 126 154 79 84 88 81

155 118 197 182

141 141 145 136

73 73 73 73

104 107 104 111 105 119 137 117 89 94 99 91

173 132 219 203

950 975

1000 825 875 875 875 750 975 875

1225 1000 1150 750 800

1225 800

1050 975 750

2000 2000 625

1500

218 139 255 190 16 1 146 210 12 7 10 1 11 7 84 73 69

104 167 210 124 103 10 1 109 142 120 76

153

0802 0802 0822 0820 0798 0798 0798 0798 0791 0798 0800 0811 0814 0837 0837 0830 0769 0 768 0771 0 775 0 780 0 781 0 788 o 779

35296 81603 43312 65222 44019 67515 4609 91313 78186 60572

118115 15129 5 184075 95577 67017 81607 33252 67554 85294 75994 78816 74857 55101 54862

075 075 0 77 075 084 084 084 081 079 078 084 080 083 076 076 078 0 77 081 079 076 082 087 064 0 74

278 643 337 512 542 832 567

1085 766 572

1216 1417 1832

796 520 709 353 735 878 781 630 726 302 366

26472 61202 33350 48917 36976 56713 38656 73964 61767 47246 99217

121036 152782

72639 51932 63653 25604 54719 67382 57755 64629 65126 35265 40598

a=282l a =l781 y=axs S=0621 B=0 844

V=0 057 V=0 128 _ Iv -J

~

N co

Tab l53 Results of calculation for piles No 7-24

Pile No

17

1 2 3 4 5 6 7 8 9

70 11 72 13 74 75 16 17 78 79 20 27 22 23 24

Ground water

18

-20 m b s

-28 m -335 m -330 m -3 15 m dry dry -53 m -85 m

E t (kPa)

19

33653 64979 35364 45664 47969 54583 37574 63072 74548 57753

71 2618 123531 150297

71239 48619 59204 39744 77208 77863 62049 90407 95844 57762 62937

vxEt=E Md (kPa)

20

25240 48689 27230 34248 35254 45849 31562 51040 58893 45047 94599 98825

724747 54142 36950 46179 30603 57678 61572 47157 47734 83384 36968 46569

a=898 S=l 27 =0314

K (l )

21

265 511 275 358 517 672 463 749 730 546

1160 1157 7496

593 377 514 422 775 802 638 723 929 377 420

a=l422 S=l 05 =0187

E=E = t1 3

g-gcp (kPa)

22

51046 52799 54566 42492 45870 45870 45870 37547 52799 45870 77039 54566 65438 52799 40826 71039 40926 58739 52799 37541 82549 82549 40826 59945

Calculated s

(mm)

23

708 128 72 7 15 3 724 146 144 17 3 71 3 11 5 11 2 732 13 2 707 1 5 1 13 7 93

102 118 137 728 12 l 69

11 9

s__caL n=smeos

() 24

050 092 050 087 0 77 7 00 069 l36 l 12 098 133 l81 l97 103 090 065 0 75 099 117 126 090 101 097 078

ri=l00 sd=035 sv=035

K = l50gcp

25

570 585 600 495 525 525 525 450 585 525 735 600 690 450 480 735 480 630 585 450 825 825 1180 645

E l

(kPa)

26

67684 69465 72250 57726 44856 44856 44856 38448 59659 54306 74956 63214 70704 49089 56783 79502 45283 61081 58207 42927

708572 94785 71033 91898

E = t E middotA2

l

(kPa)

27

54283 5571 l 59389 47336 35795 35795 35795 30682 47790 43336 59964 51266 57553 47088 47024 65987 34823 46970 44877 33269 84639 74027 55974 71589

Calculated s

(mm)

28

l O l 12 l 11 7 737 15 9 18 7 185 21 1 12 6 12 2 133 14 l 150 13 7 13 l 14 7 709 12 7 738 755 12 4 735 50

100

- -

Tab l53 Results of calculation for piles No l-24

Pile

29

l 2 3 4 5 6 7 8 9

10 ll 12 13 14 15 76 17 78 19 20 21 22 23 24

sea l n= middotshy

smeas

28 TT

30

0 46 087 046 0 72 099 l 28 088 l 66 l 25 l 04 l 58 l 93 2 17 l 32 078 0 70 088 l 23 l 37 l42 087 l l 3 066 065

n=l 10 sd=0 44 sv=040

s seal for p n=s=lOrnn ac cording to s = 70mm

(mm)

37 32

5 l 0 51 ll 8 l18 64 064

13 0 l30 85 0 85

13 3 l 33 83 0 83

184 l84 ll6 l l 6 105 l05 137 l 37 21 3 2 12 19 4 l94 107 l06 l l 3 l l 3 84 084

92 092 l 0 9 l09 128 l28 83 083

l 0 3 l03 88 088 79 0 79

n=1 73 sd=025 sv=027

s for p according to s = 20mm

(mm)

33

10 4 184 102 18 6 15 6 200 14 9 276 209 18 4 219 292 274 185 17 9 12 9 -

169 194 219 172 200 143 15 0

seal n=s=20rnn

34

052 092 051 093 078 l00 075 l 38 l 05 092 l l 0 l46 l 37 093 090 065

-085 097 l1 0 086 l00 072 075

n=093 sd=025 sv=0 27

s for p according to s = 30rnn

(mm)

35

142 223 14 l 22 3 198 249 142 34 5 290 249 274 345 33 l 243 22 6 168 -

24 7 26 6 293 24 3 279 187 213

seal n=s=30rnn

36

047 0 74 047 0 74 066 083 047 l 15 0 97 083 091 l 15 l10 0 81 075 056 -

082 089 098 081 093 062 0 71

n=o80 sd=020 _ sv=0 25 N

IO

APPENDIXES

APPENDIX 1 1 1

Pi le No 1 Length 13 m D 10 m

Areas of influence

-

qe

(MPa)

1 fp

___9c_ f

(MPR) zyen

(MPf) qcp (MPa)

Soil type

22 20 18 16 14 1 2

l 2 (m)

10

1 0 08 06

16 15 16

026 027 026

42 41 42 Sand

04 14 U28 39 02 14 028 39 41

02 16 0 26 42 04 16 026 42 06 16 026 42 08 14 028 39 Sand 1 0 13 030 39 12 15 027 4 1 38 14 13 030 39 16 12 032 38 18 12 032 38

40 20 10 036 36 22 10 036 36 24 9 U39 35 2 6 8 043 34 28 10 036 36 30 10 036 36 3 2 10 036 36 34 10 0 36 36 36 11 0 34 37 38 11 034 37

l 1 (m)

40

42 44

11 0 34 37 15 1

46 48 50 52 54 56 58 60 62 64 66 68 70 7 2 74 76 78 8 0

APPENDIX 112

Pile No 2

to little depth of sounding

q~ = middle values for 11 = 2 Op

q~ = 145 MAa (Francke Garbrecht 1977 Tab 2 p 50) (Fi g No 2)

for sand

qcp = 0275middot145 = 40 MPa q~p =V ~~s) middot 40 = 097middot40 = 39 MPa

Pile No 4

q~ = 120 MPa sand (Fig No 4)

q = 0 315middot12 = 3 8 MPa q bull 38 = 086middot38 = 33 MPa=V Jmiddot54

1

cp middot bull cp

Pile No 12

qg = 155 MPa sand (Fig No 13)

qcp = 026middot155 = 4 03 MPa

Pile No 13

q~ = 200 MPa sand (Fig No 14)

q = 0 23middot20 = 46 MPacp

APPENDIX 113

PileNo3 Length 14 m D 15 m

Areas of influence

-

qe

(MPa)

1 Tp

----9cf

(t-1Pf) r~

(MPf) qcp (MPa)

Soil type

22 2D 18 16 17 025 43 14 17 II II

L 2 17 II II

12 (m)

16 10 08 06

17 17 17

o

II

II

II

II

Sand 04 17 II II

02 19 024 46 b9

02 19 024 46 04 17 025 43 06 15 027 41 08 13 030 48 1 0 12 032 38 12 11 033 36 14 13 0 30 39 16 14 028 39 18 12 032 38 40 20 16 026 42 2 2 16 026 42 24 11 033 36 26 11 033 36

60 28 30

10 10

036 036

36 36

Sand

32 10 036 36 34 12 032 3 8 3 6 12 032 38 38 12 032 38

1 1 (m)

40

4 2 4 4

13

14 16

030

028 026

39

39 42

46 13 030 39 48 12 032 38 50 14 028 39 52 10 036 36 54 13 030 39 56 14 028 39 58 15 027 41 60 15 027 ~-1 236 62 64 66 68 70 72 74 76 7 8 80

APPENDIX 114

Pi l e No 5 Length 6 0m D 11 m Dp 11 m

Area s of i nfluence

-

qc

(MPa)

1 Tp

-3Lf

( MPf) l ~

(MP~) qcp (MPa)

Soil type

2 2 2 0 18 1 6 14 1 2 155 U i1 33

l 2 (m)

1 2 10 08 06

15 14 12

022 023 0 27

3 3 32 32

Fine sand

+ silt

04 125 026 33 02 16 0 21 34 39

02 16 021 34 04 13 025 33 06 08 10

15 5 17 20

022 0 20 018

34 34 36

35 Fi ne sand

1 2 20 0 18 36 14 20 018 36 + s ilt 16 20 0 18 36 18 165 020 32 20 165 0 20 32 22 17 0 20 34 24 26 2 8 30 32 3 36 38 4 0

19 21 5 21 5 21 5 20 19 5 19 5 20 215

01 9 ---

018 018 0 18 0 18 -

3 6 40 40 40 36 35 3 5 36 4 0

l 1 (m) 4 2

44 20 19

018 01 9

36 3 6 157

46 48 50 5 2 54 56 58 6 0 62 64 66 68 70 7 2 74 76 7 8 8 0

APPENDIX 1 15

Pi le No 6 Lengt h6 0 m D 11 m

Areas of qc 1 __9_c_ qcp Soil typei nfluence fp f 1 yen (MPa) (MPf ) (MPf) (MPa)

-2 2 20 18 16 t 4---0 14 75 038 29 L2 20 018 36 Fi ne sand

1ti 10 30 40 + s i lt12 08 19 0 19 36(m) 06 17 020 34 04 14 023 32 02 9 034 31 56

02 6 043 26 04 12 026 3 1 06 17 020 34 08 11 028 3 1 1 0 14 023 32 35 1 2 17 020 34 Fi ne sand14 19 019 35 16 20 018 36 + silt18 18 0 19 34 20 14 023 32

46 22 12 026 31 24 12 026 31 26 15 022 33 28 18 019 34 30 20 018 36 3 20 0 18 36 34 20 018 36 3G 20 018 36 38 20 018 36 4 0 20 018 36

l 1 42 22 40

(m) 44 22 40 46 L2 4 0 158 48 50 52 54 56 q =V ~ - 3 b =0 99middot35 = 35 MPp cp 53 58 6 0 62 64 66 68 70 72 74 76 78 80

APPENDIX 116

Pi leNo7 Length 60 m 0 15 m

Areas of influence

-

qe

(MPa)

1 Tp ~

(MPg) r~

(MPf) qcp (MPa)

Soil type

22 20 18 16 9 U33 30 14 10 031 31 12 135 024 32

l 2 (m)

16 10 08 06 04 02

13 12 6

10 175

025 026 043 0 31 020

33 31 26 3 1 35 50

Fine sand

+ silt

02 04 06

17 10 115

0 20 0 31 027

34 31 3 1

08 10

145 185

023 019

33 35 3 5

1 2 14

20 19

018 0 19

36 36 Fine sand

l 1 (m)

60

16 18 20 22 24 26 28 30 3 2 34 36 38 40

42 44 46 48 50 52 54 56 58 6 0

185 125 125 165 17 19 21 215 205 20 21 20 20

24 22 20 215 22 22 21 19 18 22

0 19 026 0 26 020 020 019 --

018 018 -

018 01 8 --

018 ----

0 19 0 19

35 33 33 33 34 36 40 40 37 36 40 36 36

40 40 36 40 40 40 40 36 34 40 219

+ silt

62 64 66 68 70 72 74 76 78 80

APPENDIX 117

Pile No 8 Length60 m D 15 m Dp 2 1 m

Areas of influence

-

qe

(MPa)

1 r +

(MPg) r~

(MPf) qcp (MPa)

Soil type

22 18 019 34 20 16 021 34 18 125 026 3 3 16 115 027 31 14 11 028 3 1 12 11 028 3 1

l 2 (m)

10 08 06

105 11 145

D29 028 023

30 31 33

Fine sand

+ silt

04 18 0 19 34 02 18 019 34 71

02 15 022 33 04 11 0 28 31 06 13 0 25 33 08 20 0 18 36 10 15 022 33 12 13 025 33 14 175 020 35 16 18 20 22

20 21 20 15

018 -

018 0 22

36 40 36 33

35 Fine sand

+ s i lt

24 26 28 30 3 =

13 16 175 19 20 20

025 021 020 0 18 018 018

33 34 3 5 34 36 36

36 38 4 0

20 20 21

018 0 18 -

36 36 40

11 (m)

4 2 4 4 4 6 48 50 5 2 5 4 56 5 8 60 6 2 6 4

20 20 21 22 21 20 19 175 19 20 25 28

018 0 18 ---

01 8 01 9 0 20 0 19 018

36 36 40 40 40 36 36 35 36 36 40 4 0 23 0

6 6 68 70 72 74 76 78

qcp 1f5=v 2T middot35 = b85 middot35 = 30 MPa

80

APPENDIX 118

Pi le No 9 Le ngth 90 m D 11 m m

Areas of 1Qe -9c qcp Soil typeinfluence Tp f ryen (MPa) (MPg) (MPf) (MPa)

-

2 2 2 0 18 16 14 lc 11 034 37

12 10 10 036 36 12 08 9 039 35 Medium(m) 06 10 036 36 sand04 10 036 36

02 11 034 37 43

02 12 032 38 04 12 0 32 38 06 12 0 32 38 08 13 030 39 10 13 030 39 12 13 030 39 14 14 028 39 16 14 028 39

44 18 14 028 39 20 14 028 39 39 Med ium 22 15 027 4 1 sand 24 16 026 4 2 26 17 025 43 28 13 0 30 39 3 0 9 039 35 32 13 030 39 34 16 026 42 36 17 025 43 38 17 025 43 40 19 024 4 6

11 42 17 025 43

(m) 44 15 027 41 17 7 46 48 50 52 54 56 58 60 6 2 64 66 68 7 0 7 2 74 76 78 80

APPENDIX 119

Pi 1 e No 10 Length 95m D 11 m m

Areas of influence

-

qe

(MPa)

1 fp

-9c f

(t-1Pf) [~

(MPf)

qcp

(MPa)

Soil type

22 20 1 8 16 14 L 2 13 Uti 3J

l 2 (m) 12

10 08 06 04

18 18 28 19

0 19 019 0 19 019

34 34 34 34

Fine

sand

02 21 40 42

02 20 4 0 04 17 020 34 06 21 40 0 8 10

23 22

40 40 Fine

1 2 14 16 18

21 20 16 15

0 21 022

4 0 4 0 34 33

sand

44

20 2 2 24 26 28 30 32 34 36 38 40

14 14 13 11 11 14 17 14 12 13 12

023 023 025 0 28 028 023 020 023 027 025 027

32 32 33 31 31 32 34 3 2 32 3 3 32

l 1 (m) 42

44 12 13

0 27 025

32 33 15 2

46 48 50 5 2 5 4 56 5 8 6 0 6 2 6 4 66 6 8 70 72 74 76 78 80

APPENDIX 11 10

Pi 1 e No 11 Lengt h 9 0m D 11 m m

Area s of influence

-

Qe

(MPa)

1 fp

__k_ f

(MP~) ryen

(MPf) qcp (MPa)

Soi l type

22 20 18 16 14 12 lb 55

12 (m)

1 0 08 06 04

23 19 20 21

024 023

55 46 46 55

Medium

sand

02 22 55 62

0 2 04

24 25

55 55

06 08

27 28

55 55

10 12 14

28 28 28

55 55 55 49

16 26 55

44

18 20 22 24 26 28 30 3 34 36 38 40

24 19 18 17 22 21 17 11 13 12 11 9

024 024 025

025 0 34 030 032 034 039

55 46 43 43 55 55 4 3 37 39 38 3 7 35

1 1 (m) 42

Ll Ll

12 16

032 0 26

38 4 2 209

46 48 50 5 2 54 56 58 60 62 64 66 68 70 72 74 76 78 80

APPENDIX 141

0 2 3 4 p [MPa)

PILES WITH 40 ENLARGED BASES

80

120

160 C----0

200 IN4014 s (1977)

[mm]

P s calculateds P p(s)(mm) (MPa)(mmMPa)(MPa) ()

10 035 286 046 20 065 308 080 30 090 333 104

150 24 625 214 200 229

ai = 2605 (mmMPa) b1 = 0243 1MPa V 1000 bi = 1b = 411 MPa

_ 411 MP Vi - 24 a

() assumed

average Dp = 18 m

qcp = 24 MPa ai = 184 (mmMPa) (28-4middot24)

Vi = 1 2 (3-18)

qcpmiddotvi = 29 MPa

40

80

120

160

200 s

[mm]

DIN 4014 Part 2 ( 1977)

0 1 2 3 4 5 p [MPal

PILES WITHOUT ENLARGED BASES

C----0

DIN 4014 ( 1977

s calculated s p -p- p(s)

(mm) (MPa)mmMPa)(MPa) ()

10 05 20 062 20 08 25 113 30 11 27 3 155

150 34 441 385 200 424

ai = 2085 (mmMPa) bi= 0 157 1MPa V = 0970

bi= 1s = 637 MPa

Vi 187=3f =

() assumed

average Dp = 12 m

qcp = 34 MPa a1 = 144 (mmMPa)

Vi = 18

qcpmiddotvi = 61 MPa

Range qc = 10-15 MPa

(28-4bull34)

(3-12)

1 1 q = r -r- = 036 for qc = 10 MPaCp p Ip+= 027 for qc = 15 MPa

qcp = 36-405 MPa P

APPENDIX 142

Touma F and Reese L (1974)

Soil parameters pile parameters and base resistance see fig bullbullbullbull

TAB

Measured load settlement curves

Settlement s

mm

10 20 30 40 50 60 80

100 120

a 1 (mmMPa) bi(MPa) V

N3u

q =04 -N30 (cMPa) ()

1 qCp=--rpbullqC

Pile No 21 (US 59) 22 (HH) 23 (G1) 24 (BB) Notep Sp p S p p S p f Sp MPa mmMPa MPa mmMPa MPa mmMPa Mla mmMPa

131 76 169 59 075 133 100 100 269 74 325 62 131 153 1 94 103 381 79 456 66 165 182 273 11 0 488 82 581 69 1 90 21 1 349 115 581 86 694 72 2 15 233 424 118 675 89 800 75 229 262 813 98 245 327 884 113 925 130

64 56 100 95 U049 0032 0276 0048 0944 0998 0996 0981

80 gt100 30 60 32 gt 40 12 24 ()

Bergdahl (1982)

gt5 5 gt55 32 4 3

(0 18middot32) (018middot40) (0265middot12) (018middot24)

CONTACT PRESSURE p [ MPa]

0 2 4 6 8 100 N-------r---------------(us 59) ( HH) ( BBi

E E SQ-------lt+-----+--------------lt

VI

1shyz UJ

~ 100 1---------i----+----+----+------l------I -J I shyI shyUJ V)

so~----~--~-- ~--~

APPENDIX 143

us 59 fYJo 0 50 00

ff-t r-=-~c~=~-r~c_---_---l-~e-J-C~ 0 ------

CLAY

FINE SANO

J lD- 760 mm

f5m~--~--~

Pile US 59 and results from penetration test

HH IV_l() so 100 r=-=-==-==-r-~--=-=- 0 0 II 15- flf ~ II~ Ibull If t f

CLAY SAND

Sm

)

= -middotl lo - GtOmm

~ JI

SILTY SANO tOm

Pile HH and results from penetration t est

APPENDIX 14 4

61 NJO 50 --------00

11 1 =f J - 1 -- 0

CLAYSILT

E ~ Sm ltrj

SILTY SAND

q I lDmiddot 910 mrn tom

I) t bull

Pile G1 and results from penetration test

88

0 50 too ~1-e I q 111bull - Q

CLAY

SIL TY SAND 5m

]

l lDmiddot760mrn

Om

Pile BB and results from penetration test

APPENDIX 145

Klosinski B (1977)

Loading tests 50 bored piles 09-125 m diameter average Op= 11 m On t he sett l ement of rigid pla te the settlement of t he pi le base is given by

PmiddotOSp = T-K b

where Mb - equivalent deformability modu lus

1) Sand and sandy gravel of medium density

Mb = 25-50 MPa

According to Bergdahl (1979) medium sand is between

q(l) 5 MPa (Io=035)c2)

ql = 10 MPa (Io=065)C

from fig 117 rp1 = 055 for qc = 5 MPa 1Tp = 036 for qc = 10 MPa

q(l)= 0 55middot5 = 2 75 MPacp bull

q(2= 0 36middot10 = 360 MPacp

allowable p~ 1)= ~p = yen = 092 MPa and p~2) = ~ = 120 MPa

settlement of the pi l e base

5(1)= o 92 middot 1bull1 = O 0135 m = 13 5 mm p 325 middot middot

5( 2)= 1bull2bull1middot 1 = O 0088 m = 8 8 m p 350 bull bull

1) _ s _ 135 _ 14 7 (mm) a(2) _ 88 _ a 1 - p - o---92 - bull NPa bull 1 - T-7 - 733 (Wa)

2) Loose sand lo= 030-040

Mb = 12- 25 MPa

q~l) = 44 MPa q~2)= 58 MPa

1Tp = 058 and 052

q(3) = 0 58middot4 4 = 2 55 MPa middot q( 4) = 0 52middot5 8 = 3 02 MPa cp bull middot bull cp bull middot middot

allowable p~ 3)= 4i = 085 MPa p~4)= yenl = 101 MPa

s(3)_ 085-11 = 26 mmmiddot s(4)_ 101middot11 = 148 mm p - 312 p - 3 25

STATENS GEOTEKNISKA INSTITUT Swedish Geotechnical Institute S-581 01 Linkoping Tel 01311 51 00

Serien Rapport ersatter vara tidigare serier Proceedings (27 nr) Sartryck och Preliminara rapporter (60 nr) samt Meddelanden (10 nr)

The series Report supersedes the previous series Proceedings (27 Nos) Reprints and Preliminary Reports (60 Nos) and Meddelanden (10 Nos)

RAPPORT REPORT Pris kr

No Ar (Swcrs)

1 Grundvattensankning till foljd av 1977 50shytunnelsprangning P Ahlberg T Lundgren

2 Pahangskrafter pa langa betongpalar 1977 50shyL Bjerin

3 Methods for reducing undrained 1977 30shyshear strength of soft clay K V Helenelund

4 Basic behaviour of Scandinavian soft 1977 40shyclays R Larsson

5 Snabba odometerforsok 1978 25 shyR Karlsson L Viberg

6 Skredriskbedomningar med hjalp av 1978 40shyelektromagnetisk faltstyrkematning - provning av ny metod J Ingands

7 Forebyggande av sattningar i 1979 40shyledningsgravar - en forstudie U Bergdahl R Fogelstrom K - G Larsson P Liljekvist

8 Grundlaggningskostnadernas fordelning 1979 25 shyB Carlsson

9 Horisontalarmerade fyllningar pa los 1981 50 shyjord J Belfrage

RAPPORTREPORT

No

10 Tuveskredet 1977-11-30 Inlagg om skredets orsaker

11a Tuveskredet geoteknik

l1b Tuveskredet geologi

11 c Tuveskredet hydrogeologi

12 Drained behaviour of Swedish clays

R Larsson

13 Long term consolidation beneath the test fills at Vasby Sweden YCE Chang

14 Bentonittatning mot lakvatten T Lundgren L Karlqvist U Qvarfort

15 Kartering och klassificering av leromradens stabilitetsforutshysattningar L Viberg

16 Geotekniska faltundersokningar Metoder - Erfarenheter - FoU-behov E Ottosson (red)

17 Symposium on Slopes on Soft Clays

18 The Landslide at Tuve November 30 1 977 R Larsson M Jansson

19 Slantstabilitetsberakningar i lera Skall man anvanda total spanningsanalys effektivspanningsanalys eller kombinerad analys R Larsson

20 Portrycksvariationer i leror i Gateshyborgsregionen J Berntson

21 Tekniska egenskaper hos restproshydukter fran kolforbranning shyen laboratoriestudie B Moller G Nilson

Ar

1981

1981

1981

1981

1981

1982

1982

1982

1983

1982

1983

1983

1983

Pris kr (Swcrs)

50shy

50shy

40shy

50shy

100shy

60shy

80shy

60shy

190shy

75shy

60shy

150shy

65shy

RAPPORTREPORT

No Ar Pri s kr (Sw crs)

22 Bestamning av jordegenskaper med sondering - en litteraturstudie U Bergdahl U Eriksson

1983 75 shy

23 Geobildtolkn ing L Vi berg

av grova moraner 1984 70 -

24 Radon i jord -Exhal ation- vatten kvot -Arstidsvariationer - Permeabilitet A Lindmar k B Rosen

1984 75 shy

25 Geoteknisk terrangklassificering for fysisk planering L Viber g

1984 120shy

26 Large diameter bored piles in nonshycohesive soils Determination of the bearing capacity and settlement from results of static penetration tests (CPT) and standard penetration test (SPT) K Gwizdala

1984 85shy

16

Similar results can be observed in Fig 116a and

Fig 116b It was showed by Kerisel (1965) and Franke

(1973) that the harder soil the more loosening at

excavation and thus relatively smaller bearing capacity

Taking into account the Franke diagrams we will have

for D = 125mand settlements= 2 cm p

Cone resistance qc (MPa) 1 5 50 1 0 15 22

qc p for s=2 cm 3 6 8 12 14

(see Fia 1 1 6b )

taking safety factor for pile base F = 3 the point resis~ance

33-10 ~-05

380375 lo 212 bull lo 2114 bull

factors- shy are p

The above anal ysis shows that it is possible to determine

ultimate point and shaft resistance of bored piles from

static cone sounding But it is very important and must

be taken into account type of pile kind of soil and

degree of compaction

Bel ow calculation method for large diameter bored piles

based on the static cone penetrometer resistance (CPT)

is proposed Equation (117) can be used directly for

the base diameter D lt 15 m For larger diameters p shyD gt 15 m the values should be multiplied by the

p ff t ITscoe icen Y~ as pi

( 1 1 5 )

where

qcp = according to equation (117)

D = diameter of the pile base D gt 15 mpi pi

17

This value q~p should be put into equation 116

The value qc s in equation 118 is independent on the

pile diameter

Proposed calculation method

(116)

where)

1 1 40 ~ 11 3 for piles wit h a nd enlarged bases12 10 12 = ~

h+h

q (h) dh (117)qcp l1+l2 f -f- Ch-li p

h 1 f 1

qcs = o -f- qc (h) dh (118)h s

1 -f- = f(q kind of soil ) -+- see Fig 11 7 and Tab 1 1 7

C p

f (q kind of soil ) -+- see Fig 1 1 8 and Tab 1 1 8 fs C

Note

a) the point resistance q for qc gt 20 MPa is assumed cp to be maximum as

- Gravel 70 MPa - Coarse sand medium sand 55 MPa - Fine sand s il ty sand 40 MPa

b ) The shaft resistance qcs for qc gt 20 MPa is assumed to

be maximum as

- Gravel 110 kPa - Coarse sand medium sand 90 kPa - Fine sand s ilty sand 70 kPa

These proposed values are compared with results by

Bustamente (1 982) and the Polish Specification (1978)

Fig 11 9 and F i g 1110 A similar comparison for DIN

4014 1 977 is shown in Fig 1111 and Fig 1112

) In this paper was used the above values 1 1 and l z But it can be used in practice 11 =30 D and h =2Dp respectively The results shall be very simi l ar to the above onPs

18

The proposed method has been examined with field test

results This is shown in Fig 1113 to Fig 1128

and Appendix 1 11 to 1110 and Tab 119

The comparison shows that the value of q in equationcp (117) corresponds to the settlement -10 of the base

diameter (s=010 DP) see Fig 1113 and Tab 119

(average sDp=88 and standard deviation sd=3)

Later in this paper the allowable load and dependence of

the load versus settlement will be determined

12 Determination of bearing capacity of the large

diameter bored piles from results of the Standard

Penetration Tests (SPT)

There are little published on pile tests coupled with

results from Standard Penetration Test (SPT) Among the

authors who have published material in the subject are

- Meyerhof 1956 1976

- Senneset 1974 (Norwegian method)

- Rodin Corbett Sherwood Thorburn 1974 (English method)

- Polish Specification 1975

- Weltman Healy 197 8

- Reese 1978

- Japanese Society 1981

- Decourt 1978 1982

The Norwegian method is valid o nly for concrete andor

wooden piles the English method only for gravel It is

very important to underline that the Norwegian a nd the

English methods use of the SPT resul ts intermediate by

the static cone penetrometer resistance (q ) as well C

Below methods are presented that are using the results of

SPT directly Meyerhof s method in total can also be used

on driven piles in non-cohesive soil Although we could

have found some proposes for bored piles Eqs (121 and

122) see Fig 121 and Fig 1 22 as well

19

Ultimate point resistance (psf)

12 N 3 omiddotH lt 120 N 30

(kPa) (1 2 1)Psf D

where

N30 the average standard penetration resistance

in blows per 03 m

H depth in bearing stratum

Ultimate skin friction tu

for bored piles tu N~ o (kPa) (1 22a)

for driven pil estu 2N30 (kPa) (1 2 2b)

where

N30 the average standard penetration resistance

in blows per 03 m within embedded length

of pile

Weltman and Healy (1978) taking into account Meherhofs

proposition for driven piles have introduced two coefshy

ficents for bored piles in gravels (glacial soil) Equ

123 and Fig 1 23

t = a 2 N30 (kPa ) (1 2 3)U 1

where

ai a 1 for impermeable gravels see Fig 123a

ai a 2 for permeable gravels see Fig 123b

The Polish Specification ( Specification for Design and

Construction of Large Diameter Bored Piles in Bridges

1975 Ministry of Transport) gives the ultimat e point

resistance in dependence of N30 base diameter and depth

see Tab 12 1 The Tab 121 contains values for coarse

and medium sand For other non-cohesive soils the following

coefficients are proposed

p f = S bull p f (medium sand) ( 1 2 4)S 1 S

20

where

S1 1 20 for grave lSi

f 132 080 for fine sand

13 3 070 for silty sand13i

In Fig 124 values of psf are shown for h = 10 m DP

06 m DP= 15 m and h = 20 m DP= 06 m DP 1 5 m

respectively

A few of the instrumented piles were tested and analyzed

by Wright and Reese (1979) The ultimate point and shaft

resistance in the fine and silty sand as a function of

blow count from SPT is shown in Fig 125 Results from

two additional tests reported by Koizumi (1971) are also

introduced in the figure The ultimate point resistance

is assumed to exist at a settlement equal to 5 of the

base diameter

Methods of prediction of the bearing capacity of piles

based exclusively on N30 values were presented by Decourt

1982 Below a proposition for high capacity piles excavated

and cast under bentoni te is presented

The ultimate skin friction is determined by the expression

(see Fig 126)

t = 33 N30 + 1 0 (kPa) ( 1 bull 2 5 ) u

where

N30 average value of N30 along the shaft

- for N30 lt 3 must be taken as = 3N30 - for N3o gt 5 0 must be taken as NJo= 50

The allowable point resistance can be obtained in a n

expedite way as

Psa = 33 N30 (kPa) (1 2 6)

where

N30 = average of Nat point level one metre above

and one metre below

Psa allowable point resistance

21

Decourt proposed a safety factor for the point of F = p

40 Therefore the ultimate point resistance can be

determined by the expression

(kPa) (1 2 7)

In Fig 12 7 and Fig 1 28 the above values for base

and skin friction resistance are compared respectively

Taking into account the type of soil thereis a good

correlation for ultimate point resistance The result for

ultimate skin friction is scattered but only apparently

The values for large diameter bored piles are between

the line 1a and 1b in Fig 128 Large diameter piles

have a high ultimate skin friction in relation to driven

piles (see points for bored piles in Fig 122 and DIN

4014 Part 2 1977 as well) The high values for piles

excavated and cast under bentonite have had a strong base

on the load tests (Decourt 1978 1982 and Wright and

Reese 1979)

Below the proposals are given for determination of the

values of the ultimate point resistance and the ultimate

skin friction Eqs 128 to 1214 and Fig129 1210

The ultimate point resistance

- gravel psf = 140 N30 (kPa) ( 1 bull 2 8)

for N~ 0 gt 50 blows3O cm Psf 7 MPa

- coarse sand and medium sand

(kPa) ( 1 2 9)

for N30 gt 50 blows3O cm Psf 55 MPa

- fine sand and silty sand

psf = 80 Nio (kPa ) (1210)

for N30 gt 50 blows3O cm p f = 40 MPa 5

where N3 o the average of N value near the point level as

22

h+l1

f N3o(h)dh ( 1 2 11 ) h-12

3DP see Fig 1 1 1 D

p

The ultimate skin friction for coarse sand and medium sand

tu = 1 8 N 3 o (kPa) (1212)

t (kPa) (excavated and cast (1213)u under bentonite)

where

N30= the average value of N along the shaft as h

N -

3 o = h1 f N 3 o ( h) dh ( 1 bull 2 bull 1 4 ) 0

The ultimate skin friction for N30 gt 50 blows30 cm is

assumed to be maximum as tu = 90 kPa and t = 150 kPa u

13 Allowable load of large diameter bored piles

The allowable load Qa of large diameter piles has been

expressed as

OuQa ( 1 3 1)Ft

Qa Q(s)=Qb(s) + Os(s) ( 1 3 2)

Opu + Osu (1 3 3)Qa Fp Fs

Qr lt mmiddotQf ( 1 bull 3 4)-

= universal safety factor

individual safety factor for ultimate resistance of the pile point

individual safety factor for ultimate resistance of the pile shaft

= load according to the allowable settlement

calculated load

m coefficient

calculated ultimate bearing load of the pile

23

The equations from (131) to (134) are used as

1) equation (131)

a) DIN 4014 - 1977 Ft= 2 175 15 (depending on the kind of load)

b) Polish Specification 1975 Ft = 18 16 ( -- )

1c) Trofimenkov 1974 Ft = 14307

2) equation (132)

a) DIN 4014-1977 i Q(s) = Qb(s) + Q (s) = A middotp(s) + E tAsmiddott(s)

s p 0

where Qbs) and Qs(s) are described in Fig 1423

3) equation (133)

a) Polish Specification 1974

F 25 22 depending on the kind of load p

F 1 bull 0 s

b) Wright SJ Reese LC 1979

The ultimate capacity or resistance is considered as a

random value and represented by a frequency distribution

The distribution can be described by a mean value and a

variance The distribution of the load applied to the

foundation can be described similarly The coefshy

ficients used to factor resistance and loads are called

partial safety factors Some recommended partial safety

factors for resistance under normal conditions of design

and construction are given in Tab 131 Normal control

is defined as a condition where the coefficient of variation

is less than about 035

Typical values for partial safety factors for loads are

in the range 1 to 2 depending on the type of load and

how it is applied The overall factor of safety Ft can

then be calculated from the equation

Ft = y RbullY S

24

where

YR the par tial sa f ety fac t or for resistance and

Ys the partial safety factor fo r load

The probability of fa i lur e of the foundation can be r eshy

lat ed to the factor of safety for a parti cular degree of

uncert ainty (see Tab 13 2)

c ) Tejchman Gwizdala 1979

The authors discuss adequate safety factors based on fie l d

test s by Spang (1 972) Franke (1976) Touma and Reese (1974)

Colombo (1971) Kerisel and Simons (1962) Appendirno (1973)

see Tab 1 33 Taking into account the universal safety

factor Ft= 2 0 for the tota l load settlement curves it

was estimated

i) F in the range of 111 to 237 with the average value s F = 166 and standard deviation sd = 034 s (see column 16 Tab 133)

ii) Fb in the range of 161 to 945 with the average

value Fb = 387 and standard deviation sd = 2 15

For model core d piles in laboratory conditions values of

Fs = 108 to 154 (average Fs = 132 s~ = 019) and

values of F = 280 to 5 94 (average F = 3 55 sd = 1 07)p p

see Tab 1 3 4

As a conclusion it was assumed that Fb = 40 and F 1 5 s

for l arge diameter bored piles

The investi gation has shown that for the above safety

factors settlements of piles under permissibl e loads are

10 to 20 mm There was assumed a maximum load on large

diameter piles corresponding to a settlement of 010

diameter of the piles

25

d) Bustamente Gianeselli 1 982

e) 0ecourt 1982

The safety factor is given by

F = FgmiddotFfmiddotFamiddotFw where

F 11 - skin friction g F 135 - point bearing capacity

g

Ff safety factor related to the formulation adapted

Ff= 10 for Decourts method

Fd safety factor related to excessive deformation

Fd = 10 for skin friction

As for the point Fa= 2 to 3 depending on the

pile diameter For usual cases 25 is suggested

Fw safety factor related to working load

Decourt recommends 12

Thus we will have

- for skin friction

Fs = 11bull10middot10middot12 132 - 13

- for the point

F = 135bull10bull25middot 1 2 = 405 = 40 p

4) equation (134)

a ) Polish Code 1983

Q lt mbullN r shy

where

total load coefficient (depending on the kind of load For foundation we can assume Yf = 12 )= code load

correction coeffic i ent

09 for pile foundations

m 08 for two piles

m 07 for single pile

26

N ymmiddotQu

ym material (soil) coefficient

ym 08 to 09 (Polish Code 1981)

Thus we will have

QnmiddotYf lt mmiddotym middotQu-

Yf9uFt = On m bull Ym

1 2 max = 2 14Ft 0 7 bull 0 8

1 2min = 1 48Ft 0909

The above analysis has shown different ways to determine

the allowable load The analysis is in direct connection

with mobilization of the load (versus settlement) The

dependence of total load point resistance and shaft reshy

sistance will be discussed in detail in Chapter 14

In the authors opinion taking into account the above

analysis the allowable load should be determined based

on the equation 133 ie based on individual safety

factors for ultimate point and shaft resistance Proposed

values of F and F in literature are shown in Tab 135 s p The average values are Fs = 145 and Fp = 3 38 respectively

Taking into account that the bearing capacity is determined

based on the results from sounding measurements direct from

a place near the piling without a ny indirect correlation

the allowable load of large diameter bored piles is given

by the equation (133a)

( 1 3 3a)

where F = 30 and F 13 are proposedp s

27

14 Determination of settlement of larqe diameter bored

piles based on static cone penetration tests CPT

Determination of ultimate point and skin friction resistance

based on static cone penetration tests has been discussed

in Chapter 11 above Based on the results of this calcushy

lation and on Chapter 13 we can establish an approximate

relation between point resistance shaft resistance and

total load on one hand and settlement on the other However

the approximation gives a wide scatter especially for base

resistance as can be observed in Fig 141 to Fig 144

Only the first part of the point resistance - settlement

curves are in good agreement with measured values It can

be observed in Fig 145 that the average correlation

coefficient n = 098 and standard deviation sd= 029

This way of calculation can be used only for rough calcushy

lation (see Chapter 13)

In Chapter 11 also measured point resistance - settlement

curves were shown The base resistance increases gradually

with increasing pressure and settlement Below the cur7

vature of the point resistance - settl ement curve will be

examined It is assumed that this curve can be described

as a part of the hyperbola curve Thus if the ratio of

the measured settlement (s ) to the point resistance (p)

is plotted against the measured settlement the result

will fall closely to a straight line with the equation

( 1 4 1)

where a 1 and b 1 are constants (see Fig 1 46a and Fig

14 6b)

Then the point resistance - settlement realtionship can be

expressed as a hyperbola

s p = ( 1 bull 4 2)

The constant is the initial s lope of the point resistanceshya 1

settlement curve ie a 1 = t~a The inverse of the constant

28

b 1 is the vertical tangent (asymptote) to the curve 1ie for s = 00

bf= ~ If the ultimate point reshy1

sistance psf is equal to bf (psf=bf) the whole point

resistance settlement curve will be a hyperbola type

Now the Eq 1 4 2 can be written as

s s ( 1 4 3)a) p s or b) p = a+__sect_a1 + 1 Psfbf

If the ultimate point resistance is smaller than bf only

a part of the hyperbola curve ought to be considered

Further the Eq 14 3 will be written as

p ( 1 4 4)

where

poundf_ correction factor for hyperbola point Psf resistance-settlement relationship

Taking into account the discussion in Chapter 11 the

ultimate point resistance psf = qcp based on the CPT measurements

Therefore the relationship between the point resistance

the sett l ement and the CPT result can be expressed as

s p (1 4 5)s

The correction coefficient v 1 will cause a change of the

position of the vertical asymptote bf in r elation to the

ultimate point resistance q bull This means that we take cp into account a different part of the hyperbola curve for

the description of the point resistance-settlement relationshy

ship

Now if we want to use the equation (145) in practice

we must determine the constant and the coefficienta 1 v 1 (assumed that q is determined ear l ier Chapter 11)cp

29

The constant a 1 and t h e coefficient Vi have been detershy

mined based on fi e ld tests according to pi l es No 1 - 20

see Tab 14 1 and Tab 1 1 9 as wel l The values of

a 1 versus the point diameter D and the ul timate pointp

resistance respectively are shown in F i g 147 and Fig

148 Fig 1 47 shows that a 1 is independent of the

point diameter D Based on Fig 148 it can be assumed p

that

28-4bullq (1 4 6)cp

This correlation has been examined with data of the

literature see Fig 1 49 and Appendix 141 to 1 45

(Note there were no static penetration tests and qcp was determined based on a correlation made by Bergdahl

(1982))

A good correlation with equation 146 can be seen taking

into account the safety factor in the DIN 4014 Part 2

(1977) bull

The correction factor v 1 versus the poi nt diameter is shown

in Fig 1410 I t is assumed that the correlation is

V1 = 3 0 - D ( 1 4 7)p

where D is in m p

The above equations ie 146 and 147 were assumed for

a later analyses see Fig 14 11 and Fig 1412 The

piles No 1 to 20 were examined taking into account Eqs

14 5 14 6 and 1 4 7 The result of this cal cul ation is

presented in Fig 1 413 to Fig 1 4 18 and in Tab 1 4 2

respectively In Fig 1413 the calculation way for pile

No 2 is shown as an example

In Fig 1414 to Fig 1 417 measured and calculated

values of the point resistance versus settl ement can be

compared In tota l good correlation exists for all the

30

pressure-settlement curves Values of q from static cp

cone penetration tests and generalized values of anda 1

v 1 were considered Only for piles No 17-20 qcp was

assumed as the point resistance for s = 010 D because p

the static penetration test results were inaccessible

The similar comparison is shown in Fig 1417a for piles

in sand based on experimental results (Tuoma Reese 1972

and Wright Reese 1979) where the ultimate case resistance

was assumed as the resistance at a base settlement of 005

D The relative base resistance is the mobilized base p resistance divided by the ultinate base resistance The

curvature of the proposed point resistance settlement shy

curve to mean value proposed by Wright and Reese is excellent

However the constant a 1 and the coefficient v 1 were

determined for sand only In the future they should be

examined especially for gravel and silty sand based on

field tests Until then in the authors opinion the

values of v 1 can be chosen from Eq 147 for all nonshy

cohesive soils But for a 1 there is proposed

at = gt bulla (1 4 8)1

where

gt- 1 = 080 for gravel

gt 2 120 for silty sand

This proposal is shown in Fig 14 11 as dashed lines

A good correlation can be seen with the investigation by I

Kiosimiddotnski for sandy gravel and on the safety side with

the investigation by Tuoma and Reese for silty sand (see

Fig 149)

In Fig 1418 all calcul ations for pile No 1 to 20 are

summarize d The correlation coefficient n is defined as

the calculated point resistance p(s) divided by measured

point resistance p(s) For totally 126 points from 20

curves an average of n = 098 with standard deviation

31

al= 023 was obtained see Fig 1418 A similar result

can be observed for the range usually assumed of the

allowable settlement for sinqle large diameter bored

piles as

for

- for

- for

s

s

s =

10

20

30

mm a

mm

mm

verage n10 II

II

mm 089

095

099

and sd =

and sd

and sd

031

027

026

It can be questioned whether the sonstant a 1 can be deshy

termined in different ways The constant a 1 is the initial

slope of the point resistance-settlement curve as menshy

tioned above Then we can use all methods for determination

of settlement of a pile point The range of validity of

these methods then must be determined This will be shown

later

In order to be able to design the total load settlement

curve the skin friction resistance-settlement relationshy

ship must be determined The ultimate skin resistance of

large diameter bored piles was determined in Chapter 11

(based on static penetration tests) and in Chapter 12

(based on standard penetration tests)

In the past a lot of field tests have been done on the

mobilization of the shaft resistance versus pile settleshy

ment In this subject there is a rather good agreement

in the whole investigation for cohesive and non-cohesive

soil

Some results and opinions on thispresented in the literashy

ture during the last few years are shown below

Ultimate shaft resistance versus settlement

1) BurlandJB Butler FG Duncan P (1969)

-The shaft l oadsettlement curve is derived using a=0 3

with 90 ultimate load being mobilized at 025 in

settlement(~65 mm)

- soil London clay

- see Fig 1 419

32

2) Touma FT Reese LC (1974)

- The failure of the sides of the shaft takes place

at a downward movement of about 04 in (10 mm)

- soil sand

- see Fig 1420

3) Tomlinson HJ (1977)

- The maximum shaft resistance is mobilized at a

settlement of only 10 mm (or j in)

- soil stiff clay

- see Fig 1421

4) Klosinski B ( 1977)

- It was assumed that skin friction increased proshy

portionally to pile settlement up to the limit value

s bull This value depends on soil conditions and pile0 diameter and is usually from 3 to 8 mm For soft

compressible soil it may be grater than 10 mm

- soil cohesive soils

- see Fig 1422

5) Franke E Garbrecht D (1977)

- At settlement of 2 to 3 cm which are normally

allowed in Germany under working loads for buildings

not very sensitive to differential settlementsthe

skin friction is almost always fully mobilized

- soil sand

6) DIN 4014 part 2 (1977) and Franke E (1981)

- The skin friction Tm is approximated as diameter

independent having failure settlements of smf = 2 cm

in sand and 1 cm in clay

- soil sand and clay

- see Fig 1423

33

7) Reese By L (1978) Reese By L Wright SJ (1979)

(1978) The maximum skin friction being developed at

an average downward movement ranging from about 05shy

2 of the shaft diameter The average of six load tests

reported by Whitaker and Cooke (1966) are a lso plotted

for comparison

- soil stiff clays

- see Fig 1424 and Fig 1425a

(1979) The relative settlement is the average settleshy

ment of the butt and base devided by the shaft diameter

The mean curve maximises at a relative settlement of

about 002 D

- soil sand and clay

- see Fig 1425b

8) Tejchman A Gwizda3a K (1979)

- A clear differentiation of the distribution of shaft

and base resistances is observed for changing settleshy

ment For fairly small settlements the shaft resist shy

ance increases quite fast and the ultimate values

are reached soon while the base resistance increases

gradually with increasing loads and settlements withshy

out clearout ultimate values it can be assumed that

complete mobilization of shaft resistance corresponds

to settlements equal to 001 or 002 diameter of pile

- soil cohesive and non-cohesive soils

- see Tab 131 and Fig 1 426

9) Promboon S Brenner R P (1981)

- Load distribution and load transfer curves disclose

that most of the load is carried by shaft friction

which is developed at small displacements in the order

of 10 mm

- soil Bangkok clay

- see Fig 1427

34

10) Prodinger w Veder Ch (1981)

- The maximum value of skin friction resistance

occurred for a total settlement of 12 mm

- soil silty clay and sand

- see Fig 1428

11) Farr JS Aurora RP (1981)

- Ultimate load transfer was recehed (or nearly reached)

at a relative settlement of about 04 in (10 mm)

- soil gravelly sand

- see Fig 1429

12) Decourt (1982)

The skin friction resistance is totally mobilized

with deformations of about 10 mm or at the most 15

mm regardless of shaft dimensions This observation

of ours seems to clash with the opinions of other

authors who seek to relate the deformation necessary

for full skin friction mobilization with the shaft

diameter

- soil cohesive and non-cohesive soil

In Tab 143 all these results are shown Depending on

the kind of soil the following v a lue s of ultimate settleshy

ment for shaft can be assumed

- averages 142 mm (sd 5 3 mm) for sand

- averages 100 mm (sd = 21 mm) for cohesive soil

averages 726 mm (sd 67 mm) for claysand

It can be observed (see Fig 1419 to 1428) that the

shaft friction resistance increases proportionally to

the pile settlement up to the above limit value and

thereafter becomes constant

35

Taking into account what was mentioned earlier on point

resistance settlement relationship and the above results

a relationship between total load point resistance and

shaft resistance on one hand and settlement on the other

can be made see Fig 1430

It is assumed on the safety side that the following

ultimate settlement (S~) exists for the shaft resistance

of large diameter bored piles

SS1 ) 200 mm for non-cohesive soil u SS2) = 100 mm for cohesive soil u SS3) 15 0 mm for claysandu

In Fig 1 430 the curve Q (s) is calculated based on p

the equation 14 5 or 144

The values of psf in equation 144 can be calculated

based on other methods as well

The total load-settlement relationship is obtained by

summing up point and s haft resistance as

Q (s) = Q (s) + Q (s) (149)s p

for each point

Now the allowable load can be determined from equation

133a and versus the allowabl e settlement as

Q (s) = Q (s) + Q (s) (1410)s p

where s lt Sa

Sa= the allowable settlement of the pile

The analysis allows determination of the approximative

load settlement dependence without calculating the settleshy

ment for non-cohesive soil In Fig 1431 it is shown

36

In Tab 144 the settlement for allowable point reshy

sistance q5P according to equation 133a is shown

as well The average settlements= 198 mm (sd=78 mm)

is obtained This value is similar to the assumed ultimate

settlement of shaft for non-cohesive soil The ultimate

settlement for point resistance is assumed s = 010 Dp as mentioned earlier

37

15 Initial slope of pile point resistance shy

settlement curve

Settlement of piles and pile foundations can be cal culated

based on

- empirical correlations

load-transfer methods using measured relationships

between pile resistance and pile movement at various

points along the pile

- theory of elasticity that employs the equations of

Mindlin for subsurface loading within a semi-infinite

mass

- numerical methods and in particular the finite element

method

- use of in-situ tests (Cone Penetration Test Standard

Penetration Test Pressuremeter Test)

The critical slope of the pile point resistance-settlement

curve is important for calculation in chapter 14 The

constant a1 can be determined from all the above mentioned

methods

Comparison is made to Berggrens and Schmertmanns methods

below (see Berggren 1981 as well)

6sIn Tab 151 (No 1 2 3) the values of a 1 =~p for s =

10 mm and s = 20 mm (measured for large diameter bored

piles No 1 to 24) are compared to the calculated values

according to the modified hyperbola method (see Fig 14 6)

It can be seen that these calculated values are between

s = 1U-2u mm but rather closer the measured values for

the settlements= 10 mm see correlation coefficient n 6

and n 7 in Tab 151 respectively The average correlat i on

coefficent for the settlements= 10 mm is n9 = 108 and

the standard deviation is sct = 014 The comparison to

Berggrens and Schmertmanns methods for s = 20 mm ( see

Berggren 1~81 and Tab 151 as well) shows that the

results based om these methods give too high values of a 1 bull

38

The average values are ne= 143 sd = OJ3 and ng= 137

sd = 037 for Berggrens and Schmertmanns methods

respectively A bit better agreement can be observed

for Schmertmanns method

Taking into account the results in Tab 151 ana Tab

15l it must be assumed that for the determination of

a 1 the pile point contact pressure p(a1) should be

assumed as the ultimate point bearing capacity devided

by about 4

p(ai) - ( 1 bull 5 1 )

Most of the methods for determination of settlement are

based on the theory of elasticity The settlement ot the

pile point can be expressed as the average settlement of

a rigid circular foundation from the equation

11-Dp 1-v 2

s = p -4- -E-bull microd (1 ~ 2 J

where

p pile point contact pressure

E Youngs modulus

D diameter ot pile pointp ) = Poissons ratio

microd = depth factor

The range of validity of the pile point contact pressure

was determined in equation 151 Youngs modulus has an

important meaning lt can be determined from triaxial

tests or oedometer tests The relationship between the

constrained (oedometric) modulus Mo and Young s modulus

Eis dependent on Poissons ratio v as expressed by the

equation

E = l 1 + V ) ( 1 - 2 V ) Mo ( 1 bull 1 bull 1)- 1-v

39

TaKing into account the analyses made ny Chaplin (19b1a

1 961bJ Janbu (1 963 1970 1973J Andreassen (1973)

Duncan and Cheng (1970) Tejchman anct Gwizdala (1979)

Gwizdala (1978) Franke (1981) Berggren (1981) Withiam

and Kulhawy (7981) and the present investigation the

calculation of settlement is proposed to be

s = 24 bull p bull ~ D bull 1-v 2 bull micro d (154)Do o E

where s (r1)

p (kPa)

Dp (m)

E (kPa)

D0 =10 m

micro = 05 + 01 vfrac34E (1 5 5)d vs

but 05 lt microd lt 10-tip= p - (J (ovs see Fig 151)vs

E =Et= Kbullpat (Oo )n [1- Rf(1-sinltj) 101 - 03 ) 12 (1 5 6)2 c cosltP + 2o 3 sinltP 1Pat

in which K n and Rf= hyperbolic stress-strain parameters

Pa= atmosferic pressure ando 1 o 3 and o0 are determined by

averaging the concrete and soil vertical and radial stresses

near the pile point according to Fig 151 Then the

stresses at the pile point level are h

(J vs = L

0 Yi h

l vertical stress in the soil

0 hs Ko h

0 vs radial (horizontal) stress in the soil

0 vc L ye h -l

vertical stress in the concrete 0

0 hc K oc a vc radial (horizontal)

concrete stress in the

40

K at rest soil lateral stress coefficient 0

K c lateral stress coefficient for fluid fresh concrete0

K 1 0 oc

and average values

a 05(a +a)V vc vs

1 1 - shy~ = -(a +a+a I = -3 (av+2ahJ the applied mean normal stress0 j Z X y

Assuming this model calculation results for piles No 1-24

(see Tab 11~ as well) are shown in Tab 153

The piles are embedded mainly in medium sand to fine sand

For this kind of soil it can be assumed (soil parameters

from field or laboratory tests were inaccessible)

~ = 35deg c = 0 R~ = 09 n 05 v = 025 K c 10l 0

K = 04 Pat= 1UO kPa ye 24 kNrn 3 y = 14 kNm 3 bull0 C

Moreover in Tab 153 the following symbols are used

p(a1 ) - pile point contact pressure according to equation

1 bull 5 1

s(a1) - settl ement of pi l e point according to equation

143 and Tab 141

pound TT ( 2E = s bull Dp bull i 1-v ) according to equa~ion 152t

E~ Et bull microltl

EI

K = ro~ - according to equation 1 bull 5 6 p bullO middotA2

a~ o

E = E voD middot D middot ~4 ( 1 - v 2 ) according to equationt S p O 0

1 5 4

Et= E microd

K = according to equation 156 V PatmiddotaomiddotA2

41

The calculation results of Youngs modulus E = Et and

dimensionless canpressionrro1ulus for piles to 1-24 are shown

in Fig 152 to 155 using equation 152 and 15b

or equation 1~4 and 156 respectively lt can be obshy

served that the scatter in Fig 153 and Fig 155

where the influence of tne pile diameter is reduced

compare equation 154 is less than in the other figures

The reduced influence was made after observations from

field and laboratory tests while the equation 152 is

taken direct from theory of elasticity These values of

E and K are in good correlation with published values in

literature The values of Youngs modulus versus the

relative density of soil are compared to literature values

see Fig 15b Based on the analysis in this chapter it

can be assumed that

E = 9-ql 3 ( 1 bull 5 7)cp

where qcp is in accordance with equation 117

The calculation results based on this proposal are incluced

in Tab 1 5 3

The c a lculate d s e ttlements based on e q ua tion 154 and

157 are shown in column 23 and the values of the

correlation coef f icie nt (n= Seal ) in column 24 respectshyimeas

ively

The dimensionless canpression modulus can be d e termined as

K = 15Ubullq (qcp in MPa) (1 5 8)cp

see column 25 Tab 153

The calculation results based on the K compression modulus

according to equation 158 156 and 1 5 4 are shown in

columns 25 26 2 7 28 and 29 in Tab 153

42

For comparison and for determination of the range of

validity of this method the caLculation results of

pile point pressure for settlements s = 10 mm s = 20 mm

s = 30 mm (see Tab 141) according to equation 157

and 154 are shown in columns 30 to 35

The results obtained in Tab 153 confirm the possibility

to use the proposed method to calculate the initial part

of the pile point resistance settlement curve of large

diameter bored piles in non-cohesive soil and the initial

slope of this curve as well

A simple model has been proposed based on the theory of

elasticity ana the tangent modulus defined by Janbu (1963)

and Duncan amp Chang (1970)

A new approach according to the pile diameter depth factor

and principal stress is proposed

The settlement of the pile point can be made up to a point

pressure according to equation 151 on up to a settlement

of about s ~ 20 mm (30 mm)

-- The application of v Op in equation 1 5 4 a llows us ing

Youngs modulus as independent of the pile diameter

opposed to Bazants a nd Mosopusts (1981) proposal where

Youngs modulus wa s determined versus the pile diameter

The equation 1 5 6 takes into account the dependence of

Youngs modulus on depth (or overburden pressure) as

well

In the method field test (Cone Penetration Test) or

laboratory tests (hyperbolic stress-strain parameters

can be used

Comparison of the method to 24 availa ble load test r e sults

or large diameter bored piles in sand shows good a greement

to calculated and measured values

43

REFERE~CES

Adamczyk J (1978) Okreslanie udzwigu pali wierconych

za pomoca sondy statycznej (Bearing capacity of bored

piles based on the static sounding) Inz i Bud No 7

pp 253-257

Andreasson L (1973) The compressibility of cohesionless

soils Thesis Chalmers University of Technology

G6teborg (in Swedish)

Appendino M (1973) Comportamento di un palo di grande

diametro strumentato Rivista Italiano di Geotechnica

No 3 pp 115-118

Butterfield R Banerjee P (1971) A rigid disc embedded

in an elastic half space Geotechnical Engineering

Vol 2 pp 35-49

Bozant z Mosopust J (1981) Drilled pier design based

on load settlement curve X ICSMFE Stockholm Vol 2

pp 615-619

Begemann HK (1982) Cone penetration tests pile bearing

capacity and the thesis of Rollberg Proc of the Second

European Symposium on Penetration Testing Amsterdam

pp 433-438

Berggren B (1981) Bored piles on non-cohesive soils shy

settlement and bearing capacity (in Sweden) Thesis

Department of Geotechnical Engineering Chalmers

University of Technology G6teborg

Bergdahl UB (1979 1982) Sonderingen und in situ Messungen

Wien 18-19 Juni 1979 - Private information 19821983

Bustamante M Giane selli L(1982) Pile bearing capacity

prediction by means of static penetrometer CPT Proc

of the Second Europ Symp on PenTest Amsterdam

Vol 2 pp 493-500

Chaplin TK (1961a) An experimental study of the settleshy

ment of footings in sand PhD Thesis Univ of

Birmingham

44

Chaplin TK (1961b) Compressibility of sands and settleshy

ments of model footings and piles in sand 5th Int

Conf on Soil Mech a Found Engng Vol 2 p 33 Paris

Colombo P (1971) Observazoni sul comportamento ltli pali

a grande diametro Rivista Italiana di Geotechnika

No 3 pp 163-172

Dahlberg R (1975) Settlement characteristics of preconshy

solidated natural sands Swedish Council for Building

Research D11975

De Beer EE (1964) Some considerations concerning the

point bearing capacity of piles Proc Syrop Bearing

Capacity of Piles Boorkee I pp 178-204

Decourt L Quaresma AR (1978) Capacidade de Carga de

Carga de Estacas a partir de Valores de SPT VI Conshy

gresso Brasilerio de Mecanica dos Solos e Engenharia

de Fundacoes - Rio de Janerio - ABNS

Decourt L (1982) Prediction of the bearing capacity of

piles based exclusively on N values of the SPT Proc

of the Second Europ Syrop on Penetration Testing

Amsterdam Vol 1 pp 29-34

Duncan MJ Chang CV (1970) Non-linear analysis of stress

and strain in soils Journal Soil Mech Found Div Vol

96 SM5 pp 1629-1651

Durgunoglu HT (1979) Effect of foundation embedment on

stress and deformation distributions Third Int Conf

on Num Meth in Geomechanics Aachen pp 925-928

Farr JS Aurora RP (1981) Behaviour of an instrumented

pier in gravelly sand Proc of a session Drived Piers

and Caissons sponsored by the Geotech Eng Div of the

ASCE Nat Convention St Louis Missouri pp 53-65

Franke E (1981) Point pressure versus length and diameter

of piles X ICSMFE Stockholm Vol 2 pp 717-722

45

Gregersen os Aas G and Dibiagio E (1973) Load tests

on friction piles in loose sand Proc of the Eigth

International Conference on Soil Mech Moscow USSR

Vol 21 pp 109-117

Gwizda1a K (1978) Behaviour of large diameter bored piles

in non-cohesive soil (in Polish) Archiwum Hydrotechniki

Vol XXV No 2 pp 183-217 (English summary)

Huizinga TK (1951) Application of Results of Deep

Penetration Tests to Foundation Piles Building Research

Congress Vol 1 p 173

Janbu N (1963) Soil compressibility as determined by

oedometer and triaxial tests Proc Europ Conf Soil

Mech and Found Eng Vol 1 p 19 Vol 2 (Discussion)

p 17 Wiesbaden

Janbu N (1970) Grunlung i geoteknikk Tapir Forlag NTH

Trondheim

Janbu N Bjerrum L Kjaernsli B (1973) Soil Mechanics

applied to some engineering problems Norw Inst Publ

No 16 Oslo

Japanese Society SMFE (1981) Present state and future trend

of penetration testing in Japan Separate report at

X ICSMFE Stockholm

Kjekstad O Lunne T (1979) Soil parameters used for design

of gravity platforms in the north sea Second Int Conf

on Behaviour of Off-shore structures London Vol 1

pp 175-192

Klosinski B (1977) Bearing capacity of large diameter bored

piles IX ICSMFE Tokyo Vol 1 pp 609-612

Laboratory for soil mechanics Delft (1936) The predetershy

mination of the required and the prediction of the

resistance of piles Proc 1 Int Conf on Soil Mech

and Found Engng Cambridge (Mass) I p 181

46

Matich M and Stermac A (1971) Settlement performance of

the Burlington Bay Skyway Canadian Geotechnical Journal

Val 8 pp 252-271

Mccammon NR and Golder HQ (1970) Some loading tests

on long pipe piles Geotechnique London England

Val 20 pp 171-184

Meigh AC (1971) Some driving and loading tests on piles

in gravel and chalk Proc of the conference on beshy

haviour of piles London England pp 9-16

Mitchell JK Gardner WS (1976) In situ measurement

of volume change characteristics American Society of

Civil Engineers Specialty Conference on In-situ

Measurements of Soil Properties Raleigh 1975 Proc

Val II pp 279-345

Mezenbach E (1961) The determination of the permissible

pointload of piles by means of static penetration tests

Proc 5 Int Conf on Soil Mech and Found Engng

Paris II pp 99-104

Meyerhof CG (1956) Penetration tests and bearing capacity

of cohesionless soils Proc Amer Society of Civ Engng

SM 1 Pap 866 pp 1-19

Meyherhof GG (1 976) Bearing capacity and settlement of

pile foundations Proc Amer Society of Civ Engng

Journal Geotechnical Engineering Division Val 102

No GT3 pp 197-227

Mohan D Jain GS and Kumar V (196 3 ) Load bearing capacity

of piles Geotechn Val XIII pp 76-86

Nixon I (1982) Standard penetration test State of the

art report Proc of the Second Europ Symp on Pen

Test Amsterdam Val 1 pp 3-20

47

Nunes A Vargas M (1953) Computed bearing capacity of

piles in residual soil compared with laboratory and

load tests Proc of the Third International Conference

on Soil Mechanics Zlirich Switzerland Vol 2 pp 75-79

Nordal S Grande L Janbu N (1982) Prediction of offshy

shore pile behaviour The Norwegian Institute of

Technology Trondheim

Ohde J (1939) Zur Theorie der Druckverteilung im Baugrund

Der Bauingenieur Vol 20 No 3334 p 451

Parroth E (1972) Einfache Formel zur Vorausbestimmung der

Tragfahigkeit von Standpfahlen mit Hilfe der Sande

Bautechn 9 pp 312-314

Poulos HG Davis EH (1980) Pile foundation analysis

and design New York - J Wiley and sons

Prodinger W Veder Ch (1981) Bearing capacity of floating

groups of diaphragm walls Proc X ICSMFE Stockholm

Vol 2 pp 809-814

Promboon S Brenner R (1981) Large diameter bored piles

in Bangkok Clay Proc X ICSMFE Stockholm Vol 2 pp

815-818

Reese L (1978) Design and construction of drilled shafts

ASCE JSMFD Vol 104 No OT1 pp 95-116

Rodin s Corbett BO et al (1974) Penetration testing in

United Kingdom state-of-the-art-report Proc Europ

Symp on Penetration Testing 1 Stockholm pp 139-146

Rollberg D (1976) Bestimmung des verhaltens von Pfahlen

aus sandier und rammengebnissen Heft 4 FBG Technische

Hochschule Aachen

Rollberg D (1977) Determination of the bearing capacity

and pile driving resistance of piles using soundings

Publications of the Institute for Found Eng Soil Mech

Rock Mech and Water Ways Construction Aachen Vol 3

48

Schmertmann J (1970) Static cone to compute static

settlement over sand Journal of the Soil Mech and

Found Division ASCE SM3 pp 1011-1043

Schmertmann J Hartman JP Brown PR (1978) Improved

strain influence factor diagrams Journal of the Soil

Mech and Found Division ASCE GT8 pp 1131-1135

Shibata T Hijikuro K and Fominerga M (1973) Settlement

of a blast furnace foundation Proc of the Eighth Int

Conf on Soil Mech Moscow USSR Vol 13 pp 239-242

Spang J (1972) Die Bestimmung der Tragfahigkeit von Grossshy

borhpfahlen (I) Strassen und Tiefbau No 2 pp 339-355

Senneset K (1974) Penetration testing in Norway State-ofshy

the-art-report Proc Europ Symp on Penetration Testing

Stockholm I pp 85-95

Tejchman A Gwizdala K (1979) Analysis of safety factors

of bearing capacity for large diameter piles Proc VII

ECSMFE Brighton Vol 1 pp 293-296

Thorburn s and Mac Vicar R (1971) Pile load tests to

f a ilure in the clyde alluvium Proc of the conference

on behaviour of pile s London England pp 1-7

Trof imenkov JG (1969) Accuracy of determining the bearing

capacity of piles based on results of static penetration

sounding of soils Osnovaniya Fundamenty i Mekhanika

Gruntov 4 (Translation Soil Mechanics and Foundation

Engineering 4 p 248)

Trofimenkov JG (1974) Penetration testing in USSR Stateshy

of-the-art report Proc Europ Symp on Penetration

Testing Stockholm I pp 147-154

Tuoma F and Reese L (1974) Behaviour of bored piles in

sand JSMFD ASCE Vol 100 No GT 7 Proc Paper 10651

July pp 749-761

49

Van der Veen C (1953) The bearing capacity of a pile

Proc 3 Int Conf on Soil Mech and Found Engng

Zlirich II pp 84-90

Van der Veen C and Boersma L (1957) The bearing capacity

of a pile predetermined by a cone penetration test

Proc 4 Int Conf on Soil Mech and Found Engng

London II pp 72-75

Weltrnan AJ Healy PR (1978) Piling in boulder clay

and other glacial tills Construction Industry Research

and Information Association UK-Report PG 5

Withiam J Kulhawy F (1981) Analysis prodecure for

drilled shaft uplift capacity Proc of a session

Drilled piers and caissons ASCE St Louis Missouri

pp 82-97

Woodward R Lundgren R Boitano J (1961) Pile loading

tests in stiff clays Proc of the Fifth International

Conference on Soil Mechanics Paris France Vol 2

pp 177-184

Wright SJ Reese LC (1979) Design of large diameter

bored piles Ground Engineering Vol 12 No 8 pp

17-22

DIN 4014 Cods Teil 2 (1977) Bohrpfahle Grossbohrpfahle

Herstellung Bemessung und zulassige Belastung

Polish Specification (1975) Specification for design and

construction of large diameter bored piles in bridges

Ministry of Transport Warsaw (in Polish)

Polish Specification (1979) Specification for prevision

bearing capacity of the piles on the presiometer test

and static sounding ENERGOPOL Warsaw (In Polish)

Polish Code (1983) Foundations Bearing capacity of piles

and pile foundations

5 1

FIGURES

bull bull

53

Ou

+ sect raquo iir 1

4 + D

h + +Osu

bull + t2 =n- Dp

LDpl r f 1

Opu

Fig 1 1 1 Bearing pi le in the soil

J_

fp

080

070

060

050

0 40

030

020

010

q~ [MPa ]000 -+--~-~-~-~------------------------=-shy

00 20 4fJ 60 80 10 0 120 14fJ 160 180 200

Fig 1 1 2 The point resistance factor fp

(Trofimenkov 1974)

54

ts

160

140

120

100

080

060

040

020

q~5 [ kPa)

0Q0--1------~-~-~-~-~-~ - - ---=- -- shy000 10 20 30 40 50 60 70 80 90 100

Fig 1 1 3 The shaft resistance factor fs middot (TYofimenkov 1974)

f s

200

180

160

140

120

100 2 3 4 5 6 7 8 9

Fig 1 1 4 Shaft friction factor f depenshys

ding of the soil density (Senneset 1974)

55

Q~ [kN]

1500

1000

500

0-r-----------r----~- Q~ [kN] 0 500 1000 1500

Fig 1 1 5 Comparison of the pile resisshytance determined by the results of static sounding and load tests (TYofimenkov 1974)

D f f

0

Fig 1 16 Equivalent cone resisshytance (Bustamante 1982)

56

E u shy0 ~

QI I ltII ltII

~ a C QI

O C

D

w gt

0

Cone res istance Point resistance

80 160 240 320

05

10

15

e d

20

ver y dense Cone resistance 300 kgcm2

Dpcm

a =45 b = 30 C 60 d = 100 e = 150

Fig 1 16a

Cone resistance _ qc

80 160 80 160 qc [ k g cm2 ]p

05

10 10

15 15 e d a

e d20

Dense Medium2 2200 kgcm 100 kgcm

Cone resistance and point resistance of piles versus overburden pressure (Kerisel 1965)

Point resi stance - p(for s=2cm) of the pi le for

15 sett Iement s = 2 cm

10

5

E u

uJ1 o-~----shya er O 804 2500

32 56

I 1

L oose50 -I =25 Very loose L

----~--shy5000 7500 80 98

~-----lmiddotI1--------2 10000 12500 31400 =Flcn)

112 123 200 =Dplcm)

Fig 1 1 6b Point resistance versus cone resistance and pile diameter (Franke 193)

57

1

fp

080 (D Gravel

0 Coarse sand Medium sand 070

reg Fine sond Silty sand

060

050

040

030

020

010

qc [MPa]000-+----r--~-~-~--------r----r----r-~-~-- -shy

oo 20 40 60 80 100 120 140 160 180 200

Fig 1 1 7 Point resistance factor f (proposal) p

58

300

250

200

150

100

qc [MPa I50-+---------------r---r---r---r----r------------- shy

oo 20 40 60 80 100 120 140 160 180 200

Fig 1 1 8 Shaft resistance factor fs (pr oposal)

59

Bustamante (seetab 115 I

l fp

G)

0 Gravel

Coarse sand Medium sand

cl

b)

t-----l

1----1

080 reg Fine sand Silty sand a) D

070 Polish

060 Specification

( 1979) 050

040

030 CD 020 0

reg 010

qc [MPa]0 00 -+-------------------------------------=--shy

oo 20 4o 5o 80 100 120 14o 15o 180 200

Fig 1 19 Point resistance factor f comparisonp

Bustamente ( see tab 116 I 300

a) ~

250 b)~

cl~

200 Polish Specification ( 1979 l

150

100

q [ MPa]504---~--~--~----- ---___

00 20 40 60 80 100 120 140 150 180 200

Fig 1 1 10 Shaft resistance factor fs comparison

60

1 fp

~

080 CD CD Gravel

070 0 reg Coarse sand Medium sand

060 0 Q) Fine sand Silty sand

05

040 Franke (1973)___

030 DIN 4014

020 Part 2 1977

( see tab113 l 0shy

--shy --a - 010 C---0 Piles without enlarged bases

D---0 Piles with enlarged bases qc [MPa ] 000

00 20 4JJ 60 80 90 100 120 140 160 200

Fig 11 11 Point resistance factor f comparison p

fs

DIN 4014 Part 2 1977 ( see tab 114 l

300

~ 5 lt qc lt 10 MPa 50

~ 10 lt qclt 15 MPa

~qcgt15MPa

200

150

CD

100 0 0

qc [ 1Pa] 50-t-----T-~----T-r-~----------------shy

OO 20 40 6JJ 80 100 120 14JJ 160 180 200

Fig 1 1 12 Shaft resistance factor fs comparison

61

Measured p [ MPa]

( s=010 Dp) 10

9

8

7

6

5 0

4 0 61

3

I 2

Calculated qcp [MPa]

0 0 2 3 4 5 6 7 8 9 10

Fig 1 1 13 Comparison of experimental and aomputed values of the pile point resistanae

62

Contact pressure ( MPa ]

2 I 6

50

100

E E 150 Ill

c QI

E Sett lement for QI

calculated qcpai V) 200

Fig 1114 Results from load tests on piles No 1 and 5

Contact pressure [ MPa I 0 2 I 6

01---------------------1

50

E E 100 Ill

Settlement forc QI calculated qcp E ~ ai

I V) 150

Fig 1 1 15 Results from load test on piles No 7 and 5

63

Contact pressure p [ MPa] 0 2 3 4 6

0-t=-----~-~-----

E E

100 1)

c CU E 2 QI V) 150

Fig 1 1 16 Results from load test on piles No 9 10 and 11

Contact pressured p [MPa] 0 1 2 3 4 5

o~~~=------------___-~-shy

50

100

E E

i 150

CU E CU

-a V) 200 2

Fig 1 1 17 Results from load test on piles No 12 and 13

c

-------------- -

64

Contact pressured

0 1 2 3 4 p [ MPo] ~o __L____1_____J_____L___

50

100

150

E

E

IJ) 200

c a

E a

~ 250

Fig 1 1 18 Results f Pom load tests on piles No 2 4 6 and 8

p [MPa]

60

50

tO

30

~

Pile Pile Pile Pile

Pile No18

------+ Pile No17 + ~_ ---0 Pile No 19

bullbull - --bull Pile No 20

- ~middot -shy-shy -(y I Settlement for

20 tO 60

No17 +-middotmiddot- V 70 No 18 bull--- V 9o No19-middot- V 120 No20bull---- V150

qcp 3

80 100 120 140 160 s (mm)

Bose resistance

Fig 1 1 lBa Point Pesistance vePsus settlement (Spang 1972J

65 Cone resistance qc [ MPa]

0 10 20 30

mud

5 ~ lll

0 c 0

c CD

peat

10 sand

Ill N

10=10

D=lOOOmm

1540=40

20__________________

[ml

Fig 1 119 Pile No 1 and results from static cone penetration test

Cone resistance qc [MPa l 0 10 20 30

7N V degW = 0+--------------------i

mud

5

lll

~ C 0

c peat~

10

sand lll N 1D15

15l lD=1500mm

40=60

20l---------=-------__J

[ml

Fig 1 1 20 Pile No 3 and results from static cone penetration test

66 Cone resistance qc [MPa]

10 20 II 3 igt pound ~

mud+peat

fine sand+ silt

50=11

l lo-11oomm

40= 44

10

15l____________c

[ml

Fig 1 1 21 Pile No 5 and results from static cone penetration test

Section Cone resistance Pile

0 0

5 10 15 20 25 30 qc [MPa] -----~-~shy~

Silt

[7r_ ___~ Medium Sand_~-----l

0 ltD

+shy4

0=11

9=

Fine sand + Silt t

30p=

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot1~11+-----E-----

[ml

Fig 1 1 22 Pile No 6 and results from static cone penetration test

Cone resistance qcmiddot 1MPuJ

0 10 20 30 67 01-+-------l--------------i

mud+ peat

fine sand

l1)

N

40=60

15L_____________

[ml Fig 1 1 23 PiZe No 7 and resuZts from static

cone penetr ation test

Section Cone resistance Pi le

0 5 10 15 20 25 30 qc [MPa 1 --~----Y-~-----~

Silt

Fine sand

Medium Sand Bentonite2----1~i

t 3

4

0

0=15

Fine iii ~~= 5

sand t ltD

6 +

Silt 7

3Dp=

63 g

10

11

12

13+------=~---l

[ml

Fig 1 1 24 PiZe No 8 and resuZts f rom static cone penetration test

68

I =3

Cone resistance qc [MPa]

0 10 20 30

C 0 C Cl

(I)

Said

Peat

Sand

l 0=110

D = 11

4 D = 44

Fig 1 125 Pile No 9 and results form static cone penetration test

69

Cone resistance qc[MPa)

0 10 20 30 I ~ II JE Ill= II=E IS

Fine sand QI

U) I

[- I C 0 + C Peat QI

CD

Fine sand 0

Ci D = 1 1

L l D= 110

4D= 4 4

Fig 1 1 25 Pile No 10 and results f rom static cone penetr ation test

70

Cone resistance 9c[MPa]

0 10 20 30

Sand

C 0 Mud peat

+shyc 5 ltII

co

Sand Op= 11

u 10 D= 110 4Dp=44

Fig 1 1 26 Pile No 11 and results foIm static cone penetration test

71

00 a_ N ~

middotu rr QI 0 u ~ C 0

QI ui C iij 0 QI U - 0

0 EN

d 2

Sll 1lOl

C

u (rr

C 0 u~

0

QI - C middot 0 C

U - O 0 EN

~ 0 2

E

ltD a---==-lr---___--~---6-l_-0_012 ~ Lr- - --1---------J J

S9l ls= apound QI -0 gtcc _gmiddot- 0 1) ui I

Fi g 1 1 2 Piles No 14 and 15 and results f r om stat i c cone penetr ation tests

72

Contact pressure p [ MPa] 2 4 6

01lt---------------~

50

E E

111 100 ~ (qcp=30 MPa for No16

~ iqcp =49 MPa for No14

~ 1so~--~~- _ _ __

I _ _

11 I lf--q = 32 MPa for No15

cp

Fig 1 1 28 Results f r om load tests on piles No 14 15 and 16

73

0300--------------~---~--~--shyE

Driven piles in ~ 0 bull Gravel

amp250 bull Sand L QJ X Silt a 1l o Bored piles in

sand -sect 200 0=-- shyC ~ ~ 10 unless ~~ middot D shown 1

ii O

~ ~ o 3 a 1501-----+-------I- --+---laquo-+-- -+------lt

~ sect 5 - 6 6middot 100t----+----+-----_-1---4--__co_--J~__j

-_

~ 0 t7

C

a 50 2 shyg ~ gt

0 20 30 40 50 60

Standard penetration resistanceN in blows per foot

(N 30

Fig 12 1 Emperical relation between ultimate point resistance of piles and standard penetrashytion test in cohesionless soil (Meyerhof 1976)

14 r-------------------r-------b-----q

References and symbols given in Fig121

121-----+---+----+----+------ll------j

- _sect ~ 10t----+----+-_--1-----+---lt~--~H---- 0 lt-~5- _-)0 I() l- I Q---+-----I[08 ~

H -(l () ltj-~C X bulls pound 061------lt----+-----i~- --+-- shy

- bull

-gt Q1pound--I---L---L---L---L--~ 0 10 20 30 40 50 60

Mean standard penetration resistance N in blows per foot ( N30 l

Fig 122 Empirical relation between ultimate skin friction of piles and standard penetration resistance in cohesionless soil (Meyerhof 1976)

74

a) b)0(1 0lt2

10 10

05 05

1 N30OD-+---------__ OD--t-----r-----r----------------ll--Nbull30~ 10 20 30 10 20 30 40 50

Fig 1 2 3 Reduction coefficient a) for impermeable gravels b) form permeablr gravels (Weltman and Healy 1978)

psf [MPo)

Fig 1 2 4 Relation between ultimate point resistance and SPT in cohesionless soil (Polish specification 1975)

75

30 35 40 45 Loo Med Dense Ver dense

50

40

~ E

l)

g 8 1)

middotu

1 ~

QI- bull Touma ~ bull Koizumi

(183)-depth base middotameter5

20 40 60 00 100 N30

30 35 40 45

OG2(294) bull G1 (183)

300 bull us 59 ( 102) bull 88(180)

bull 075 a GT (467)

150

~ 200-+--------+-- t--- --t-----i 130i 0 094 081

014 _- --- -- shy~ E 066bull bull 063 Note -~ ~m~r~s~ ~ 1001---1-r--t---1point is xh QI Ratio ~ Number in ( ) middotn key is h c Ratio s ~

0 20 40 60 00 100

~ig 1 2 5 Ultimate point and shaft resistance versus N30

(Wr ight and Reese 1979)

-----

76

tu Psa

[kPa] [MPa]

200 tu

------ shy150 Psa

1 1

1100 10 1 1

1 50

0+----------T----~---~-N-3J~shy0 20 40 60 80

Relation between ultimate skin friction and SPT (Decourt 1982)

Fig 1 2 6

Psa

[MPa]

8

0----Meyerhof 1976) 0 7

--- - --~ - copy Polish Specifcoti on 1975)6 ~-

~

reg- middot - Reese (1978) middot 5

f41- -- Decourt (1982) -I bull 4 2

----==---______z__ h25m Dp=12m

3 ---shybull

2 7

--shy ----shy~----shy0-t----i----------r-- ----------------------N3l~shy

0 10 20 30 40 so 60 70

Fig 1 2 7 Relation between ultimate point re~istance of large diameter piles and standard peneshytration test (SPT) in cohesionless soil

------

77

tu [kPa)

200 17 Cast under -J bentonite

~----Meyerhof (1976) ~copy -=middotmiddotmiddotmiddot== middotmiddot150 ~------- Wei tman (1978 ) middot Healy middotmiddot ___ Japanese ) 119810 Society

(0 -middotmiddot- Decourt (1982)middot Wright

100

- -middotmiddot -- 11979]reg Reesemiddot Bored piles

~shy50 1 -- shy

-- shy middotmiddot s-shy - --~ ------reg~~ ---~E_==---- ------- shy

N_ ---shy0-+--C--------------r---- ---------~---~-~shyo 10 20 30 40 50 60 70

Fig 12 8 Relation between ultimate skin friction of piles and standard penetration test (SPT)

78

Pst [MPa]

8

7 ---------ist=7MPa

6

5

4

3

2

I N30o~------------------------------+---------__=-shyo 10 20 30 40 50 60 70

Fig 12 9 Relation between ultimate point resistance of large diamter piles and standard peneshytration test (SPT) in cohesionless soil (proposal)

tu [MPa ]

( excavanted and cast

150 under bentonite ) tu=150 kPa

100 tu=90 kPa

I I

50 I I I I I N30

10 20 30 40 50 60 70

Fig 1 2 10 Relation between ultimate skin friction of large diameter piles and standard penetrashytion test (SPT) in sand (proposal)

79

2 3 4 5 p[MPa] 0 2 3 4 5 p[MPa]0

40 40 Cl

80 c 80

c 120 120

Pile No 1 PileNo216 160

200 2

s s c [mm] (mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MPa]

40 40

00 80

120 120

16 160 Pile No 3 Pile No 4

200 200

s s [mm] (mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MAJ]

tgt11 tgt- measured40 40

80 80

120 120

Pile No 5 Pile No 6 160 160

20 200 s s

[mm) [mm)

Fig 1 4 1 Base resistance vs settlement appoximative method piZe No 1- 6

80

0 2 3 6 5 p[MPa) 0 2 3 4 5 p[MPa]

40 40

80 80 6

120 120 6

6160 160

Pi le No 7 Pile No 8 6

200 3J s s

[mm] (mm]

0 2 3 4 5 4 p [ MPo)

6 6 40

6 6

6 80

6 6

6

Pi le No 9 Pile No 10

XJO s s

[mm] [mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MPa)

6 6

40 40 6 6

6

00 80 6

6

12 1Xl 6

160 Pile No 11 160 Pile No 12

200 200 s s

[mm ] [mm]

Fig 1 4 2 Base resistance vs settlement approximative method pile No - 12

81

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MPa]

6 6

40 6 40 6

6

80 6 80 6

120 6 120

Pile No 13 Pile No 141fO 160

200 200 s s

[mm] [mm]

0 2 3 4 5 p [MPa) 0 2 3 4 5 p [MPa)

40 40

80 80

120 120

HiO 160

200 200Pile No 15 Pile No 16

s s (mm) [rrrn 1

0 2 3 4 5 p[MPa] 0 2 3 4 5 p[MPa)

40 40 A A A-measured

680 80 t t

120 c 120 c

1fil Pi le No 17 160 Pile No 18

200 200 s s

[mm] [mm]

Fig 1 4 3 Base r esistance vs settlement approximative method pile No 13- 18

82

0 2 3 4 5 p[MPal 0 2 3 4 5 p (MPa]

D D40 40 c c

80 c 80 c

120 120

160 160

Pile No 19 Pile No 20 200 200

~ml (mm]

Fig 1 4 4 Base resistance vs settlement approximative method pile No 19- 20

LlJ QI

0 average lJ = 098 E sd = 029 C

6 SY = 030

4

2

lJ calculated ________________________ _______ measu red

06 08 10 12 14 16

Fig 1 4 5 Calculated pressure divided by the measured pressure at 20 mn settlement for aZZowabZe

q Zoad Pa= ~p approximative method pile

No 1- 20

8 3

Point resistance p [ MPaJ

a)

p(s) = s a +--sshy1 y qcp

1

SQ100p -- --- ---shy

~ s

[mml

I- 01 s rmm]-l p LMPa b)

f~]

c Cll E ~ i s

[mm)

Fig 146 Definition of the point resistance - settlement curve according to the modified hyperbolic method

84

01 ~ 0

20 0 0

0

16 0

medium 0 value a1 = 905-+ 256 Op 0 0

12 (r=039)

0 0

----0 0

8 0

0 0

0 0

4 0

05 06 07 08 09 10 11 12 f3 14 15 16 17 18 19 20 2 1 Op (ml

Fig 1 4 Initial slope of the base resistance curve vs pile diameter

a1 [p] 0

0020

16 assumed a 1= 28 - 4 qcp

12 0

0 Ct) 0 a = 2659 - 369 qcp8 1

0 0 (r = 0188)0

4

2 3 4 5 (MPa]qcp

Fig 1 4 8 Initial slope of the point resistance curve vs ultimate point resistance on the static cone resistance for pile tests No 1 20

85

a [~ 28

24

20

16

12

8

4

0 2 3 4 5 6 Qcp [MPa]

~ Kiosinski (1977) sand and sandy gravel of mediwn density

~ Klosinski (1977) loose sand ID= 0 3 0 4

o US59 ] t HH Touma p and Reese L (1974) fine sand and silty sand OGl (US59 HH BB - very dense Cl - mediwn dense) 1 BB

DIN 4014 Part 2 (1977)

Fig 1 4 9 Initial s lope of the point res istance curve vs ultimate point resis tance

86

assumed [il =30 -10 Op but )1~ 10 )1 [1 I

u 311-10 Op ( r =0 368)4 1 0

3 0 0

02 0

0 0co 0 8 0 0

0

0

05 06 07 08 09 10 11 12 13 14 15 16 17 19 20 21 Dp [ ml

Fig 14 10 Correction factor for hyperbolic base resistance shysettlement relationship

87

a [~] 28

24

20

16

12

8

4

2 3 4 5 qcp [ MPa]

Fig 14 11 Initial slope of the base resistance curve vs ultimate base resistance (proposal)

v [ 1 ]

3

2 -----G- DP J l 1J I Op lm] J

for Dp ~ 2 0 m ~ u = 1 01

0 --------r----r---r----r-----------------r-------------------------r------r-~-~--shy

05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 Dp[m)

Fig 1 4 12 Correction facto r for hyperbolic base resisshytance - settlement relationship (proposal)

s P ( s)

s +

u qcp

88

a) b)1

bt=o212= 47 MPa a1=1~32 tMWJ s 2 3 4 5 O 1 10 20 30 40 50 60 p [~a]0

0p [ MPa] 40 40

80 80

120 ~

160 b1 = ~ajtg ~= 0 212

~=1132 + 0212middot s

mJ 240 r=0994t t t measured s __ according to Jl s

o o o according to p (bull ll l[mm] [mm]

Pile No 2

slmm) 10 20 30 40 50 60 80 100 125 150 175 2)0 225 Note

p [ MPa] 09 14 17 20 22 24 27 30 32 34 36 38 39

measured

pibull) [ MPa] 074 128 169 202 228 249 282 307 330 347 360 371 380calculated

plbullbull1[MPal 070 125 168 203 233 257 297 327 356 378 396 410 422calculated

1) (bull) ij l099082 091 099 101 104 104 104 102 103 102 100 098 097 sd = 006

ij (HJ1041) (bull10) 078 089 099 102 106 107 110 109 111 111 110 10B 10B sd = 010

plbulll-according to a =1132 [ Jp(s) = s s for pile No21 0 1132 12 39

plbullbulll-according toa =1241 lmiddotGcp=39MPa1 0

~=14 see fig 1411 and fig 14 12 sp(S)=

124+ _ s_ 14middot39

11lbulll11l-J - correlation coefficient calculat~d P5 for

measure p s p(bull) and p(bull) respectively

Fig 1 41 3 Modified hyperboZic point resistance - settZement reZationship for piZe No 2

89

0 2 3 4 5 p(MA1] 0 2 3 4 5 p[MPa)

40 40

80 A 80 A

120 120

160 16 Pile No 1 Pile No 2

20 200 s s

[mm] rnm

0 2 3 4 5 0 2 3 4 5p [MPa] p [MPo]

40 40

80 80

120 1ZJ

lfpound) Pi le No 3 Pile No 4 A

200 A

s s A

[mm) [mm

0 2 3 4 5 p [MPa] 0 2 3 4 5 p [MPa]

40 40 A A A measured ~ calculated

80 80

12

160 160 Pi le No 5 Pile No 6

200 Z)Q

Fig 1 4 14 l3ase resmiddotistance vs settlement pr oposed method pile No 1- 6

90

2 3 4 5 p [MPa] 2 3 4 5 p [ MPa]

40 6

6 40

1 80 80

6

120 120 6

6 160 160

Pile No 7 6

200 200 s

[mm ] s

[mm]

0 2 3 4 5 6 p [MR] 0 2 3 4 5 p [MPa] 0 0

40 40 6

6

80 80

6

120 120

160 160 Pile No9 Pile No 10

200 200

s [mm] [msml I

0 2 3 4 5 6p[MR] 0 2 3 4 5 p [MPa]04--___ ____ ___ ___ ____

0+-=---------------~-~- shy

40 40 c 6 c - measured

0--0-0 shy calculated

80 80

120 120

160 160 Pile No11 Pi le No12

200 200

s [mm]

s [mm]

Fig 1415 Base resistance vs settlement proposed method pile No 7-12

91

0 2 3 4 5 p [MPal 0 2 3 4 5 p [MPa)

40 40

80 80

120

16 Pile No 13 Pile No 14

200 s

tnml [mm]

0 2 3 4 5 p [ MPa] 0 2 3 4 5 p [MPa)

40 40

80 80

120 120

160 1fD

Pi le No 15200 axJ s s

[mm] [mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 6 plMPa ]

A A A measured40 0---0-0 calculated

80

120 120

160 1ED Pile No 17 Pi le No 18

200 200

s s [mm] [mm]

Fig 1 4 16 Base resistance vs settlement proposed method pile No 13- 18

92

0 2 3 4 5 p [MFb] 0 2 3 4 5 p[MPa]

0 6 o -measured40 40 0 0 o -calculated

80 80

120 120

160 160 Pile No 19 Pile No 20

200 200 s s

[mm] [mnil

Fig 1 4 17 Base resistance vs settlement proposed method pile No 19-20

p(s~Psf

15 20

ean

-C 5 w u L Lower ~ confidence

linea 0

a IJl 10

o---o proposed

method I I I

15

Fig 1 4 17a Design curves for estimating developed base resistance in sand (Wr ight and Reese 1979)

93

n (number)

30

28

26

24

22

20

18

16

14

12

10

8

6

4

2

0 02 04

Fig 1 4 18

I= 126

Between 1] = 0 7 - 1 3--- I= 106 ( 84 frac34)

Average ~ = 098 Standard sd =023 deviation

Standard sv =023 veriation

1] (Coefficient Calculated Measured

06 08 10 12 14 16 18

Calculated pressur e divided by the measured pr essure for all pressure - settlement curves pr oposed method pile No 1- 20

94

a) b) Total load

Total load curve

---- _____-- shy- -- -Base load ~- Base load

-0-0 ~

00 00 J

ldeoli zed shaft load J

Shaft sesistanc1---------- 0=0middot30 a= 0 middot 30

025 Settlement IN 025 Settlement IN

Fig 1 419 Proposed method of synthesizing design loadsettlement curve (a) conservative design prodiction b) design prediction- peak in shaft loadsettlement curve (Burland et al 1966)

Cf

-0 0 0

J

0

~-----~--~-~ amp- 2 3 4 5 6 (cm)

a~middotltii -0 lt) cco2 41 -~ -0 1)

vi ~ llloli=----------- ---c~0 1 2 3 4 5 6 7 ( of diameter)1 1 1 1

05 10 15 20 ( in) for 30 in Pile Movemen~ ( 75cm pile)

Fig 1 4 20 Approximate load settlement curves for 30 in bored piles (AB and C represent failure load at 1 in settlement A B and C represent ultimate failure load) (Touma and Reese 194)

95

Load in MN 0 2 3 4 5

25

50E E C

-C 75

-~ ~

-Z 100 lJ

Shaft resistshy

125 once

15 Fig 1 4 21 Load-settlement relationships for largeshydiameter bored piles in stiff clay (Tomlinson 1977)

SettlementSo

Fig 1 4 22 Diagrams of s1iaft and base resistances versus settleshyment assumed in analysis (Kiosinski 1977)

96

0 0 1 ~ r- 025g ~~ 2

1- -shy3 03Sg 14 5 2

Qls =Qpls+Q5 (sQpls) Qs(s-3E

0

degsis __ -- Qpls) a~ C

4

t Sg l

5 Qu Is)

Q(s)in MN-l T

Ouls Q Is) in MN ---

Fig 1 4 23 Construction of load - settlement curves a) for sand b) for cohesive soil (DIN 4014 Part 2 1977 and Franke 1981)

-

s C 5C

Cl

3 0 00 05 10 15 20 Mean settlement I in)

Fig 1 4 24 Load- settlement curves for test shaft S4 (1 in = 25 4 mm 1 ton= 8 90 kN) (Reese 1978)

97

Relative side resistance

0 05 10 15 20 0E=--t----+---+--~

c QI lt) ~ 2 C

I itaker c

QI amp Cooke3E QI-j

c-en 4

C QI

E us 59o

5 QI gt

SA0 w 0 6

Fig 1425a Relative side resistance for clay vesus relative midlength settlement (Reese 1978)

degs (Osl u l t 0 05 10 15 2 0

Mean

2 Lower ~ C QI u

confidence line

~ 3 a

0

~4 E

()

5

6 __ _ ______ ________ __1

Fig 1 4 25b Design curves for esti mating developed side resistance (~Jy1nht ReertP- 1987 J

98 Load Q

8 - 15 mm

1- 2 of p ile diameter

100-200 10-15 of pile Os Ot diameter Shaft Total

Settlement S Resistshy Resist- Load ance once

Fig 1426 Dependence of total load base resistance and shaft resistance on settlement of lar-ge diameter pile (Tejchman Gwizdala 1979)

6

5 Shaft load

4

3

2

z ~

-0

g Pile EF- 56 J 0

0 0 20 30 Butt settlement (mm)

Fig 1 4 27 Deveiopment of shaft and base resistance with settiement (Promboon Brenner 1981)

99

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 0 r-=-1---J__-----------------------~----_shy

Load [ k N l5

10

20

( I

Skin friction ----1 I I

~ 40 QI E

fQI

50 I

Q) I () ICOntinuos fost deolading

Fig 1428 Load-Settlement-Diagram Testelement III (Diaphragm-Wall 0515 m 244 m deep) Portion of Skin Friction and Base Resistance (Prodinger Veder 1981)

Qs (QJ max

0 05 10

Upper Limit of Data

Farr and Aurora (1981J C

~ 2 - shy -+shy - Mean of Data

I QI

Lower Limit of Data a

0 - 3 E

Vl

4

Smid = Approximate shaft buff movement ignoring the elastic compression of upper halt of the shaft

D = Shaft diameter

Q Mobi Ii zed shaft resistance

Qs1max = Maximum shaft resistance

Fig 1 4 29 Relative shaft resistance vs relative movement (Farr and Aurora 1981)

100 Load Q (s) [ MN]

Su5 s s 20 mm for non- cohesive soil u

s s 10 mm f or cohesive soil u

s s 15 mm for claysand u

Q (s) + Q (s)s p

Qs(s)

-C ltII E s ~- [mm]-ltII IJ)

Fig 1 430 Dependence of total load Q(s) point res i stance Q (s) and shaft resistance Q (s) versus settlement p s

~ 3 Usu Qpu Qu Q(s) [ MN]

Sus= 20

1J

60

80

100

120

degs (s ) 140

5 P=Ol Op

1EO

C -ltII E 180 ~ ] 200

s [mm]

Approximative dependence of total load point resistance and shaft resistance versus settlement fny non-cohesive soil

Fig 1 4 31

101

113 3 ~fic0P Ye hY

1 Ground water

D

I y

yh C

Fig 1 5 1 Determination of 01 and 03 for settlement analysis of lar ge diameter bored piles

102

I

E=Et [MPa]

160 0

140

120 0

100

80

6

40

--- --shy 0

0

8 0

0

0

20

2 3 4

I 0 15

Fig 1 5 2

E = Et [MPa]

120

100

80

60

40

I I 0 35 065 085

0

Et= 17 81 qcp0844

( r = 0 128)

5

100

6 qcplMPo]

Calculated values of Young s modulus for piles No 1shy24 according to equation 1 5 2 and 1 56

0

0 0

E =898qcp127 (r= 0314)

E = 9 middot qcp 13 0

20 shy 0

0 0

0 1 2

loJ

I 0 35

3 I

065

4

I 085

5

100

6 qcp [MPo]

Fig 1 5 3 Calculated valueBof Young s modulus for piles No 1shy24 according to equation 1 5 4 and 1 5 6

I K 10 3

( 1 ] 1832

1400 0

1200 0

0

1000 0

800 0

m=2821 qcp0621

600 0

(r=0057)

400 0 0 0 0 0

200

2 3 4 5 6 qcp (MPa]

I 035

I 065

I 085 100 Io

Fig 15 4 Calculated valuesof the dimensionless compress ion modulus K for piles No 1- 24 according to equation 1 5 2 and 1 56

K ( 1 ]

0

1400

1200 0 0

1000

800

600

0

0 0

0

0 0

0 K= 1422 qcpl05

(r=0181)

0 K= 150 qcp

400 0

3)0 0 0

2 3 4 5 6 qcp(MPa)

I I -J 035 065 085 100 Io

Fig 1 5 5 Calculated values of the dimensionless compression modulus K for pile~ No 1-24 according to equation 1 5 2 and 1 5 6

104

120

100

2 3 4 5

I I I rv 0 15 035 065 085 100 lo

Bergdahl (1982) for shallow foundation

o----o Bozant Masopust (1981) D= 1 0 rn h=10 rn large diameter bored piles in noncohesive so il

0----0 Proposal according to current anal ysis

Klosinski (1977) D=090 to 125 rn large diameter bored piles in sand and sandy grave l

Mitchell Gardner (1976) very dense sand E=(35)q (it depends on sand density and stress history) c

Fig 1 5 6 Composision of Young s moduius

105

TABLES

0 Tab 1 11 Methods for detemination of the bearing capacity of bored piles (Ro llberg 1977)

Cl

Nol -- I Soil Areas of Q) Q) Editor Determination of Coefficients 5 type influenceqP qs p ~ C C 11 12 fP I fs

1 all Lab f Soil Mech (1936) l qp at the elevashy 1 0

2 all Huizinga (1951) ~ t~on of the pile 14 point

3 all Van der Veen (1953) ) 18 1 h+l14 all Van der Veen 1 0 Dpl375 D~ 15-- J qcmiddotdhBoersma (1957)

~ 11 +12 h - 12

5 12 all Menzenbach ( 1961) qc at the elevashy~ tion of pile point

6 18 all Mohan Jain Kuman (1963)1 average of qc over 1 h Q) h ~qcmiddotdhl 10 Dpj 3 75 Dj 15 50_micro

and 1 2C 11

7 I amp all de Beer ( 1964) graphically from 10 Q) qc 0 1 h+l18 u C

sand Soviet norm SNIP II 9ct9cp I4 bull O Dp I10 DP l66-1 083shyu clay B5- 67 Trofimenkov (1969) 2 50 1 251 +l J qc middotdh micro middot h middot-l l 2h-~ _micro

9 _micro u all Paproth (1972) at the elevation 3 5 I shy

) of pile point (Dpgt0 5 m 7 D8DpE

E-lt p 1 h+l1 1 h Dplt 5 m u l+l J qcmiddotdh h f qcmiddotd~ 30 Dpl 50 Dp 2 0 100shy10 sand Norwegian method

0l 2 h-12 200Senneseth (1974)

11 lall Soviet method h+l (20-0lqgl - 101 1 q middotdhTrofimenkov (1974) -- f C UpUsmiddotQct

l1+l2 h - 1212 Qct-Qcp 40 D~ 10 Dp 1 33- 0 67shyUsbullh 4 00 2 50

13 English method 10 DFJ 375Dp 10 I

Rodin Corbett Shershywood Thorburn (1974)

3 7 5 Dcl 8 0 DP 10h+l1 _1_ J qcmiddotdh 1 h

qcmiddotdh 20011 +12 h - 12 hb

1 h qcmiddotdh 150hf

0

Observations

fp I f (qp)fs C

Dp E = 1 cm Qbu = 2 Qpa (approx )

s fs=f (qc)

q=~g Us 0 h

fp=f(q~)

fs=f(qgl

bull fine grained non- cohesive soil loosely packed

bull fine grained non- cohesive soil medium dense comp

fine grained non- cohesive soil

Tab 111 (cont)

h+h bE 14 non-cohe- Meyerhof ( 1956 poundti J N 3o middot dh CtME fN3 o dh 1 0 DP 4 0 DP 10 100 etM= l 2

sive soil 1976) lJ +12 h - li hE o hgp taken into consi der ~ Ul (I)

E-lt

C 0

~E = 1 kgbull 30 cm

(statistical limit depth of the pile) hE - clamping length of

pile micro rrJ l-l micro (I)

15 C (I) p

sand Norwegian method

- irm - - - 10 IT

m = diagram O l-l Senneset (1 974) rrJO C

16 rrJ micro gravel English meth it 3 middot N30 - - - 10 - Jf 3 + diagram U) ~

E-lt p U)

iiouiu Coruett Sherwood Thorshyburn (1974 )

(NJQat the elevashytion of pile point1

0 -i

108

Tab 11 2

Results of calculati o n of p i le point load pile shaft load and total pile load from static con e penetration test (Rol l berg 1977)

~ gt

~ gt Ultima te Ultimate Ult imate

No Method micro micro poi nt skin bearing 080lt17nlt1 50 Q) -l

-l middot-i resistanceuro resistance r esistancE

middot-i p 0

(J n1 n n2 n n3 n n1 n2 n3

1

2

Lab fSoil Mech

Hu izinga (1951)

(1936 ) 430

307 i 3 Van der Veen (1953) 239

49

4

5

Van der VeenBoersma

Menzenbach (1961)

(1957) -l middot-i 0

2 4 7

1 57 1-CJ)

6

7

8

Mohan Jain Kumen

de Beer (1964)

Sovi et Norm (1969)

(1963) CJ) Q)

-l middot-i 0

lJ Q)

Q)

gt- CJ) Q)

c 0

2 44

1 37

183

47

t I

49

487

0 18

47

16

3 02

0 85 1

47

16

137

08

9

10

Paproth ( 1972)

Norw Method (1974)

~ 0

0

u I

C 0 C

1 8 1

180 l 46

1- - -_L~ 46 167 46 1 19

1 1 Soviet Method ( 1974) [1 1 41 46 1 62 13 083 13 1 14 0 8

12 Engl Method (1974) 2 66 35 128 35 2 30 35 1 28

Note

cal Q a) n = --- mean value of the rat i o between calculat ed pile loads and those n Q determined f r om loading test

b) n = number of piles

109

Tab 113

Point resistance of large diameter piles (DIN 4014 Part 2 1977)

Settlement Point pressure 1 Factor -fshy

(cm) (MPa) cf=lOMPa I i=15 MPa C C

Piles without enlarged base

1 05 005 003 2 08 008 005 3 11 0 11 007

15 34 034 023

Piles with enlarged base

1 035 0 04 002 2 065 0 07 004 3 0 90 009 006

15 2 40 0 24 0 16

Note 10 lt qp lt 15 (MPa)C

Tab 114

Skin friction resistance of large diameter piles (DIN 4014 1977)

Strength Static cone pen- Depth below Skin frict ion Factor of sand etration resist surface

(MPa) (m) (MPa) fs

Very small lt 5 - 0

Small 5 to 10 0 to 2 0 2 to 5 003 ln6 to 333

gt 5 005 100 to 200

Medium I I 10 to 15 0 to 2 0 I

I 2 to 7 5

gt 75 I 0045 0075

222 to 133 to

333 200

High I I

i

l

gt 15 0 2

to 2 to 10 gt 10

I I I

I

i

0 006 0 10

gt gt

250 150

Note Skin friction is assumpted as linear until s =2 cm and constant for s gt 2 cm

11 0

Tab 115

Values of the inverse of the point resistance factor (Bustamante 1982) fp

Soil type qPC I 1

Factor - shyfp(MPa)

for piles group

a) Silt and loose sand lt 5 0 40 -b) Moderately compact

5 - 12 040sand and gravel

c) Compact to very gt 12 i 030compact sand and gravel I

Tab 116

Values of the shaft resistance factor fs (Bustamante 1982)

Factor fs

Soil type qs

C Category I(MPa) I A I B I II A III BI

I a) Silt and loose lt 5 60

i 150 I 60 I 120-

sand

b) Moderately corn- I pact sand and 5 - 12 100 200 100 200 gravel i

Icl Compact to very

compact sand gt 12 150 i I 300 150 I 200I

I I and gravel i

I

111

Tab 117

Point resistance factor (proposal)

-

1-fp

qc (MPa)

Gravel

Coarse sand Medium sand

Fine sand Silty sand

25

080

0 70

060

5 0

0 65

055

047

75

054

045

039

10 0

045

036

031

150

035

027

022

200

030

0 23

018

Tab 118

Shaf t r e sistance factor (proposal)

fs

qc (MPa)

Gravel

Coarse sand Medium sand

Fine sand Silty sand

25

80

100

130

10 0

120

150

190

I 200

180

230

300

11 2

Tab 119

Calculated values qcp

for large diameter piles

Pile Literature Length Diameter (m) Measured p Cr1 lcul Settlement Note Authcr(year) No (ml D Dp (MPa)

(s=0 10Dp) (MPa)p ~~JL__

s s ()(mm) Dp

1 Franke (1977) 1 13 11 36 38 117 106 Garbrecht

2

3

2

3

13

14

11

15

1 58 36

37

38

40

215

185

136

123

) qg accord to Franke

4 4 13 15 204 3 2 33 220 108 and Garshy

5 5 6 11 33 35 127 11 5 brecht (1977)

6 6 6 11 153 36 35 146 9 5

7 7 6 1 5 34 35 158 105

8 -shy 8 6 15 2 1 41 3 0 109 52

9 10 9 11 39 52 47

10 11 95 11 43 35 77 70

11 12 9 11 49 66 60

12 13 10 11 15 5 1 4 0 77 5 1

13 14 9 11 1 5 4 8 46 115 77--shy14 Pranke ( 1973) 15 115 18 4 9

) ) average 88

15 13$ 13 5 1 3 19 -2 5 3 2 sd=3 0

16 - - 165 16 5 13 19 30 sv=0 34

17

18

Spang (1972)

llXJ

V90

6 6

6 75

0 7

09

3 2

4 2

32X

42X

x) s =0 10 D p

19 VlaJ 720 1 2 39 3 9X

20 - - VlsJ 6 5 1 5 3 0 3 ox

21 Touma and US59 9 9 o 76 8 0 Reese ( 1977)

22 HH 75 0 61 8 0

23 Gl 180 091 - 2 5

24 BB 137 o 76

sd = standard deviation

sv = standard variation

Tab 1 2 1

Ultimate point resistance coarse and medium sand psf (MPal (Pol ish Specification 1975)

Depth h

Medium sand r = 0 40 N = 200 30 Base diam (Op) and depthbase diam (hDp)

Dense sand r 0 Base diam (Op)

= 0 80 = 50N30 and dpethbase diam (hDp)

(ml Dp = 0 6 m Dp = 1 0 m Dp =12 m Dp = 1 5 m Dp = 0 6 m DP = 10 m DP = 12 m DP = 15 m

Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp

5 10 83 0 85 5 0 075 42 07 33 20 8 3 16 50 14 42 13 3 3

7 14 11 7 1 2 70 11 5 8 10 4 7 2 8 11 7 22 70 2 0 5 8 1 8 47

10 18 16 7 15 10 0 14 8 3 1 3 67 35 167 28 100 2 5 83 2 2 67

15 18 250 18 15 0 16 12 5 15 100 4 2 25 0 3 4 15 0 30 125 27 100

20 2 4 333 2 0 200 185 167 1 7 133 4 7 333 3 8 200 33 167 30 13 3

25 26 41 7 2 2 25 0 20 208 19 167 5 0 41 7 4 0 250 3 5 20 8 3 2 167

w

11 4

Tab 131

Partial safety factors for resistance to axial load for bored piles (Wright Reese 1979)

Partial safety Normal Poor factor for control control

Unit skin resistance 1 70 185

(no load test)

Unit skin resistance 160 1 70

(from load test)

End bearing 165 180

Tab 1 3 2

Probability of failure of bored piles under normal design conditions (Wright Reese 1979)

Probability of Factor of Structure failure safety classification

5 10-3 25 monumental

210shy 22 permanent- 2

5 middot 10 2 0 110shy 1 85

temporary 5 bull 10-l 165

11 5

Tab 133 Results of field tests (Tejchman Gwizdara 1979)

L

II C C C 0 0 0

micro micro

micro micro micro For universal safe~y F2u u CUNo micro C C ~ ~g~ middot- C

~ Permisible micro micro i ~c -i micro

cmiddot-~ micro~ L

micro oo ~ load ~t~ ~~ omicro micro ~ ~ 3Z~ ~ ~ micro

-~~

~ e ~ --middot--

middot- ~ obull 0

~ g ~~ ~~ ~

~ L

o Jl i5 sect~ =gt L Q~ = yen t p Qp Qp

D h Q~ Srrx s tm p s E~ iQ~lQ~cm ~~ KN X ll1l kPa kPa kN kN kN Jl ~e ~ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 70 6 60 4081 1550 2531 38 0 1182 10 4040 175 2041 245 1796 632 141 120

2 90 6 75 5082 3041 2041 598 1785 10 4782 107 2541 1079 1462 282 140 42 5

3 120 720 7259 4041 3218 557 1035 10 3576 119 3630 2158 1472 187 2 19 594

4 150 650 8643 4454 4189 51 5 928 20 2521 136 4326 2158 2168 3 10 166 253

5 130190 195 7750 3011 4709 392 805 10 1075 - 3875 981 2894 3 10 166 253

6 130190 165 9516 5101 4415 536 522 20 1800 - 4758 1962 2796 260 158 412

7 130190 135 8044 5199 2845 646 114 4 15 1834 - 4022 2109 1913 2 47 149 524

8 180 115 11380 4415 6965 388 792 15 1735 - 5690 2747 2943 161 2 37 483

9 76 980 6867 4316 2551 628 110 13 9529 109 3534 1128 2306 383 111 32 8

10 61 7 60 7161 2747 44 14 383 67 15 9404 303 3581 392 3188 700 169 109

11 92 180 4807 883 3924 184 20 8 1329 76 2404 196 2207 450 178 82

12 76 24 5 6769 736 6033 109 20 8 1623 103 3385 147 3238 500 186 43

13 76 137 5396 2060 3336 38 2 63 8 4535 102 2698 589 1109 350 t 58 218

14 120 23 5297 1854 3443 35 0 960 10 1640 39 2649 196 2453 945 130 7 4

15 135 16 7 13489 7554 5935 560 181 10 5260 83 6749 2060 4689 367 127 305

16 170 46 0 8829 2943 5886 333 17 10 3466 39 4415 1373 3042 2 14 1 94 31 1

Average Fi 387 166 Standard deviation Sd 2 1 5 034 Standard variation sv= 0 56 0 20

1234 Spang1972 567 8 Franke 1976 9 10 111 2 1 3 Touma Reese 1974

14 Colombo 1971 15 Kerisel Simons 1962 16 Appendino 1973

11 6

Tab 134

Results of model

SafetyScheme factor

medium F ssand

F p

loose F s

samd Fp

F 3 55 sd _P F 1 32 sd

s

tests (Tejchman Gwizdara 1979)

Diameter D (mm)

30 60 90 133

145 129 108 112

280 3 08 307 294

140 154 153 112

594 3 04 324 426

107 sv 030

0 19 sv 0 14

117

Tab 135

Individual safety factors according to literature

Literature proposal ofLiterature individual safety factor

Fs Fb

Polish Specification (1974) 100 250

Tejchman Gwizdala (1979) 150 400

Bustamante Gianeselli 200 300 (1982)

Decourt ( 1982) 130 400

average 145 3 38

TAB 141 0)

Load settlement curves - measured

Pile No

Settlement 1 c 3 4 5 6 7 8 9 10 11 12

s p s p p s

p p s P

p s P

p s p p s

P p s

P p s

p p s p p S

p I i p s

p p s p

mm MPa rrrn lifl5a MPa mm

lifl5a MPa

mm lifl5a MPa mm

RPa mmMPa nwa MPa mm

RPa MPa mm RPa MPa mm

RPa MPa mm RPa MPa mm

RPa MPa mm RPa MPa mm

RPa 10 045 222 09 1 1 05 20 07 143 06 167 08 125 0 5 20 08 125 10 100 08 12 5 15 67 16 63 20 092 21 7 14 43 08 25 10 20 0 1 1 182 12 167 0 9 22 2 12 167 18 111 14 143 24 83 22 9 1 30 125 240 1 7 I 7 6 1 1 273 1 2 250 14 214 15 200 1 2 250 15 200 25 12 0 19 15 8 30 100 26 11 5 40 1ti 250 20 10 0 14 28 6 14 286 1 7 235 18 222 1 4 286 18 22 2 3 2 12 5 23 174 36 111 3 0 133 50 20 250 22 ~27 1 7 294 1 5 333 20 250 2 1 ~38 1 7 294 1 9 263 37 135 27 18 5 4 2 11 9 33 152 60 2 2 273 24 ~5o 20 300 1 7 353 23 61 22 ~73 18 333 21 286 43 140 30 20 0 46 13 0 36 16 7 80 271 295 27 796 24 333 20 400 27 ~96 25 1320 22 364 25 32 0 53 15 1 36 222 41 195

100 322 31 1 30 333 28 357 22 454 31 1323 29 345 26 385 28 357 60 16 7 40 25 0 45 22 2 125 38 329 32 391 32 391 25 500 32 139 1 30 41 7 32 39 1 4 6 272 48 ~6 0 150 14 2 357 34 1441 36 41 7 27 555 36 ~1 7 34 44 1 36 41 7 175 36 486 39 449 30 583 38 ~61 38 461 200 38 526 42 476 32 625 225 39 577 33 682

(mmMPa) ( 1 MPa)

1

1=2074

t 1=O ~01 =0 98S

a1=1132

b1 =0 212 V =0994

a1=2217

b1=O 131

V =Q 978

a1=1860 b1=0233

V =Q966

a1=1562

b1=0174 V =Q983

a1=1382

b1=O195

V =0975

a1 =20 37

b1 =C 174

V =0957

a1=1443

b1=(l 193 v =O 961

a1=965

b1= 0071 V =0 990

a1=1 91

b1 =o 128

V =0 993

a1=5 83

b1=C124

v =O 981

a1=6 1 4

b1=01 64 v =U 985

li(MPa) ~9 4 7 76 43 57 middot5 1 57 5 2 141 78 81 61 cp (MPa) B8 39 40 33 35 35 35 3 0 39 3 5 49 40 __Ef ~-6 1 2 1 9 1 3 16 15 16 1 7 36 22 16 15 qcp

TAB 141 (continue) Load settlement curves - measured

Pi le No 3ettlement 13 14 15 1 17 18 19 20 21 22 23 24

s p s T5

p s T5

p s T5

p s P

p s P

p s P

p s P

p s P

p s T5

p s T5

p s p p s

p mm MPa lll1l

HPa MPa mm HPa MPa mm

fWa MPa mm fWa MPa lll1l

HPa MPa mm HPa MPa mm

MPa MPa lll1l NT5a MPa HPa MPa 111111

HPa MPa 111111

HPa MPa 1)1111

mra 10 1 7 59 075 133 06 167 075 133 ~95 105 09 11 1 07 143 3 76 1 7 59 08 133 10 100 20 2 4 83 130 154 095 21 1 1 15 17 4 1 75 114 16 125 12 167 ~7 74 33 6 2 1 3 15 3 1 9 103 30 29 103 1 7 176 1 2 250 15 200 r55 118 22 136 16 18 8 38 79 46 66 1 7 182 27 110 40 33 12 1 20 200 1 35 29 6 1 75 229 ~O 133 26 154 175 229 49 82 58 6 9 1 9 21 1 35 115 50 36 139 235 21 3 145 34 5 1 95 256 24 208 ~-4 147 28 17 9 20 250 gt8 86 6 9 72 2 2 233 4 2 11 8 60 39 154 265 22 6 1 55 387 2 15 279 28 214 ~6 16 7 30 120 0 2 2 27 3 o 8 89 80 7 5 2 3 262 80 43 186 31 258 1 7 47 1 36 222 14 05 198 33 124 2 25 320 B 1 98 25 327

100 45 222 18 556 39~ 253 ~-5 222 36 1278 27 370 ~8 113 125 47 26 6 20 625 42 29 8 149 255 28 1446 t50 22 682 3 0 500 175 200 225

(mmMPa) a1=479 a1=1206 a1=14 51 a1=1113 a1=1406 ~=836 a1=843 a1=1176 ~=64 a =561 a1=10 0 a1=9 5 (1MPa) b1=0175 b1=0 178 b1=0 382 b=0287 b1=O 119 p 1=0 137 h1 =o 193 b=0258 p1=0 049 b1=0032 b1=0 276 b1 =0 048

hf (MPa)

v =0998 57

v =0-987 5 6

v =0989 26

v =0992 35

v =0933 Iv =0991 84 73

v =0993 5 2

v =0998 tJ

3 9 =0944 v =0998 v =0996 v =0981

qcp (MPa) 46 39 32 30 32 14 2 39 30

lL 12 1 1 08 12 26 1 7 1 3 13 qcp

lD

N 0

TAB 142

Calculated point resistance curves

Setlement (mm) p(s)

1

n p(s)

Calculated value of the p(s) for pile No

2 3 4 5

n p(s) n p(s) n p(s) n p(s) 6

(MPa)

n p(s)

7

n p(s) 8

n p(s) 9

n p(s)

10 20 30 50 80

100

150 200 225

070 128 177 253 335

375 446 493

157 140 141

127

123

1 16 106

070 1 25 168 232

297

327 378 410

422

078 089 099 1 06

1 10

109 1 11 108

108

073 1 30 176 246

315 349

405 441

146 163

160 145

1 32 125

113 105

056 096

1 26

167 205 222

249 265

271

0 80 096

105

1 11 100 101

092 0 83

082

065

118 162 233

308 345

412 456

108 108

1 16 116 114 111

064

1 12 151 2 10 2 69

298

346 3 76

078 P63 093 tt 13 101 tt 53 100 I 13

108 ~75

103 ~04 096 ~ 55

~ 87

1 26 125 127 126

125

1 17 1 04

052 088

1 15 153

188 2 03 227 242

065 0 74

o 77 0 81 0 75

0 73

063

072 122

1 83 262 347 388

463 5 11

073

0 74

073 0 71 0 65 065

064 1 18

162 233 309

3 46

41 3 4 57

Dp (m) 1 1 Qcp (MPa) 38 (mmMPa) h2 8 1 1 9 Qcpbullv1(MPa) 72

158

39

124 14 55

15

40

n20 15 60

204

33 148 10 33

1 1

35

tt 4o 1 9 67

1 53 3 5

tt 4 0 1 5 51

15

13 5

114 0 15 i-gt 3

2 1

30

tt 6 0 10 3 0

1 1

3 9

12 4 1 9 74

1 1

3 5 h40

1 9 67

Note n = condition coefficient calculated p(s) measured p(s)

10

n

081

084 0 85 0 86 0 85

087

TAB 142 (continue)

Calculated point resistance curves

Calculated value of the p(s) for pile No (MPa) Setlement 11 12 13 14 15 16 17 18 19 20

(mm) p(s) ll p(s) n p(s) ll p(s) n p(s) n p(s) n p(s) n p(s) n p(s n p(s) n

10 106 070 0 71 045 091 054 099 1 32 055 092 053 070 060 081 085 0 72 080 055 078

20 1 90 079 130 059 160 067 1 70 1 30 096 101 091 079 1 12 148 085 1 31 082 098 082

30 258 086 1 76 068 2 15 074 222 1 31 1 26 105 120 080 156 205 081 180 082 132 083

50 363 086 246 075 297 082 296 1 26 1 70 117 161 082 228 095 295 087 256 0 91 184 092

80 471 316 o 77 3 77 088 364 1 18 2 1 o 1 24 199 308 085 393 097 336 1 02 237 095

100 522 349 078 415 092 394 228 1 27 2 16 348 088 442 098 375 104 262 097

150 611 405 479 443 258 117 244 423 529 443 304 101

200 669 441 518 473 276 261 474 587 488 331

Dp (MPa) 1 1 1 5 1 5 18 1 9 19 070 090 12 15

qcp (MPa) 49 4 0 46 49 32 30 32 42 39 30 12 a1 mmMPa) 84 h20 96 84 152 160 152 124 160

IV1 1 9 1 5 15 12 11 1 1 23 21 18 15

qcpmiddotv1 (MPa) 93 60 69 59 35 33 74 88 70 45

- 12287 average = ~ = 098

standard deviation sd = 023 standard variation sv = 023

N

122

TAB 143 Ultimate settlement for shaft resistance - summing up

Ultimate settlements (mm)Literature sand cohesive claysand

soil

Burland Butler Dunican (1966) 7

Touma Reese (1974) 10 Tomlinson (1977) 10 Klosinski (1977) 8

Francke Gerbrecht (1977) 20-30 DIN 4014 part 2 (1977) 20 10 Francke (1981) Reese (1978) (1979) 05-2 of 05-2 of Farr Aurora (1981) shaft dia~ shaft diam

5-20 mm 5-20 mm Tejchman Gwizdala (1979) - Spang (1972) 10

10 10 20

- Francke (1976) 10 20 15 15

- Touma Reese (1974) 13 8 15 8

8 - Colombo (1971) 10

- Kerisel Simons (1962) 20 - Appendino (1973) 10 Promboon Brenner (1981) 10 Prodinger Veder (1981) 12 Decourt (1982) 10-15 10-15

-average s = 14 1 10 126

standard deviation sd = 53 2 1 47

standard variation sv = 038 021 037

123

TABLE 14 4 Al l owab l e base resistance versus sett lement

Pile Li terature ength Diameter (m) Calculated qcp=qcp Settl ement Fp-3- sa (mm)No Aut hor No (m) D DP qcp (MPa) for qcp3(MPa)

1 Francke ( 1977) 1 13 11 38 127 25 Garbrecht

II2 2 13 11 158 39 130 19

II3 3 14 15 40 133 33

II4 4 13 15 204 33 110 23

II5 5 6 11 35 117 22

II6 6 6 11 153 35 117 19

II

8

7 7 6 15 35 1 17 25

II 8 6 15 21 30 100 21

II9 10 9 11 39 130 13

II10 11 95 11 35 117 15

II11 12 9 11 39 163 11

II12 13 10 11 15 40 133 7

II13 14 9 11 15 46 153 9

14 Francke ( 1973) 115 11 5 18 30 100 15

II15 135 135 13 19 32 107 29

II16 165 165 13 19 49 163 35

17 Spang (1972) V70 660 070 32 107 28

18 II V90 675 0 90 42 140 16

II19 V120 720 1 20 3 9 130 16

II20 V15C 650 150 30 100 16 average for pi les 198

standard dev sd = 78

standard var sv = 039

)assumed qc = p for s = 010 Op sonding meRsurement were not availab le

IV

TA~LE 15 1

Comparison of the initial sl ope of the pile point resistance - settlement curve

Accardi ng to 1 2 3 4

In i t i ~l 5

slope a1 for the pile No

6 7 8 9

(mmMPa)

10 11 12 13 14 15 Note

a 1 for s=10 mm 222 11 1 a1 for s=20 mm 21 7 14 3 calculated 207 113see Tab 14 1 Bo Berggren (198 )230s=20 mm

Schmertmann s method (see 202B Berggren 1981)s=20 mm

No 1 _ llNo - 6 1 97 098

202 250

22 2

400

30 8

090

14 3

200

186

076

167

182 156

286

18 2

107

125

167 138

091

20 0

222

204

426

263

098

125

167

144

087

100

11 1 9 7

182

23 5

1 03

12 5

14 3

11 9

174

164

105

67 83

58

14 6

125

1 16

63

9 1

61

103

59

8 3 48

123

13 3

15 4 12 1

1 10

167 21 1

aceto hypershy14 5 bola type curve

1 15

No 2 NQj = n1

No 4Noz ~ na No 5Naz= T]g

105 1 27

106

093

1 13

160

1 23

108 1 17

157

100

121 109

1 92

118

1 16 1 14

164

2 12

120

122

1 15

143

1 76

151

149 1 73 1 27 146

TAllLE 151 (continue)

Compa ri son of the initial slope of the pile point resistance - settl ement curve

Initial slope a1 for the pile No (mmMPa)According Note to 16 17 18 19 20 21 22 23 24 -a1 for s=10 mm 133 - 105 11 1 143 76 59 133 100 a1 for s=20 mm 174 - 114 125 167 74 62 153 10 3 calculated see 11 1 146 84 84 118 64 56 100 95Tab 141

Bo Berggren 198 67 78 25 0 114s=20 mm Schmertmann s method (see B 136 67 250 146 Berggren 1981) s = 20 mm

nG = 108 No 1NoJ = n 1 20 125 1 32 121 1 19 105 1 33 105 sd = 0 14

SY= 013 No 2 i) = 1 29ro1 = n1 157 136 149 142 1 16 1 11 1 53 108 sd = 019

SY= 015 No 4 iis = 143 INo2 = ns 091 126 1 63 111 sd = 033

SY= 0 23 No 5 ii9 = 1 37183 108 163 142INoz = n9 sd = 0 37

SY = 027

N Vl

126

TABLE 152

Measured and calculated pile point resistance

Pile Calculated Measured Measured No qcp P for

s=10 mm P for s=20 mm

~ 10 mm ~ 20 mm

- (MPa) (MPa) (MPa) - -

1 38 045 092 84 41 2 39 09 14 43 28

3 40 05 08 80 50 4 33 07 10 47 33 5 35 06 11 58 30 6 35 08 12 44 29 7 35 05 09 70 39 8 30 08 12 38 25 9 39 10 18 39 22

10 35 08 14 44 25 11 49 15 24 33 20 12 40 16 22 25 18 13 46 1 7 2 4 27 19 14 30 075 13 40 23 15 32 06 095 53 34 16 49 075 115 65 43 17 32 - - - -18 42 095 1 75 44 24 19 39 09 160 4 3 23 20 3 0 07 12 43 25

average= 484 291

sd 163 088 sv 034 030

Tab 153 Results of calculation for piles No 1-24

Pile No

Length (m)

Overburden pressure 0 vs

0hs (kPa)

0ve (kPa)

0 nc (kPa)

- -ov=o1 (kPa)

- -OV=03 ( kPa)

00 (kPa)

p(a il ( kPa)

s (a 1) (mm)

A2 ( 1 )

E t

(kPa)

Md ( 1 )

K (1)

E I

t (kPa)

( kPa) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

l 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

13 12 14 13 6 6 6 6 9 95 9

10 95

11 5 135 165 66 675 72 65 99 75

180 137

l 33 133 123 116

70 70 70 70

104 102 95

102 95 94

106 139 95

101 106 97

180 137 221 215

53 53 49 46 28 28 28 28 42 41 38 41 38 38 42 56 38 40 42 39 72 55 88 86

202 202 216 202 1114 104 104 104 146 153 146 160 153 181 209 251 120 128 134 123 238 180 305 277

202 202 216 202 104 104 104 104 146 153 146 160 153 181 209 251 120 128 134 123 238 180 305 277

168 Hi8 170 159 87 87 87 87

125 128 121 131 124 138 158 195 108 115 120 110 209 159 263 246

128 128 133 124 66 66 66 66 94 97 92

101 96

110 126 154 79 84 88 81

155 118 197 182

141 141 145 136

73 73 73 73

104 107 104 111 105 119 137 117 89 94 99 91

173 132 219 203

950 975

1000 825 875 875 875 750 975 875

1225 1000 1150 750 800

1225 800

1050 975 750

2000 2000 625

1500

218 139 255 190 16 1 146 210 12 7 10 1 11 7 84 73 69

104 167 210 124 103 10 1 109 142 120 76

153

0802 0802 0822 0820 0798 0798 0798 0798 0791 0798 0800 0811 0814 0837 0837 0830 0769 0 768 0771 0 775 0 780 0 781 0 788 o 779

35296 81603 43312 65222 44019 67515 4609 91313 78186 60572

118115 15129 5 184075 95577 67017 81607 33252 67554 85294 75994 78816 74857 55101 54862

075 075 0 77 075 084 084 084 081 079 078 084 080 083 076 076 078 0 77 081 079 076 082 087 064 0 74

278 643 337 512 542 832 567

1085 766 572

1216 1417 1832

796 520 709 353 735 878 781 630 726 302 366

26472 61202 33350 48917 36976 56713 38656 73964 61767 47246 99217

121036 152782

72639 51932 63653 25604 54719 67382 57755 64629 65126 35265 40598

a=282l a =l781 y=axs S=0621 B=0 844

V=0 057 V=0 128 _ Iv -J

~

N co

Tab l53 Results of calculation for piles No 7-24

Pile No

17

1 2 3 4 5 6 7 8 9

70 11 72 13 74 75 16 17 78 79 20 27 22 23 24

Ground water

18

-20 m b s

-28 m -335 m -330 m -3 15 m dry dry -53 m -85 m

E t (kPa)

19

33653 64979 35364 45664 47969 54583 37574 63072 74548 57753

71 2618 123531 150297

71239 48619 59204 39744 77208 77863 62049 90407 95844 57762 62937

vxEt=E Md (kPa)

20

25240 48689 27230 34248 35254 45849 31562 51040 58893 45047 94599 98825

724747 54142 36950 46179 30603 57678 61572 47157 47734 83384 36968 46569

a=898 S=l 27 =0314

K (l )

21

265 511 275 358 517 672 463 749 730 546

1160 1157 7496

593 377 514 422 775 802 638 723 929 377 420

a=l422 S=l 05 =0187

E=E = t1 3

g-gcp (kPa)

22

51046 52799 54566 42492 45870 45870 45870 37547 52799 45870 77039 54566 65438 52799 40826 71039 40926 58739 52799 37541 82549 82549 40826 59945

Calculated s

(mm)

23

708 128 72 7 15 3 724 146 144 17 3 71 3 11 5 11 2 732 13 2 707 1 5 1 13 7 93

102 118 137 728 12 l 69

11 9

s__caL n=smeos

() 24

050 092 050 087 0 77 7 00 069 l36 l 12 098 133 l81 l97 103 090 065 0 75 099 117 126 090 101 097 078

ri=l00 sd=035 sv=035

K = l50gcp

25

570 585 600 495 525 525 525 450 585 525 735 600 690 450 480 735 480 630 585 450 825 825 1180 645

E l

(kPa)

26

67684 69465 72250 57726 44856 44856 44856 38448 59659 54306 74956 63214 70704 49089 56783 79502 45283 61081 58207 42927

708572 94785 71033 91898

E = t E middotA2

l

(kPa)

27

54283 5571 l 59389 47336 35795 35795 35795 30682 47790 43336 59964 51266 57553 47088 47024 65987 34823 46970 44877 33269 84639 74027 55974 71589

Calculated s

(mm)

28

l O l 12 l 11 7 737 15 9 18 7 185 21 1 12 6 12 2 133 14 l 150 13 7 13 l 14 7 709 12 7 738 755 12 4 735 50

100

- -

Tab l53 Results of calculation for piles No l-24

Pile

29

l 2 3 4 5 6 7 8 9

10 ll 12 13 14 15 76 17 78 19 20 21 22 23 24

sea l n= middotshy

smeas

28 TT

30

0 46 087 046 0 72 099 l 28 088 l 66 l 25 l 04 l 58 l 93 2 17 l 32 078 0 70 088 l 23 l 37 l42 087 l l 3 066 065

n=l 10 sd=0 44 sv=040

s seal for p n=s=lOrnn ac cording to s = 70mm

(mm)

37 32

5 l 0 51 ll 8 l18 64 064

13 0 l30 85 0 85

13 3 l 33 83 0 83

184 l84 ll6 l l 6 105 l05 137 l 37 21 3 2 12 19 4 l94 107 l06 l l 3 l l 3 84 084

92 092 l 0 9 l09 128 l28 83 083

l 0 3 l03 88 088 79 0 79

n=1 73 sd=025 sv=027

s for p according to s = 20mm

(mm)

33

10 4 184 102 18 6 15 6 200 14 9 276 209 18 4 219 292 274 185 17 9 12 9 -

169 194 219 172 200 143 15 0

seal n=s=20rnn

34

052 092 051 093 078 l00 075 l 38 l 05 092 l l 0 l46 l 37 093 090 065

-085 097 l1 0 086 l00 072 075

n=093 sd=025 sv=0 27

s for p according to s = 30rnn

(mm)

35

142 223 14 l 22 3 198 249 142 34 5 290 249 274 345 33 l 243 22 6 168 -

24 7 26 6 293 24 3 279 187 213

seal n=s=30rnn

36

047 0 74 047 0 74 066 083 047 l 15 0 97 083 091 l 15 l10 0 81 075 056 -

082 089 098 081 093 062 0 71

n=o80 sd=020 _ sv=0 25 N

IO

APPENDIXES

APPENDIX 1 1 1

Pi le No 1 Length 13 m D 10 m

Areas of influence

-

qe

(MPa)

1 fp

___9c_ f

(MPR) zyen

(MPf) qcp (MPa)

Soil type

22 20 18 16 14 1 2

l 2 (m)

10

1 0 08 06

16 15 16

026 027 026

42 41 42 Sand

04 14 U28 39 02 14 028 39 41

02 16 0 26 42 04 16 026 42 06 16 026 42 08 14 028 39 Sand 1 0 13 030 39 12 15 027 4 1 38 14 13 030 39 16 12 032 38 18 12 032 38

40 20 10 036 36 22 10 036 36 24 9 U39 35 2 6 8 043 34 28 10 036 36 30 10 036 36 3 2 10 036 36 34 10 0 36 36 36 11 0 34 37 38 11 034 37

l 1 (m)

40

42 44

11 0 34 37 15 1

46 48 50 52 54 56 58 60 62 64 66 68 70 7 2 74 76 78 8 0

APPENDIX 112

Pile No 2

to little depth of sounding

q~ = middle values for 11 = 2 Op

q~ = 145 MAa (Francke Garbrecht 1977 Tab 2 p 50) (Fi g No 2)

for sand

qcp = 0275middot145 = 40 MPa q~p =V ~~s) middot 40 = 097middot40 = 39 MPa

Pile No 4

q~ = 120 MPa sand (Fig No 4)

q = 0 315middot12 = 3 8 MPa q bull 38 = 086middot38 = 33 MPa=V Jmiddot54

1

cp middot bull cp

Pile No 12

qg = 155 MPa sand (Fig No 13)

qcp = 026middot155 = 4 03 MPa

Pile No 13

q~ = 200 MPa sand (Fig No 14)

q = 0 23middot20 = 46 MPacp

APPENDIX 113

PileNo3 Length 14 m D 15 m

Areas of influence

-

qe

(MPa)

1 Tp

----9cf

(t-1Pf) r~

(MPf) qcp (MPa)

Soil type

22 2D 18 16 17 025 43 14 17 II II

L 2 17 II II

12 (m)

16 10 08 06

17 17 17

o

II

II

II

II

Sand 04 17 II II

02 19 024 46 b9

02 19 024 46 04 17 025 43 06 15 027 41 08 13 030 48 1 0 12 032 38 12 11 033 36 14 13 0 30 39 16 14 028 39 18 12 032 38 40 20 16 026 42 2 2 16 026 42 24 11 033 36 26 11 033 36

60 28 30

10 10

036 036

36 36

Sand

32 10 036 36 34 12 032 3 8 3 6 12 032 38 38 12 032 38

1 1 (m)

40

4 2 4 4

13

14 16

030

028 026

39

39 42

46 13 030 39 48 12 032 38 50 14 028 39 52 10 036 36 54 13 030 39 56 14 028 39 58 15 027 41 60 15 027 ~-1 236 62 64 66 68 70 72 74 76 7 8 80

APPENDIX 114

Pi l e No 5 Length 6 0m D 11 m Dp 11 m

Area s of i nfluence

-

qc

(MPa)

1 Tp

-3Lf

( MPf) l ~

(MP~) qcp (MPa)

Soil type

2 2 2 0 18 1 6 14 1 2 155 U i1 33

l 2 (m)

1 2 10 08 06

15 14 12

022 023 0 27

3 3 32 32

Fine sand

+ silt

04 125 026 33 02 16 0 21 34 39

02 16 021 34 04 13 025 33 06 08 10

15 5 17 20

022 0 20 018

34 34 36

35 Fi ne sand

1 2 20 0 18 36 14 20 018 36 + s ilt 16 20 0 18 36 18 165 020 32 20 165 0 20 32 22 17 0 20 34 24 26 2 8 30 32 3 36 38 4 0

19 21 5 21 5 21 5 20 19 5 19 5 20 215

01 9 ---

018 018 0 18 0 18 -

3 6 40 40 40 36 35 3 5 36 4 0

l 1 (m) 4 2

44 20 19

018 01 9

36 3 6 157

46 48 50 5 2 54 56 58 6 0 62 64 66 68 70 7 2 74 76 7 8 8 0

APPENDIX 1 15

Pi le No 6 Lengt h6 0 m D 11 m

Areas of qc 1 __9_c_ qcp Soil typei nfluence fp f 1 yen (MPa) (MPf ) (MPf) (MPa)

-2 2 20 18 16 t 4---0 14 75 038 29 L2 20 018 36 Fi ne sand

1ti 10 30 40 + s i lt12 08 19 0 19 36(m) 06 17 020 34 04 14 023 32 02 9 034 31 56

02 6 043 26 04 12 026 3 1 06 17 020 34 08 11 028 3 1 1 0 14 023 32 35 1 2 17 020 34 Fi ne sand14 19 019 35 16 20 018 36 + silt18 18 0 19 34 20 14 023 32

46 22 12 026 31 24 12 026 31 26 15 022 33 28 18 019 34 30 20 018 36 3 20 0 18 36 34 20 018 36 3G 20 018 36 38 20 018 36 4 0 20 018 36

l 1 42 22 40

(m) 44 22 40 46 L2 4 0 158 48 50 52 54 56 q =V ~ - 3 b =0 99middot35 = 35 MPp cp 53 58 6 0 62 64 66 68 70 72 74 76 78 80

APPENDIX 116

Pi leNo7 Length 60 m 0 15 m

Areas of influence

-

qe

(MPa)

1 Tp ~

(MPg) r~

(MPf) qcp (MPa)

Soil type

22 20 18 16 9 U33 30 14 10 031 31 12 135 024 32

l 2 (m)

16 10 08 06 04 02

13 12 6

10 175

025 026 043 0 31 020

33 31 26 3 1 35 50

Fine sand

+ silt

02 04 06

17 10 115

0 20 0 31 027

34 31 3 1

08 10

145 185

023 019

33 35 3 5

1 2 14

20 19

018 0 19

36 36 Fine sand

l 1 (m)

60

16 18 20 22 24 26 28 30 3 2 34 36 38 40

42 44 46 48 50 52 54 56 58 6 0

185 125 125 165 17 19 21 215 205 20 21 20 20

24 22 20 215 22 22 21 19 18 22

0 19 026 0 26 020 020 019 --

018 018 -

018 01 8 --

018 ----

0 19 0 19

35 33 33 33 34 36 40 40 37 36 40 36 36

40 40 36 40 40 40 40 36 34 40 219

+ silt

62 64 66 68 70 72 74 76 78 80

APPENDIX 117

Pile No 8 Length60 m D 15 m Dp 2 1 m

Areas of influence

-

qe

(MPa)

1 r +

(MPg) r~

(MPf) qcp (MPa)

Soil type

22 18 019 34 20 16 021 34 18 125 026 3 3 16 115 027 31 14 11 028 3 1 12 11 028 3 1

l 2 (m)

10 08 06

105 11 145

D29 028 023

30 31 33

Fine sand

+ silt

04 18 0 19 34 02 18 019 34 71

02 15 022 33 04 11 0 28 31 06 13 0 25 33 08 20 0 18 36 10 15 022 33 12 13 025 33 14 175 020 35 16 18 20 22

20 21 20 15

018 -

018 0 22

36 40 36 33

35 Fine sand

+ s i lt

24 26 28 30 3 =

13 16 175 19 20 20

025 021 020 0 18 018 018

33 34 3 5 34 36 36

36 38 4 0

20 20 21

018 0 18 -

36 36 40

11 (m)

4 2 4 4 4 6 48 50 5 2 5 4 56 5 8 60 6 2 6 4

20 20 21 22 21 20 19 175 19 20 25 28

018 0 18 ---

01 8 01 9 0 20 0 19 018

36 36 40 40 40 36 36 35 36 36 40 4 0 23 0

6 6 68 70 72 74 76 78

qcp 1f5=v 2T middot35 = b85 middot35 = 30 MPa

80

APPENDIX 118

Pi le No 9 Le ngth 90 m D 11 m m

Areas of 1Qe -9c qcp Soil typeinfluence Tp f ryen (MPa) (MPg) (MPf) (MPa)

-

2 2 2 0 18 16 14 lc 11 034 37

12 10 10 036 36 12 08 9 039 35 Medium(m) 06 10 036 36 sand04 10 036 36

02 11 034 37 43

02 12 032 38 04 12 0 32 38 06 12 0 32 38 08 13 030 39 10 13 030 39 12 13 030 39 14 14 028 39 16 14 028 39

44 18 14 028 39 20 14 028 39 39 Med ium 22 15 027 4 1 sand 24 16 026 4 2 26 17 025 43 28 13 0 30 39 3 0 9 039 35 32 13 030 39 34 16 026 42 36 17 025 43 38 17 025 43 40 19 024 4 6

11 42 17 025 43

(m) 44 15 027 41 17 7 46 48 50 52 54 56 58 60 6 2 64 66 68 7 0 7 2 74 76 78 80

APPENDIX 119

Pi 1 e No 10 Length 95m D 11 m m

Areas of influence

-

qe

(MPa)

1 fp

-9c f

(t-1Pf) [~

(MPf)

qcp

(MPa)

Soil type

22 20 1 8 16 14 L 2 13 Uti 3J

l 2 (m) 12

10 08 06 04

18 18 28 19

0 19 019 0 19 019

34 34 34 34

Fine

sand

02 21 40 42

02 20 4 0 04 17 020 34 06 21 40 0 8 10

23 22

40 40 Fine

1 2 14 16 18

21 20 16 15

0 21 022

4 0 4 0 34 33

sand

44

20 2 2 24 26 28 30 32 34 36 38 40

14 14 13 11 11 14 17 14 12 13 12

023 023 025 0 28 028 023 020 023 027 025 027

32 32 33 31 31 32 34 3 2 32 3 3 32

l 1 (m) 42

44 12 13

0 27 025

32 33 15 2

46 48 50 5 2 5 4 56 5 8 6 0 6 2 6 4 66 6 8 70 72 74 76 78 80

APPENDIX 11 10

Pi 1 e No 11 Lengt h 9 0m D 11 m m

Area s of influence

-

Qe

(MPa)

1 fp

__k_ f

(MP~) ryen

(MPf) qcp (MPa)

Soi l type

22 20 18 16 14 12 lb 55

12 (m)

1 0 08 06 04

23 19 20 21

024 023

55 46 46 55

Medium

sand

02 22 55 62

0 2 04

24 25

55 55

06 08

27 28

55 55

10 12 14

28 28 28

55 55 55 49

16 26 55

44

18 20 22 24 26 28 30 3 34 36 38 40

24 19 18 17 22 21 17 11 13 12 11 9

024 024 025

025 0 34 030 032 034 039

55 46 43 43 55 55 4 3 37 39 38 3 7 35

1 1 (m) 42

Ll Ll

12 16

032 0 26

38 4 2 209

46 48 50 5 2 54 56 58 60 62 64 66 68 70 72 74 76 78 80

APPENDIX 141

0 2 3 4 p [MPa)

PILES WITH 40 ENLARGED BASES

80

120

160 C----0

200 IN4014 s (1977)

[mm]

P s calculateds P p(s)(mm) (MPa)(mmMPa)(MPa) ()

10 035 286 046 20 065 308 080 30 090 333 104

150 24 625 214 200 229

ai = 2605 (mmMPa) b1 = 0243 1MPa V 1000 bi = 1b = 411 MPa

_ 411 MP Vi - 24 a

() assumed

average Dp = 18 m

qcp = 24 MPa ai = 184 (mmMPa) (28-4middot24)

Vi = 1 2 (3-18)

qcpmiddotvi = 29 MPa

40

80

120

160

200 s

[mm]

DIN 4014 Part 2 ( 1977)

0 1 2 3 4 5 p [MPal

PILES WITHOUT ENLARGED BASES

C----0

DIN 4014 ( 1977

s calculated s p -p- p(s)

(mm) (MPa)mmMPa)(MPa) ()

10 05 20 062 20 08 25 113 30 11 27 3 155

150 34 441 385 200 424

ai = 2085 (mmMPa) bi= 0 157 1MPa V = 0970

bi= 1s = 637 MPa

Vi 187=3f =

() assumed

average Dp = 12 m

qcp = 34 MPa a1 = 144 (mmMPa)

Vi = 18

qcpmiddotvi = 61 MPa

Range qc = 10-15 MPa

(28-4bull34)

(3-12)

1 1 q = r -r- = 036 for qc = 10 MPaCp p Ip+= 027 for qc = 15 MPa

qcp = 36-405 MPa P

APPENDIX 142

Touma F and Reese L (1974)

Soil parameters pile parameters and base resistance see fig bullbullbullbull

TAB

Measured load settlement curves

Settlement s

mm

10 20 30 40 50 60 80

100 120

a 1 (mmMPa) bi(MPa) V

N3u

q =04 -N30 (cMPa) ()

1 qCp=--rpbullqC

Pile No 21 (US 59) 22 (HH) 23 (G1) 24 (BB) Notep Sp p S p p S p f Sp MPa mmMPa MPa mmMPa MPa mmMPa Mla mmMPa

131 76 169 59 075 133 100 100 269 74 325 62 131 153 1 94 103 381 79 456 66 165 182 273 11 0 488 82 581 69 1 90 21 1 349 115 581 86 694 72 2 15 233 424 118 675 89 800 75 229 262 813 98 245 327 884 113 925 130

64 56 100 95 U049 0032 0276 0048 0944 0998 0996 0981

80 gt100 30 60 32 gt 40 12 24 ()

Bergdahl (1982)

gt5 5 gt55 32 4 3

(0 18middot32) (018middot40) (0265middot12) (018middot24)

CONTACT PRESSURE p [ MPa]

0 2 4 6 8 100 N-------r---------------(us 59) ( HH) ( BBi

E E SQ-------lt+-----+--------------lt

VI

1shyz UJ

~ 100 1---------i----+----+----+------l------I -J I shyI shyUJ V)

so~----~--~-- ~--~

APPENDIX 143

us 59 fYJo 0 50 00

ff-t r-=-~c~=~-r~c_---_---l-~e-J-C~ 0 ------

CLAY

FINE SANO

J lD- 760 mm

f5m~--~--~

Pile US 59 and results from penetration test

HH IV_l() so 100 r=-=-==-==-r-~--=-=- 0 0 II 15- flf ~ II~ Ibull If t f

CLAY SAND

Sm

)

= -middotl lo - GtOmm

~ JI

SILTY SANO tOm

Pile HH and results from penetration t est

APPENDIX 14 4

61 NJO 50 --------00

11 1 =f J - 1 -- 0

CLAYSILT

E ~ Sm ltrj

SILTY SAND

q I lDmiddot 910 mrn tom

I) t bull

Pile G1 and results from penetration test

88

0 50 too ~1-e I q 111bull - Q

CLAY

SIL TY SAND 5m

]

l lDmiddot760mrn

Om

Pile BB and results from penetration test

APPENDIX 145

Klosinski B (1977)

Loading tests 50 bored piles 09-125 m diameter average Op= 11 m On t he sett l ement of rigid pla te the settlement of t he pi le base is given by

PmiddotOSp = T-K b

where Mb - equivalent deformability modu lus

1) Sand and sandy gravel of medium density

Mb = 25-50 MPa

According to Bergdahl (1979) medium sand is between

q(l) 5 MPa (Io=035)c2)

ql = 10 MPa (Io=065)C

from fig 117 rp1 = 055 for qc = 5 MPa 1Tp = 036 for qc = 10 MPa

q(l)= 0 55middot5 = 2 75 MPacp bull

q(2= 0 36middot10 = 360 MPacp

allowable p~ 1)= ~p = yen = 092 MPa and p~2) = ~ = 120 MPa

settlement of the pi l e base

5(1)= o 92 middot 1bull1 = O 0135 m = 13 5 mm p 325 middot middot

5( 2)= 1bull2bull1middot 1 = O 0088 m = 8 8 m p 350 bull bull

1) _ s _ 135 _ 14 7 (mm) a(2) _ 88 _ a 1 - p - o---92 - bull NPa bull 1 - T-7 - 733 (Wa)

2) Loose sand lo= 030-040

Mb = 12- 25 MPa

q~l) = 44 MPa q~2)= 58 MPa

1Tp = 058 and 052

q(3) = 0 58middot4 4 = 2 55 MPa middot q( 4) = 0 52middot5 8 = 3 02 MPa cp bull middot bull cp bull middot middot

allowable p~ 3)= 4i = 085 MPa p~4)= yenl = 101 MPa

s(3)_ 085-11 = 26 mmmiddot s(4)_ 101middot11 = 148 mm p - 312 p - 3 25

STATENS GEOTEKNISKA INSTITUT Swedish Geotechnical Institute S-581 01 Linkoping Tel 01311 51 00

Serien Rapport ersatter vara tidigare serier Proceedings (27 nr) Sartryck och Preliminara rapporter (60 nr) samt Meddelanden (10 nr)

The series Report supersedes the previous series Proceedings (27 Nos) Reprints and Preliminary Reports (60 Nos) and Meddelanden (10 Nos)

RAPPORT REPORT Pris kr

No Ar (Swcrs)

1 Grundvattensankning till foljd av 1977 50shytunnelsprangning P Ahlberg T Lundgren

2 Pahangskrafter pa langa betongpalar 1977 50shyL Bjerin

3 Methods for reducing undrained 1977 30shyshear strength of soft clay K V Helenelund

4 Basic behaviour of Scandinavian soft 1977 40shyclays R Larsson

5 Snabba odometerforsok 1978 25 shyR Karlsson L Viberg

6 Skredriskbedomningar med hjalp av 1978 40shyelektromagnetisk faltstyrkematning - provning av ny metod J Ingands

7 Forebyggande av sattningar i 1979 40shyledningsgravar - en forstudie U Bergdahl R Fogelstrom K - G Larsson P Liljekvist

8 Grundlaggningskostnadernas fordelning 1979 25 shyB Carlsson

9 Horisontalarmerade fyllningar pa los 1981 50 shyjord J Belfrage

RAPPORTREPORT

No

10 Tuveskredet 1977-11-30 Inlagg om skredets orsaker

11a Tuveskredet geoteknik

l1b Tuveskredet geologi

11 c Tuveskredet hydrogeologi

12 Drained behaviour of Swedish clays

R Larsson

13 Long term consolidation beneath the test fills at Vasby Sweden YCE Chang

14 Bentonittatning mot lakvatten T Lundgren L Karlqvist U Qvarfort

15 Kartering och klassificering av leromradens stabilitetsforutshysattningar L Viberg

16 Geotekniska faltundersokningar Metoder - Erfarenheter - FoU-behov E Ottosson (red)

17 Symposium on Slopes on Soft Clays

18 The Landslide at Tuve November 30 1 977 R Larsson M Jansson

19 Slantstabilitetsberakningar i lera Skall man anvanda total spanningsanalys effektivspanningsanalys eller kombinerad analys R Larsson

20 Portrycksvariationer i leror i Gateshyborgsregionen J Berntson

21 Tekniska egenskaper hos restproshydukter fran kolforbranning shyen laboratoriestudie B Moller G Nilson

Ar

1981

1981

1981

1981

1981

1982

1982

1982

1983

1982

1983

1983

1983

Pris kr (Swcrs)

50shy

50shy

40shy

50shy

100shy

60shy

80shy

60shy

190shy

75shy

60shy

150shy

65shy

RAPPORTREPORT

No Ar Pri s kr (Sw crs)

22 Bestamning av jordegenskaper med sondering - en litteraturstudie U Bergdahl U Eriksson

1983 75 shy

23 Geobildtolkn ing L Vi berg

av grova moraner 1984 70 -

24 Radon i jord -Exhal ation- vatten kvot -Arstidsvariationer - Permeabilitet A Lindmar k B Rosen

1984 75 shy

25 Geoteknisk terrangklassificering for fysisk planering L Viber g

1984 120shy

26 Large diameter bored piles in nonshycohesive soils Determination of the bearing capacity and settlement from results of static penetration tests (CPT) and standard penetration test (SPT) K Gwizdala

1984 85shy

17

This value q~p should be put into equation 116

The value qc s in equation 118 is independent on the

pile diameter

Proposed calculation method

(116)

where)

1 1 40 ~ 11 3 for piles wit h a nd enlarged bases12 10 12 = ~

h+h

q (h) dh (117)qcp l1+l2 f -f- Ch-li p

h 1 f 1

qcs = o -f- qc (h) dh (118)h s

1 -f- = f(q kind of soil ) -+- see Fig 11 7 and Tab 1 1 7

C p

f (q kind of soil ) -+- see Fig 1 1 8 and Tab 1 1 8 fs C

Note

a) the point resistance q for qc gt 20 MPa is assumed cp to be maximum as

- Gravel 70 MPa - Coarse sand medium sand 55 MPa - Fine sand s il ty sand 40 MPa

b ) The shaft resistance qcs for qc gt 20 MPa is assumed to

be maximum as

- Gravel 110 kPa - Coarse sand medium sand 90 kPa - Fine sand s ilty sand 70 kPa

These proposed values are compared with results by

Bustamente (1 982) and the Polish Specification (1978)

Fig 11 9 and F i g 1110 A similar comparison for DIN

4014 1 977 is shown in Fig 1111 and Fig 1112

) In this paper was used the above values 1 1 and l z But it can be used in practice 11 =30 D and h =2Dp respectively The results shall be very simi l ar to the above onPs

18

The proposed method has been examined with field test

results This is shown in Fig 1113 to Fig 1128

and Appendix 1 11 to 1110 and Tab 119

The comparison shows that the value of q in equationcp (117) corresponds to the settlement -10 of the base

diameter (s=010 DP) see Fig 1113 and Tab 119

(average sDp=88 and standard deviation sd=3)

Later in this paper the allowable load and dependence of

the load versus settlement will be determined

12 Determination of bearing capacity of the large

diameter bored piles from results of the Standard

Penetration Tests (SPT)

There are little published on pile tests coupled with

results from Standard Penetration Test (SPT) Among the

authors who have published material in the subject are

- Meyerhof 1956 1976

- Senneset 1974 (Norwegian method)

- Rodin Corbett Sherwood Thorburn 1974 (English method)

- Polish Specification 1975

- Weltman Healy 197 8

- Reese 1978

- Japanese Society 1981

- Decourt 1978 1982

The Norwegian method is valid o nly for concrete andor

wooden piles the English method only for gravel It is

very important to underline that the Norwegian a nd the

English methods use of the SPT resul ts intermediate by

the static cone penetrometer resistance (q ) as well C

Below methods are presented that are using the results of

SPT directly Meyerhof s method in total can also be used

on driven piles in non-cohesive soil Although we could

have found some proposes for bored piles Eqs (121 and

122) see Fig 121 and Fig 1 22 as well

19

Ultimate point resistance (psf)

12 N 3 omiddotH lt 120 N 30

(kPa) (1 2 1)Psf D

where

N30 the average standard penetration resistance

in blows per 03 m

H depth in bearing stratum

Ultimate skin friction tu

for bored piles tu N~ o (kPa) (1 22a)

for driven pil estu 2N30 (kPa) (1 2 2b)

where

N30 the average standard penetration resistance

in blows per 03 m within embedded length

of pile

Weltman and Healy (1978) taking into account Meherhofs

proposition for driven piles have introduced two coefshy

ficents for bored piles in gravels (glacial soil) Equ

123 and Fig 1 23

t = a 2 N30 (kPa ) (1 2 3)U 1

where

ai a 1 for impermeable gravels see Fig 123a

ai a 2 for permeable gravels see Fig 123b

The Polish Specification ( Specification for Design and

Construction of Large Diameter Bored Piles in Bridges

1975 Ministry of Transport) gives the ultimat e point

resistance in dependence of N30 base diameter and depth

see Tab 12 1 The Tab 121 contains values for coarse

and medium sand For other non-cohesive soils the following

coefficients are proposed

p f = S bull p f (medium sand) ( 1 2 4)S 1 S

20

where

S1 1 20 for grave lSi

f 132 080 for fine sand

13 3 070 for silty sand13i

In Fig 124 values of psf are shown for h = 10 m DP

06 m DP= 15 m and h = 20 m DP= 06 m DP 1 5 m

respectively

A few of the instrumented piles were tested and analyzed

by Wright and Reese (1979) The ultimate point and shaft

resistance in the fine and silty sand as a function of

blow count from SPT is shown in Fig 125 Results from

two additional tests reported by Koizumi (1971) are also

introduced in the figure The ultimate point resistance

is assumed to exist at a settlement equal to 5 of the

base diameter

Methods of prediction of the bearing capacity of piles

based exclusively on N30 values were presented by Decourt

1982 Below a proposition for high capacity piles excavated

and cast under bentoni te is presented

The ultimate skin friction is determined by the expression

(see Fig 126)

t = 33 N30 + 1 0 (kPa) ( 1 bull 2 5 ) u

where

N30 average value of N30 along the shaft

- for N30 lt 3 must be taken as = 3N30 - for N3o gt 5 0 must be taken as NJo= 50

The allowable point resistance can be obtained in a n

expedite way as

Psa = 33 N30 (kPa) (1 2 6)

where

N30 = average of Nat point level one metre above

and one metre below

Psa allowable point resistance

21

Decourt proposed a safety factor for the point of F = p

40 Therefore the ultimate point resistance can be

determined by the expression

(kPa) (1 2 7)

In Fig 12 7 and Fig 1 28 the above values for base

and skin friction resistance are compared respectively

Taking into account the type of soil thereis a good

correlation for ultimate point resistance The result for

ultimate skin friction is scattered but only apparently

The values for large diameter bored piles are between

the line 1a and 1b in Fig 128 Large diameter piles

have a high ultimate skin friction in relation to driven

piles (see points for bored piles in Fig 122 and DIN

4014 Part 2 1977 as well) The high values for piles

excavated and cast under bentonite have had a strong base

on the load tests (Decourt 1978 1982 and Wright and

Reese 1979)

Below the proposals are given for determination of the

values of the ultimate point resistance and the ultimate

skin friction Eqs 128 to 1214 and Fig129 1210

The ultimate point resistance

- gravel psf = 140 N30 (kPa) ( 1 bull 2 8)

for N~ 0 gt 50 blows3O cm Psf 7 MPa

- coarse sand and medium sand

(kPa) ( 1 2 9)

for N30 gt 50 blows3O cm Psf 55 MPa

- fine sand and silty sand

psf = 80 Nio (kPa ) (1210)

for N30 gt 50 blows3O cm p f = 40 MPa 5

where N3 o the average of N value near the point level as

22

h+l1

f N3o(h)dh ( 1 2 11 ) h-12

3DP see Fig 1 1 1 D

p

The ultimate skin friction for coarse sand and medium sand

tu = 1 8 N 3 o (kPa) (1212)

t (kPa) (excavated and cast (1213)u under bentonite)

where

N30= the average value of N along the shaft as h

N -

3 o = h1 f N 3 o ( h) dh ( 1 bull 2 bull 1 4 ) 0

The ultimate skin friction for N30 gt 50 blows30 cm is

assumed to be maximum as tu = 90 kPa and t = 150 kPa u

13 Allowable load of large diameter bored piles

The allowable load Qa of large diameter piles has been

expressed as

OuQa ( 1 3 1)Ft

Qa Q(s)=Qb(s) + Os(s) ( 1 3 2)

Opu + Osu (1 3 3)Qa Fp Fs

Qr lt mmiddotQf ( 1 bull 3 4)-

= universal safety factor

individual safety factor for ultimate resistance of the pile point

individual safety factor for ultimate resistance of the pile shaft

= load according to the allowable settlement

calculated load

m coefficient

calculated ultimate bearing load of the pile

23

The equations from (131) to (134) are used as

1) equation (131)

a) DIN 4014 - 1977 Ft= 2 175 15 (depending on the kind of load)

b) Polish Specification 1975 Ft = 18 16 ( -- )

1c) Trofimenkov 1974 Ft = 14307

2) equation (132)

a) DIN 4014-1977 i Q(s) = Qb(s) + Q (s) = A middotp(s) + E tAsmiddott(s)

s p 0

where Qbs) and Qs(s) are described in Fig 1423

3) equation (133)

a) Polish Specification 1974

F 25 22 depending on the kind of load p

F 1 bull 0 s

b) Wright SJ Reese LC 1979

The ultimate capacity or resistance is considered as a

random value and represented by a frequency distribution

The distribution can be described by a mean value and a

variance The distribution of the load applied to the

foundation can be described similarly The coefshy

ficients used to factor resistance and loads are called

partial safety factors Some recommended partial safety

factors for resistance under normal conditions of design

and construction are given in Tab 131 Normal control

is defined as a condition where the coefficient of variation

is less than about 035

Typical values for partial safety factors for loads are

in the range 1 to 2 depending on the type of load and

how it is applied The overall factor of safety Ft can

then be calculated from the equation

Ft = y RbullY S

24

where

YR the par tial sa f ety fac t or for resistance and

Ys the partial safety factor fo r load

The probability of fa i lur e of the foundation can be r eshy

lat ed to the factor of safety for a parti cular degree of

uncert ainty (see Tab 13 2)

c ) Tejchman Gwizdala 1979

The authors discuss adequate safety factors based on fie l d

test s by Spang (1 972) Franke (1976) Touma and Reese (1974)

Colombo (1971) Kerisel and Simons (1962) Appendirno (1973)

see Tab 1 33 Taking into account the universal safety

factor Ft= 2 0 for the tota l load settlement curves it

was estimated

i) F in the range of 111 to 237 with the average value s F = 166 and standard deviation sd = 034 s (see column 16 Tab 133)

ii) Fb in the range of 161 to 945 with the average

value Fb = 387 and standard deviation sd = 2 15

For model core d piles in laboratory conditions values of

Fs = 108 to 154 (average Fs = 132 s~ = 019) and

values of F = 280 to 5 94 (average F = 3 55 sd = 1 07)p p

see Tab 1 3 4

As a conclusion it was assumed that Fb = 40 and F 1 5 s

for l arge diameter bored piles

The investi gation has shown that for the above safety

factors settlements of piles under permissibl e loads are

10 to 20 mm There was assumed a maximum load on large

diameter piles corresponding to a settlement of 010

diameter of the piles

25

d) Bustamente Gianeselli 1 982

e) 0ecourt 1982

The safety factor is given by

F = FgmiddotFfmiddotFamiddotFw where

F 11 - skin friction g F 135 - point bearing capacity

g

Ff safety factor related to the formulation adapted

Ff= 10 for Decourts method

Fd safety factor related to excessive deformation

Fd = 10 for skin friction

As for the point Fa= 2 to 3 depending on the

pile diameter For usual cases 25 is suggested

Fw safety factor related to working load

Decourt recommends 12

Thus we will have

- for skin friction

Fs = 11bull10middot10middot12 132 - 13

- for the point

F = 135bull10bull25middot 1 2 = 405 = 40 p

4) equation (134)

a ) Polish Code 1983

Q lt mbullN r shy

where

total load coefficient (depending on the kind of load For foundation we can assume Yf = 12 )= code load

correction coeffic i ent

09 for pile foundations

m 08 for two piles

m 07 for single pile

26

N ymmiddotQu

ym material (soil) coefficient

ym 08 to 09 (Polish Code 1981)

Thus we will have

QnmiddotYf lt mmiddotym middotQu-

Yf9uFt = On m bull Ym

1 2 max = 2 14Ft 0 7 bull 0 8

1 2min = 1 48Ft 0909

The above analysis has shown different ways to determine

the allowable load The analysis is in direct connection

with mobilization of the load (versus settlement) The

dependence of total load point resistance and shaft reshy

sistance will be discussed in detail in Chapter 14

In the authors opinion taking into account the above

analysis the allowable load should be determined based

on the equation 133 ie based on individual safety

factors for ultimate point and shaft resistance Proposed

values of F and F in literature are shown in Tab 135 s p The average values are Fs = 145 and Fp = 3 38 respectively

Taking into account that the bearing capacity is determined

based on the results from sounding measurements direct from

a place near the piling without a ny indirect correlation

the allowable load of large diameter bored piles is given

by the equation (133a)

( 1 3 3a)

where F = 30 and F 13 are proposedp s

27

14 Determination of settlement of larqe diameter bored

piles based on static cone penetration tests CPT

Determination of ultimate point and skin friction resistance

based on static cone penetration tests has been discussed

in Chapter 11 above Based on the results of this calcushy

lation and on Chapter 13 we can establish an approximate

relation between point resistance shaft resistance and

total load on one hand and settlement on the other However

the approximation gives a wide scatter especially for base

resistance as can be observed in Fig 141 to Fig 144

Only the first part of the point resistance - settlement

curves are in good agreement with measured values It can

be observed in Fig 145 that the average correlation

coefficient n = 098 and standard deviation sd= 029

This way of calculation can be used only for rough calcushy

lation (see Chapter 13)

In Chapter 11 also measured point resistance - settlement

curves were shown The base resistance increases gradually

with increasing pressure and settlement Below the cur7

vature of the point resistance - settl ement curve will be

examined It is assumed that this curve can be described

as a part of the hyperbola curve Thus if the ratio of

the measured settlement (s ) to the point resistance (p)

is plotted against the measured settlement the result

will fall closely to a straight line with the equation

( 1 4 1)

where a 1 and b 1 are constants (see Fig 1 46a and Fig

14 6b)

Then the point resistance - settlement realtionship can be

expressed as a hyperbola

s p = ( 1 bull 4 2)

The constant is the initial s lope of the point resistanceshya 1

settlement curve ie a 1 = t~a The inverse of the constant

28

b 1 is the vertical tangent (asymptote) to the curve 1ie for s = 00

bf= ~ If the ultimate point reshy1

sistance psf is equal to bf (psf=bf) the whole point

resistance settlement curve will be a hyperbola type

Now the Eq 1 4 2 can be written as

s s ( 1 4 3)a) p s or b) p = a+__sect_a1 + 1 Psfbf

If the ultimate point resistance is smaller than bf only

a part of the hyperbola curve ought to be considered

Further the Eq 14 3 will be written as

p ( 1 4 4)

where

poundf_ correction factor for hyperbola point Psf resistance-settlement relationship

Taking into account the discussion in Chapter 11 the

ultimate point resistance psf = qcp based on the CPT measurements

Therefore the relationship between the point resistance

the sett l ement and the CPT result can be expressed as

s p (1 4 5)s

The correction coefficient v 1 will cause a change of the

position of the vertical asymptote bf in r elation to the

ultimate point resistance q bull This means that we take cp into account a different part of the hyperbola curve for

the description of the point resistance-settlement relationshy

ship

Now if we want to use the equation (145) in practice

we must determine the constant and the coefficienta 1 v 1 (assumed that q is determined ear l ier Chapter 11)cp

29

The constant a 1 and t h e coefficient Vi have been detershy

mined based on fi e ld tests according to pi l es No 1 - 20

see Tab 14 1 and Tab 1 1 9 as wel l The values of

a 1 versus the point diameter D and the ul timate pointp

resistance respectively are shown in F i g 147 and Fig

148 Fig 1 47 shows that a 1 is independent of the

point diameter D Based on Fig 148 it can be assumed p

that

28-4bullq (1 4 6)cp

This correlation has been examined with data of the

literature see Fig 1 49 and Appendix 141 to 1 45

(Note there were no static penetration tests and qcp was determined based on a correlation made by Bergdahl

(1982))

A good correlation with equation 146 can be seen taking

into account the safety factor in the DIN 4014 Part 2

(1977) bull

The correction factor v 1 versus the poi nt diameter is shown

in Fig 1410 I t is assumed that the correlation is

V1 = 3 0 - D ( 1 4 7)p

where D is in m p

The above equations ie 146 and 147 were assumed for

a later analyses see Fig 14 11 and Fig 1412 The

piles No 1 to 20 were examined taking into account Eqs

14 5 14 6 and 1 4 7 The result of this cal cul ation is

presented in Fig 1 413 to Fig 1 4 18 and in Tab 1 4 2

respectively In Fig 1413 the calculation way for pile

No 2 is shown as an example

In Fig 1414 to Fig 1 417 measured and calculated

values of the point resistance versus settl ement can be

compared In tota l good correlation exists for all the

30

pressure-settlement curves Values of q from static cp

cone penetration tests and generalized values of anda 1

v 1 were considered Only for piles No 17-20 qcp was

assumed as the point resistance for s = 010 D because p

the static penetration test results were inaccessible

The similar comparison is shown in Fig 1417a for piles

in sand based on experimental results (Tuoma Reese 1972

and Wright Reese 1979) where the ultimate case resistance

was assumed as the resistance at a base settlement of 005

D The relative base resistance is the mobilized base p resistance divided by the ultinate base resistance The

curvature of the proposed point resistance settlement shy

curve to mean value proposed by Wright and Reese is excellent

However the constant a 1 and the coefficient v 1 were

determined for sand only In the future they should be

examined especially for gravel and silty sand based on

field tests Until then in the authors opinion the

values of v 1 can be chosen from Eq 147 for all nonshy

cohesive soils But for a 1 there is proposed

at = gt bulla (1 4 8)1

where

gt- 1 = 080 for gravel

gt 2 120 for silty sand

This proposal is shown in Fig 14 11 as dashed lines

A good correlation can be seen with the investigation by I

Kiosimiddotnski for sandy gravel and on the safety side with

the investigation by Tuoma and Reese for silty sand (see

Fig 149)

In Fig 1418 all calcul ations for pile No 1 to 20 are

summarize d The correlation coefficient n is defined as

the calculated point resistance p(s) divided by measured

point resistance p(s) For totally 126 points from 20

curves an average of n = 098 with standard deviation

31

al= 023 was obtained see Fig 1418 A similar result

can be observed for the range usually assumed of the

allowable settlement for sinqle large diameter bored

piles as

for

- for

- for

s

s

s =

10

20

30

mm a

mm

mm

verage n10 II

II

mm 089

095

099

and sd =

and sd

and sd

031

027

026

It can be questioned whether the sonstant a 1 can be deshy

termined in different ways The constant a 1 is the initial

slope of the point resistance-settlement curve as menshy

tioned above Then we can use all methods for determination

of settlement of a pile point The range of validity of

these methods then must be determined This will be shown

later

In order to be able to design the total load settlement

curve the skin friction resistance-settlement relationshy

ship must be determined The ultimate skin resistance of

large diameter bored piles was determined in Chapter 11

(based on static penetration tests) and in Chapter 12

(based on standard penetration tests)

In the past a lot of field tests have been done on the

mobilization of the shaft resistance versus pile settleshy

ment In this subject there is a rather good agreement

in the whole investigation for cohesive and non-cohesive

soil

Some results and opinions on thispresented in the literashy

ture during the last few years are shown below

Ultimate shaft resistance versus settlement

1) BurlandJB Butler FG Duncan P (1969)

-The shaft l oadsettlement curve is derived using a=0 3

with 90 ultimate load being mobilized at 025 in

settlement(~65 mm)

- soil London clay

- see Fig 1 419

32

2) Touma FT Reese LC (1974)

- The failure of the sides of the shaft takes place

at a downward movement of about 04 in (10 mm)

- soil sand

- see Fig 1420

3) Tomlinson HJ (1977)

- The maximum shaft resistance is mobilized at a

settlement of only 10 mm (or j in)

- soil stiff clay

- see Fig 1421

4) Klosinski B ( 1977)

- It was assumed that skin friction increased proshy

portionally to pile settlement up to the limit value

s bull This value depends on soil conditions and pile0 diameter and is usually from 3 to 8 mm For soft

compressible soil it may be grater than 10 mm

- soil cohesive soils

- see Fig 1422

5) Franke E Garbrecht D (1977)

- At settlement of 2 to 3 cm which are normally

allowed in Germany under working loads for buildings

not very sensitive to differential settlementsthe

skin friction is almost always fully mobilized

- soil sand

6) DIN 4014 part 2 (1977) and Franke E (1981)

- The skin friction Tm is approximated as diameter

independent having failure settlements of smf = 2 cm

in sand and 1 cm in clay

- soil sand and clay

- see Fig 1423

33

7) Reese By L (1978) Reese By L Wright SJ (1979)

(1978) The maximum skin friction being developed at

an average downward movement ranging from about 05shy

2 of the shaft diameter The average of six load tests

reported by Whitaker and Cooke (1966) are a lso plotted

for comparison

- soil stiff clays

- see Fig 1424 and Fig 1425a

(1979) The relative settlement is the average settleshy

ment of the butt and base devided by the shaft diameter

The mean curve maximises at a relative settlement of

about 002 D

- soil sand and clay

- see Fig 1425b

8) Tejchman A Gwizda3a K (1979)

- A clear differentiation of the distribution of shaft

and base resistances is observed for changing settleshy

ment For fairly small settlements the shaft resist shy

ance increases quite fast and the ultimate values

are reached soon while the base resistance increases

gradually with increasing loads and settlements withshy

out clearout ultimate values it can be assumed that

complete mobilization of shaft resistance corresponds

to settlements equal to 001 or 002 diameter of pile

- soil cohesive and non-cohesive soils

- see Tab 131 and Fig 1 426

9) Promboon S Brenner R P (1981)

- Load distribution and load transfer curves disclose

that most of the load is carried by shaft friction

which is developed at small displacements in the order

of 10 mm

- soil Bangkok clay

- see Fig 1427

34

10) Prodinger w Veder Ch (1981)

- The maximum value of skin friction resistance

occurred for a total settlement of 12 mm

- soil silty clay and sand

- see Fig 1428

11) Farr JS Aurora RP (1981)

- Ultimate load transfer was recehed (or nearly reached)

at a relative settlement of about 04 in (10 mm)

- soil gravelly sand

- see Fig 1429

12) Decourt (1982)

The skin friction resistance is totally mobilized

with deformations of about 10 mm or at the most 15

mm regardless of shaft dimensions This observation

of ours seems to clash with the opinions of other

authors who seek to relate the deformation necessary

for full skin friction mobilization with the shaft

diameter

- soil cohesive and non-cohesive soil

In Tab 143 all these results are shown Depending on

the kind of soil the following v a lue s of ultimate settleshy

ment for shaft can be assumed

- averages 142 mm (sd 5 3 mm) for sand

- averages 100 mm (sd = 21 mm) for cohesive soil

averages 726 mm (sd 67 mm) for claysand

It can be observed (see Fig 1419 to 1428) that the

shaft friction resistance increases proportionally to

the pile settlement up to the above limit value and

thereafter becomes constant

35

Taking into account what was mentioned earlier on point

resistance settlement relationship and the above results

a relationship between total load point resistance and

shaft resistance on one hand and settlement on the other

can be made see Fig 1430

It is assumed on the safety side that the following

ultimate settlement (S~) exists for the shaft resistance

of large diameter bored piles

SS1 ) 200 mm for non-cohesive soil u SS2) = 100 mm for cohesive soil u SS3) 15 0 mm for claysandu

In Fig 1 430 the curve Q (s) is calculated based on p

the equation 14 5 or 144

The values of psf in equation 144 can be calculated

based on other methods as well

The total load-settlement relationship is obtained by

summing up point and s haft resistance as

Q (s) = Q (s) + Q (s) (149)s p

for each point

Now the allowable load can be determined from equation

133a and versus the allowabl e settlement as

Q (s) = Q (s) + Q (s) (1410)s p

where s lt Sa

Sa= the allowable settlement of the pile

The analysis allows determination of the approximative

load settlement dependence without calculating the settleshy

ment for non-cohesive soil In Fig 1431 it is shown

36

In Tab 144 the settlement for allowable point reshy

sistance q5P according to equation 133a is shown

as well The average settlements= 198 mm (sd=78 mm)

is obtained This value is similar to the assumed ultimate

settlement of shaft for non-cohesive soil The ultimate

settlement for point resistance is assumed s = 010 Dp as mentioned earlier

37

15 Initial slope of pile point resistance shy

settlement curve

Settlement of piles and pile foundations can be cal culated

based on

- empirical correlations

load-transfer methods using measured relationships

between pile resistance and pile movement at various

points along the pile

- theory of elasticity that employs the equations of

Mindlin for subsurface loading within a semi-infinite

mass

- numerical methods and in particular the finite element

method

- use of in-situ tests (Cone Penetration Test Standard

Penetration Test Pressuremeter Test)

The critical slope of the pile point resistance-settlement

curve is important for calculation in chapter 14 The

constant a1 can be determined from all the above mentioned

methods

Comparison is made to Berggrens and Schmertmanns methods

below (see Berggren 1981 as well)

6sIn Tab 151 (No 1 2 3) the values of a 1 =~p for s =

10 mm and s = 20 mm (measured for large diameter bored

piles No 1 to 24) are compared to the calculated values

according to the modified hyperbola method (see Fig 14 6)

It can be seen that these calculated values are between

s = 1U-2u mm but rather closer the measured values for

the settlements= 10 mm see correlation coefficient n 6

and n 7 in Tab 151 respectively The average correlat i on

coefficent for the settlements= 10 mm is n9 = 108 and

the standard deviation is sct = 014 The comparison to

Berggrens and Schmertmanns methods for s = 20 mm ( see

Berggren 1~81 and Tab 151 as well) shows that the

results based om these methods give too high values of a 1 bull

38

The average values are ne= 143 sd = OJ3 and ng= 137

sd = 037 for Berggrens and Schmertmanns methods

respectively A bit better agreement can be observed

for Schmertmanns method

Taking into account the results in Tab 151 ana Tab

15l it must be assumed that for the determination of

a 1 the pile point contact pressure p(a1) should be

assumed as the ultimate point bearing capacity devided

by about 4

p(ai) - ( 1 bull 5 1 )

Most of the methods for determination of settlement are

based on the theory of elasticity The settlement ot the

pile point can be expressed as the average settlement of

a rigid circular foundation from the equation

11-Dp 1-v 2

s = p -4- -E-bull microd (1 ~ 2 J

where

p pile point contact pressure

E Youngs modulus

D diameter ot pile pointp ) = Poissons ratio

microd = depth factor

The range of validity of the pile point contact pressure

was determined in equation 151 Youngs modulus has an

important meaning lt can be determined from triaxial

tests or oedometer tests The relationship between the

constrained (oedometric) modulus Mo and Young s modulus

Eis dependent on Poissons ratio v as expressed by the

equation

E = l 1 + V ) ( 1 - 2 V ) Mo ( 1 bull 1 bull 1)- 1-v

39

TaKing into account the analyses made ny Chaplin (19b1a

1 961bJ Janbu (1 963 1970 1973J Andreassen (1973)

Duncan and Cheng (1970) Tejchman anct Gwizdala (1979)

Gwizdala (1978) Franke (1981) Berggren (1981) Withiam

and Kulhawy (7981) and the present investigation the

calculation of settlement is proposed to be

s = 24 bull p bull ~ D bull 1-v 2 bull micro d (154)Do o E

where s (r1)

p (kPa)

Dp (m)

E (kPa)

D0 =10 m

micro = 05 + 01 vfrac34E (1 5 5)d vs

but 05 lt microd lt 10-tip= p - (J (ovs see Fig 151)vs

E =Et= Kbullpat (Oo )n [1- Rf(1-sinltj) 101 - 03 ) 12 (1 5 6)2 c cosltP + 2o 3 sinltP 1Pat

in which K n and Rf= hyperbolic stress-strain parameters

Pa= atmosferic pressure ando 1 o 3 and o0 are determined by

averaging the concrete and soil vertical and radial stresses

near the pile point according to Fig 151 Then the

stresses at the pile point level are h

(J vs = L

0 Yi h

l vertical stress in the soil

0 hs Ko h

0 vs radial (horizontal) stress in the soil

0 vc L ye h -l

vertical stress in the concrete 0

0 hc K oc a vc radial (horizontal)

concrete stress in the

40

K at rest soil lateral stress coefficient 0

K c lateral stress coefficient for fluid fresh concrete0

K 1 0 oc

and average values

a 05(a +a)V vc vs

1 1 - shy~ = -(a +a+a I = -3 (av+2ahJ the applied mean normal stress0 j Z X y

Assuming this model calculation results for piles No 1-24

(see Tab 11~ as well) are shown in Tab 153

The piles are embedded mainly in medium sand to fine sand

For this kind of soil it can be assumed (soil parameters

from field or laboratory tests were inaccessible)

~ = 35deg c = 0 R~ = 09 n 05 v = 025 K c 10l 0

K = 04 Pat= 1UO kPa ye 24 kNrn 3 y = 14 kNm 3 bull0 C

Moreover in Tab 153 the following symbols are used

p(a1 ) - pile point contact pressure according to equation

1 bull 5 1

s(a1) - settl ement of pi l e point according to equation

143 and Tab 141

pound TT ( 2E = s bull Dp bull i 1-v ) according to equa~ion 152t

E~ Et bull microltl

EI

K = ro~ - according to equation 1 bull 5 6 p bullO middotA2

a~ o

E = E voD middot D middot ~4 ( 1 - v 2 ) according to equationt S p O 0

1 5 4

Et= E microd

K = according to equation 156 V PatmiddotaomiddotA2

41

The calculation results of Youngs modulus E = Et and

dimensionless canpressionrro1ulus for piles to 1-24 are shown

in Fig 152 to 155 using equation 152 and 15b

or equation 1~4 and 156 respectively lt can be obshy

served that the scatter in Fig 153 and Fig 155

where the influence of tne pile diameter is reduced

compare equation 154 is less than in the other figures

The reduced influence was made after observations from

field and laboratory tests while the equation 152 is

taken direct from theory of elasticity These values of

E and K are in good correlation with published values in

literature The values of Youngs modulus versus the

relative density of soil are compared to literature values

see Fig 15b Based on the analysis in this chapter it

can be assumed that

E = 9-ql 3 ( 1 bull 5 7)cp

where qcp is in accordance with equation 117

The calculation results based on this proposal are incluced

in Tab 1 5 3

The c a lculate d s e ttlements based on e q ua tion 154 and

157 are shown in column 23 and the values of the

correlation coef f icie nt (n= Seal ) in column 24 respectshyimeas

ively

The dimensionless canpression modulus can be d e termined as

K = 15Ubullq (qcp in MPa) (1 5 8)cp

see column 25 Tab 153

The calculation results based on the K compression modulus

according to equation 158 156 and 1 5 4 are shown in

columns 25 26 2 7 28 and 29 in Tab 153

42

For comparison and for determination of the range of

validity of this method the caLculation results of

pile point pressure for settlements s = 10 mm s = 20 mm

s = 30 mm (see Tab 141) according to equation 157

and 154 are shown in columns 30 to 35

The results obtained in Tab 153 confirm the possibility

to use the proposed method to calculate the initial part

of the pile point resistance settlement curve of large

diameter bored piles in non-cohesive soil and the initial

slope of this curve as well

A simple model has been proposed based on the theory of

elasticity ana the tangent modulus defined by Janbu (1963)

and Duncan amp Chang (1970)

A new approach according to the pile diameter depth factor

and principal stress is proposed

The settlement of the pile point can be made up to a point

pressure according to equation 151 on up to a settlement

of about s ~ 20 mm (30 mm)

-- The application of v Op in equation 1 5 4 a llows us ing

Youngs modulus as independent of the pile diameter

opposed to Bazants a nd Mosopusts (1981) proposal where

Youngs modulus wa s determined versus the pile diameter

The equation 1 5 6 takes into account the dependence of

Youngs modulus on depth (or overburden pressure) as

well

In the method field test (Cone Penetration Test) or

laboratory tests (hyperbolic stress-strain parameters

can be used

Comparison of the method to 24 availa ble load test r e sults

or large diameter bored piles in sand shows good a greement

to calculated and measured values

43

REFERE~CES

Adamczyk J (1978) Okreslanie udzwigu pali wierconych

za pomoca sondy statycznej (Bearing capacity of bored

piles based on the static sounding) Inz i Bud No 7

pp 253-257

Andreasson L (1973) The compressibility of cohesionless

soils Thesis Chalmers University of Technology

G6teborg (in Swedish)

Appendino M (1973) Comportamento di un palo di grande

diametro strumentato Rivista Italiano di Geotechnica

No 3 pp 115-118

Butterfield R Banerjee P (1971) A rigid disc embedded

in an elastic half space Geotechnical Engineering

Vol 2 pp 35-49

Bozant z Mosopust J (1981) Drilled pier design based

on load settlement curve X ICSMFE Stockholm Vol 2

pp 615-619

Begemann HK (1982) Cone penetration tests pile bearing

capacity and the thesis of Rollberg Proc of the Second

European Symposium on Penetration Testing Amsterdam

pp 433-438

Berggren B (1981) Bored piles on non-cohesive soils shy

settlement and bearing capacity (in Sweden) Thesis

Department of Geotechnical Engineering Chalmers

University of Technology G6teborg

Bergdahl UB (1979 1982) Sonderingen und in situ Messungen

Wien 18-19 Juni 1979 - Private information 19821983

Bustamante M Giane selli L(1982) Pile bearing capacity

prediction by means of static penetrometer CPT Proc

of the Second Europ Symp on PenTest Amsterdam

Vol 2 pp 493-500

Chaplin TK (1961a) An experimental study of the settleshy

ment of footings in sand PhD Thesis Univ of

Birmingham

44

Chaplin TK (1961b) Compressibility of sands and settleshy

ments of model footings and piles in sand 5th Int

Conf on Soil Mech a Found Engng Vol 2 p 33 Paris

Colombo P (1971) Observazoni sul comportamento ltli pali

a grande diametro Rivista Italiana di Geotechnika

No 3 pp 163-172

Dahlberg R (1975) Settlement characteristics of preconshy

solidated natural sands Swedish Council for Building

Research D11975

De Beer EE (1964) Some considerations concerning the

point bearing capacity of piles Proc Syrop Bearing

Capacity of Piles Boorkee I pp 178-204

Decourt L Quaresma AR (1978) Capacidade de Carga de

Carga de Estacas a partir de Valores de SPT VI Conshy

gresso Brasilerio de Mecanica dos Solos e Engenharia

de Fundacoes - Rio de Janerio - ABNS

Decourt L (1982) Prediction of the bearing capacity of

piles based exclusively on N values of the SPT Proc

of the Second Europ Syrop on Penetration Testing

Amsterdam Vol 1 pp 29-34

Duncan MJ Chang CV (1970) Non-linear analysis of stress

and strain in soils Journal Soil Mech Found Div Vol

96 SM5 pp 1629-1651

Durgunoglu HT (1979) Effect of foundation embedment on

stress and deformation distributions Third Int Conf

on Num Meth in Geomechanics Aachen pp 925-928

Farr JS Aurora RP (1981) Behaviour of an instrumented

pier in gravelly sand Proc of a session Drived Piers

and Caissons sponsored by the Geotech Eng Div of the

ASCE Nat Convention St Louis Missouri pp 53-65

Franke E (1981) Point pressure versus length and diameter

of piles X ICSMFE Stockholm Vol 2 pp 717-722

45

Gregersen os Aas G and Dibiagio E (1973) Load tests

on friction piles in loose sand Proc of the Eigth

International Conference on Soil Mech Moscow USSR

Vol 21 pp 109-117

Gwizda1a K (1978) Behaviour of large diameter bored piles

in non-cohesive soil (in Polish) Archiwum Hydrotechniki

Vol XXV No 2 pp 183-217 (English summary)

Huizinga TK (1951) Application of Results of Deep

Penetration Tests to Foundation Piles Building Research

Congress Vol 1 p 173

Janbu N (1963) Soil compressibility as determined by

oedometer and triaxial tests Proc Europ Conf Soil

Mech and Found Eng Vol 1 p 19 Vol 2 (Discussion)

p 17 Wiesbaden

Janbu N (1970) Grunlung i geoteknikk Tapir Forlag NTH

Trondheim

Janbu N Bjerrum L Kjaernsli B (1973) Soil Mechanics

applied to some engineering problems Norw Inst Publ

No 16 Oslo

Japanese Society SMFE (1981) Present state and future trend

of penetration testing in Japan Separate report at

X ICSMFE Stockholm

Kjekstad O Lunne T (1979) Soil parameters used for design

of gravity platforms in the north sea Second Int Conf

on Behaviour of Off-shore structures London Vol 1

pp 175-192

Klosinski B (1977) Bearing capacity of large diameter bored

piles IX ICSMFE Tokyo Vol 1 pp 609-612

Laboratory for soil mechanics Delft (1936) The predetershy

mination of the required and the prediction of the

resistance of piles Proc 1 Int Conf on Soil Mech

and Found Engng Cambridge (Mass) I p 181

46

Matich M and Stermac A (1971) Settlement performance of

the Burlington Bay Skyway Canadian Geotechnical Journal

Val 8 pp 252-271

Mccammon NR and Golder HQ (1970) Some loading tests

on long pipe piles Geotechnique London England

Val 20 pp 171-184

Meigh AC (1971) Some driving and loading tests on piles

in gravel and chalk Proc of the conference on beshy

haviour of piles London England pp 9-16

Mitchell JK Gardner WS (1976) In situ measurement

of volume change characteristics American Society of

Civil Engineers Specialty Conference on In-situ

Measurements of Soil Properties Raleigh 1975 Proc

Val II pp 279-345

Mezenbach E (1961) The determination of the permissible

pointload of piles by means of static penetration tests

Proc 5 Int Conf on Soil Mech and Found Engng

Paris II pp 99-104

Meyerhof CG (1956) Penetration tests and bearing capacity

of cohesionless soils Proc Amer Society of Civ Engng

SM 1 Pap 866 pp 1-19

Meyherhof GG (1 976) Bearing capacity and settlement of

pile foundations Proc Amer Society of Civ Engng

Journal Geotechnical Engineering Division Val 102

No GT3 pp 197-227

Mohan D Jain GS and Kumar V (196 3 ) Load bearing capacity

of piles Geotechn Val XIII pp 76-86

Nixon I (1982) Standard penetration test State of the

art report Proc of the Second Europ Symp on Pen

Test Amsterdam Val 1 pp 3-20

47

Nunes A Vargas M (1953) Computed bearing capacity of

piles in residual soil compared with laboratory and

load tests Proc of the Third International Conference

on Soil Mechanics Zlirich Switzerland Vol 2 pp 75-79

Nordal S Grande L Janbu N (1982) Prediction of offshy

shore pile behaviour The Norwegian Institute of

Technology Trondheim

Ohde J (1939) Zur Theorie der Druckverteilung im Baugrund

Der Bauingenieur Vol 20 No 3334 p 451

Parroth E (1972) Einfache Formel zur Vorausbestimmung der

Tragfahigkeit von Standpfahlen mit Hilfe der Sande

Bautechn 9 pp 312-314

Poulos HG Davis EH (1980) Pile foundation analysis

and design New York - J Wiley and sons

Prodinger W Veder Ch (1981) Bearing capacity of floating

groups of diaphragm walls Proc X ICSMFE Stockholm

Vol 2 pp 809-814

Promboon S Brenner R (1981) Large diameter bored piles

in Bangkok Clay Proc X ICSMFE Stockholm Vol 2 pp

815-818

Reese L (1978) Design and construction of drilled shafts

ASCE JSMFD Vol 104 No OT1 pp 95-116

Rodin s Corbett BO et al (1974) Penetration testing in

United Kingdom state-of-the-art-report Proc Europ

Symp on Penetration Testing 1 Stockholm pp 139-146

Rollberg D (1976) Bestimmung des verhaltens von Pfahlen

aus sandier und rammengebnissen Heft 4 FBG Technische

Hochschule Aachen

Rollberg D (1977) Determination of the bearing capacity

and pile driving resistance of piles using soundings

Publications of the Institute for Found Eng Soil Mech

Rock Mech and Water Ways Construction Aachen Vol 3

48

Schmertmann J (1970) Static cone to compute static

settlement over sand Journal of the Soil Mech and

Found Division ASCE SM3 pp 1011-1043

Schmertmann J Hartman JP Brown PR (1978) Improved

strain influence factor diagrams Journal of the Soil

Mech and Found Division ASCE GT8 pp 1131-1135

Shibata T Hijikuro K and Fominerga M (1973) Settlement

of a blast furnace foundation Proc of the Eighth Int

Conf on Soil Mech Moscow USSR Vol 13 pp 239-242

Spang J (1972) Die Bestimmung der Tragfahigkeit von Grossshy

borhpfahlen (I) Strassen und Tiefbau No 2 pp 339-355

Senneset K (1974) Penetration testing in Norway State-ofshy

the-art-report Proc Europ Symp on Penetration Testing

Stockholm I pp 85-95

Tejchman A Gwizdala K (1979) Analysis of safety factors

of bearing capacity for large diameter piles Proc VII

ECSMFE Brighton Vol 1 pp 293-296

Thorburn s and Mac Vicar R (1971) Pile load tests to

f a ilure in the clyde alluvium Proc of the conference

on behaviour of pile s London England pp 1-7

Trof imenkov JG (1969) Accuracy of determining the bearing

capacity of piles based on results of static penetration

sounding of soils Osnovaniya Fundamenty i Mekhanika

Gruntov 4 (Translation Soil Mechanics and Foundation

Engineering 4 p 248)

Trofimenkov JG (1974) Penetration testing in USSR Stateshy

of-the-art report Proc Europ Symp on Penetration

Testing Stockholm I pp 147-154

Tuoma F and Reese L (1974) Behaviour of bored piles in

sand JSMFD ASCE Vol 100 No GT 7 Proc Paper 10651

July pp 749-761

49

Van der Veen C (1953) The bearing capacity of a pile

Proc 3 Int Conf on Soil Mech and Found Engng

Zlirich II pp 84-90

Van der Veen C and Boersma L (1957) The bearing capacity

of a pile predetermined by a cone penetration test

Proc 4 Int Conf on Soil Mech and Found Engng

London II pp 72-75

Weltrnan AJ Healy PR (1978) Piling in boulder clay

and other glacial tills Construction Industry Research

and Information Association UK-Report PG 5

Withiam J Kulhawy F (1981) Analysis prodecure for

drilled shaft uplift capacity Proc of a session

Drilled piers and caissons ASCE St Louis Missouri

pp 82-97

Woodward R Lundgren R Boitano J (1961) Pile loading

tests in stiff clays Proc of the Fifth International

Conference on Soil Mechanics Paris France Vol 2

pp 177-184

Wright SJ Reese LC (1979) Design of large diameter

bored piles Ground Engineering Vol 12 No 8 pp

17-22

DIN 4014 Cods Teil 2 (1977) Bohrpfahle Grossbohrpfahle

Herstellung Bemessung und zulassige Belastung

Polish Specification (1975) Specification for design and

construction of large diameter bored piles in bridges

Ministry of Transport Warsaw (in Polish)

Polish Specification (1979) Specification for prevision

bearing capacity of the piles on the presiometer test

and static sounding ENERGOPOL Warsaw (In Polish)

Polish Code (1983) Foundations Bearing capacity of piles

and pile foundations

5 1

FIGURES

bull bull

53

Ou

+ sect raquo iir 1

4 + D

h + +Osu

bull + t2 =n- Dp

LDpl r f 1

Opu

Fig 1 1 1 Bearing pi le in the soil

J_

fp

080

070

060

050

0 40

030

020

010

q~ [MPa ]000 -+--~-~-~-~------------------------=-shy

00 20 4fJ 60 80 10 0 120 14fJ 160 180 200

Fig 1 1 2 The point resistance factor fp

(Trofimenkov 1974)

54

ts

160

140

120

100

080

060

040

020

q~5 [ kPa)

0Q0--1------~-~-~-~-~-~ - - ---=- -- shy000 10 20 30 40 50 60 70 80 90 100

Fig 1 1 3 The shaft resistance factor fs middot (TYofimenkov 1974)

f s

200

180

160

140

120

100 2 3 4 5 6 7 8 9

Fig 1 1 4 Shaft friction factor f depenshys

ding of the soil density (Senneset 1974)

55

Q~ [kN]

1500

1000

500

0-r-----------r----~- Q~ [kN] 0 500 1000 1500

Fig 1 1 5 Comparison of the pile resisshytance determined by the results of static sounding and load tests (TYofimenkov 1974)

D f f

0

Fig 1 16 Equivalent cone resisshytance (Bustamante 1982)

56

E u shy0 ~

QI I ltII ltII

~ a C QI

O C

D

w gt

0

Cone res istance Point resistance

80 160 240 320

05

10

15

e d

20

ver y dense Cone resistance 300 kgcm2

Dpcm

a =45 b = 30 C 60 d = 100 e = 150

Fig 1 16a

Cone resistance _ qc

80 160 80 160 qc [ k g cm2 ]p

05

10 10

15 15 e d a

e d20

Dense Medium2 2200 kgcm 100 kgcm

Cone resistance and point resistance of piles versus overburden pressure (Kerisel 1965)

Point resi stance - p(for s=2cm) of the pi le for

15 sett Iement s = 2 cm

10

5

E u

uJ1 o-~----shya er O 804 2500

32 56

I 1

L oose50 -I =25 Very loose L

----~--shy5000 7500 80 98

~-----lmiddotI1--------2 10000 12500 31400 =Flcn)

112 123 200 =Dplcm)

Fig 1 1 6b Point resistance versus cone resistance and pile diameter (Franke 193)

57

1

fp

080 (D Gravel

0 Coarse sand Medium sand 070

reg Fine sond Silty sand

060

050

040

030

020

010

qc [MPa]000-+----r--~-~-~--------r----r----r-~-~-- -shy

oo 20 40 60 80 100 120 140 160 180 200

Fig 1 1 7 Point resistance factor f (proposal) p

58

300

250

200

150

100

qc [MPa I50-+---------------r---r---r---r----r------------- shy

oo 20 40 60 80 100 120 140 160 180 200

Fig 1 1 8 Shaft resistance factor fs (pr oposal)

59

Bustamante (seetab 115 I

l fp

G)

0 Gravel

Coarse sand Medium sand

cl

b)

t-----l

1----1

080 reg Fine sand Silty sand a) D

070 Polish

060 Specification

( 1979) 050

040

030 CD 020 0

reg 010

qc [MPa]0 00 -+-------------------------------------=--shy

oo 20 4o 5o 80 100 120 14o 15o 180 200

Fig 1 19 Point resistance factor f comparisonp

Bustamente ( see tab 116 I 300

a) ~

250 b)~

cl~

200 Polish Specification ( 1979 l

150

100

q [ MPa]504---~--~--~----- ---___

00 20 40 60 80 100 120 140 150 180 200

Fig 1 1 10 Shaft resistance factor fs comparison

60

1 fp

~

080 CD CD Gravel

070 0 reg Coarse sand Medium sand

060 0 Q) Fine sand Silty sand

05

040 Franke (1973)___

030 DIN 4014

020 Part 2 1977

( see tab113 l 0shy

--shy --a - 010 C---0 Piles without enlarged bases

D---0 Piles with enlarged bases qc [MPa ] 000

00 20 4JJ 60 80 90 100 120 140 160 200

Fig 11 11 Point resistance factor f comparison p

fs

DIN 4014 Part 2 1977 ( see tab 114 l

300

~ 5 lt qc lt 10 MPa 50

~ 10 lt qclt 15 MPa

~qcgt15MPa

200

150

CD

100 0 0

qc [ 1Pa] 50-t-----T-~----T-r-~----------------shy

OO 20 40 6JJ 80 100 120 14JJ 160 180 200

Fig 1 1 12 Shaft resistance factor fs comparison

61

Measured p [ MPa]

( s=010 Dp) 10

9

8

7

6

5 0

4 0 61

3

I 2

Calculated qcp [MPa]

0 0 2 3 4 5 6 7 8 9 10

Fig 1 1 13 Comparison of experimental and aomputed values of the pile point resistanae

62

Contact pressure ( MPa ]

2 I 6

50

100

E E 150 Ill

c QI

E Sett lement for QI

calculated qcpai V) 200

Fig 1114 Results from load tests on piles No 1 and 5

Contact pressure [ MPa I 0 2 I 6

01---------------------1

50

E E 100 Ill

Settlement forc QI calculated qcp E ~ ai

I V) 150

Fig 1 1 15 Results from load test on piles No 7 and 5

63

Contact pressure p [ MPa] 0 2 3 4 6

0-t=-----~-~-----

E E

100 1)

c CU E 2 QI V) 150

Fig 1 1 16 Results from load test on piles No 9 10 and 11

Contact pressured p [MPa] 0 1 2 3 4 5

o~~~=------------___-~-shy

50

100

E E

i 150

CU E CU

-a V) 200 2

Fig 1 1 17 Results from load test on piles No 12 and 13

c

-------------- -

64

Contact pressured

0 1 2 3 4 p [ MPo] ~o __L____1_____J_____L___

50

100

150

E

E

IJ) 200

c a

E a

~ 250

Fig 1 1 18 Results f Pom load tests on piles No 2 4 6 and 8

p [MPa]

60

50

tO

30

~

Pile Pile Pile Pile

Pile No18

------+ Pile No17 + ~_ ---0 Pile No 19

bullbull - --bull Pile No 20

- ~middot -shy-shy -(y I Settlement for

20 tO 60

No17 +-middotmiddot- V 70 No 18 bull--- V 9o No19-middot- V 120 No20bull---- V150

qcp 3

80 100 120 140 160 s (mm)

Bose resistance

Fig 1 1 lBa Point Pesistance vePsus settlement (Spang 1972J

65 Cone resistance qc [ MPa]

0 10 20 30

mud

5 ~ lll

0 c 0

c CD

peat

10 sand

Ill N

10=10

D=lOOOmm

1540=40

20__________________

[ml

Fig 1 119 Pile No 1 and results from static cone penetration test

Cone resistance qc [MPa l 0 10 20 30

7N V degW = 0+--------------------i

mud

5

lll

~ C 0

c peat~

10

sand lll N 1D15

15l lD=1500mm

40=60

20l---------=-------__J

[ml

Fig 1 1 20 Pile No 3 and results from static cone penetration test

66 Cone resistance qc [MPa]

10 20 II 3 igt pound ~

mud+peat

fine sand+ silt

50=11

l lo-11oomm

40= 44

10

15l____________c

[ml

Fig 1 1 21 Pile No 5 and results from static cone penetration test

Section Cone resistance Pile

0 0

5 10 15 20 25 30 qc [MPa] -----~-~shy~

Silt

[7r_ ___~ Medium Sand_~-----l

0 ltD

+shy4

0=11

9=

Fine sand + Silt t

30p=

middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot1~11+-----E-----

[ml

Fig 1 1 22 Pile No 6 and results from static cone penetration test

Cone resistance qcmiddot 1MPuJ

0 10 20 30 67 01-+-------l--------------i

mud+ peat

fine sand

l1)

N

40=60

15L_____________

[ml Fig 1 1 23 PiZe No 7 and resuZts from static

cone penetr ation test

Section Cone resistance Pi le

0 5 10 15 20 25 30 qc [MPa 1 --~----Y-~-----~

Silt

Fine sand

Medium Sand Bentonite2----1~i

t 3

4

0

0=15

Fine iii ~~= 5

sand t ltD

6 +

Silt 7

3Dp=

63 g

10

11

12

13+------=~---l

[ml

Fig 1 1 24 PiZe No 8 and resuZts f rom static cone penetration test

68

I =3

Cone resistance qc [MPa]

0 10 20 30

C 0 C Cl

(I)

Said

Peat

Sand

l 0=110

D = 11

4 D = 44

Fig 1 125 Pile No 9 and results form static cone penetration test

69

Cone resistance qc[MPa)

0 10 20 30 I ~ II JE Ill= II=E IS

Fine sand QI

U) I

[- I C 0 + C Peat QI

CD

Fine sand 0

Ci D = 1 1

L l D= 110

4D= 4 4

Fig 1 1 25 Pile No 10 and results f rom static cone penetr ation test

70

Cone resistance 9c[MPa]

0 10 20 30

Sand

C 0 Mud peat

+shyc 5 ltII

co

Sand Op= 11

u 10 D= 110 4Dp=44

Fig 1 1 26 Pile No 11 and results foIm static cone penetration test

71

00 a_ N ~

middotu rr QI 0 u ~ C 0

QI ui C iij 0 QI U - 0

0 EN

d 2

Sll 1lOl

C

u (rr

C 0 u~

0

QI - C middot 0 C

U - O 0 EN

~ 0 2

E

ltD a---==-lr---___--~---6-l_-0_012 ~ Lr- - --1---------J J

S9l ls= apound QI -0 gtcc _gmiddot- 0 1) ui I

Fi g 1 1 2 Piles No 14 and 15 and results f r om stat i c cone penetr ation tests

72

Contact pressure p [ MPa] 2 4 6

01lt---------------~

50

E E

111 100 ~ (qcp=30 MPa for No16

~ iqcp =49 MPa for No14

~ 1so~--~~- _ _ __

I _ _

11 I lf--q = 32 MPa for No15

cp

Fig 1 1 28 Results f r om load tests on piles No 14 15 and 16

73

0300--------------~---~--~--shyE

Driven piles in ~ 0 bull Gravel

amp250 bull Sand L QJ X Silt a 1l o Bored piles in

sand -sect 200 0=-- shyC ~ ~ 10 unless ~~ middot D shown 1

ii O

~ ~ o 3 a 1501-----+-------I- --+---laquo-+-- -+------lt

~ sect 5 - 6 6middot 100t----+----+-----_-1---4--__co_--J~__j

-_

~ 0 t7

C

a 50 2 shyg ~ gt

0 20 30 40 50 60

Standard penetration resistanceN in blows per foot

(N 30

Fig 12 1 Emperical relation between ultimate point resistance of piles and standard penetrashytion test in cohesionless soil (Meyerhof 1976)

14 r-------------------r-------b-----q

References and symbols given in Fig121

121-----+---+----+----+------ll------j

- _sect ~ 10t----+----+-_--1-----+---lt~--~H---- 0 lt-~5- _-)0 I() l- I Q---+-----I[08 ~

H -(l () ltj-~C X bulls pound 061------lt----+-----i~- --+-- shy

- bull

-gt Q1pound--I---L---L---L---L--~ 0 10 20 30 40 50 60

Mean standard penetration resistance N in blows per foot ( N30 l

Fig 122 Empirical relation between ultimate skin friction of piles and standard penetration resistance in cohesionless soil (Meyerhof 1976)

74

a) b)0(1 0lt2

10 10

05 05

1 N30OD-+---------__ OD--t-----r-----r----------------ll--Nbull30~ 10 20 30 10 20 30 40 50

Fig 1 2 3 Reduction coefficient a) for impermeable gravels b) form permeablr gravels (Weltman and Healy 1978)

psf [MPo)

Fig 1 2 4 Relation between ultimate point resistance and SPT in cohesionless soil (Polish specification 1975)

75

30 35 40 45 Loo Med Dense Ver dense

50

40

~ E

l)

g 8 1)

middotu

1 ~

QI- bull Touma ~ bull Koizumi

(183)-depth base middotameter5

20 40 60 00 100 N30

30 35 40 45

OG2(294) bull G1 (183)

300 bull us 59 ( 102) bull 88(180)

bull 075 a GT (467)

150

~ 200-+--------+-- t--- --t-----i 130i 0 094 081

014 _- --- -- shy~ E 066bull bull 063 Note -~ ~m~r~s~ ~ 1001---1-r--t---1point is xh QI Ratio ~ Number in ( ) middotn key is h c Ratio s ~

0 20 40 60 00 100

~ig 1 2 5 Ultimate point and shaft resistance versus N30

(Wr ight and Reese 1979)

-----

76

tu Psa

[kPa] [MPa]

200 tu

------ shy150 Psa

1 1

1100 10 1 1

1 50

0+----------T----~---~-N-3J~shy0 20 40 60 80

Relation between ultimate skin friction and SPT (Decourt 1982)

Fig 1 2 6

Psa

[MPa]

8

0----Meyerhof 1976) 0 7

--- - --~ - copy Polish Specifcoti on 1975)6 ~-

~

reg- middot - Reese (1978) middot 5

f41- -- Decourt (1982) -I bull 4 2

----==---______z__ h25m Dp=12m

3 ---shybull

2 7

--shy ----shy~----shy0-t----i----------r-- ----------------------N3l~shy

0 10 20 30 40 so 60 70

Fig 1 2 7 Relation between ultimate point re~istance of large diameter piles and standard peneshytration test (SPT) in cohesionless soil

------

77

tu [kPa)

200 17 Cast under -J bentonite

~----Meyerhof (1976) ~copy -=middotmiddotmiddotmiddot== middotmiddot150 ~------- Wei tman (1978 ) middot Healy middotmiddot ___ Japanese ) 119810 Society

(0 -middotmiddot- Decourt (1982)middot Wright

100

- -middotmiddot -- 11979]reg Reesemiddot Bored piles

~shy50 1 -- shy

-- shy middotmiddot s-shy - --~ ------reg~~ ---~E_==---- ------- shy

N_ ---shy0-+--C--------------r---- ---------~---~-~shyo 10 20 30 40 50 60 70

Fig 12 8 Relation between ultimate skin friction of piles and standard penetration test (SPT)

78

Pst [MPa]

8

7 ---------ist=7MPa

6

5

4

3

2

I N30o~------------------------------+---------__=-shyo 10 20 30 40 50 60 70

Fig 12 9 Relation between ultimate point resistance of large diamter piles and standard peneshytration test (SPT) in cohesionless soil (proposal)

tu [MPa ]

( excavanted and cast

150 under bentonite ) tu=150 kPa

100 tu=90 kPa

I I

50 I I I I I N30

10 20 30 40 50 60 70

Fig 1 2 10 Relation between ultimate skin friction of large diameter piles and standard penetrashytion test (SPT) in sand (proposal)

79

2 3 4 5 p[MPa] 0 2 3 4 5 p[MPa]0

40 40 Cl

80 c 80

c 120 120

Pile No 1 PileNo216 160

200 2

s s c [mm] (mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MPa]

40 40

00 80

120 120

16 160 Pile No 3 Pile No 4

200 200

s s [mm] (mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MAJ]

tgt11 tgt- measured40 40

80 80

120 120

Pile No 5 Pile No 6 160 160

20 200 s s

[mm) [mm)

Fig 1 4 1 Base resistance vs settlement appoximative method piZe No 1- 6

80

0 2 3 6 5 p[MPa) 0 2 3 4 5 p[MPa]

40 40

80 80 6

120 120 6

6160 160

Pi le No 7 Pile No 8 6

200 3J s s

[mm] (mm]

0 2 3 4 5 4 p [ MPo)

6 6 40

6 6

6 80

6 6

6

Pi le No 9 Pile No 10

XJO s s

[mm] [mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MPa)

6 6

40 40 6 6

6

00 80 6

6

12 1Xl 6

160 Pile No 11 160 Pile No 12

200 200 s s

[mm ] [mm]

Fig 1 4 2 Base resistance vs settlement approximative method pile No - 12

81

0 2 3 4 5 p[MPa] 0 2 3 4 5 p [MPa]

6 6

40 6 40 6

6

80 6 80 6

120 6 120

Pile No 13 Pile No 141fO 160

200 200 s s

[mm] [mm]

0 2 3 4 5 p [MPa) 0 2 3 4 5 p [MPa)

40 40

80 80

120 120

HiO 160

200 200Pile No 15 Pile No 16

s s (mm) [rrrn 1

0 2 3 4 5 p[MPa] 0 2 3 4 5 p[MPa)

40 40 A A A-measured

680 80 t t

120 c 120 c

1fil Pi le No 17 160 Pile No 18

200 200 s s

[mm] [mm]

Fig 1 4 3 Base r esistance vs settlement approximative method pile No 13- 18

82

0 2 3 4 5 p[MPal 0 2 3 4 5 p (MPa]

D D40 40 c c

80 c 80 c

120 120

160 160

Pile No 19 Pile No 20 200 200

~ml (mm]

Fig 1 4 4 Base resistance vs settlement approximative method pile No 19- 20

LlJ QI

0 average lJ = 098 E sd = 029 C

6 SY = 030

4

2

lJ calculated ________________________ _______ measu red

06 08 10 12 14 16

Fig 1 4 5 Calculated pressure divided by the measured pressure at 20 mn settlement for aZZowabZe

q Zoad Pa= ~p approximative method pile

No 1- 20

8 3

Point resistance p [ MPaJ

a)

p(s) = s a +--sshy1 y qcp

1

SQ100p -- --- ---shy

~ s

[mml

I- 01 s rmm]-l p LMPa b)

f~]

c Cll E ~ i s

[mm)

Fig 146 Definition of the point resistance - settlement curve according to the modified hyperbolic method

84

01 ~ 0

20 0 0

0

16 0

medium 0 value a1 = 905-+ 256 Op 0 0

12 (r=039)

0 0

----0 0

8 0

0 0

0 0

4 0

05 06 07 08 09 10 11 12 f3 14 15 16 17 18 19 20 2 1 Op (ml

Fig 1 4 Initial slope of the base resistance curve vs pile diameter

a1 [p] 0

0020

16 assumed a 1= 28 - 4 qcp

12 0

0 Ct) 0 a = 2659 - 369 qcp8 1

0 0 (r = 0188)0

4

2 3 4 5 (MPa]qcp

Fig 1 4 8 Initial slope of the point resistance curve vs ultimate point resistance on the static cone resistance for pile tests No 1 20

85

a [~ 28

24

20

16

12

8

4

0 2 3 4 5 6 Qcp [MPa]

~ Kiosinski (1977) sand and sandy gravel of mediwn density

~ Klosinski (1977) loose sand ID= 0 3 0 4

o US59 ] t HH Touma p and Reese L (1974) fine sand and silty sand OGl (US59 HH BB - very dense Cl - mediwn dense) 1 BB

DIN 4014 Part 2 (1977)

Fig 1 4 9 Initial s lope of the point res istance curve vs ultimate point resis tance

86

assumed [il =30 -10 Op but )1~ 10 )1 [1 I

u 311-10 Op ( r =0 368)4 1 0

3 0 0

02 0

0 0co 0 8 0 0

0

0

05 06 07 08 09 10 11 12 13 14 15 16 17 19 20 21 Dp [ ml

Fig 14 10 Correction factor for hyperbolic base resistance shysettlement relationship

87

a [~] 28

24

20

16

12

8

4

2 3 4 5 qcp [ MPa]

Fig 14 11 Initial slope of the base resistance curve vs ultimate base resistance (proposal)

v [ 1 ]

3

2 -----G- DP J l 1J I Op lm] J

for Dp ~ 2 0 m ~ u = 1 01

0 --------r----r---r----r-----------------r-------------------------r------r-~-~--shy

05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 Dp[m)

Fig 1 4 12 Correction facto r for hyperbolic base resisshytance - settlement relationship (proposal)

s P ( s)

s +

u qcp

88

a) b)1

bt=o212= 47 MPa a1=1~32 tMWJ s 2 3 4 5 O 1 10 20 30 40 50 60 p [~a]0

0p [ MPa] 40 40

80 80

120 ~

160 b1 = ~ajtg ~= 0 212

~=1132 + 0212middot s

mJ 240 r=0994t t t measured s __ according to Jl s

o o o according to p (bull ll l[mm] [mm]

Pile No 2

slmm) 10 20 30 40 50 60 80 100 125 150 175 2)0 225 Note

p [ MPa] 09 14 17 20 22 24 27 30 32 34 36 38 39

measured

pibull) [ MPa] 074 128 169 202 228 249 282 307 330 347 360 371 380calculated

plbullbull1[MPal 070 125 168 203 233 257 297 327 356 378 396 410 422calculated

1) (bull) ij l099082 091 099 101 104 104 104 102 103 102 100 098 097 sd = 006

ij (HJ1041) (bull10) 078 089 099 102 106 107 110 109 111 111 110 10B 10B sd = 010

plbulll-according to a =1132 [ Jp(s) = s s for pile No21 0 1132 12 39

plbullbulll-according toa =1241 lmiddotGcp=39MPa1 0

~=14 see fig 1411 and fig 14 12 sp(S)=

124+ _ s_ 14middot39

11lbulll11l-J - correlation coefficient calculat~d P5 for

measure p s p(bull) and p(bull) respectively

Fig 1 41 3 Modified hyperboZic point resistance - settZement reZationship for piZe No 2

89

0 2 3 4 5 p(MA1] 0 2 3 4 5 p[MPa)

40 40

80 A 80 A

120 120

160 16 Pile No 1 Pile No 2

20 200 s s

[mm] rnm

0 2 3 4 5 0 2 3 4 5p [MPa] p [MPo]

40 40

80 80

120 1ZJ

lfpound) Pi le No 3 Pile No 4 A

200 A

s s A

[mm) [mm

0 2 3 4 5 p [MPa] 0 2 3 4 5 p [MPa]

40 40 A A A measured ~ calculated

80 80

12

160 160 Pi le No 5 Pile No 6

200 Z)Q

Fig 1 4 14 l3ase resmiddotistance vs settlement pr oposed method pile No 1- 6

90

2 3 4 5 p [MPa] 2 3 4 5 p [ MPa]

40 6

6 40

1 80 80

6

120 120 6

6 160 160

Pile No 7 6

200 200 s

[mm ] s

[mm]

0 2 3 4 5 6 p [MR] 0 2 3 4 5 p [MPa] 0 0

40 40 6

6

80 80

6

120 120

160 160 Pile No9 Pile No 10

200 200

s [mm] [msml I

0 2 3 4 5 6p[MR] 0 2 3 4 5 p [MPa]04--___ ____ ___ ___ ____

0+-=---------------~-~- shy

40 40 c 6 c - measured

0--0-0 shy calculated

80 80

120 120

160 160 Pile No11 Pi le No12

200 200

s [mm]

s [mm]

Fig 1415 Base resistance vs settlement proposed method pile No 7-12

91

0 2 3 4 5 p [MPal 0 2 3 4 5 p [MPa)

40 40

80 80

120

16 Pile No 13 Pile No 14

200 s

tnml [mm]

0 2 3 4 5 p [ MPa] 0 2 3 4 5 p [MPa)

40 40

80 80

120 120

160 1fD

Pi le No 15200 axJ s s

[mm] [mm]

0 2 3 4 5 p[MPa] 0 2 3 4 5 6 plMPa ]

A A A measured40 0---0-0 calculated

80

120 120

160 1ED Pile No 17 Pi le No 18

200 200

s s [mm] [mm]

Fig 1 4 16 Base resistance vs settlement proposed method pile No 13- 18

92

0 2 3 4 5 p [MFb] 0 2 3 4 5 p[MPa]

0 6 o -measured40 40 0 0 o -calculated

80 80

120 120

160 160 Pile No 19 Pile No 20

200 200 s s

[mm] [mnil

Fig 1 4 17 Base resistance vs settlement proposed method pile No 19-20

p(s~Psf

15 20

ean

-C 5 w u L Lower ~ confidence

linea 0

a IJl 10

o---o proposed

method I I I

15

Fig 1 4 17a Design curves for estimating developed base resistance in sand (Wr ight and Reese 1979)

93

n (number)

30

28

26

24

22

20

18

16

14

12

10

8

6

4

2

0 02 04

Fig 1 4 18

I= 126

Between 1] = 0 7 - 1 3--- I= 106 ( 84 frac34)

Average ~ = 098 Standard sd =023 deviation

Standard sv =023 veriation

1] (Coefficient Calculated Measured

06 08 10 12 14 16 18

Calculated pressur e divided by the measured pr essure for all pressure - settlement curves pr oposed method pile No 1- 20

94

a) b) Total load

Total load curve

---- _____-- shy- -- -Base load ~- Base load

-0-0 ~

00 00 J

ldeoli zed shaft load J

Shaft sesistanc1---------- 0=0middot30 a= 0 middot 30

025 Settlement IN 025 Settlement IN

Fig 1 419 Proposed method of synthesizing design loadsettlement curve (a) conservative design prodiction b) design prediction- peak in shaft loadsettlement curve (Burland et al 1966)

Cf

-0 0 0

J

0

~-----~--~-~ amp- 2 3 4 5 6 (cm)

a~middotltii -0 lt) cco2 41 -~ -0 1)

vi ~ llloli=----------- ---c~0 1 2 3 4 5 6 7 ( of diameter)1 1 1 1

05 10 15 20 ( in) for 30 in Pile Movemen~ ( 75cm pile)

Fig 1 4 20 Approximate load settlement curves for 30 in bored piles (AB and C represent failure load at 1 in settlement A B and C represent ultimate failure load) (Touma and Reese 194)

95

Load in MN 0 2 3 4 5

25

50E E C

-C 75

-~ ~

-Z 100 lJ

Shaft resistshy

125 once

15 Fig 1 4 21 Load-settlement relationships for largeshydiameter bored piles in stiff clay (Tomlinson 1977)

SettlementSo

Fig 1 4 22 Diagrams of s1iaft and base resistances versus settleshyment assumed in analysis (Kiosinski 1977)

96

0 0 1 ~ r- 025g ~~ 2

1- -shy3 03Sg 14 5 2

Qls =Qpls+Q5 (sQpls) Qs(s-3E

0

degsis __ -- Qpls) a~ C

4

t Sg l

5 Qu Is)

Q(s)in MN-l T

Ouls Q Is) in MN ---

Fig 1 4 23 Construction of load - settlement curves a) for sand b) for cohesive soil (DIN 4014 Part 2 1977 and Franke 1981)

-

s C 5C

Cl

3 0 00 05 10 15 20 Mean settlement I in)

Fig 1 4 24 Load- settlement curves for test shaft S4 (1 in = 25 4 mm 1 ton= 8 90 kN) (Reese 1978)

97

Relative side resistance

0 05 10 15 20 0E=--t----+---+--~

c QI lt) ~ 2 C

I itaker c

QI amp Cooke3E QI-j

c-en 4

C QI

E us 59o

5 QI gt

SA0 w 0 6

Fig 1425a Relative side resistance for clay vesus relative midlength settlement (Reese 1978)

degs (Osl u l t 0 05 10 15 2 0

Mean

2 Lower ~ C QI u

confidence line

~ 3 a

0

~4 E

()

5

6 __ _ ______ ________ __1

Fig 1 4 25b Design curves for esti mating developed side resistance (~Jy1nht ReertP- 1987 J

98 Load Q

8 - 15 mm

1- 2 of p ile diameter

100-200 10-15 of pile Os Ot diameter Shaft Total

Settlement S Resistshy Resist- Load ance once

Fig 1426 Dependence of total load base resistance and shaft resistance on settlement of lar-ge diameter pile (Tejchman Gwizdala 1979)

6

5 Shaft load

4

3

2

z ~

-0

g Pile EF- 56 J 0

0 0 20 30 Butt settlement (mm)

Fig 1 4 27 Deveiopment of shaft and base resistance with settiement (Promboon Brenner 1981)

99

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 0 r-=-1---J__-----------------------~----_shy

Load [ k N l5

10

20

( I

Skin friction ----1 I I

~ 40 QI E

fQI

50 I

Q) I () ICOntinuos fost deolading

Fig 1428 Load-Settlement-Diagram Testelement III (Diaphragm-Wall 0515 m 244 m deep) Portion of Skin Friction and Base Resistance (Prodinger Veder 1981)

Qs (QJ max

0 05 10

Upper Limit of Data

Farr and Aurora (1981J C

~ 2 - shy -+shy - Mean of Data

I QI

Lower Limit of Data a

0 - 3 E

Vl

4

Smid = Approximate shaft buff movement ignoring the elastic compression of upper halt of the shaft

D = Shaft diameter

Q Mobi Ii zed shaft resistance

Qs1max = Maximum shaft resistance

Fig 1 4 29 Relative shaft resistance vs relative movement (Farr and Aurora 1981)

100 Load Q (s) [ MN]

Su5 s s 20 mm for non- cohesive soil u

s s 10 mm f or cohesive soil u

s s 15 mm for claysand u

Q (s) + Q (s)s p

Qs(s)

-C ltII E s ~- [mm]-ltII IJ)

Fig 1 430 Dependence of total load Q(s) point res i stance Q (s) and shaft resistance Q (s) versus settlement p s

~ 3 Usu Qpu Qu Q(s) [ MN]

Sus= 20

1J

60

80

100

120

degs (s ) 140

5 P=Ol Op

1EO

C -ltII E 180 ~ ] 200

s [mm]

Approximative dependence of total load point resistance and shaft resistance versus settlement fny non-cohesive soil

Fig 1 4 31

101

113 3 ~fic0P Ye hY

1 Ground water

D

I y

yh C

Fig 1 5 1 Determination of 01 and 03 for settlement analysis of lar ge diameter bored piles

102

I

E=Et [MPa]

160 0

140

120 0

100

80

6

40

--- --shy 0

0

8 0

0

0

20

2 3 4

I 0 15

Fig 1 5 2

E = Et [MPa]

120

100

80

60

40

I I 0 35 065 085

0

Et= 17 81 qcp0844

( r = 0 128)

5

100

6 qcplMPo]

Calculated values of Young s modulus for piles No 1shy24 according to equation 1 5 2 and 1 56

0

0 0

E =898qcp127 (r= 0314)

E = 9 middot qcp 13 0

20 shy 0

0 0

0 1 2

loJ

I 0 35

3 I

065

4

I 085

5

100

6 qcp [MPo]

Fig 1 5 3 Calculated valueBof Young s modulus for piles No 1shy24 according to equation 1 5 4 and 1 5 6

I K 10 3

( 1 ] 1832

1400 0

1200 0

0

1000 0

800 0

m=2821 qcp0621

600 0

(r=0057)

400 0 0 0 0 0

200

2 3 4 5 6 qcp (MPa]

I 035

I 065

I 085 100 Io

Fig 15 4 Calculated valuesof the dimensionless compress ion modulus K for piles No 1- 24 according to equation 1 5 2 and 1 56

K ( 1 ]

0

1400

1200 0 0

1000

800

600

0

0 0

0

0 0

0 K= 1422 qcpl05

(r=0181)

0 K= 150 qcp

400 0

3)0 0 0

2 3 4 5 6 qcp(MPa)

I I -J 035 065 085 100 Io

Fig 1 5 5 Calculated values of the dimensionless compression modulus K for pile~ No 1-24 according to equation 1 5 2 and 1 5 6

104

120

100

2 3 4 5

I I I rv 0 15 035 065 085 100 lo

Bergdahl (1982) for shallow foundation

o----o Bozant Masopust (1981) D= 1 0 rn h=10 rn large diameter bored piles in noncohesive so il

0----0 Proposal according to current anal ysis

Klosinski (1977) D=090 to 125 rn large diameter bored piles in sand and sandy grave l

Mitchell Gardner (1976) very dense sand E=(35)q (it depends on sand density and stress history) c

Fig 1 5 6 Composision of Young s moduius

105

TABLES

0 Tab 1 11 Methods for detemination of the bearing capacity of bored piles (Ro llberg 1977)

Cl

Nol -- I Soil Areas of Q) Q) Editor Determination of Coefficients 5 type influenceqP qs p ~ C C 11 12 fP I fs

1 all Lab f Soil Mech (1936) l qp at the elevashy 1 0

2 all Huizinga (1951) ~ t~on of the pile 14 point

3 all Van der Veen (1953) ) 18 1 h+l14 all Van der Veen 1 0 Dpl375 D~ 15-- J qcmiddotdhBoersma (1957)

~ 11 +12 h - 12

5 12 all Menzenbach ( 1961) qc at the elevashy~ tion of pile point

6 18 all Mohan Jain Kuman (1963)1 average of qc over 1 h Q) h ~qcmiddotdhl 10 Dpj 3 75 Dj 15 50_micro

and 1 2C 11

7 I amp all de Beer ( 1964) graphically from 10 Q) qc 0 1 h+l18 u C

sand Soviet norm SNIP II 9ct9cp I4 bull O Dp I10 DP l66-1 083shyu clay B5- 67 Trofimenkov (1969) 2 50 1 251 +l J qc middotdh micro middot h middot-l l 2h-~ _micro

9 _micro u all Paproth (1972) at the elevation 3 5 I shy

) of pile point (Dpgt0 5 m 7 D8DpE

E-lt p 1 h+l1 1 h Dplt 5 m u l+l J qcmiddotdh h f qcmiddotd~ 30 Dpl 50 Dp 2 0 100shy10 sand Norwegian method

0l 2 h-12 200Senneseth (1974)

11 lall Soviet method h+l (20-0lqgl - 101 1 q middotdhTrofimenkov (1974) -- f C UpUsmiddotQct

l1+l2 h - 1212 Qct-Qcp 40 D~ 10 Dp 1 33- 0 67shyUsbullh 4 00 2 50

13 English method 10 DFJ 375Dp 10 I

Rodin Corbett Shershywood Thorburn (1974)

3 7 5 Dcl 8 0 DP 10h+l1 _1_ J qcmiddotdh 1 h

qcmiddotdh 20011 +12 h - 12 hb

1 h qcmiddotdh 150hf

0

Observations

fp I f (qp)fs C

Dp E = 1 cm Qbu = 2 Qpa (approx )

s fs=f (qc)

q=~g Us 0 h

fp=f(q~)

fs=f(qgl

bull fine grained non- cohesive soil loosely packed

bull fine grained non- cohesive soil medium dense comp

fine grained non- cohesive soil

Tab 111 (cont)

h+h bE 14 non-cohe- Meyerhof ( 1956 poundti J N 3o middot dh CtME fN3 o dh 1 0 DP 4 0 DP 10 100 etM= l 2

sive soil 1976) lJ +12 h - li hE o hgp taken into consi der ~ Ul (I)

E-lt

C 0

~E = 1 kgbull 30 cm

(statistical limit depth of the pile) hE - clamping length of

pile micro rrJ l-l micro (I)

15 C (I) p

sand Norwegian method

- irm - - - 10 IT

m = diagram O l-l Senneset (1 974) rrJO C

16 rrJ micro gravel English meth it 3 middot N30 - - - 10 - Jf 3 + diagram U) ~

E-lt p U)

iiouiu Coruett Sherwood Thorshyburn (1974 )

(NJQat the elevashytion of pile point1

0 -i

108

Tab 11 2

Results of calculati o n of p i le point load pile shaft load and total pile load from static con e penetration test (Rol l berg 1977)

~ gt

~ gt Ultima te Ultimate Ult imate

No Method micro micro poi nt skin bearing 080lt17nlt1 50 Q) -l

-l middot-i resistanceuro resistance r esistancE

middot-i p 0

(J n1 n n2 n n3 n n1 n2 n3

1

2

Lab fSoil Mech

Hu izinga (1951)

(1936 ) 430

307 i 3 Van der Veen (1953) 239

49

4

5

Van der VeenBoersma

Menzenbach (1961)

(1957) -l middot-i 0

2 4 7

1 57 1-CJ)

6

7

8

Mohan Jain Kumen

de Beer (1964)

Sovi et Norm (1969)

(1963) CJ) Q)

-l middot-i 0

lJ Q)

Q)

gt- CJ) Q)

c 0

2 44

1 37

183

47

t I

49

487

0 18

47

16

3 02

0 85 1

47

16

137

08

9

10

Paproth ( 1972)

Norw Method (1974)

~ 0

0

u I

C 0 C

1 8 1

180 l 46

1- - -_L~ 46 167 46 1 19

1 1 Soviet Method ( 1974) [1 1 41 46 1 62 13 083 13 1 14 0 8

12 Engl Method (1974) 2 66 35 128 35 2 30 35 1 28

Note

cal Q a) n = --- mean value of the rat i o between calculat ed pile loads and those n Q determined f r om loading test

b) n = number of piles

109

Tab 113

Point resistance of large diameter piles (DIN 4014 Part 2 1977)

Settlement Point pressure 1 Factor -fshy

(cm) (MPa) cf=lOMPa I i=15 MPa C C

Piles without enlarged base

1 05 005 003 2 08 008 005 3 11 0 11 007

15 34 034 023

Piles with enlarged base

1 035 0 04 002 2 065 0 07 004 3 0 90 009 006

15 2 40 0 24 0 16

Note 10 lt qp lt 15 (MPa)C

Tab 114

Skin friction resistance of large diameter piles (DIN 4014 1977)

Strength Static cone pen- Depth below Skin frict ion Factor of sand etration resist surface

(MPa) (m) (MPa) fs

Very small lt 5 - 0

Small 5 to 10 0 to 2 0 2 to 5 003 ln6 to 333

gt 5 005 100 to 200

Medium I I 10 to 15 0 to 2 0 I

I 2 to 7 5

gt 75 I 0045 0075

222 to 133 to

333 200

High I I

i

l

gt 15 0 2

to 2 to 10 gt 10

I I I

I

i

0 006 0 10

gt gt

250 150

Note Skin friction is assumpted as linear until s =2 cm and constant for s gt 2 cm

11 0

Tab 115

Values of the inverse of the point resistance factor (Bustamante 1982) fp

Soil type qPC I 1

Factor - shyfp(MPa)

for piles group

a) Silt and loose sand lt 5 0 40 -b) Moderately compact

5 - 12 040sand and gravel

c) Compact to very gt 12 i 030compact sand and gravel I

Tab 116

Values of the shaft resistance factor fs (Bustamante 1982)

Factor fs

Soil type qs

C Category I(MPa) I A I B I II A III BI

I a) Silt and loose lt 5 60

i 150 I 60 I 120-

sand

b) Moderately corn- I pact sand and 5 - 12 100 200 100 200 gravel i

Icl Compact to very

compact sand gt 12 150 i I 300 150 I 200I

I I and gravel i

I

111

Tab 117

Point resistance factor (proposal)

-

1-fp

qc (MPa)

Gravel

Coarse sand Medium sand

Fine sand Silty sand

25

080

0 70

060

5 0

0 65

055

047

75

054

045

039

10 0

045

036

031

150

035

027

022

200

030

0 23

018

Tab 118

Shaf t r e sistance factor (proposal)

fs

qc (MPa)

Gravel

Coarse sand Medium sand

Fine sand Silty sand

25

80

100

130

10 0

120

150

190

I 200

180

230

300

11 2

Tab 119

Calculated values qcp

for large diameter piles

Pile Literature Length Diameter (m) Measured p Cr1 lcul Settlement Note Authcr(year) No (ml D Dp (MPa)

(s=0 10Dp) (MPa)p ~~JL__

s s ()(mm) Dp

1 Franke (1977) 1 13 11 36 38 117 106 Garbrecht

2

3

2

3

13

14

11

15

1 58 36

37

38

40

215

185

136

123

) qg accord to Franke

4 4 13 15 204 3 2 33 220 108 and Garshy

5 5 6 11 33 35 127 11 5 brecht (1977)

6 6 6 11 153 36 35 146 9 5

7 7 6 1 5 34 35 158 105

8 -shy 8 6 15 2 1 41 3 0 109 52

9 10 9 11 39 52 47

10 11 95 11 43 35 77 70

11 12 9 11 49 66 60

12 13 10 11 15 5 1 4 0 77 5 1

13 14 9 11 1 5 4 8 46 115 77--shy14 Pranke ( 1973) 15 115 18 4 9

) ) average 88

15 13$ 13 5 1 3 19 -2 5 3 2 sd=3 0

16 - - 165 16 5 13 19 30 sv=0 34

17

18

Spang (1972)

llXJ

V90

6 6

6 75

0 7

09

3 2

4 2

32X

42X

x) s =0 10 D p

19 VlaJ 720 1 2 39 3 9X

20 - - VlsJ 6 5 1 5 3 0 3 ox

21 Touma and US59 9 9 o 76 8 0 Reese ( 1977)

22 HH 75 0 61 8 0

23 Gl 180 091 - 2 5

24 BB 137 o 76

sd = standard deviation

sv = standard variation

Tab 1 2 1

Ultimate point resistance coarse and medium sand psf (MPal (Pol ish Specification 1975)

Depth h

Medium sand r = 0 40 N = 200 30 Base diam (Op) and depthbase diam (hDp)

Dense sand r 0 Base diam (Op)

= 0 80 = 50N30 and dpethbase diam (hDp)

(ml Dp = 0 6 m Dp = 1 0 m Dp =12 m Dp = 1 5 m Dp = 0 6 m DP = 10 m DP = 12 m DP = 15 m

Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp Psf hDp

5 10 83 0 85 5 0 075 42 07 33 20 8 3 16 50 14 42 13 3 3

7 14 11 7 1 2 70 11 5 8 10 4 7 2 8 11 7 22 70 2 0 5 8 1 8 47

10 18 16 7 15 10 0 14 8 3 1 3 67 35 167 28 100 2 5 83 2 2 67

15 18 250 18 15 0 16 12 5 15 100 4 2 25 0 3 4 15 0 30 125 27 100

20 2 4 333 2 0 200 185 167 1 7 133 4 7 333 3 8 200 33 167 30 13 3

25 26 41 7 2 2 25 0 20 208 19 167 5 0 41 7 4 0 250 3 5 20 8 3 2 167

w

11 4

Tab 131

Partial safety factors for resistance to axial load for bored piles (Wright Reese 1979)

Partial safety Normal Poor factor for control control

Unit skin resistance 1 70 185

(no load test)

Unit skin resistance 160 1 70

(from load test)

End bearing 165 180

Tab 1 3 2

Probability of failure of bored piles under normal design conditions (Wright Reese 1979)

Probability of Factor of Structure failure safety classification

5 10-3 25 monumental

210shy 22 permanent- 2

5 middot 10 2 0 110shy 1 85

temporary 5 bull 10-l 165

11 5

Tab 133 Results of field tests (Tejchman Gwizdara 1979)

L

II C C C 0 0 0

micro micro

micro micro micro For universal safe~y F2u u CUNo micro C C ~ ~g~ middot- C

~ Permisible micro micro i ~c -i micro

cmiddot-~ micro~ L

micro oo ~ load ~t~ ~~ omicro micro ~ ~ 3Z~ ~ ~ micro

-~~

~ e ~ --middot--

middot- ~ obull 0

~ g ~~ ~~ ~

~ L

o Jl i5 sect~ =gt L Q~ = yen t p Qp Qp

D h Q~ Srrx s tm p s E~ iQ~lQ~cm ~~ KN X ll1l kPa kPa kN kN kN Jl ~e ~ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 70 6 60 4081 1550 2531 38 0 1182 10 4040 175 2041 245 1796 632 141 120

2 90 6 75 5082 3041 2041 598 1785 10 4782 107 2541 1079 1462 282 140 42 5

3 120 720 7259 4041 3218 557 1035 10 3576 119 3630 2158 1472 187 2 19 594

4 150 650 8643 4454 4189 51 5 928 20 2521 136 4326 2158 2168 3 10 166 253

5 130190 195 7750 3011 4709 392 805 10 1075 - 3875 981 2894 3 10 166 253

6 130190 165 9516 5101 4415 536 522 20 1800 - 4758 1962 2796 260 158 412

7 130190 135 8044 5199 2845 646 114 4 15 1834 - 4022 2109 1913 2 47 149 524

8 180 115 11380 4415 6965 388 792 15 1735 - 5690 2747 2943 161 2 37 483

9 76 980 6867 4316 2551 628 110 13 9529 109 3534 1128 2306 383 111 32 8

10 61 7 60 7161 2747 44 14 383 67 15 9404 303 3581 392 3188 700 169 109

11 92 180 4807 883 3924 184 20 8 1329 76 2404 196 2207 450 178 82

12 76 24 5 6769 736 6033 109 20 8 1623 103 3385 147 3238 500 186 43

13 76 137 5396 2060 3336 38 2 63 8 4535 102 2698 589 1109 350 t 58 218

14 120 23 5297 1854 3443 35 0 960 10 1640 39 2649 196 2453 945 130 7 4

15 135 16 7 13489 7554 5935 560 181 10 5260 83 6749 2060 4689 367 127 305

16 170 46 0 8829 2943 5886 333 17 10 3466 39 4415 1373 3042 2 14 1 94 31 1

Average Fi 387 166 Standard deviation Sd 2 1 5 034 Standard variation sv= 0 56 0 20

1234 Spang1972 567 8 Franke 1976 9 10 111 2 1 3 Touma Reese 1974

14 Colombo 1971 15 Kerisel Simons 1962 16 Appendino 1973

11 6

Tab 134

Results of model

SafetyScheme factor

medium F ssand

F p

loose F s

samd Fp

F 3 55 sd _P F 1 32 sd

s

tests (Tejchman Gwizdara 1979)

Diameter D (mm)

30 60 90 133

145 129 108 112

280 3 08 307 294

140 154 153 112

594 3 04 324 426

107 sv 030

0 19 sv 0 14

117

Tab 135

Individual safety factors according to literature

Literature proposal ofLiterature individual safety factor

Fs Fb

Polish Specification (1974) 100 250

Tejchman Gwizdala (1979) 150 400

Bustamante Gianeselli 200 300 (1982)

Decourt ( 1982) 130 400

average 145 3 38

TAB 141 0)

Load settlement curves - measured

Pile No

Settlement 1 c 3 4 5 6 7 8 9 10 11 12

s p s p p s

p p s P

p s P

p s p p s

P p s

P p s

p p s p p S

p I i p s

p p s p

mm MPa rrrn lifl5a MPa mm

lifl5a MPa

mm lifl5a MPa mm

RPa mmMPa nwa MPa mm

RPa MPa mm RPa MPa mm

RPa MPa mm RPa MPa mm

RPa MPa mm RPa MPa mm

RPa 10 045 222 09 1 1 05 20 07 143 06 167 08 125 0 5 20 08 125 10 100 08 12 5 15 67 16 63 20 092 21 7 14 43 08 25 10 20 0 1 1 182 12 167 0 9 22 2 12 167 18 111 14 143 24 83 22 9 1 30 125 240 1 7 I 7 6 1 1 273 1 2 250 14 214 15 200 1 2 250 15 200 25 12 0 19 15 8 30 100 26 11 5 40 1ti 250 20 10 0 14 28 6 14 286 1 7 235 18 222 1 4 286 18 22 2 3 2 12 5 23 174 36 111 3 0 133 50 20 250 22 ~27 1 7 294 1 5 333 20 250 2 1 ~38 1 7 294 1 9 263 37 135 27 18 5 4 2 11 9 33 152 60 2 2 273 24 ~5o 20 300 1 7 353 23 61 22 ~73 18 333 21 286 43 140 30 20 0 46 13 0 36 16 7 80 271 295 27 796 24 333 20 400 27 ~96 25 1320 22 364 25 32 0 53 15 1 36 222 41 195

100 322 31 1 30 333 28 357 22 454 31 1323 29 345 26 385 28 357 60 16 7 40 25 0 45 22 2 125 38 329 32 391 32 391 25 500 32 139 1 30 41 7 32 39 1 4 6 272 48 ~6 0 150 14 2 357 34 1441 36 41 7 27 555 36 ~1 7 34 44 1 36 41 7 175 36 486 39 449 30 583 38 ~61 38 461 200 38 526 42 476 32 625 225 39 577 33 682

(mmMPa) ( 1 MPa)

1

1=2074

t 1=O ~01 =0 98S

a1=1132

b1 =0 212 V =0994

a1=2217

b1=O 131

V =Q 978

a1=1860 b1=0233

V =Q966

a1=1562

b1=0174 V =Q983

a1=1382

b1=O195

V =0975

a1 =20 37

b1 =C 174

V =0957

a1=1443

b1=(l 193 v =O 961

a1=965

b1= 0071 V =0 990

a1=1 91

b1 =o 128

V =0 993

a1=5 83

b1=C124

v =O 981

a1=6 1 4

b1=01 64 v =U 985

li(MPa) ~9 4 7 76 43 57 middot5 1 57 5 2 141 78 81 61 cp (MPa) B8 39 40 33 35 35 35 3 0 39 3 5 49 40 __Ef ~-6 1 2 1 9 1 3 16 15 16 1 7 36 22 16 15 qcp

TAB 141 (continue) Load settlement curves - measured

Pi le No 3ettlement 13 14 15 1 17 18 19 20 21 22 23 24

s p s T5

p s T5

p s T5

p s P

p s P

p s P

p s P

p s P

p s T5

p s T5

p s p p s

p mm MPa lll1l

HPa MPa mm HPa MPa mm

fWa MPa mm fWa MPa lll1l

HPa MPa mm HPa MPa mm

MPa MPa lll1l NT5a MPa HPa MPa 111111

HPa MPa 111111

HPa MPa 1)1111

mra 10 1 7 59 075 133 06 167 075 133 ~95 105 09 11 1 07 143 3 76 1 7 59 08 133 10 100 20 2 4 83 130 154 095 21 1 1 15 17 4 1 75 114 16 125 12 167 ~7 74 33 6 2 1 3 15 3 1 9 103 30 29 103 1 7 176 1 2 250 15 200 r55 118 22 136 16 18 8 38 79 46 66 1 7 182 27 110 40 33 12 1 20 200 1 35 29 6 1 75 229 ~O 133 26 154 175 229 49 82 58 6 9 1 9 21 1 35 115 50 36 139 235 21 3 145 34 5 1 95 256 24 208 ~-4 147 28 17 9 20 250 gt8 86 6 9 72 2 2 233 4 2 11 8 60 39 154 265 22 6 1 55 387 2 15 279 28 214 ~6 16 7 30 120 0 2 2 27 3 o 8 89 80 7 5 2 3 262 80 43 186 31 258 1 7 47 1 36 222 14 05 198 33 124 2 25 320 B 1 98 25 327

100 45 222 18 556 39~ 253 ~-5 222 36 1278 27 370 ~8 113 125 47 26 6 20 625 42 29 8 149 255 28 1446 t50 22 682 3 0 500 175 200 225

(mmMPa) a1=479 a1=1206 a1=14 51 a1=1113 a1=1406 ~=836 a1=843 a1=1176 ~=64 a =561 a1=10 0 a1=9 5 (1MPa) b1=0175 b1=0 178 b1=0 382 b=0287 b1=O 119 p 1=0 137 h1 =o 193 b=0258 p1=0 049 b1=0032 b1=0 276 b1 =0 048

hf (MPa)

v =0998 57

v =0-987 5 6

v =0989 26

v =0992 35

v =0933 Iv =0991 84 73

v =0993 5 2

v =0998 tJ

3 9 =0944 v =0998 v =0996 v =0981

qcp (MPa) 46 39 32 30 32 14 2 39 30

lL 12 1 1 08 12 26 1 7 1 3 13 qcp

lD

N 0

TAB 142

Calculated point resistance curves

Setlement (mm) p(s)

1

n p(s)

Calculated value of the p(s) for pile No

2 3 4 5

n p(s) n p(s) n p(s) n p(s) 6

(MPa)

n p(s)

7

n p(s) 8

n p(s) 9

n p(s)

10 20 30 50 80

100

150 200 225

070 128 177 253 335

375 446 493

157 140 141

127

123

1 16 106

070 1 25 168 232

297

327 378 410

422

078 089 099 1 06

1 10

109 1 11 108

108

073 1 30 176 246

315 349

405 441

146 163

160 145

1 32 125

113 105

056 096

1 26

167 205 222

249 265

271

0 80 096

105

1 11 100 101

092 0 83

082

065

118 162 233

308 345

412 456

108 108

1 16 116 114 111

064

1 12 151 2 10 2 69

298

346 3 76

078 P63 093 tt 13 101 tt 53 100 I 13

108 ~75

103 ~04 096 ~ 55

~ 87

1 26 125 127 126

125

1 17 1 04

052 088

1 15 153

188 2 03 227 242

065 0 74

o 77 0 81 0 75

0 73

063

072 122

1 83 262 347 388

463 5 11

073

0 74

073 0 71 0 65 065

064 1 18

162 233 309

3 46

41 3 4 57

Dp (m) 1 1 Qcp (MPa) 38 (mmMPa) h2 8 1 1 9 Qcpbullv1(MPa) 72

158

39

124 14 55

15

40

n20 15 60

204

33 148 10 33

1 1

35

tt 4o 1 9 67

1 53 3 5

tt 4 0 1 5 51

15

13 5

114 0 15 i-gt 3

2 1

30

tt 6 0 10 3 0

1 1

3 9

12 4 1 9 74

1 1

3 5 h40

1 9 67

Note n = condition coefficient calculated p(s) measured p(s)

10

n

081

084 0 85 0 86 0 85

087

TAB 142 (continue)

Calculated point resistance curves

Calculated value of the p(s) for pile No (MPa) Setlement 11 12 13 14 15 16 17 18 19 20

(mm) p(s) ll p(s) n p(s) ll p(s) n p(s) n p(s) n p(s) n p(s) n p(s n p(s) n

10 106 070 0 71 045 091 054 099 1 32 055 092 053 070 060 081 085 0 72 080 055 078

20 1 90 079 130 059 160 067 1 70 1 30 096 101 091 079 1 12 148 085 1 31 082 098 082

30 258 086 1 76 068 2 15 074 222 1 31 1 26 105 120 080 156 205 081 180 082 132 083

50 363 086 246 075 297 082 296 1 26 1 70 117 161 082 228 095 295 087 256 0 91 184 092

80 471 316 o 77 3 77 088 364 1 18 2 1 o 1 24 199 308 085 393 097 336 1 02 237 095

100 522 349 078 415 092 394 228 1 27 2 16 348 088 442 098 375 104 262 097

150 611 405 479 443 258 117 244 423 529 443 304 101

200 669 441 518 473 276 261 474 587 488 331

Dp (MPa) 1 1 1 5 1 5 18 1 9 19 070 090 12 15

qcp (MPa) 49 4 0 46 49 32 30 32 42 39 30 12 a1 mmMPa) 84 h20 96 84 152 160 152 124 160

IV1 1 9 1 5 15 12 11 1 1 23 21 18 15

qcpmiddotv1 (MPa) 93 60 69 59 35 33 74 88 70 45

- 12287 average = ~ = 098

standard deviation sd = 023 standard variation sv = 023

N

122

TAB 143 Ultimate settlement for shaft resistance - summing up

Ultimate settlements (mm)Literature sand cohesive claysand

soil

Burland Butler Dunican (1966) 7

Touma Reese (1974) 10 Tomlinson (1977) 10 Klosinski (1977) 8

Francke Gerbrecht (1977) 20-30 DIN 4014 part 2 (1977) 20 10 Francke (1981) Reese (1978) (1979) 05-2 of 05-2 of Farr Aurora (1981) shaft dia~ shaft diam

5-20 mm 5-20 mm Tejchman Gwizdala (1979) - Spang (1972) 10

10 10 20

- Francke (1976) 10 20 15 15

- Touma Reese (1974) 13 8 15 8

8 - Colombo (1971) 10

- Kerisel Simons (1962) 20 - Appendino (1973) 10 Promboon Brenner (1981) 10 Prodinger Veder (1981) 12 Decourt (1982) 10-15 10-15

-average s = 14 1 10 126

standard deviation sd = 53 2 1 47

standard variation sv = 038 021 037

123

TABLE 14 4 Al l owab l e base resistance versus sett lement

Pile Li terature ength Diameter (m) Calculated qcp=qcp Settl ement Fp-3- sa (mm)No Aut hor No (m) D DP qcp (MPa) for qcp3(MPa)

1 Francke ( 1977) 1 13 11 38 127 25 Garbrecht

II2 2 13 11 158 39 130 19

II3 3 14 15 40 133 33

II4 4 13 15 204 33 110 23

II5 5 6 11 35 117 22

II6 6 6 11 153 35 117 19

II

8

7 7 6 15 35 1 17 25

II 8 6 15 21 30 100 21

II9 10 9 11 39 130 13

II10 11 95 11 35 117 15

II11 12 9 11 39 163 11

II12 13 10 11 15 40 133 7

II13 14 9 11 15 46 153 9

14 Francke ( 1973) 115 11 5 18 30 100 15

II15 135 135 13 19 32 107 29

II16 165 165 13 19 49 163 35

17 Spang (1972) V70 660 070 32 107 28

18 II V90 675 0 90 42 140 16

II19 V120 720 1 20 3 9 130 16

II20 V15C 650 150 30 100 16 average for pi les 198

standard dev sd = 78

standard var sv = 039

)assumed qc = p for s = 010 Op sonding meRsurement were not availab le

IV

TA~LE 15 1

Comparison of the initial sl ope of the pile point resistance - settlement curve

Accardi ng to 1 2 3 4

In i t i ~l 5

slope a1 for the pile No

6 7 8 9

(mmMPa)

10 11 12 13 14 15 Note

a 1 for s=10 mm 222 11 1 a1 for s=20 mm 21 7 14 3 calculated 207 113see Tab 14 1 Bo Berggren (198 )230s=20 mm

Schmertmann s method (see 202B Berggren 1981)s=20 mm

No 1 _ llNo - 6 1 97 098

202 250

22 2

400

30 8

090

14 3

200

186

076

167

182 156

286

18 2

107

125

167 138

091

20 0

222

204

426

263

098

125

167

144

087

100

11 1 9 7

182

23 5

1 03

12 5

14 3

11 9

174

164

105

67 83

58

14 6

125

1 16

63

9 1

61

103

59

8 3 48

123

13 3

15 4 12 1

1 10

167 21 1

aceto hypershy14 5 bola type curve

1 15

No 2 NQj = n1

No 4Noz ~ na No 5Naz= T]g

105 1 27

106

093

1 13

160

1 23

108 1 17

157

100

121 109

1 92

118

1 16 1 14

164

2 12

120

122

1 15

143

1 76

151

149 1 73 1 27 146

TAllLE 151 (continue)

Compa ri son of the initial slope of the pile point resistance - settl ement curve

Initial slope a1 for the pile No (mmMPa)According Note to 16 17 18 19 20 21 22 23 24 -a1 for s=10 mm 133 - 105 11 1 143 76 59 133 100 a1 for s=20 mm 174 - 114 125 167 74 62 153 10 3 calculated see 11 1 146 84 84 118 64 56 100 95Tab 141

Bo Berggren 198 67 78 25 0 114s=20 mm Schmertmann s method (see B 136 67 250 146 Berggren 1981) s = 20 mm

nG = 108 No 1NoJ = n 1 20 125 1 32 121 1 19 105 1 33 105 sd = 0 14

SY= 013 No 2 i) = 1 29ro1 = n1 157 136 149 142 1 16 1 11 1 53 108 sd = 019

SY= 015 No 4 iis = 143 INo2 = ns 091 126 1 63 111 sd = 033

SY= 0 23 No 5 ii9 = 1 37183 108 163 142INoz = n9 sd = 0 37

SY = 027

N Vl

126

TABLE 152

Measured and calculated pile point resistance

Pile Calculated Measured Measured No qcp P for

s=10 mm P for s=20 mm

~ 10 mm ~ 20 mm

- (MPa) (MPa) (MPa) - -

1 38 045 092 84 41 2 39 09 14 43 28

3 40 05 08 80 50 4 33 07 10 47 33 5 35 06 11 58 30 6 35 08 12 44 29 7 35 05 09 70 39 8 30 08 12 38 25 9 39 10 18 39 22

10 35 08 14 44 25 11 49 15 24 33 20 12 40 16 22 25 18 13 46 1 7 2 4 27 19 14 30 075 13 40 23 15 32 06 095 53 34 16 49 075 115 65 43 17 32 - - - -18 42 095 1 75 44 24 19 39 09 160 4 3 23 20 3 0 07 12 43 25

average= 484 291

sd 163 088 sv 034 030

Tab 153 Results of calculation for piles No 1-24

Pile No

Length (m)

Overburden pressure 0 vs

0hs (kPa)

0ve (kPa)

0 nc (kPa)

- -ov=o1 (kPa)

- -OV=03 ( kPa)

00 (kPa)

p(a il ( kPa)

s (a 1) (mm)

A2 ( 1 )

E t

(kPa)

Md ( 1 )

K (1)

E I

t (kPa)

( kPa) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

l 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

13 12 14 13 6 6 6 6 9 95 9

10 95

11 5 135 165 66 675 72 65 99 75

180 137

l 33 133 123 116

70 70 70 70

104 102 95

102 95 94

106 139 95

101 106 97

180 137 221 215

53 53 49 46 28 28 28 28 42 41 38 41 38 38 42 56 38 40 42 39 72 55 88 86

202 202 216 202 1114 104 104 104 146 153 146 160 153 181 209 251 120 128 134 123 238 180 305 277

202 202 216 202 104 104 104 104 146 153 146 160 153 181 209 251 120 128 134 123 238 180 305 277

168 Hi8 170 159 87 87 87 87

125 128 121 131 124 138 158 195 108 115 120 110 209 159 263 246

128 128 133 124 66 66 66 66 94 97 92

101 96

110 126 154 79 84 88 81

155 118 197 182

141 141 145 136

73 73 73 73

104 107 104 111 105 119 137 117 89 94 99 91

173 132 219 203

950 975

1000 825 875 875 875 750 975 875

1225 1000 1150 750 800

1225 800

1050 975 750

2000 2000 625

1500

218 139 255 190 16 1 146 210 12 7 10 1 11 7 84 73 69

104 167 210 124 103 10 1 109 142 120 76

153

0802 0802 0822 0820 0798 0798 0798 0798 0791 0798 0800 0811 0814 0837 0837 0830 0769 0 768 0771 0 775 0 780 0 781 0 788 o 779

35296 81603 43312 65222 44019 67515 4609 91313 78186 60572

118115 15129 5 184075 95577 67017 81607 33252 67554 85294 75994 78816 74857 55101 54862

075 075 0 77 075 084 084 084 081 079 078 084 080 083 076 076 078 0 77 081 079 076 082 087 064 0 74

278 643 337 512 542 832 567

1085 766 572

1216 1417 1832

796 520 709 353 735 878 781 630 726 302 366

26472 61202 33350 48917 36976 56713 38656 73964 61767 47246 99217

121036 152782

72639 51932 63653 25604 54719 67382 57755 64629 65126 35265 40598

a=282l a =l781 y=axs S=0621 B=0 844

V=0 057 V=0 128 _ Iv -J

~

N co

Tab l53 Results of calculation for piles No 7-24

Pile No

17

1 2 3 4 5 6 7 8 9

70 11 72 13 74 75 16 17 78 79 20 27 22 23 24

Ground water

18

-20 m b s

-28 m -335 m -330 m -3 15 m dry dry -53 m -85 m

E t (kPa)

19

33653 64979 35364 45664 47969 54583 37574 63072 74548 57753

71 2618 123531 150297

71239 48619 59204 39744 77208 77863 62049 90407 95844 57762 62937

vxEt=E Md (kPa)

20

25240 48689 27230 34248 35254 45849 31562 51040 58893 45047 94599 98825

724747 54142 36950 46179 30603 57678 61572 47157 47734 83384 36968 46569

a=898 S=l 27 =0314

K (l )

21

265 511 275 358 517 672 463 749 730 546

1160 1157 7496

593 377 514 422 775 802 638 723 929 377 420

a=l422 S=l 05 =0187

E=E = t1 3

g-gcp (kPa)

22

51046 52799 54566 42492 45870 45870 45870 37547 52799 45870 77039 54566 65438 52799 40826 71039 40926 58739 52799 37541 82549 82549 40826 59945

Calculated s

(mm)

23

708 128 72 7 15 3 724 146 144 17 3 71 3 11 5 11 2 732 13 2 707 1 5 1 13 7 93

102 118 137 728 12 l 69

11 9

s__caL n=smeos

() 24

050 092 050 087 0 77 7 00 069 l36 l 12 098 133 l81 l97 103 090 065 0 75 099 117 126 090 101 097 078

ri=l00 sd=035 sv=035

K = l50gcp

25

570 585 600 495 525 525 525 450 585 525 735 600 690 450 480 735 480 630 585 450 825 825 1180 645

E l

(kPa)

26

67684 69465 72250 57726 44856 44856 44856 38448 59659 54306 74956 63214 70704 49089 56783 79502 45283 61081 58207 42927

708572 94785 71033 91898

E = t E middotA2

l

(kPa)

27

54283 5571 l 59389 47336 35795 35795 35795 30682 47790 43336 59964 51266 57553 47088 47024 65987 34823 46970 44877 33269 84639 74027 55974 71589

Calculated s

(mm)

28

l O l 12 l 11 7 737 15 9 18 7 185 21 1 12 6 12 2 133 14 l 150 13 7 13 l 14 7 709 12 7 738 755 12 4 735 50

100

- -

Tab l53 Results of calculation for piles No l-24

Pile

29

l 2 3 4 5 6 7 8 9

10 ll 12 13 14 15 76 17 78 19 20 21 22 23 24

sea l n= middotshy

smeas

28 TT

30

0 46 087 046 0 72 099 l 28 088 l 66 l 25 l 04 l 58 l 93 2 17 l 32 078 0 70 088 l 23 l 37 l42 087 l l 3 066 065

n=l 10 sd=0 44 sv=040

s seal for p n=s=lOrnn ac cording to s = 70mm

(mm)

37 32

5 l 0 51 ll 8 l18 64 064

13 0 l30 85 0 85

13 3 l 33 83 0 83

184 l84 ll6 l l 6 105 l05 137 l 37 21 3 2 12 19 4 l94 107 l06 l l 3 l l 3 84 084

92 092 l 0 9 l09 128 l28 83 083

l 0 3 l03 88 088 79 0 79

n=1 73 sd=025 sv=027

s for p according to s = 20mm

(mm)

33

10 4 184 102 18 6 15 6 200 14 9 276 209 18 4 219 292 274 185 17 9 12 9 -

169 194 219 172 200 143 15 0

seal n=s=20rnn

34

052 092 051 093 078 l00 075 l 38 l 05 092 l l 0 l46 l 37 093 090 065

-085 097 l1 0 086 l00 072 075

n=093 sd=025 sv=0 27

s for p according to s = 30rnn

(mm)

35

142 223 14 l 22 3 198 249 142 34 5 290 249 274 345 33 l 243 22 6 168 -

24 7 26 6 293 24 3 279 187 213

seal n=s=30rnn

36

047 0 74 047 0 74 066 083 047 l 15 0 97 083 091 l 15 l10 0 81 075 056 -

082 089 098 081 093 062 0 71

n=o80 sd=020 _ sv=0 25 N

IO

APPENDIXES

APPENDIX 1 1 1

Pi le No 1 Length 13 m D 10 m

Areas of influence

-

qe

(MPa)

1 fp

___9c_ f

(MPR) zyen

(MPf) qcp (MPa)

Soil type

22 20 18 16 14 1 2

l 2 (m)

10

1 0 08 06

16 15 16

026 027 026

42 41 42 Sand

04 14 U28 39 02 14 028 39 41

02 16 0 26 42 04 16 026 42 06 16 026 42 08 14 028 39 Sand 1 0 13 030 39 12 15 027 4 1 38 14 13 030 39 16 12 032 38 18 12 032 38

40 20 10 036 36 22 10 036 36 24 9 U39 35 2 6 8 043 34 28 10 036 36 30 10 036 36 3 2 10 036 36 34 10 0 36 36 36 11 0 34 37 38 11 034 37

l 1 (m)

40

42 44

11 0 34 37 15 1

46 48 50 52 54 56 58 60 62 64 66 68 70 7 2 74 76 78 8 0

APPENDIX 112

Pile No 2

to little depth of sounding

q~ = middle values for 11 = 2 Op

q~ = 145 MAa (Francke Garbrecht 1977 Tab 2 p 50) (Fi g No 2)

for sand

qcp = 0275middot145 = 40 MPa q~p =V ~~s) middot 40 = 097middot40 = 39 MPa

Pile No 4

q~ = 120 MPa sand (Fig No 4)

q = 0 315middot12 = 3 8 MPa q bull 38 = 086middot38 = 33 MPa=V Jmiddot54

1

cp middot bull cp

Pile No 12

qg = 155 MPa sand (Fig No 13)

qcp = 026middot155 = 4 03 MPa

Pile No 13

q~ = 200 MPa sand (Fig No 14)

q = 0 23middot20 = 46 MPacp

APPENDIX 113

PileNo3 Length 14 m D 15 m

Areas of influence

-

qe

(MPa)

1 Tp

----9cf

(t-1Pf) r~

(MPf) qcp (MPa)

Soil type

22 2D 18 16 17 025 43 14 17 II II

L 2 17 II II

12 (m)

16 10 08 06

17 17 17

o

II

II

II

II

Sand 04 17 II II

02 19 024 46 b9

02 19 024 46 04 17 025 43 06 15 027 41 08 13 030 48 1 0 12 032 38 12 11 033 36 14 13 0 30 39 16 14 028 39 18 12 032 38 40 20 16 026 42 2 2 16 026 42 24 11 033 36 26 11 033 36

60 28 30

10 10

036 036

36 36

Sand

32 10 036 36 34 12 032 3 8 3 6 12 032 38 38 12 032 38

1 1 (m)

40

4 2 4 4

13

14 16

030

028 026

39

39 42

46 13 030 39 48 12 032 38 50 14 028 39 52 10 036 36 54 13 030 39 56 14 028 39 58 15 027 41 60 15 027 ~-1 236 62 64 66 68 70 72 74 76 7 8 80

APPENDIX 114

Pi l e No 5 Length 6 0m D 11 m Dp 11 m

Area s of i nfluence

-

qc

(MPa)

1 Tp

-3Lf

( MPf) l ~

(MP~) qcp (MPa)

Soil type

2 2 2 0 18 1 6 14 1 2 155 U i1 33

l 2 (m)

1 2 10 08 06

15 14 12

022 023 0 27

3 3 32 32

Fine sand

+ silt

04 125 026 33 02 16 0 21 34 39

02 16 021 34 04 13 025 33 06 08 10

15 5 17 20

022 0 20 018

34 34 36

35 Fi ne sand

1 2 20 0 18 36 14 20 018 36 + s ilt 16 20 0 18 36 18 165 020 32 20 165 0 20 32 22 17 0 20 34 24 26 2 8 30 32 3 36 38 4 0

19 21 5 21 5 21 5 20 19 5 19 5 20 215

01 9 ---

018 018 0 18 0 18 -

3 6 40 40 40 36 35 3 5 36 4 0

l 1 (m) 4 2

44 20 19

018 01 9

36 3 6 157

46 48 50 5 2 54 56 58 6 0 62 64 66 68 70 7 2 74 76 7 8 8 0

APPENDIX 1 15

Pi le No 6 Lengt h6 0 m D 11 m

Areas of qc 1 __9_c_ qcp Soil typei nfluence fp f 1 yen (MPa) (MPf ) (MPf) (MPa)

-2 2 20 18 16 t 4---0 14 75 038 29 L2 20 018 36 Fi ne sand

1ti 10 30 40 + s i lt12 08 19 0 19 36(m) 06 17 020 34 04 14 023 32 02 9 034 31 56

02 6 043 26 04 12 026 3 1 06 17 020 34 08 11 028 3 1 1 0 14 023 32 35 1 2 17 020 34 Fi ne sand14 19 019 35 16 20 018 36 + silt18 18 0 19 34 20 14 023 32

46 22 12 026 31 24 12 026 31 26 15 022 33 28 18 019 34 30 20 018 36 3 20 0 18 36 34 20 018 36 3G 20 018 36 38 20 018 36 4 0 20 018 36

l 1 42 22 40

(m) 44 22 40 46 L2 4 0 158 48 50 52 54 56 q =V ~ - 3 b =0 99middot35 = 35 MPp cp 53 58 6 0 62 64 66 68 70 72 74 76 78 80

APPENDIX 116

Pi leNo7 Length 60 m 0 15 m

Areas of influence

-

qe

(MPa)

1 Tp ~

(MPg) r~

(MPf) qcp (MPa)

Soil type

22 20 18 16 9 U33 30 14 10 031 31 12 135 024 32

l 2 (m)

16 10 08 06 04 02

13 12 6

10 175

025 026 043 0 31 020

33 31 26 3 1 35 50

Fine sand

+ silt

02 04 06

17 10 115

0 20 0 31 027

34 31 3 1

08 10

145 185

023 019

33 35 3 5

1 2 14

20 19

018 0 19

36 36 Fine sand

l 1 (m)

60

16 18 20 22 24 26 28 30 3 2 34 36 38 40

42 44 46 48 50 52 54 56 58 6 0

185 125 125 165 17 19 21 215 205 20 21 20 20

24 22 20 215 22 22 21 19 18 22

0 19 026 0 26 020 020 019 --

018 018 -

018 01 8 --

018 ----

0 19 0 19

35 33 33 33 34 36 40 40 37 36 40 36 36

40 40 36 40 40 40 40 36 34 40 219

+ silt

62 64 66 68 70 72 74 76 78 80

APPENDIX 117

Pile No 8 Length60 m D 15 m Dp 2 1 m

Areas of influence

-

qe

(MPa)

1 r +

(MPg) r~

(MPf) qcp (MPa)

Soil type

22 18 019 34 20 16 021 34 18 125 026 3 3 16 115 027 31 14 11 028 3 1 12 11 028 3 1

l 2 (m)

10 08 06

105 11 145

D29 028 023

30 31 33

Fine sand

+ silt

04 18 0 19 34 02 18 019 34 71

02 15 022 33 04 11 0 28 31 06 13 0 25 33 08 20 0 18 36 10 15 022 33 12 13 025 33 14 175 020 35 16 18 20 22

20 21 20 15

018 -

018 0 22

36 40 36 33

35 Fine sand

+ s i lt

24 26 28 30 3 =

13 16 175 19 20 20

025 021 020 0 18 018 018

33 34 3 5 34 36 36

36 38 4 0

20 20 21

018 0 18 -

36 36 40

11 (m)

4 2 4 4 4 6 48 50 5 2 5 4 56 5 8 60 6 2 6 4

20 20 21 22 21 20 19 175 19 20 25 28

018 0 18 ---

01 8 01 9 0 20 0 19 018

36 36 40 40 40 36 36 35 36 36 40 4 0 23 0

6 6 68 70 72 74 76 78

qcp 1f5=v 2T middot35 = b85 middot35 = 30 MPa

80

APPENDIX 118

Pi le No 9 Le ngth 90 m D 11 m m

Areas of 1Qe -9c qcp Soil typeinfluence Tp f ryen (MPa) (MPg) (MPf) (MPa)

-

2 2 2 0 18 16 14 lc 11 034 37

12 10 10 036 36 12 08 9 039 35 Medium(m) 06 10 036 36 sand04 10 036 36

02 11 034 37 43

02 12 032 38 04 12 0 32 38 06 12 0 32 38 08 13 030 39 10 13 030 39 12 13 030 39 14 14 028 39 16 14 028 39

44 18 14 028 39 20 14 028 39 39 Med ium 22 15 027 4 1 sand 24 16 026 4 2 26 17 025 43 28 13 0 30 39 3 0 9 039 35 32 13 030 39 34 16 026 42 36 17 025 43 38 17 025 43 40 19 024 4 6

11 42 17 025 43

(m) 44 15 027 41 17 7 46 48 50 52 54 56 58 60 6 2 64 66 68 7 0 7 2 74 76 78 80

APPENDIX 119

Pi 1 e No 10 Length 95m D 11 m m

Areas of influence

-

qe

(MPa)

1 fp

-9c f

(t-1Pf) [~

(MPf)

qcp

(MPa)

Soil type

22 20 1 8 16 14 L 2 13 Uti 3J

l 2 (m) 12

10 08 06 04

18 18 28 19

0 19 019 0 19 019

34 34 34 34

Fine

sand

02 21 40 42

02 20 4 0 04 17 020 34 06 21 40 0 8 10

23 22

40 40 Fine

1 2 14 16 18

21 20 16 15

0 21 022

4 0 4 0 34 33

sand

44

20 2 2 24 26 28 30 32 34 36 38 40

14 14 13 11 11 14 17 14 12 13 12

023 023 025 0 28 028 023 020 023 027 025 027

32 32 33 31 31 32 34 3 2 32 3 3 32

l 1 (m) 42

44 12 13

0 27 025

32 33 15 2

46 48 50 5 2 5 4 56 5 8 6 0 6 2 6 4 66 6 8 70 72 74 76 78 80

APPENDIX 11 10

Pi 1 e No 11 Lengt h 9 0m D 11 m m

Area s of influence

-

Qe

(MPa)

1 fp

__k_ f

(MP~) ryen

(MPf) qcp (MPa)

Soi l type

22 20 18 16 14 12 lb 55

12 (m)

1 0 08 06 04

23 19 20 21

024 023

55 46 46 55

Medium

sand

02 22 55 62

0 2 04

24 25

55 55

06 08

27 28

55 55

10 12 14

28 28 28

55 55 55 49

16 26 55

44

18 20 22 24 26 28 30 3 34 36 38 40

24 19 18 17 22 21 17 11 13 12 11 9

024 024 025

025 0 34 030 032 034 039

55 46 43 43 55 55 4 3 37 39 38 3 7 35

1 1 (m) 42

Ll Ll

12 16

032 0 26

38 4 2 209

46 48 50 5 2 54 56 58 60 62 64 66 68 70 72 74 76 78 80

APPENDIX 141

0 2 3 4 p [MPa)

PILES WITH 40 ENLARGED BASES

80

120

160 C----0

200 IN4014 s (1977)

[mm]

P s calculateds P p(s)(mm) (MPa)(mmMPa)(MPa) ()

10 035 286 046 20 065 308 080 30 090 333 104

150 24 625 214 200 229

ai = 2605 (mmMPa) b1 = 0243 1MPa V 1000 bi = 1b = 411 MPa

_ 411 MP Vi - 24 a

() assumed

average Dp = 18 m

qcp = 24 MPa ai = 184 (mmMPa) (28-4middot24)

Vi = 1 2 (3-18)

qcpmiddotvi = 29 MPa

40

80

120

160

200 s

[mm]

DIN 4014 Part 2 ( 1977)

0 1 2 3 4 5 p [MPal

PILES WITHOUT ENLARGED BASES

C----0

DIN 4014 ( 1977

s calculated s p -p- p(s)

(mm) (MPa)mmMPa)(MPa) ()

10 05 20 062 20 08 25 113 30 11 27 3 155

150 34 441 385 200 424

ai = 2085 (mmMPa) bi= 0 157 1MPa V = 0970

bi= 1s = 637 MPa

Vi 187=3f =

() assumed

average Dp = 12 m

qcp = 34 MPa a1 = 144 (mmMPa)

Vi = 18

qcpmiddotvi = 61 MPa

Range qc = 10-15 MPa

(28-4bull34)

(3-12)

1 1 q = r -r- = 036 for qc = 10 MPaCp p Ip+= 027 for qc = 15 MPa

qcp = 36-405 MPa P

APPENDIX 142

Touma F and Reese L (1974)

Soil parameters pile parameters and base resistance see fig bullbullbullbull

TAB

Measured load settlement curves

Settlement s

mm

10 20 30 40 50 60 80

100 120

a 1 (mmMPa) bi(MPa) V

N3u

q =04 -N30 (cMPa) ()

1 qCp=--rpbullqC

Pile No 21 (US 59) 22 (HH) 23 (G1) 24 (BB) Notep Sp p S p p S p f Sp MPa mmMPa MPa mmMPa MPa mmMPa Mla mmMPa

131 76 169 59 075 133 100 100 269 74 325 62 131 153 1 94 103 381 79 456 66 165 182 273 11 0 488 82 581 69 1 90 21 1 349 115 581 86 694 72 2 15 233 424 118 675 89 800 75 229 262 813 98 245 327 884 113 925 130

64 56 100 95 U049 0032 0276 0048 0944 0998 0996 0981

80 gt100 30 60 32 gt 40 12 24 ()

Bergdahl (1982)

gt5 5 gt55 32 4 3

(0 18middot32) (018middot40) (0265middot12) (018middot24)

CONTACT PRESSURE p [ MPa]

0 2 4 6 8 100 N-------r---------------(us 59) ( HH) ( BBi

E E SQ-------lt+-----+--------------lt

VI

1shyz UJ

~ 100 1---------i----+----+----+------l------I -J I shyI shyUJ V)

so~----~--~-- ~--~

APPENDIX 143

us 59 fYJo 0 50 00

ff-t r-=-~c~=~-r~c_---_---l-~e-J-C~ 0 ------

CLAY

FINE SANO

J lD- 760 mm

f5m~--~--~

Pile US 59 and results from penetration test

HH IV_l() so 100 r=-=-==-==-r-~--=-=- 0 0 II 15- flf ~ II~ Ibull If t f

CLAY SAND

Sm

)

= -middotl lo - GtOmm

~ JI

SILTY SANO tOm

Pile HH and results from penetration t est

APPENDIX 14 4

61 NJO 50 --------00

11 1 =f J - 1 -- 0

CLAYSILT

E ~ Sm ltrj

SILTY SAND

q I lDmiddot 910 mrn tom

I) t bull

Pile G1 and results from penetration test

88

0 50 too ~1-e I q 111bull - Q

CLAY

SIL TY SAND 5m

]

l lDmiddot760mrn

Om

Pile BB and results from penetration test

APPENDIX 145

Klosinski B (1977)

Loading tests 50 bored piles 09-125 m diameter average Op= 11 m On t he sett l ement of rigid pla te the settlement of t he pi le base is given by

PmiddotOSp = T-K b

where Mb - equivalent deformability modu lus

1) Sand and sandy gravel of medium density

Mb = 25-50 MPa

According to Bergdahl (1979) medium sand is between

q(l) 5 MPa (Io=035)c2)

ql = 10 MPa (Io=065)C

from fig 117 rp1 = 055 for qc = 5 MPa 1Tp = 036 for qc = 10 MPa

q(l)= 0 55middot5 = 2 75 MPacp bull

q(2= 0 36middot10 = 360 MPacp

allowable p~ 1)= ~p = yen = 092 MPa and p~2) = ~ = 120 MPa

settlement of the pi l e base

5(1)= o 92 middot 1bull1 = O 0135 m = 13 5 mm p 325 middot middot

5( 2)= 1bull2bull1middot 1 = O 0088 m = 8 8 m p 350 bull bull

1) _ s _ 135 _ 14 7 (mm) a(2) _ 88 _ a 1 - p - o---92 - bull NPa bull 1 - T-7 - 733 (Wa)

2) Loose sand lo= 030-040

Mb = 12- 25 MPa

q~l) = 44 MPa q~2)= 58 MPa

1Tp = 058 and 052

q(3) = 0 58middot4 4 = 2 55 MPa middot q( 4) = 0 52middot5 8 = 3 02 MPa cp bull middot bull cp bull middot middot

allowable p~ 3)= 4i = 085 MPa p~4)= yenl = 101 MPa

s(3)_ 085-11 = 26 mmmiddot s(4)_ 101middot11 = 148 mm p - 312 p - 3 25

STATENS GEOTEKNISKA INSTITUT Swedish Geotechnical Institute S-581 01 Linkoping Tel 01311 51 00

Serien Rapport ersatter vara tidigare serier Proceedings (27 nr) Sartryck och Preliminara rapporter (60 nr) samt Meddelanden (10 nr)

The series Report supersedes the previous series Proceedings (27 Nos) Reprints and Preliminary Reports (60 Nos) and Meddelanden (10 Nos)

RAPPORT REPORT Pris kr

No Ar (Swcrs)

1 Grundvattensankning till foljd av 1977 50shytunnelsprangning P Ahlberg T Lundgren

2 Pahangskrafter pa langa betongpalar 1977 50shyL Bjerin

3 Methods for reducing undrained 1977 30shyshear strength of soft clay K V Helenelund

4 Basic behaviour of Scandinavian soft 1977 40shyclays R Larsson

5 Snabba odometerforsok 1978 25 shyR Karlsson L Viberg

6 Skredriskbedomningar med hjalp av 1978 40shyelektromagnetisk faltstyrkematning - provning av ny metod J Ingands

7 Forebyggande av sattningar i 1979 40shyledningsgravar - en forstudie U Bergdahl R Fogelstrom K - G Larsson P Liljekvist

8 Grundlaggningskostnadernas fordelning 1979 25 shyB Carlsson

9 Horisontalarmerade fyllningar pa los 1981 50 shyjord J Belfrage

RAPPORTREPORT

No

10 Tuveskredet 1977-11-30 Inlagg om skredets orsaker

11a Tuveskredet geoteknik

l1b Tuveskredet geologi

11 c Tuveskredet hydrogeologi

12 Drained behaviour of Swedish clays

R Larsson

13 Long term consolidation beneath the test fills at Vasby Sweden YCE Chang

14 Bentonittatning mot lakvatten T Lundgren L Karlqvist U Qvarfort

15 Kartering och klassificering av leromradens stabilitetsforutshysattningar L Viberg

16 Geotekniska faltundersokningar Metoder - Erfarenheter - FoU-behov E Ottosson (red)

17 Symposium on Slopes on Soft Clays

18 The Landslide at Tuve November 30 1 977 R Larsson M Jansson

19 Slantstabilitetsberakningar i lera Skall man anvanda total spanningsanalys effektivspanningsanalys eller kombinerad analys R Larsson

20 Portrycksvariationer i leror i Gateshyborgsregionen J Berntson

21 Tekniska egenskaper hos restproshydukter fran kolforbranning shyen laboratoriestudie B Moller G Nilson

Ar

1981

1981

1981

1981

1981

1982

1982

1982

1983

1982

1983

1983

1983

Pris kr (Swcrs)

50shy

50shy

40shy

50shy

100shy

60shy

80shy

60shy

190shy

75shy

60shy

150shy

65shy

RAPPORTREPORT

No Ar Pri s kr (Sw crs)

22 Bestamning av jordegenskaper med sondering - en litteraturstudie U Bergdahl U Eriksson

1983 75 shy

23 Geobildtolkn ing L Vi berg

av grova moraner 1984 70 -

24 Radon i jord -Exhal ation- vatten kvot -Arstidsvariationer - Permeabilitet A Lindmar k B Rosen

1984 75 shy

25 Geoteknisk terrangklassificering for fysisk planering L Viber g

1984 120shy

26 Large diameter bored piles in nonshycohesive soils Determination of the bearing capacity and settlement from results of static penetration tests (CPT) and standard penetration test (SPT) K Gwizdala

1984 85shy