14
Hindawi Publishing Corporation ISRN Physical Chemistry Volume 2013, Article ID 612837, 13 pages http://dx.doi.org/10.1155/2013/612837 Research Article Thermophysical Properties of Binary Liquid Systems of Ethanoic Acid, Propanoic Acid, and Butanoic Acid with Benzene or Acetophenone R. Ahluwalia, Ritu Gupta, J. L. Vashisht, and R. K. Wanchoo University Institute of Chemical Engineering & Technology, Panjab University, Chandigarh-160 014, India Correspondence should be addressed to R. K. Wanchoo; [email protected] Received 10 June 2013; Accepted 14 July 2013 Academic Editors: A. Gil-Villegas, B.-T. Liu, and G. Pellicane Copyright © 2013 R. Ahluwalia et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. e density (), viscosity (), and surface tension () of binary mixtures of carboxylic acids (CAs) (ethanoic acid (EA), propanoic acid (PA), butanoic acid (BA)) + benzene (BEN) or acetophenone (ACT) have been measured at 298.15, 308.15, and 318.15 K. From the experimental results, excess values of molar volume ( ), viscosity ( ), Gibb’s free energy for the activation of low ( ), and surface tension ( ) were evaluated and fitted to a Redlich-Kister type of equation. e parameter “” of Grunberg and Nissan expression has also been calculated. From the sign and magnitude of , , , , and “” values, it is concluded that specific interactions are present in CA+ACT system and these interactions are absent in CA + BEN mixtures. Various viscosity and surface tension models have been used to test the consistency of the data. 1. Introduction Studies on thermophysical properties of binary liquid mix- tures containing carboxylic acids are not extensive [13]. In view of this, we have undertaken studies on binary mixtures of carboxylic acids (CAs), namely, ethanoic acid (EA), propanoic acid (PA), and butanoic acid (BA) which are self-associated solvents, with a nonpolar solvent benzene (BEN) and polar acetophenone (ACT). ese acids exist as cyclic dimers in the pure state. However, trimers also exist which are formed because of strong interactions between ring dimers and monomers [46]. e excess properties , , , , and Grunberg and Nissan parameter “” computed from the experimental data (density (), viscosity (), and surface tension) ()) of binary mixtures of carboxylic acids (EA, PA, BA) with benzene and acetophenone have been determined. Benzene interacts with acid through Vander Waal’s or London dispersion forces and acetophenone forms chemical aggregates with acid through hydrogen bonding. e results are used to theoretically justify the validity of various viscosity and surface tension models. e main thrust of the investigation is to correlate the experimental data in terms of the interacting components of the mixtures and to stress the factors affecting these interactions. 2. Experimental Section Ethanoic acid, propanoic acid, butanoic acid, benzene, and acetophenone were purified by the standard methods described in the literature [7]. Ethanoic acid (BDH, 99% assay) was washed with a calculated amount of acetic anhydride for about 10 h and was subjected to fractional distillation. Propanoic acid and butanoic acid (E. Merck, 99% assay) were dried over anhydrous sodium sulfate for two days and the samples were distilled over potassium permanganate. Benzene (E. Merck, 98.4% assay) was dried by keeping over anhydrous calcium chloride for six to eight hours and then fractionally distilled. Acetophenone (Merck, 99% assay) was also dried by keeping it over anhydrous calcium chloride for two days and distilled at reduced pressure. e purity of all the components was checked by comparing their experimental densities with that of the literature values [7]. For each run, a fresh liquid mixture was prepared on a mass basis (precision

Research Article Thermophysical Properties of Binary ...downloads.hindawi.com/archive/2013/612837.pdf · ISRN Physical Chemistry T : Densities ( ,kgm) of the pure components at

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Research Article Thermophysical Properties of Binary ...downloads.hindawi.com/archive/2013/612837.pdf · ISRN Physical Chemistry T : Densities ( ,kgm) of the pure components at

Hindawi Publishing CorporationISRN Physical ChemistryVolume 2013 Article ID 612837 13 pageshttpdxdoiorg1011552013612837

Research ArticleThermophysical Properties of Binary Liquid Systems ofEthanoic Acid Propanoic Acid and Butanoic Acid with Benzeneor Acetophenone

R Ahluwalia Ritu Gupta J L Vashisht and R K Wanchoo

University Institute of Chemical Engineering amp Technology Panjab University Chandigarh-160 014 India

Correspondence should be addressed to R K Wanchoo wanchoopuacin

Received 10 June 2013 Accepted 14 July 2013

Academic Editors A Gil-Villegas B-T Liu and G Pellicane

Copyright copy 2013 R Ahluwalia et al This is an open access article distributed under the Creative Commons Attribution Licensewhich permits unrestricted use distribution and reproduction in any medium provided the original work is properly cited

The density (120588) viscosity (120578) and surface tension (120590) of binary mixtures of carboxylic acids (CAs) (ethanoic acid (EA) propanoicacid (PA) butanoic acid (BA)) + benzene (BEN) or acetophenone (ACT) have been measured at 29815 30815 and 31815 K Fromthe experimental results excess values of molar volume (119881119864) viscosity (120578119864) Gibbrsquos free energy for the activation of low (119866119864) andsurface tension (120590119864) were evaluated and fitted to a Redlich-Kister type of equation The parameter ldquo119889rdquo of Grunberg and Nissanexpression has also been calculated From the sign and magnitude of 119881119864 120578119864 119866119864 120590119864 and ldquo119889rdquo values it is concluded that specificinteractions are present in CA+ACT system and these interactions are absent in CA + BENmixtures Various viscosity and surfacetension models have been used to test the consistency of the data

1 Introduction

Studies on thermophysical properties of binary liquid mix-tures containing carboxylic acids are not extensive [1ndash3]In view of this we have undertaken studies on binarymixtures of carboxylic acids (CAs) namely ethanoic acid(EA) propanoic acid (PA) and butanoic acid (BA) whichare self-associated solvents with a nonpolar solvent benzene(BEN) and polar acetophenone (ACT) These acids exist ascyclic dimers in the pure state However trimers also existwhich are formed because of strong interactions between ringdimers and monomers [4ndash6]

The excess properties 119881119864 120578119864 119866119864 120590119864 and Grunberg andNissan parameter ldquo119889rdquo computed from the experimental data(density (120588) viscosity (120578) and surface tension) (120590)) of binarymixtures of carboxylic acids (EA PA BA) with benzene andacetophenone have been determined Benzene interacts withacid through Vander Waalrsquos or London dispersion forces andacetophenone forms chemical aggregates with acid throughhydrogen bondingThe results are used to theoretically justifythe validity of various viscosity and surface tension modelsThe main thrust of the investigation is to correlate the

experimental data in terms of the interacting componentsof the mixtures and to stress the factors affecting theseinteractions

2 Experimental Section

Ethanoic acid propanoic acid butanoic acid benzeneand acetophenone were purified by the standard methodsdescribed in the literature [7] Ethanoic acid (BDH 99assay) was washed with a calculated amount of aceticanhydride for about 10 h and was subjected to fractionaldistillation Propanoic acid and butanoic acid (EMerck 99assay) were dried over anhydrous sodium sulfate for two daysand the samples were distilled over potassium permanganateBenzene (E Merck 984 assay) was dried by keeping overanhydrous calcium chloride for six to eight hours and thenfractionally distilled Acetophenone (Merck 99 assay) wasalso dried by keeping it over anhydrous calcium chloride fortwodays anddistilled at reducedpressureThepurity of all thecomponents was checked by comparing their experimentaldensities with that of the literature values [7] For each run afresh liquid mixture was prepared on a mass basis (precision

2 ISRN Physical Chemistry

Table 1 Densities (10minus3 120588 kgmminus3) of the pure components at29815 K

Component This work Lit values [5]Ethanoic acid 10437 104366Propanoic acid 09882 09880Butanoic acid 09533 09532Benzene 08782 08737Acetophenone 10241 10238

of 1 times 10minus5 g) The purity of each component with respect tothe corresponding literature value is recorded in Table 1

Densities (120588) of the pure components and their mixturesweremeasuredwith a densitymeter (APDMA-48) calibratedat each temperature with ethanol and 12-dichloroethaneThedensities were measured with an accuracy of 1 times 10minus1 kgsdotmminus3

Viscosities (120578) were determined using a modified Ubbe-lohde viscometer [8] At each temperature the viscometerwas calibrated against the known viscosities of benzene andcarbon tetrachloride [9] The viscometer constants at eachtemperature were determined from the following

120578

120588= 119886119905 minus

119887

119905 (1)

where 119886 and 119887 are the temperature-dependent constantsAt a particular temperature an average value of the fiveconsistently measured efflux times 119905 and the densities wereused to calculate viscosity The accuracy of the viscositymeasurements is in the order of plusmn00013mPasdots

Surface tension (120590) of the pure components and theirmixtures was determined by the differential capillary risemethod [7] using (2) The difference Δℎ in the liquidlevels in two capillaries was measured with a cathetometerreading to 005mm with a vernier constant of 001mm Thesurface tension values are accurate to within plusmn002mNsdotmminus1Consider

Δℎ = ℎ1minus ℎ2=2120590

120588119892119860 + (119861 minus 119862) (2)

where 119860 = 11199031minus 11199032 119861 = (13)(119903

2minus 1199031) 119862 = 0129(119903

2

2ℎ2)

ℎ1and ℎ

2are the heights of liquids in capillaries 1 and 2 119903

1

and 1199032are the radii of the capillaries and 119892 is the acceleration

due to gravity (=980m sminus2) respectively The constants 119860119861 and 119862 of (2) were determined by measuring the Δℎ fortwo test liquids (benzene ethyl ethanoate) of known 120590 and120588 at 29815 K The constant 119862 was separately determined bynoting the height of the test liquid in one of the capillariesThe corresponding radius 119903

2of the capillary was determined

from the measured weight of the mercury column of knownlength The constants (119860 119861 and 119862) were assumed to betemperature independent For each mixture of the respectivesystems and pure components Δℎ was recorded at threedifferent temperatures over the entire composition range

All the measurements were made at a constant tempera-ture that was maintained with the help of a circulating typeultra cryostat (type MK 70 MLW Germany) within plusmn002∘C

3 Results

Experimental densities of pure components and their liter-ature values at 29815 K are given in Table 1 Experimentalvalues of 120588 120578 and 120590 were fitted to (3) using nonlinearregression technique [10] The computed coefficients of (3)and standard errors are listed in Table 3

Equation (3) fits the experimental data within the averageuncertainty in the temperature range of 29815 Kndash31815 K and0 lt 1199091lt 1

119884 (119879 1199091)=[1198860exp (119886

1119879) (119887119900+11988711199091+11988721199092

1+ 11988731199093

1)]12

(3)

Based on the regular solution theory [11] Grunberg andNissan proposed an empirical expression for viscosities ofreal mixtures

119889 =1

(11990911199092)[ln 120578mix minus 119909

1ln 1205781minus 1199092ln 1205782] (4)

where 1205781and 120578

2refer to the dynamic viscosities of the pure

liquid components 1 and 2 respectively 1199091and 119909

2are the

mole fractions of components 1 and 2 respectively in themixture and ldquo119889rdquo is a parameter which denotes the measureof strength of interaction between the two components Thevalues of ldquo119889rdquo are reported in Table 2

From the experimental data excess molar propertiesnamely 119881119864 120578119864 119866119864 and 120590

119864 were calculated [12] from thefollowing expressions

119881119864(cm3molminus1) = 119909

11198721[

1

120588mixminus

1

1205881

] + 11990921198722[

1

120588mixminus

1

1205882

]

log10(1

1205780) = 119909

1log10(1

1205781

) + 1199092log10(1

1205782

)

(5)

120578119864(mPa s) = 120578mix minus 120578

0 (6)

119866119864

119877119879(Jmolminus1) = [ln 120578mix119881mix minus (119909

1ln 12057811198811+ 1199092ln 12057821198812)]

(7)

120590119864(mNmminus1) = 120590mix minus [119909

11205901+ 11990921205902] (8)

where 1198721and 120588

1are the molecular weight and density of

the carboxylic acidsThe same symbols with subscript 2 referto BEN or ACT respectively 119881

1 1198812 and 119881mix are the molar

volumes and 1205901 1205902 and 120590mix are the surface tension of the

1st and 2nd components and mixture respectivelyGraphical representations of 119881119864 120578119864 119866119864 and 120590

119864 as afunction of the mole fraction (119909

1) of CA are given in Figures

1ndash8 respectively Each of these functions 119865 = 119881119864 120578119864119866119864 and

120590119864 has been fitted to the Redlich-Kister relation [13]

119865 = 11990911199092

119899

sum

1

119860119895minus1

(21199091minus 1)119895minus1

(9)

where 119860119900 1198601 and 119860

2are adjustable parameters and have

been evaluated by the method of least squares The value of

ISRN Physical Chemistry 3

Table 2 Mole fraction of first component 1199091 density viscosity and surface tension for various systems

(a) System ethanoic acid (1) + benzene (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 K

1199091

10minus3 120588kgmminus3 120578 mPa s 103 120590

Nmminus1119889

10minus3 120588kgmminus3 120578 mPa s 103 120590

Nmminus1119889

10minus3 120588kgmminus3 120578 mPa s 103 120590

Nmminus1119889

00000 08782 06035 2821 mdash 08669 05294 2675 mdash 08560 04588 2524 mdash01465 08899 06157 2802 minus05760 08792 05599 2663 minus02350 08685 04941 2520 minus0008002786 09035 06165 2789 minus07652 08926 05451 2654 minus06631 08822 04746 2518 minus0544103984 09181 06258 2773 minus08931 09073 05380 2646 minus09022 08967 04682 2516 minus0769205074 09335 06517 2761 minus09683 09226 05528 2639 minus10121 09119 04941 2515 minus0746506071 09496 06964 2751 minus09991 09387 05906 2633 minus10263 09279 05477 2514 minus0564106986 09666 07587 2741 minus09972 09556 06470 2628 minus09831 09449 06167 2513 minus0299107829 09845 08364 2733 minus09733 09737 07158 2623 minus09122 09629 06859 2513 0000908607 10032 09265 2725 minus09330 09924 07904 2618 minus08450 09817 07418 2512 0320909329 10229 10263 2717 minus08784 10120 08647 2614 minus08561 10012 07728 2512 0677710000 10437 11310 2710 mdash 10325 09487 2610 mdash 10213 07667 2511 mdash

(b) System propanoic acid (1) + benzene (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 K

1199091

10minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

11988910minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

11988910minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

119889

00000 08782 06035 2821 mdash 08669 05294 2675 mdash 08560 04588 2524 mdash01164 08877 06299 2779 minus01880 08766 05533 2638 minus01531 08658 04809 2495 minus0085102287 08974 06452 2742 minus03151 08863 05619 2606 minus03290 08756 04889 2469 minus0262003254 09063 06617 2712 minus03742 08954 05722 2580 minus04092 08847 05081 2447 minus0247104415 09178 06954 2676 minus03831 09071 05995 2549 minus04180 08965 05483 2422 minus0136105425 09288 07408 2646 minus03430 09181 06404 2523 minus03583 09075 05992 2401 0027306401 09403 07985 2617 minus02711 09295 06944 2497 minus02530 09189 06572 2381 0227107345 09520 08638 2589 minus01764 09413 07553 2473 minus01171 09307 07128 2362 0452508181 09629 09242 2565 minus00772 09522 08095 2452 00241 09416 07516 2345 0679709143 09761 09886 2537 00556 09654 08616 2427 02091 09547 07697 2327 1005310000 09882 10305 2513 mdash 09774 08858 2407 mdash 09666 07412 2310 mdash

(c) System butanoic acid (1) + benzene (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 K

1199091

10minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

11988910minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

11988910minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

119889

00000 08782 06035 2821 mdash 08669 05294 2675 mdash 08560 04588 2524 mdash00965 08844 06554 2784 minus00821 08737 05723 2643 minus00502 08629 04944 2499 0044201938 08909 07002 2752 minus02023 08806 06046 2616 minus02071 08699 05501 2477 0250302918 08978 07427 2720 minus03081 08877 06437 2589 minus02583 08772 06162 2456 0390703906 09049 07987 2691 minus03482 08949 06954 2565 minus02540 08846 06849 2437 0478304902 09124 08763 2663 minus03304 09026 07645 2542 minus02031 08923 07501 2419 0526605906 09202 09788 2635 minus02691 09105 08516 2520 minus01171 09003 08078 2401 046006917 09279 11049 2608 minus01782 09186 09534 2497 minus00074 09085 08558 2384 0541307937 09360 12480 2581 minus00671 09268 10620 2475 01182 09169 08944 2367 0517008964 09444 13954 2555 00573 09351 11645 2453 02564 09253 09262 2351 0475410000 09533 15283 2531 mdash 09434 12421 2433 mdash 09335 09562 2335 mdash

4 ISRN Physical Chemistry

(d) System ethanoic acid (1) + acetophenone (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 K

1199091

10minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

11988910minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

11988910minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

119889

00000 10241 16589 3874 mdash 10156 13469 3767 mdash 10069 10082 3628 mdash

01852 10279 16468 3698 04216 10196 13674 3612 05305 10113 10954 3492 08861

03384 10309 16127 3553 04529 10228 13692 3457 06030 10139 11265 3359 09093

04672 10334 15613 3419 04753 10250 13465 3314 06565 10161 11242 3227 09515

05770 10357 14993 3283 04912 10269 13048 3184 06984 10179 11006 3100 10064

06717 10374 14329 3162 05028 10284 12511 3066 07329 10192 10622 2977 10707

07542 10393 13662 3055 05111 10299 11908 2960 07616 10205 10136 2859 11427

08268 10406 13014 2941 05166 10306 11282 2863 07860 10215 09577 2768 12224

08911 10419 12403 2852 05206 10317 10659 2776 08071 10221 08969 2674 13091

09485 10432 11834 2781 05239 10324 10057 2696 08245 10217 08328 2595 14040

10000 10437 11310 2710 mdash 10325 09487 2610 mdash 10213 07667 2511 mdash

(e) System propanoic acid (1) + acetophenone (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 K

1199091

10minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

11988910minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

11988910minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

119889

00000 10241 16589 3874 mdash 1 0156 13469 3767 mdash 10069 10082 3628 mdash

01485 10234 16616 3755 05718 10155 14078 3660 08421 10071 11222 3546 12083

02818 10211 16244 3595 05591 10132 14109 3505 08131 10047 11734 3393 11780

04022 10184 15657 3423 05559 10102 13815 3332 08065 10016 11826 3218 11781

05113 10155 14956 3261 05594 10070 13330 3160 08161 09982 11627 3045 12000

06108 10123 14199 3097 05689 10036 12730 2994 08395 09947 11217 2882 12302

07019 10087 13417 2952 05831 09999 12053 2848 08748 09908 10651 2740 12044

07855 10046 12630 2820 06014 09956 11318 2723 09211 09862 09965 2622 13648

08626 09999 11846 2710 06236 09905 10538 2605 09795 09808 09184 2514 14520

09339 09945 11069 2609 06494 09845 09718 2505 10520 09743 08326 2413 15548

10000 09882 10305 2513 mdash 09774 08858 2407 mdash 09666 07412 2310 mdash

(f) System butanoic acid (1) + acetophenone (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 K

1199091

10minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

11988910minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

11988910minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

119889

00000 10241 16589 3874 mdash 10156 13469 3767 mdash 10069 10082 3628 mdash

01238 10192 16809 3721 02147 10114 14359 3620 06827 10029 11843 3489 15446

02412 10135 16949 3581 02254 10057 14832 3482 06336 09975 12710 3355 13354

03528 10073 16994 3447 02323 09993 15199 3348 06545 09912 13134 3228 12401

04588 10007 16943 3319 02364 09925 15224 3220 06429 09844 13145 3104 11663

05598 09937 16803 3190 02382 09855 15164 3093 06650 09772 12913 2983 11244

06561 09864 16587 3063 02379 09781 14854 2967 06693 09696 12499 2860 11067

07480 09788 16311 2936 02358 09703 14423 2840 06845 09616 11897 2734 10885

08357 09708 15991 2808 02318 09621 13868 2713 07058 09529 11232 2610 11087

09197 09623 15644 2679 02269 09531 13154 2581 06884 09436 10526 2480 12427

10000 09533 15283 2531 mdash 09434 12421 2433 mdash 09335 09562 2335 mdash

ISRN Physical Chemistry 5

Table 3 Coefficients and standard deviation (SD) of (3)

(a) System ethanoic acid (1) + benzene (2)

Property 1198860

1198861

1198870

1198871

1198872

1198873

SD10minus3 120588 kgmminus3 00119 minus00023 1277241 256751 15885 260451 00005120578 mPa s 595012 minus00292 380928 153389 minus915172 1620792 00098103 120590 Nmminus1 152321 minus00092 788979 minus64061 54754 minus31067 00787

(b) System propanoic acid (1) + benzene (2)

Property 1198860

1198861

1198870

1198871

1198872

1198873

SD10minus3 120588 kgmminus3 00646 minus00023 238828 41347 20768 02422 00004120578 mPa s 85892 minus00253 840671 minus512057 2899852 minus917128 00121103 120590 Nmminus1 673803 minus00098 2189691 minus509015 144385 minus50172 00531

(c) System butanoic acid (1) + benzene (2)

Property 1198860

1198861

1198870

1198871

1198872

1198873

SD10minus3 120588 kgmminus3 00075 minus00022 1977351 310052 53648 00082 00004120578 mPa s 11224 minus00039 09317 09135 10511 09013 01174103 120590 Nmminus1 407458 minus00097 3455491 minus832693 356763 minus125341 00789

(d) System ethanoic acid (1) + acetophenone (2)

Property 1198860

1198861

1198870

1198871

1198872

1198873

SD10minus3 120588 kgmminus3 00133 minus00018 1354120 53912 05035 minus12567 00008120578 mPa s 55360 minus00078 10852 08055 01232 06509 03807103 120590 Nmminus1 198974 minus00061 4664421 minus1811751 minus1031812 434471 00814

(e) System propanoic acid (1) + acetophenone (2)

Property 1198860

1198861

1198870

1198871

1198872

1198873

SD10minus3 120588 kgmminus3 00247 minus00018 723523 minus12922 minus00496 minus39453 00011120578 mPa s 478863 minus00308 519435 325293 minus960902 333408 00217103 120590 Nmminus1 826053 minus00066 1292180 minus399785 minus999945 644734 00998

(f) System butanoic acid (1) + acetophenone (2)

Property 1198860

1198861

1198870

1198871

1198872

1198873

SD10minus3 120588 kgmminus3 00219 minus00017 805712 minus56413 minus43236 minus10553 00005120578 mPa s 4062351 minus00313 702532 697560 minus967418 167550 00271103 120590 Nmminus1 714271 minus00067 1561280 minus996785 263214 minus170516 00658

these parameters along with standard deviation is reportedin Table 4 Consider

SD = radicsum (observed minus calculated)2

119873 minus 1 (10)

where119873 is the total number of experimental pointsStevanovic et al [14] have recently compared the avail-

able correlation models for liquid mixture viscosities oforganic compounds Amongst the available correlations forpredicting the binary liquid mixture viscosity the presentexperimental binary viscosity data was fitted to the followingfive correlations

McAllisterrsquos [15] model

ln 120578mix = 1199093

1ln 1205781+ 1199093

2ln 1205782

+ 31199092

11199092ln 12057812+ 311990911199092

2ln 12057821

minus ln [1199091+ 1199092

2(1198722

1198721

)] + 1199092

11199092ln [2

3+ (

1198722

31198721

)]

+ 311990911199092

2ln [1

3+ (

21198722

31198721

)] + 1199093

2ln(1198722

1198721

)

(11)

where 12057812and 12057821are interaction parameters

Heric [16] model

ln 120578mix = 1199091ln 1205781+ 1199092ln 1205782+ 1199091ln1198721

+ 1199092ln1198722minus ln (119909

1ln1198721+ 1199091ln1198722) + 12057312

(12)

where 12057312is a deviation function given by

12057312= 11990911199092[12057512+ 12057521(1199091minus 1199092)] (13)

Here 12057512and 12057521are interaction parameters

6 ISRN Physical Chemistry

0

01

02

03

04

05

06

07

08

09

1

0 02 04 06 08 1x1

VE

(cm

3middotm

olminus

1)

Figure 1 Plot of 119881119864 versus 1199091for EA + BEN (◼ 29815 K 998771

30815 K ⧫ 31815 K) PA + BEN (◻ 29815 K 30815 K loz 3185 K)II BA+BEN ( 29815 K times 30815 K + 31815 K) III calculated from(5)

minus09

minus08

minus07

minus06

minus05

minus04

minus03

minus02

minus01

0

0 02 04 06 08 1x1

VE

(cm

3middotm

olminus

1)

Figure 2 Plot of119881119864 versus 1199091for EA +ACT (◼ 29815 K998771 30815 K

⧫ 31815 K) IV PA + ACT (◻ 29815 K 30815 K loz 31815 K) V BA+ ACT ( 29815 K times 30815 K + 31815 K) VI calculated from (5)

Auslander [17] model

1199091(1199091+ 119861121199092) (120578mix minus 120578

1) + 119860211199092(119861211199091+ 1199092) (120578mix minus 120578

2)

= 0

(14)

where 11986112 11986021 and 119861

21are parameters representing binary

interactionsTeja and Rice [18] model

ln (120578mix120576mix) = 1199091ln (12057811205761) + 1199092ln (12057821205762) (15)

minus025

minus02

minus015

minus01

minus005

0

005

01

015

0 01 02 03 04 05 06 07 08 09 1x1

120578E

(cP

)

Figure 3 Plot of 120578119864 versus 1199091for EA + BEN (◼ 29815 K998771 30815 K

⧫ 31815 K) I PA + BEN (◻ 29815 K 30815 K loz 31815 K) II BA +BEN ( 29815 K times 30815 K + 31815 K) III calculated from (6)

0

005

01

015

02

025

03

035

0 01 02 03 04 05 06 07 08 09 1x1

120578E

(cP

)

Figure 4 Plot of 120578119864 versus 1199091for EA + ACT (◼ 29815 K998771 30815 K

⧫ 31815 K) IV PA + ACT (◻ 29815 K 30815 K loz 31815 K) V BA+ ACT ( 29815 K times 30815 K + 31815 K) VI calculated from (6)

where 120576119894= 11988123

119888119894(119879119888119894119872119894)12 for 119894 = 1 or 2 component or the

mixture

119881119862mix =

1

8[1199092

11198811198621

+ 1199092

21198811198622

+ 211990911199092(11988113

1198621+ 11988113

1198622)]

119879119888mix =

1

119881119888mix

[1199092

111987911988811198811198881+ 1199092

211987911988821198811198882

+21199091119909212059312(1198791198881119881119888111987911988821198811198622)12]

(16)

1205781must be evaluated at a temperature 119879(119879

1198881119879119888mix) and 120578

2

at a temperature 119879(1198791198882119879119888mix) 119879 is the system temperature

and 12059312

is an adjustable interaction parameter having avalue unity The interaction parameter has been shown to be

ISRN Physical Chemistry 7

minus600minus500minus400minus300minus200minus100

0100200300400

0 01 02 03 04 05 06 07 08 09 1x1

GE

(Jmiddotm

olminus

1)

Figure 5 Plot of119866119864 versus 1199091for EA + BEN (◼ 29815 K998771 30815 K

⧫ 31815 K) I PA + BEN (◻ 29815 K 30815 K loz 31815 K) II BA +BEN ( 29815 K times 30815 K + 31815 K) III calculated from (7)

0

100

200

300

400

500

600

700

800

900

0 01 02 03 04 05 06 07 08 09 1

GE

(Jmiddotm

olminus

1)

x1

Figure 6 Plot of119866119864 versus 1199091for EA +ACT (◼ 29815 K998771 30815 K

⧫ 31815 K) IV PA + ACT (◻ 29815 K 30815 K loz 31815 K) V BA+ ACT ( 29815 K times 30815 K + 31815 K) VI calculated from (7)

independent of temperature and composition [19 20] Thesubscript 119888 indicates a reduced quantity

Kubendran et al model [21]

ln 120578mix

= 1199091ln 1205781+ 1199092ln 1205782+ 1199091ln1198721

+ 1199092ln1198722minus ln [119909

11198721+ 11990921198722]

minus 230311990911199092[11986112+ 11986212(1199091minus 1199092) + 11986312(1199091minus 1199092)2]

(17)

where 11986112 11986212 and119863

12are binary interaction constants

The observed data on surface tension of binary mixtureswas fitted to the following models available in the literature

Zihao and Jufu model [22]

120590mix =11990911205901

1199091+ 120574121199092

+11990921205902

1199092+ 120574211199091

(18)

where 12057412and 12057421are interaction parameters

minus018

minus016

minus014

minus012

minus01

minus008

minus006

minus004

minus002

0

0 01 02 03 04 05 06 07 08 09 1x1

120590E

(dy

nemiddotcm

minus1)

Figure 7 Plot of 120590119864 versus 1199091for EA + BEN (◼ 29815 K998771 30815 K

⧫ 31815 K) I PA +BEN (◻ 29815 K 30815 K loz 31815 K) V BA +BEN ( 29815 K times 30815 K + 31815 K) VI calculated from (8)

0

02

04

06

08

1

12

14

0 01 02 03 04 05 06 07 08 09 1x1

120590E

(dy

nemiddotcm

minus1)

Figure 8 Plot of 120590119864 versus 1199091for EA +ACT (◼ 29815 K998771 30815 K

⧫ 31815 K) I PA + ACT (◻ 29815 K 30815 K loz 31815 K) V BA +ACT ( 29815 K times 30815 K + 31815 K) VI calculated from (8)

Rice and Teja model [23]

120590mixΦmix

= 11990911205901Φ1+ 11990921205902Φ2 (19)

whereΦ119894= 11988123

119888119894119879119888119894for 119894 = 1 or 2 component or the mixture

119881119862mix =

1

8[1199092

11198811198621

+ 1199092

21198811198622

+ 211990911199092(11988113

1198621+ 11988113

1198622)]

119879119888mix =

1

119881119888mix

[1199092

111987911988811198811198881+ 1199092

211987911988821198811198882

+21199091119909212059312(1198791198881119881119888111987911988821198811198622)12]

(20)

Here1205901is to be evaluated at a temperature =119879 (119879

1198881119879119888mix)

and 1205902at a temperature = 119879(119879

1198882119879119888mix) 119879 is the system

temperature and 12059312

is an adjustable interaction parameterhaving a value around unity The interaction parameterhas been shown to be independent of temperature andcomposition [19 20] The subscript 119888 indicates a reducedquantity

8 ISRN Physical Chemistry

Table 4 Coefficients of (9) and standard deviation (SD) determined by the method of least squares

(a) System ethanoic acid (1) + benzene (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198600

34057 minus20367 minus07083 minus01438 33546 minus21904 minus06270 minus01148 32885 minus15821 minus04091 minus010211198601

01473 minus57094 minus03870 01166 02460 minus91975 minus03834 00811 03229 875912 01482 006711198602

05936 106026 01385 00069 02239 225375 03941 minus00229 00329 460296 10281 00052SD 00046 09097 00004 00024 00066 150513 00029 00019 00106 209443 00006 00025

(b) System propanoic acid (1) + benzene (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198600

15593 minus81753 minus02753 minus03333 14645 minus90881 minus02545 minus02841 13824 minus59558 minus00305 minus029061198601

minus01945 406993 00821 01821 minus02298 631847 01348 01516 minus02524 192695 04671 010261198602

minus05306 113763 03751 minus01745 minus04702 165371 04651 minus02454 minus04703 190034 05546 minus00278SD 00025 49749 00002 00022 00033 76158 00001 00032 00035 139527 00011 00023

(c) System butanoic acid (1) + benzene (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198600

13265 minus76641 minus02993 minus06355 09972 minus47911 minus01557 minus05632 09699 143798 03753 minus049961198601

minus00839 352158 00682 02170 minus02319 723101 02175 02762 minus02740 538149 02511 021611198602

02549 127188 05053 minus02678 minus02829 114488 04437 minus02589 minus04747 minus10975 minus02301 minus01274SD 00025 79049 00011 00037 00026 104486 00005 00045 00011 74136 00001 00019

(d) System ethanoic acid (1) + acetophenone (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198600

minus11887 177318 06988 35069 minus15271 230241 08237 34363 minus17228 314469 09608 475151198601

minus00156 318334 minus00168 minus01138 00861 643012 01139 minus01918 00136 795337 01274 minus043021198602

minus02739 minus46906 minus00924 minus24741 minus02552 minus51471 minus01390 11646 minus09039 60009 00699 04843SD 00078 02584 00001 00368 00107 05067 00001 00249 00077 28808 00001 00421

(e) System propanoic acid (1) + acetophenone (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 mol-1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198600

minus21586 157504 07842 32115 minus25740 226612 09866 35476 minus29319 333655 12061 363711198601

minus04770 899121 minus01441 minus41671 minus04158 224961 minus01081 minus48025 minus04622 412138 minus00243 minus543451198602

minus11862 159141 00621 08986 minus18773 440569 01263 16488 minus29319 636631 00692 37051SD 00057 04763 00001 00296 00046 17711 00001 00289 minus04622 25552 00001 00371

(f) System butanoic acid (1) + acetophenone (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198600

minus21062 609099 03895 25197 minus25541 168349 09184 27061 minus30827 301495 12999 291311198601

minus01445 198592 00009 19580 minus01158 820211 00129 18902 minus01071 minus64428 minus03272 18747

ISRN Physical Chemistry 9

(f) Continued

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198602

minus04769 minus78407 minus00556 06841 minus11813 104424 minus00028 09832 minus10573 860142 02081 08359SD 00019 00827 00001 00267 00049 50118 00029 00194 00031 81692 00031 00183

Empirical two-constant model [24]

120590mix = 11990911205901+ 11990921205902+ 11990911199092[1198601015840+ 1198611015840(1199091minus 1199092)] (21)

where 1198601015840 and 1198611015840 are binary interaction parametersThe model parameters of (11) and (13)ndash(21) were deter-

mined using nonlinear regression technique and the esti-mated values are reported in Table 5

4 Discussion

The values of 119881119864 as illustrated in Figures 1 and 2 are

positive for the entire concentration range at all the threetemperatures for the systems EA + BEN PA + BEN andBA + BEN and negative for the remaining three systemsAbout 5 more negative or less positive 119881119864 values at highertemperatures for all the systems may be due to increasedpopulation of acid monomers to enter into the hetero-intermolecular interactions

The positive and negative 119881119864 values may be explained byconsidering the following three steps equilibria accompany-ing the mixing process as proposed by Lark and Banipal [2]

119863 minus119872 lArrrArr 119863 +119872 (22)

119863 lArrrArr 2119872 (23)

119872+ II lArrrArr 119872mdashIInd component (BENorACT) (24)

where 119863 and 119872 denote a dimer and a monomer of the acidunder questionThe first process is accompanied with a largevolume increase in the right direction the second is isochoricthat is the volume of the dimer is assumed to be equal to twicethe value of themonomer [4 5] the third step is accompaniedwith large contraction in case of ACT and expansion in caseof BEN So the addition of ACT or BEN to anyone of theacids first creates monomers by the first two steps resulting inexpansion In the third step stronger heteromolecular dipole-dipole interactions result in the observed negative 119881119864 in caseof CA + ACT and positive119881119864 values in the case of CA + BENsystem due to induced dipole-dipole interactions Thereforethe third step is accompanied with contraction in volume incase of ACT and expansion in case of BEN

The pK119886values of EA PA and BA are 476 488 and

482 respectively It is expected that the order of dimerizationconstants of various acids would increase in the same orderThe increasing dimerization constant would lead to a smallernumber of available monomers and thus to a smaller volumeincrease as described by (22)

However the observed order of 119881119864 for the CA + BENsystem is as follows BA gt PA gt EA (Table 6) This showsthat in case of BEN there are strong acid-solvent interactionswhich govern the magnitude and sign of119881119864 which increasesas the inductive effect of alkyl chain of the acid as isalso observed by Lark et al [25] Similar results were alsoobtained by Venkateswarlu and Raman [26] as the positiveexcess volumes of 12-dichloroethane and 12-dibromoethanewith three acids observe the following order BA gt PAgt EA which is the same as discussed above that is theincrease in chain length of acid contributes to the decreasein excess volume The large negative 119881119864 values in the caseof CA + ACT mixture arise due to depolymerization of acidaccompanied with strong hydrogen-bonded heterocomplexformation However in CA + ACT system the 119881

119864 valuesfollow the order PA gt BA gt EA as was also observed by Larket al [25] in CA + MEOH system

The data presented in Figures 3 and 4 reveal that excessviscosity (120578119864) is positive for the systems EA+ACT PA+ACTand BA + ACT and is negative for the systems EA + BENPA + BEN and BA + BEN at 29815 K The algebraic positivevalues of 120578119864 may be represented in the following order PA+ ACT gt EA + ACT gt BA + ACT gt BA + BEN gt PA +BEN gt EA + BEN The sign and magnitude of 120578119864 dependon the combined effect of the factors such as molecular sizeshape and intermolecular forces The positive value of 120578119864for the CA + ACT system suggests that the viscosity of themixture is higher than that of the pure components and hencethe fluidity of the mixture is low This indicates the presenceof a specific interaction such as the formation of charge-transfer complex between unlike molecules The negativevalue of 120578119864 in the systems EA + BEN PA + BEN and BA+ BEN suggests the mutual loss of a specific interaction inlike molecules that outweigh the specific interaction betweenunlike molecules The positive values of 120578119864 increase with theincrease in temperature in all these systems The 119866119864 valuesalmost observe the similar trend as observed by 120578119864 as shownin Figures 5 and 6

The variation of Grunberg andNissan parameter ldquo119889rdquo withcomposition of a particular mixture is not largeThe values ofldquo119889rdquo are negative for CA + BEN system and positive for CA +ACT system formost of the concentration rangeThe positivevalues of ldquo119889rdquo for CA + ACT system show that CA formsan intermolecular complex with ACT in the liquid phaseThe values of ldquo119889rdquo increase with the increase in temperaturein all the systems showing that the interactions between thecomponents increase with the increase in temperature Eventhe negative values of ldquo119889rdquo for CA + BEN system change

10 ISRN Physical Chemistry

Table5Interactionparameterparam

etersfor

vario

usmod

elsandsta

ndarddeviation(SD)d

etermined

byleastsqu

arem

etho

d

(a)

Mod

elCon

stants

Ethano

icacid

(1)+

benzene(2)

Prop

anoica

cid(1)+

benzene(2)

Butano

icacid

(1)+

benzene(2)

29815K

30815K

31815K

29815K

30815K

31815K

29815K

30815K

31815K

McA

lliste

r(11)

12057812

06336

05291

064

0808286

07390

08245

10808

09825

09409

12057821

05943

05347

03980

06163

05221

04268

07227

06129

064

06SD

000

9200161

00289

00105

00128

00128

00146

00108

00088

Heric(13)

12057512

minus08692

minus08380

minus04591

minus02946

minus02916

00521

minus02445

minus01271

04815

12057521

minus02173

minus03069

04582

01763

02640

07480

01390

02814

02095

SD01357

02015

03185

01524

02269

03356

03258

02169

02614

Krish

nanandLadd

ha(17)

11986112

09275

09606

07031

03620

03859

00528

03173

01913

minus05399

11986212

02536

03832

minus03062

minus01643

minus02472

minus07294

minus01430

minus02849

minus02063

11986312

minus04145

minus08715

minus17

348

minus04654

minus06512

minus07241

minus05103

minus044

99040

99SD

01468

01225

00701

00559

00502

00629

00595

00378

01101

Ausla

nder

(14)

11986112

minus00168

minus00901

00523

1840

414

898

19109

39322

25479

01292

11986021

64585

82007

73214

65731

65502

56764

99261

60937

02803

11986121

044

0902966

minus00996

00997

00271

minus02735

00896

00999

17186

SD000

4100116

00121

000

4300051

00038

00074

000

4800010

TejaandRice

(15)

12059312

11

11

11

11

1SD

00306

00224

00132

00101

00083

00131

00056

00139

00279

ZihaoandJufu

(18)

12057412

09377

09099

08985

09431

09413

09016

09343

08178

08038

12057421

10684

11008

11162

10624

10636

11114

10709

12259

12473

SD00081

00055

000

4900252

00256

00071

00858

00193

00111

Two-parameter

mod

el(21)

1198601015840

00302

00304

00305

minus00053

minus00056

minus000

69minus00121

minus00118

00079

1198611015840

00072

000

6100057

000

6100052

00038

000

67000

9600079

SD00023

00019

00024

00055

00079

00023

00088

00088

000

41

Rice

andTeja(19)

12059312

11

11

11

11

1SD

006

4300128

00039

01423

01183

01183

02210

01862

01874

(b)

Mod

elCon

stants

Ethano

icacid

(1)+

acetop

heno

ne(2)

Prop

anoica

cid(1)+

acetop

heno

ne(2)

Butano

icacid

(1)+

acetop

heno

ne(2)

29815K

30815K

31815K

29815K

30815K

31815K

29815K

30815K

31815K

McA

lliste

r(11)

12057812

16072

14795

13403

15061

14196

13377

17139

16209

13511

12057821

16910

14186

11794

17024

15097

13028

17471

16208

15934

SD000

06000

06000

6900034

00071

00082

00013

00034

00120

Heric(13)

12057512

07141

09027

12314

06855

09560

13476

02817

07089

12371

12057521

01271

02502

03406

00584

01214

01976

00134

004

17minus02198

SD03671

01578

02654

03963

01814

02120

06821

03761

00201

Krish

nanandLadd

ha(17)

11986112

minus07161

minus09048

minus11986

minus06742

minus09286

minus13101

minus02854

minus07014

minus11893

11986212

minus01293

minus02525

minus03052

minus00511

minus01036

minus01733

minus00147

minus00392

02360

11986312

00149

00160

minus02399

minus00803

minus01955

minus02679

00262

minus00528

minus03361

SD03071

03478

04162

02904

03731

04819

01301

03097

04936

Ausla

nder

(14)

11986112

minus00265

minus08582

minus31960

minus01986

minus09382

minus33948

minus19

043

minus78

002

minus210019

11986021

15819

206

6512

531

05603

06151

09108

12163

10309

05851

ISRN Physical Chemistry 11

(b)Con

tinued

Mod

elCon

stants

Ethano

icacid

(1)+

acetop

heno

ne(2)

Prop

anoica

cid(1)+

acetop

heno

ne(2)

Butano

icacid

(1)+

acetop

heno

ne(2)

29815K

30815K

31815K

29815K

30815K

31815K

29815K

30815K

31815K

11986121

12206

1344

345532

33567

47933

60789

28998

95205

3913

08SD

000

02000

080002

000

02000

05000

01000

0100026

00029

TejaandRice

(15)

12059312

105

105

105

105

105

105

105

105

105

SD00284

00070

00146

00029

00324

00411

00826

00137

00178

ZihaoandJufu

(18)

12057412

08333

09319

08198

04586

04317

03288

12367

12653

13189

12057421

1046

809544

10082

15047

15256

04304

08074

07899

07593

SD00779

00395

004

0500474

004

6502786

01261

01209

01292

Two-parameter

mod

el(21)

1198601015840

03968

04167

04557

03096

03329

03509

02215

02365

02478

1198611015840

006

4300865

00764

minus00738

minus00893

minus01025

00989

01033

01075

SD006

6600599

004

0200298

004

0300983

00493

00557

00513

Rice

andTeja(19)

12059312

105

105

105

105

105

105

105

105

105

SD01802

01131

00764

02090

01756

01678

01604

01024

01126

12 ISRN Physical Chemistry

Table 6 Comparison of excess volume 119881119864 cm3 molminus1 of equimolarmixture at 29815 K

Component II Component IEthanoic acid Propanoic acid Butanoic acid

Benzene 08514 03898 03316Acetophenone minus02972 minus05396 minus05266

minus03minus025

minus02minus015

minus01minus005

0005

01015

02025

minus600 minus400 minus200 0 200 400 600GE(Jmiddotmolminus1)

ln (H

)

Figure 9 Plot of ln119867 versus 119866119864 (◼ EA + BEN ⧫ PA + BEN 998771 BA+BEN times EA + ACT PA + ACT + BA + ACT) at 29815 K

their sign from negative to positive with the increase intemperature from 29815 to 31815 K

According to Hildebrand [27] free volume is necessaryfor flow and then shrinkage on mixing (which would reducethe free volume) would be associated with increase inviscosity of the system If 119867 is defined as 120578120578119900 where 120578 isthe experimental viscosity of the mixture and 120578

119900 is the idealviscosity calculated using

120578119900= 1199091ln 1205781+ 1199092ln 1205782 (25)

then this quantity could be related to free volume (119881119900) of thesolution according to Stairs [28] by the following equation

119867minus1

=1

119881119900(119881119900+ 119881119864) (26)

According to (26) a plot of 119867minus1 versus 119881119864 should belinear However when119867minus1 is plotted against 119881119864 a nonlinearplot was obtained in the present study However when ln119867is plotted against 119866119864 a single straight line with a nonzerointercept was obtained in Figure 9 This type of result is notunexpected because the expression for119866119864 takes into accountboth viscosity and volume Also in all these systems positive120578119864 and negative 119881

119864 and vice versa have been observedfor most of the concentration range This behaviour wasalso observed by Palepu et al [29] in binary mixtures o-chlorophenol with substituted anilines

From the literature no clear cut theoretical basis hasbeen proposed for the prediction of nonideal behaviour ofthe binary mixtures in terms of their 120590119864 values Howeverrecently Papaioannou and Panayiotou [30] have correlatedthe sign of 120590119864 values with 120578119864 values and the deviations fromRaoultrsquos law Their observation reveals the following

(1) Corresponding to the positive enthalpies of mixing(119867119864) positive volume of mixing (119881

119864) and positive

deviations from Raoultrsquos law 120590119864 values have beenobserved to be negative

(2) Corresponding to the negative enthalpies of mixing(119867119864) negative volume of mixing (119881119864) and negative

deviations from Raoultrsquos law 120590119864 values have beenobserved to be positive As shown in Figures 7 and8 the excess surface tension (120590119864) values are negativefor CA + BEN system and are positive for CA +ACT system The positive values of excess surfacetension (120590119864) increase with the rise in temperaturein all systems The negative value of 120590119864 in CA +BEN system is due to the predominance of the fol-lowing factors homopolymer complex formation andthe tendency of the component with lower surfacetension to be adsorbed at the interface But in CA+ ACT system complex formed are block copolymer[CA]119899[ACT]

119898and also dipole-dipole interactions

between carboxylic functional group of CA and car-bonyl group of ACT in the bulk phase rather than inthe interface

The interaction parameters of various models used canchange with temperature but not with composition but theinteraction parameter 120593

12in Rice and Teja and Teja and Rice

models based on the theory of corresponding states has beenshown to be independent of temperature and composition[19 20] It is observed that the models of McAllister Aus-lander and Teja and Rice fit the experimental viscosity datavery well as compared to the Heric and Krishnan and Laddhamodels Surface tensiondata iswell predicted by the empiricaltwo-parameter model [21] as well as by Rice and Teja modelThe Zihao amp Jufu model based on the work of Hildebrandamp Scott [31] also predicts satisfactory results for the systemsstudied

Acknowledgment

The author (R Ahluwalia) is grateful to CSIR India for theaward of SeniorResearch Fellowship to carry out this researchwork successfully

References

[1] R Ahluwalia R KWanchoo and J L Vashisht ldquoSome physicalproperties of binary liquid systems (ethanoic acid or propanoicacid or butanoic acid + ethanenitrile)rdquo Physics and Chemistry ofLiquids vol 29 pp 87ndash96 1995

[2] B S Lark and T S Banipal ldquoExcess volumes and excessenthalpies of acetic and its methyl substituted acids + acetoni-trilerdquo Canadian Journal of Chemistry vol 63 pp 3269ndash32751985

[3] M C S Subha and S Brahmaji Rao ldquoThermodynamic prop-erties of binary acid-base mixturesrdquo Journal of Chemical andEngineering Data vol 33 no 2 pp 104ndash106 1988

[4] H E Affsprung G H Findenegg and F Kohler ldquoThe volu-metric and dielectric behaviour of acetic acid in mixtures with

ISRN Physical Chemistry 13

nonpolar liquidsrdquo Journal of the Chemical Society A pp 1364ndash1370 1968

[5] G Bolat D Sutiman and G Lisa ldquoExperimental densities ofbinary mixtures acetic acid with benzene at several tempera-turesrdquo AIP Conference Proceedings vol 1332 no 1 p 270 2011

[6] R K Wanchoo J Narayan G K Raina and V K RattanldquoExcess properties of (2-propanal + ethylacetate or benzene)binary liquid mixturerdquo Chemical Engineering Communicationsvol 81 no 1 pp 145ndash156 1989

[7] J A Riddick andW B Bunger Techniques of Chemistry vol IIWiley-Interscience New York NY USA 1970

[8] A Weissberger Techniques of Organic Chemistry InterscienceNew York NY USA 3rd edition 1965

[9] B P Levitt Findlayrsquos Practical Physical Chemistry LongmanLondon UK 9th edition 1973

[10] G C Franchini A Marchetti M Tagliazucchi L Tassi andG Tosi ldquoEthane-12-diol-2-methoxyethanol solvent systemDependence of the relative permittivity and refractive indexon the temperature and composition of the binary mixturerdquoJournal of the Chemical Society Faraday Transactions vol 87no 16 pp 2583ndash2588 1991

[11] L Grunberg and A H Nissan ldquoMixture law for viscosityrdquoNature vol 164 no 4175 pp 799ndash800 1949

[12] R C Reid J M Prausnitz and T K Sherwood The Propertiesof Gases and Liquids McGraw Hill New York NY USA 3rdedition 1958

[13] O Redlich and A T Kister ldquoAlgebraic representation ofthermodynamic properties and the classification of solutionsrdquoIndustrial amp Engineering Chemistry vol 40 pp 345ndash348 1948

[14] A B K Stevanovic G M Babic M Lj Kijevcanin S PSerbanoviv and D K Grozdanic ldquoCorrelation of the liquidmixture viscositiesrdquo Journal of the Serbian Chemical Society vol77 no 8 pp 1083ndash1089 2012

[15] R L McAllister ldquoThe viscosity of liquid mixturesrdquo AIChEJournal vol 6 pp 427ndash431 1960

[16] E L Heric ldquoOn the viscosity of ternary mixturesrdquo Journal ofChemical and Engineering Data vol 11 no 1 pp 66ndash68 1966

[17] G Auslander ldquoThe properties of mixtures part Irdquo BritishChemical Engineering vol 9 pp 610ndash618 1964

[18] A S Teja and P Rice ldquoGeneralized corresponding statesmethod for the viscosities of liquid mixturesrdquo Industrial andEngineering Chemistry Fundamentals vol 20 no 1 pp 77ndash811981

[19] A S Teja and P Rice ldquoThe measurement and prediction of theviscosities of somebinary liquidmixtures containing n-hexanerdquoChemical Engineering Science vol 36 no 1 pp 7ndash10 1981

[20] A S Teja and P Rice ldquoA generalized corresponding statesmethod for the prediction of the thermal conductivity of liquidsand liquid mixturesrdquo Chemical Engineering Science vol 36 no2 pp 417ndash422 1981

[21] T R Kubendran S P Palaniappan M R V Krishnan and GS Laddha ldquoViscosities of binary and ternary liquid mixturesinvolving acetone carbon-tetrachloride and benzenerdquo IndianJournal of Technology vol 24 no 1 pp 22ndash25 1986

[22] W Zihao and F Jufu ldquoSurface Tension of Binary liquid mix-turesrdquo in Proceedings of theJoint Meeting of Chemical Industryand Engineering Society of China and AIChE p 143 BeijingChina September 1982

[23] P Rice and A S Teja ldquoA generalized corresponding-statesmethod for the prediction of surface tension of pure liquids and

liquidmixturesrdquo Journal of Colloid and Interface Science vol 86no 1 pp 158ndash163 1982

[24] R K Wanchoo and J Narayan ldquoSome physical propertiesof binary liquid systems (2-butanone+n-propionic acid or n-butyric acid)rdquo Physics and Chemistry of Liquids vol 27 no 3pp 159ndash167 1994

[25] B S Lark S Singh S K Aggarwal and S Makkar ldquoExcess vol-umes of n-butyric acid + various polar and nonpolar solventsrdquoJournal of Chemical and Engineering Data vol 30 no 4 pp467ndash469 1985

[26] P Venkateswarlu and G K Raman ldquoExcess volumesof ethanoic propanoic and butanoic acids with 12-dichloroethane and 12-dibromoethanerdquo Journal of Chemicaland Engineering Data vol 30 no 2 pp 180ndash181 1985

[27] J HHildebrand ldquoMotions ofmolecules in liquids viscosity anddiffusivityrdquo Science vol 174 no 4008 pp 490ndash493 1971

[28] R A Stairs ldquoViscosity of binary solutions of polar liquidsrdquoCanadian Journal of Chemistry vol 58 pp 296ndash301 1980

[29] R Palepu J Oliver and D Campbell ldquoThermodynamic andtransport properties of o-chlorophenol with aniline and N-alkylanilinesrdquo Journal of Chemical and Engineering Data vol30 no 3 pp 355ndash360 1985

[30] D Papaioannou and C G Panayiotou ldquoSurface tensions andrelative adsorptions in hydrogen-bonded systemsrdquo Journal ofChemical and EngineeringData vol 39 no 3 pp 457ndash462 1994

[31] JHHildebrand andR L ScottTheSolubility of NonelectrolytesDover New York NY USA 3rd edition 1964

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 2: Research Article Thermophysical Properties of Binary ...downloads.hindawi.com/archive/2013/612837.pdf · ISRN Physical Chemistry T : Densities ( ,kgm) of the pure components at

2 ISRN Physical Chemistry

Table 1 Densities (10minus3 120588 kgmminus3) of the pure components at29815 K

Component This work Lit values [5]Ethanoic acid 10437 104366Propanoic acid 09882 09880Butanoic acid 09533 09532Benzene 08782 08737Acetophenone 10241 10238

of 1 times 10minus5 g) The purity of each component with respect tothe corresponding literature value is recorded in Table 1

Densities (120588) of the pure components and their mixturesweremeasuredwith a densitymeter (APDMA-48) calibratedat each temperature with ethanol and 12-dichloroethaneThedensities were measured with an accuracy of 1 times 10minus1 kgsdotmminus3

Viscosities (120578) were determined using a modified Ubbe-lohde viscometer [8] At each temperature the viscometerwas calibrated against the known viscosities of benzene andcarbon tetrachloride [9] The viscometer constants at eachtemperature were determined from the following

120578

120588= 119886119905 minus

119887

119905 (1)

where 119886 and 119887 are the temperature-dependent constantsAt a particular temperature an average value of the fiveconsistently measured efflux times 119905 and the densities wereused to calculate viscosity The accuracy of the viscositymeasurements is in the order of plusmn00013mPasdots

Surface tension (120590) of the pure components and theirmixtures was determined by the differential capillary risemethod [7] using (2) The difference Δℎ in the liquidlevels in two capillaries was measured with a cathetometerreading to 005mm with a vernier constant of 001mm Thesurface tension values are accurate to within plusmn002mNsdotmminus1Consider

Δℎ = ℎ1minus ℎ2=2120590

120588119892119860 + (119861 minus 119862) (2)

where 119860 = 11199031minus 11199032 119861 = (13)(119903

2minus 1199031) 119862 = 0129(119903

2

2ℎ2)

ℎ1and ℎ

2are the heights of liquids in capillaries 1 and 2 119903

1

and 1199032are the radii of the capillaries and 119892 is the acceleration

due to gravity (=980m sminus2) respectively The constants 119860119861 and 119862 of (2) were determined by measuring the Δℎ fortwo test liquids (benzene ethyl ethanoate) of known 120590 and120588 at 29815 K The constant 119862 was separately determined bynoting the height of the test liquid in one of the capillariesThe corresponding radius 119903

2of the capillary was determined

from the measured weight of the mercury column of knownlength The constants (119860 119861 and 119862) were assumed to betemperature independent For each mixture of the respectivesystems and pure components Δℎ was recorded at threedifferent temperatures over the entire composition range

All the measurements were made at a constant tempera-ture that was maintained with the help of a circulating typeultra cryostat (type MK 70 MLW Germany) within plusmn002∘C

3 Results

Experimental densities of pure components and their liter-ature values at 29815 K are given in Table 1 Experimentalvalues of 120588 120578 and 120590 were fitted to (3) using nonlinearregression technique [10] The computed coefficients of (3)and standard errors are listed in Table 3

Equation (3) fits the experimental data within the averageuncertainty in the temperature range of 29815 Kndash31815 K and0 lt 1199091lt 1

119884 (119879 1199091)=[1198860exp (119886

1119879) (119887119900+11988711199091+11988721199092

1+ 11988731199093

1)]12

(3)

Based on the regular solution theory [11] Grunberg andNissan proposed an empirical expression for viscosities ofreal mixtures

119889 =1

(11990911199092)[ln 120578mix minus 119909

1ln 1205781minus 1199092ln 1205782] (4)

where 1205781and 120578

2refer to the dynamic viscosities of the pure

liquid components 1 and 2 respectively 1199091and 119909

2are the

mole fractions of components 1 and 2 respectively in themixture and ldquo119889rdquo is a parameter which denotes the measureof strength of interaction between the two components Thevalues of ldquo119889rdquo are reported in Table 2

From the experimental data excess molar propertiesnamely 119881119864 120578119864 119866119864 and 120590

119864 were calculated [12] from thefollowing expressions

119881119864(cm3molminus1) = 119909

11198721[

1

120588mixminus

1

1205881

] + 11990921198722[

1

120588mixminus

1

1205882

]

log10(1

1205780) = 119909

1log10(1

1205781

) + 1199092log10(1

1205782

)

(5)

120578119864(mPa s) = 120578mix minus 120578

0 (6)

119866119864

119877119879(Jmolminus1) = [ln 120578mix119881mix minus (119909

1ln 12057811198811+ 1199092ln 12057821198812)]

(7)

120590119864(mNmminus1) = 120590mix minus [119909

11205901+ 11990921205902] (8)

where 1198721and 120588

1are the molecular weight and density of

the carboxylic acidsThe same symbols with subscript 2 referto BEN or ACT respectively 119881

1 1198812 and 119881mix are the molar

volumes and 1205901 1205902 and 120590mix are the surface tension of the

1st and 2nd components and mixture respectivelyGraphical representations of 119881119864 120578119864 119866119864 and 120590

119864 as afunction of the mole fraction (119909

1) of CA are given in Figures

1ndash8 respectively Each of these functions 119865 = 119881119864 120578119864119866119864 and

120590119864 has been fitted to the Redlich-Kister relation [13]

119865 = 11990911199092

119899

sum

1

119860119895minus1

(21199091minus 1)119895minus1

(9)

where 119860119900 1198601 and 119860

2are adjustable parameters and have

been evaluated by the method of least squares The value of

ISRN Physical Chemistry 3

Table 2 Mole fraction of first component 1199091 density viscosity and surface tension for various systems

(a) System ethanoic acid (1) + benzene (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 K

1199091

10minus3 120588kgmminus3 120578 mPa s 103 120590

Nmminus1119889

10minus3 120588kgmminus3 120578 mPa s 103 120590

Nmminus1119889

10minus3 120588kgmminus3 120578 mPa s 103 120590

Nmminus1119889

00000 08782 06035 2821 mdash 08669 05294 2675 mdash 08560 04588 2524 mdash01465 08899 06157 2802 minus05760 08792 05599 2663 minus02350 08685 04941 2520 minus0008002786 09035 06165 2789 minus07652 08926 05451 2654 minus06631 08822 04746 2518 minus0544103984 09181 06258 2773 minus08931 09073 05380 2646 minus09022 08967 04682 2516 minus0769205074 09335 06517 2761 minus09683 09226 05528 2639 minus10121 09119 04941 2515 minus0746506071 09496 06964 2751 minus09991 09387 05906 2633 minus10263 09279 05477 2514 minus0564106986 09666 07587 2741 minus09972 09556 06470 2628 minus09831 09449 06167 2513 minus0299107829 09845 08364 2733 minus09733 09737 07158 2623 minus09122 09629 06859 2513 0000908607 10032 09265 2725 minus09330 09924 07904 2618 minus08450 09817 07418 2512 0320909329 10229 10263 2717 minus08784 10120 08647 2614 minus08561 10012 07728 2512 0677710000 10437 11310 2710 mdash 10325 09487 2610 mdash 10213 07667 2511 mdash

(b) System propanoic acid (1) + benzene (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 K

1199091

10minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

11988910minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

11988910minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

119889

00000 08782 06035 2821 mdash 08669 05294 2675 mdash 08560 04588 2524 mdash01164 08877 06299 2779 minus01880 08766 05533 2638 minus01531 08658 04809 2495 minus0085102287 08974 06452 2742 minus03151 08863 05619 2606 minus03290 08756 04889 2469 minus0262003254 09063 06617 2712 minus03742 08954 05722 2580 minus04092 08847 05081 2447 minus0247104415 09178 06954 2676 minus03831 09071 05995 2549 minus04180 08965 05483 2422 minus0136105425 09288 07408 2646 minus03430 09181 06404 2523 minus03583 09075 05992 2401 0027306401 09403 07985 2617 minus02711 09295 06944 2497 minus02530 09189 06572 2381 0227107345 09520 08638 2589 minus01764 09413 07553 2473 minus01171 09307 07128 2362 0452508181 09629 09242 2565 minus00772 09522 08095 2452 00241 09416 07516 2345 0679709143 09761 09886 2537 00556 09654 08616 2427 02091 09547 07697 2327 1005310000 09882 10305 2513 mdash 09774 08858 2407 mdash 09666 07412 2310 mdash

(c) System butanoic acid (1) + benzene (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 K

1199091

10minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

11988910minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

11988910minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

119889

00000 08782 06035 2821 mdash 08669 05294 2675 mdash 08560 04588 2524 mdash00965 08844 06554 2784 minus00821 08737 05723 2643 minus00502 08629 04944 2499 0044201938 08909 07002 2752 minus02023 08806 06046 2616 minus02071 08699 05501 2477 0250302918 08978 07427 2720 minus03081 08877 06437 2589 minus02583 08772 06162 2456 0390703906 09049 07987 2691 minus03482 08949 06954 2565 minus02540 08846 06849 2437 0478304902 09124 08763 2663 minus03304 09026 07645 2542 minus02031 08923 07501 2419 0526605906 09202 09788 2635 minus02691 09105 08516 2520 minus01171 09003 08078 2401 046006917 09279 11049 2608 minus01782 09186 09534 2497 minus00074 09085 08558 2384 0541307937 09360 12480 2581 minus00671 09268 10620 2475 01182 09169 08944 2367 0517008964 09444 13954 2555 00573 09351 11645 2453 02564 09253 09262 2351 0475410000 09533 15283 2531 mdash 09434 12421 2433 mdash 09335 09562 2335 mdash

4 ISRN Physical Chemistry

(d) System ethanoic acid (1) + acetophenone (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 K

1199091

10minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

11988910minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

11988910minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

119889

00000 10241 16589 3874 mdash 10156 13469 3767 mdash 10069 10082 3628 mdash

01852 10279 16468 3698 04216 10196 13674 3612 05305 10113 10954 3492 08861

03384 10309 16127 3553 04529 10228 13692 3457 06030 10139 11265 3359 09093

04672 10334 15613 3419 04753 10250 13465 3314 06565 10161 11242 3227 09515

05770 10357 14993 3283 04912 10269 13048 3184 06984 10179 11006 3100 10064

06717 10374 14329 3162 05028 10284 12511 3066 07329 10192 10622 2977 10707

07542 10393 13662 3055 05111 10299 11908 2960 07616 10205 10136 2859 11427

08268 10406 13014 2941 05166 10306 11282 2863 07860 10215 09577 2768 12224

08911 10419 12403 2852 05206 10317 10659 2776 08071 10221 08969 2674 13091

09485 10432 11834 2781 05239 10324 10057 2696 08245 10217 08328 2595 14040

10000 10437 11310 2710 mdash 10325 09487 2610 mdash 10213 07667 2511 mdash

(e) System propanoic acid (1) + acetophenone (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 K

1199091

10minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

11988910minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

11988910minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

119889

00000 10241 16589 3874 mdash 1 0156 13469 3767 mdash 10069 10082 3628 mdash

01485 10234 16616 3755 05718 10155 14078 3660 08421 10071 11222 3546 12083

02818 10211 16244 3595 05591 10132 14109 3505 08131 10047 11734 3393 11780

04022 10184 15657 3423 05559 10102 13815 3332 08065 10016 11826 3218 11781

05113 10155 14956 3261 05594 10070 13330 3160 08161 09982 11627 3045 12000

06108 10123 14199 3097 05689 10036 12730 2994 08395 09947 11217 2882 12302

07019 10087 13417 2952 05831 09999 12053 2848 08748 09908 10651 2740 12044

07855 10046 12630 2820 06014 09956 11318 2723 09211 09862 09965 2622 13648

08626 09999 11846 2710 06236 09905 10538 2605 09795 09808 09184 2514 14520

09339 09945 11069 2609 06494 09845 09718 2505 10520 09743 08326 2413 15548

10000 09882 10305 2513 mdash 09774 08858 2407 mdash 09666 07412 2310 mdash

(f) System butanoic acid (1) + acetophenone (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 K

1199091

10minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

11988910minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

11988910minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

119889

00000 10241 16589 3874 mdash 10156 13469 3767 mdash 10069 10082 3628 mdash

01238 10192 16809 3721 02147 10114 14359 3620 06827 10029 11843 3489 15446

02412 10135 16949 3581 02254 10057 14832 3482 06336 09975 12710 3355 13354

03528 10073 16994 3447 02323 09993 15199 3348 06545 09912 13134 3228 12401

04588 10007 16943 3319 02364 09925 15224 3220 06429 09844 13145 3104 11663

05598 09937 16803 3190 02382 09855 15164 3093 06650 09772 12913 2983 11244

06561 09864 16587 3063 02379 09781 14854 2967 06693 09696 12499 2860 11067

07480 09788 16311 2936 02358 09703 14423 2840 06845 09616 11897 2734 10885

08357 09708 15991 2808 02318 09621 13868 2713 07058 09529 11232 2610 11087

09197 09623 15644 2679 02269 09531 13154 2581 06884 09436 10526 2480 12427

10000 09533 15283 2531 mdash 09434 12421 2433 mdash 09335 09562 2335 mdash

ISRN Physical Chemistry 5

Table 3 Coefficients and standard deviation (SD) of (3)

(a) System ethanoic acid (1) + benzene (2)

Property 1198860

1198861

1198870

1198871

1198872

1198873

SD10minus3 120588 kgmminus3 00119 minus00023 1277241 256751 15885 260451 00005120578 mPa s 595012 minus00292 380928 153389 minus915172 1620792 00098103 120590 Nmminus1 152321 minus00092 788979 minus64061 54754 minus31067 00787

(b) System propanoic acid (1) + benzene (2)

Property 1198860

1198861

1198870

1198871

1198872

1198873

SD10minus3 120588 kgmminus3 00646 minus00023 238828 41347 20768 02422 00004120578 mPa s 85892 minus00253 840671 minus512057 2899852 minus917128 00121103 120590 Nmminus1 673803 minus00098 2189691 minus509015 144385 minus50172 00531

(c) System butanoic acid (1) + benzene (2)

Property 1198860

1198861

1198870

1198871

1198872

1198873

SD10minus3 120588 kgmminus3 00075 minus00022 1977351 310052 53648 00082 00004120578 mPa s 11224 minus00039 09317 09135 10511 09013 01174103 120590 Nmminus1 407458 minus00097 3455491 minus832693 356763 minus125341 00789

(d) System ethanoic acid (1) + acetophenone (2)

Property 1198860

1198861

1198870

1198871

1198872

1198873

SD10minus3 120588 kgmminus3 00133 minus00018 1354120 53912 05035 minus12567 00008120578 mPa s 55360 minus00078 10852 08055 01232 06509 03807103 120590 Nmminus1 198974 minus00061 4664421 minus1811751 minus1031812 434471 00814

(e) System propanoic acid (1) + acetophenone (2)

Property 1198860

1198861

1198870

1198871

1198872

1198873

SD10minus3 120588 kgmminus3 00247 minus00018 723523 minus12922 minus00496 minus39453 00011120578 mPa s 478863 minus00308 519435 325293 minus960902 333408 00217103 120590 Nmminus1 826053 minus00066 1292180 minus399785 minus999945 644734 00998

(f) System butanoic acid (1) + acetophenone (2)

Property 1198860

1198861

1198870

1198871

1198872

1198873

SD10minus3 120588 kgmminus3 00219 minus00017 805712 minus56413 minus43236 minus10553 00005120578 mPa s 4062351 minus00313 702532 697560 minus967418 167550 00271103 120590 Nmminus1 714271 minus00067 1561280 minus996785 263214 minus170516 00658

these parameters along with standard deviation is reportedin Table 4 Consider

SD = radicsum (observed minus calculated)2

119873 minus 1 (10)

where119873 is the total number of experimental pointsStevanovic et al [14] have recently compared the avail-

able correlation models for liquid mixture viscosities oforganic compounds Amongst the available correlations forpredicting the binary liquid mixture viscosity the presentexperimental binary viscosity data was fitted to the followingfive correlations

McAllisterrsquos [15] model

ln 120578mix = 1199093

1ln 1205781+ 1199093

2ln 1205782

+ 31199092

11199092ln 12057812+ 311990911199092

2ln 12057821

minus ln [1199091+ 1199092

2(1198722

1198721

)] + 1199092

11199092ln [2

3+ (

1198722

31198721

)]

+ 311990911199092

2ln [1

3+ (

21198722

31198721

)] + 1199093

2ln(1198722

1198721

)

(11)

where 12057812and 12057821are interaction parameters

Heric [16] model

ln 120578mix = 1199091ln 1205781+ 1199092ln 1205782+ 1199091ln1198721

+ 1199092ln1198722minus ln (119909

1ln1198721+ 1199091ln1198722) + 12057312

(12)

where 12057312is a deviation function given by

12057312= 11990911199092[12057512+ 12057521(1199091minus 1199092)] (13)

Here 12057512and 12057521are interaction parameters

6 ISRN Physical Chemistry

0

01

02

03

04

05

06

07

08

09

1

0 02 04 06 08 1x1

VE

(cm

3middotm

olminus

1)

Figure 1 Plot of 119881119864 versus 1199091for EA + BEN (◼ 29815 K 998771

30815 K ⧫ 31815 K) PA + BEN (◻ 29815 K 30815 K loz 3185 K)II BA+BEN ( 29815 K times 30815 K + 31815 K) III calculated from(5)

minus09

minus08

minus07

minus06

minus05

minus04

minus03

minus02

minus01

0

0 02 04 06 08 1x1

VE

(cm

3middotm

olminus

1)

Figure 2 Plot of119881119864 versus 1199091for EA +ACT (◼ 29815 K998771 30815 K

⧫ 31815 K) IV PA + ACT (◻ 29815 K 30815 K loz 31815 K) V BA+ ACT ( 29815 K times 30815 K + 31815 K) VI calculated from (5)

Auslander [17] model

1199091(1199091+ 119861121199092) (120578mix minus 120578

1) + 119860211199092(119861211199091+ 1199092) (120578mix minus 120578

2)

= 0

(14)

where 11986112 11986021 and 119861

21are parameters representing binary

interactionsTeja and Rice [18] model

ln (120578mix120576mix) = 1199091ln (12057811205761) + 1199092ln (12057821205762) (15)

minus025

minus02

minus015

minus01

minus005

0

005

01

015

0 01 02 03 04 05 06 07 08 09 1x1

120578E

(cP

)

Figure 3 Plot of 120578119864 versus 1199091for EA + BEN (◼ 29815 K998771 30815 K

⧫ 31815 K) I PA + BEN (◻ 29815 K 30815 K loz 31815 K) II BA +BEN ( 29815 K times 30815 K + 31815 K) III calculated from (6)

0

005

01

015

02

025

03

035

0 01 02 03 04 05 06 07 08 09 1x1

120578E

(cP

)

Figure 4 Plot of 120578119864 versus 1199091for EA + ACT (◼ 29815 K998771 30815 K

⧫ 31815 K) IV PA + ACT (◻ 29815 K 30815 K loz 31815 K) V BA+ ACT ( 29815 K times 30815 K + 31815 K) VI calculated from (6)

where 120576119894= 11988123

119888119894(119879119888119894119872119894)12 for 119894 = 1 or 2 component or the

mixture

119881119862mix =

1

8[1199092

11198811198621

+ 1199092

21198811198622

+ 211990911199092(11988113

1198621+ 11988113

1198622)]

119879119888mix =

1

119881119888mix

[1199092

111987911988811198811198881+ 1199092

211987911988821198811198882

+21199091119909212059312(1198791198881119881119888111987911988821198811198622)12]

(16)

1205781must be evaluated at a temperature 119879(119879

1198881119879119888mix) and 120578

2

at a temperature 119879(1198791198882119879119888mix) 119879 is the system temperature

and 12059312

is an adjustable interaction parameter having avalue unity The interaction parameter has been shown to be

ISRN Physical Chemistry 7

minus600minus500minus400minus300minus200minus100

0100200300400

0 01 02 03 04 05 06 07 08 09 1x1

GE

(Jmiddotm

olminus

1)

Figure 5 Plot of119866119864 versus 1199091for EA + BEN (◼ 29815 K998771 30815 K

⧫ 31815 K) I PA + BEN (◻ 29815 K 30815 K loz 31815 K) II BA +BEN ( 29815 K times 30815 K + 31815 K) III calculated from (7)

0

100

200

300

400

500

600

700

800

900

0 01 02 03 04 05 06 07 08 09 1

GE

(Jmiddotm

olminus

1)

x1

Figure 6 Plot of119866119864 versus 1199091for EA +ACT (◼ 29815 K998771 30815 K

⧫ 31815 K) IV PA + ACT (◻ 29815 K 30815 K loz 31815 K) V BA+ ACT ( 29815 K times 30815 K + 31815 K) VI calculated from (7)

independent of temperature and composition [19 20] Thesubscript 119888 indicates a reduced quantity

Kubendran et al model [21]

ln 120578mix

= 1199091ln 1205781+ 1199092ln 1205782+ 1199091ln1198721

+ 1199092ln1198722minus ln [119909

11198721+ 11990921198722]

minus 230311990911199092[11986112+ 11986212(1199091minus 1199092) + 11986312(1199091minus 1199092)2]

(17)

where 11986112 11986212 and119863

12are binary interaction constants

The observed data on surface tension of binary mixtureswas fitted to the following models available in the literature

Zihao and Jufu model [22]

120590mix =11990911205901

1199091+ 120574121199092

+11990921205902

1199092+ 120574211199091

(18)

where 12057412and 12057421are interaction parameters

minus018

minus016

minus014

minus012

minus01

minus008

minus006

minus004

minus002

0

0 01 02 03 04 05 06 07 08 09 1x1

120590E

(dy

nemiddotcm

minus1)

Figure 7 Plot of 120590119864 versus 1199091for EA + BEN (◼ 29815 K998771 30815 K

⧫ 31815 K) I PA +BEN (◻ 29815 K 30815 K loz 31815 K) V BA +BEN ( 29815 K times 30815 K + 31815 K) VI calculated from (8)

0

02

04

06

08

1

12

14

0 01 02 03 04 05 06 07 08 09 1x1

120590E

(dy

nemiddotcm

minus1)

Figure 8 Plot of 120590119864 versus 1199091for EA +ACT (◼ 29815 K998771 30815 K

⧫ 31815 K) I PA + ACT (◻ 29815 K 30815 K loz 31815 K) V BA +ACT ( 29815 K times 30815 K + 31815 K) VI calculated from (8)

Rice and Teja model [23]

120590mixΦmix

= 11990911205901Φ1+ 11990921205902Φ2 (19)

whereΦ119894= 11988123

119888119894119879119888119894for 119894 = 1 or 2 component or the mixture

119881119862mix =

1

8[1199092

11198811198621

+ 1199092

21198811198622

+ 211990911199092(11988113

1198621+ 11988113

1198622)]

119879119888mix =

1

119881119888mix

[1199092

111987911988811198811198881+ 1199092

211987911988821198811198882

+21199091119909212059312(1198791198881119881119888111987911988821198811198622)12]

(20)

Here1205901is to be evaluated at a temperature =119879 (119879

1198881119879119888mix)

and 1205902at a temperature = 119879(119879

1198882119879119888mix) 119879 is the system

temperature and 12059312

is an adjustable interaction parameterhaving a value around unity The interaction parameterhas been shown to be independent of temperature andcomposition [19 20] The subscript 119888 indicates a reducedquantity

8 ISRN Physical Chemistry

Table 4 Coefficients of (9) and standard deviation (SD) determined by the method of least squares

(a) System ethanoic acid (1) + benzene (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198600

34057 minus20367 minus07083 minus01438 33546 minus21904 minus06270 minus01148 32885 minus15821 minus04091 minus010211198601

01473 minus57094 minus03870 01166 02460 minus91975 minus03834 00811 03229 875912 01482 006711198602

05936 106026 01385 00069 02239 225375 03941 minus00229 00329 460296 10281 00052SD 00046 09097 00004 00024 00066 150513 00029 00019 00106 209443 00006 00025

(b) System propanoic acid (1) + benzene (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198600

15593 minus81753 minus02753 minus03333 14645 minus90881 minus02545 minus02841 13824 minus59558 minus00305 minus029061198601

minus01945 406993 00821 01821 minus02298 631847 01348 01516 minus02524 192695 04671 010261198602

minus05306 113763 03751 minus01745 minus04702 165371 04651 minus02454 minus04703 190034 05546 minus00278SD 00025 49749 00002 00022 00033 76158 00001 00032 00035 139527 00011 00023

(c) System butanoic acid (1) + benzene (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198600

13265 minus76641 minus02993 minus06355 09972 minus47911 minus01557 minus05632 09699 143798 03753 minus049961198601

minus00839 352158 00682 02170 minus02319 723101 02175 02762 minus02740 538149 02511 021611198602

02549 127188 05053 minus02678 minus02829 114488 04437 minus02589 minus04747 minus10975 minus02301 minus01274SD 00025 79049 00011 00037 00026 104486 00005 00045 00011 74136 00001 00019

(d) System ethanoic acid (1) + acetophenone (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198600

minus11887 177318 06988 35069 minus15271 230241 08237 34363 minus17228 314469 09608 475151198601

minus00156 318334 minus00168 minus01138 00861 643012 01139 minus01918 00136 795337 01274 minus043021198602

minus02739 minus46906 minus00924 minus24741 minus02552 minus51471 minus01390 11646 minus09039 60009 00699 04843SD 00078 02584 00001 00368 00107 05067 00001 00249 00077 28808 00001 00421

(e) System propanoic acid (1) + acetophenone (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 mol-1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198600

minus21586 157504 07842 32115 minus25740 226612 09866 35476 minus29319 333655 12061 363711198601

minus04770 899121 minus01441 minus41671 minus04158 224961 minus01081 minus48025 minus04622 412138 minus00243 minus543451198602

minus11862 159141 00621 08986 minus18773 440569 01263 16488 minus29319 636631 00692 37051SD 00057 04763 00001 00296 00046 17711 00001 00289 minus04622 25552 00001 00371

(f) System butanoic acid (1) + acetophenone (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198600

minus21062 609099 03895 25197 minus25541 168349 09184 27061 minus30827 301495 12999 291311198601

minus01445 198592 00009 19580 minus01158 820211 00129 18902 minus01071 minus64428 minus03272 18747

ISRN Physical Chemistry 9

(f) Continued

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198602

minus04769 minus78407 minus00556 06841 minus11813 104424 minus00028 09832 minus10573 860142 02081 08359SD 00019 00827 00001 00267 00049 50118 00029 00194 00031 81692 00031 00183

Empirical two-constant model [24]

120590mix = 11990911205901+ 11990921205902+ 11990911199092[1198601015840+ 1198611015840(1199091minus 1199092)] (21)

where 1198601015840 and 1198611015840 are binary interaction parametersThe model parameters of (11) and (13)ndash(21) were deter-

mined using nonlinear regression technique and the esti-mated values are reported in Table 5

4 Discussion

The values of 119881119864 as illustrated in Figures 1 and 2 are

positive for the entire concentration range at all the threetemperatures for the systems EA + BEN PA + BEN andBA + BEN and negative for the remaining three systemsAbout 5 more negative or less positive 119881119864 values at highertemperatures for all the systems may be due to increasedpopulation of acid monomers to enter into the hetero-intermolecular interactions

The positive and negative 119881119864 values may be explained byconsidering the following three steps equilibria accompany-ing the mixing process as proposed by Lark and Banipal [2]

119863 minus119872 lArrrArr 119863 +119872 (22)

119863 lArrrArr 2119872 (23)

119872+ II lArrrArr 119872mdashIInd component (BENorACT) (24)

where 119863 and 119872 denote a dimer and a monomer of the acidunder questionThe first process is accompanied with a largevolume increase in the right direction the second is isochoricthat is the volume of the dimer is assumed to be equal to twicethe value of themonomer [4 5] the third step is accompaniedwith large contraction in case of ACT and expansion in caseof BEN So the addition of ACT or BEN to anyone of theacids first creates monomers by the first two steps resulting inexpansion In the third step stronger heteromolecular dipole-dipole interactions result in the observed negative 119881119864 in caseof CA + ACT and positive119881119864 values in the case of CA + BENsystem due to induced dipole-dipole interactions Thereforethe third step is accompanied with contraction in volume incase of ACT and expansion in case of BEN

The pK119886values of EA PA and BA are 476 488 and

482 respectively It is expected that the order of dimerizationconstants of various acids would increase in the same orderThe increasing dimerization constant would lead to a smallernumber of available monomers and thus to a smaller volumeincrease as described by (22)

However the observed order of 119881119864 for the CA + BENsystem is as follows BA gt PA gt EA (Table 6) This showsthat in case of BEN there are strong acid-solvent interactionswhich govern the magnitude and sign of119881119864 which increasesas the inductive effect of alkyl chain of the acid as isalso observed by Lark et al [25] Similar results were alsoobtained by Venkateswarlu and Raman [26] as the positiveexcess volumes of 12-dichloroethane and 12-dibromoethanewith three acids observe the following order BA gt PAgt EA which is the same as discussed above that is theincrease in chain length of acid contributes to the decreasein excess volume The large negative 119881119864 values in the caseof CA + ACT mixture arise due to depolymerization of acidaccompanied with strong hydrogen-bonded heterocomplexformation However in CA + ACT system the 119881

119864 valuesfollow the order PA gt BA gt EA as was also observed by Larket al [25] in CA + MEOH system

The data presented in Figures 3 and 4 reveal that excessviscosity (120578119864) is positive for the systems EA+ACT PA+ACTand BA + ACT and is negative for the systems EA + BENPA + BEN and BA + BEN at 29815 K The algebraic positivevalues of 120578119864 may be represented in the following order PA+ ACT gt EA + ACT gt BA + ACT gt BA + BEN gt PA +BEN gt EA + BEN The sign and magnitude of 120578119864 dependon the combined effect of the factors such as molecular sizeshape and intermolecular forces The positive value of 120578119864for the CA + ACT system suggests that the viscosity of themixture is higher than that of the pure components and hencethe fluidity of the mixture is low This indicates the presenceof a specific interaction such as the formation of charge-transfer complex between unlike molecules The negativevalue of 120578119864 in the systems EA + BEN PA + BEN and BA+ BEN suggests the mutual loss of a specific interaction inlike molecules that outweigh the specific interaction betweenunlike molecules The positive values of 120578119864 increase with theincrease in temperature in all these systems The 119866119864 valuesalmost observe the similar trend as observed by 120578119864 as shownin Figures 5 and 6

The variation of Grunberg andNissan parameter ldquo119889rdquo withcomposition of a particular mixture is not largeThe values ofldquo119889rdquo are negative for CA + BEN system and positive for CA +ACT system formost of the concentration rangeThe positivevalues of ldquo119889rdquo for CA + ACT system show that CA formsan intermolecular complex with ACT in the liquid phaseThe values of ldquo119889rdquo increase with the increase in temperaturein all the systems showing that the interactions between thecomponents increase with the increase in temperature Eventhe negative values of ldquo119889rdquo for CA + BEN system change

10 ISRN Physical Chemistry

Table5Interactionparameterparam

etersfor

vario

usmod

elsandsta

ndarddeviation(SD)d

etermined

byleastsqu

arem

etho

d

(a)

Mod

elCon

stants

Ethano

icacid

(1)+

benzene(2)

Prop

anoica

cid(1)+

benzene(2)

Butano

icacid

(1)+

benzene(2)

29815K

30815K

31815K

29815K

30815K

31815K

29815K

30815K

31815K

McA

lliste

r(11)

12057812

06336

05291

064

0808286

07390

08245

10808

09825

09409

12057821

05943

05347

03980

06163

05221

04268

07227

06129

064

06SD

000

9200161

00289

00105

00128

00128

00146

00108

00088

Heric(13)

12057512

minus08692

minus08380

minus04591

minus02946

minus02916

00521

minus02445

minus01271

04815

12057521

minus02173

minus03069

04582

01763

02640

07480

01390

02814

02095

SD01357

02015

03185

01524

02269

03356

03258

02169

02614

Krish

nanandLadd

ha(17)

11986112

09275

09606

07031

03620

03859

00528

03173

01913

minus05399

11986212

02536

03832

minus03062

minus01643

minus02472

minus07294

minus01430

minus02849

minus02063

11986312

minus04145

minus08715

minus17

348

minus04654

minus06512

minus07241

minus05103

minus044

99040

99SD

01468

01225

00701

00559

00502

00629

00595

00378

01101

Ausla

nder

(14)

11986112

minus00168

minus00901

00523

1840

414

898

19109

39322

25479

01292

11986021

64585

82007

73214

65731

65502

56764

99261

60937

02803

11986121

044

0902966

minus00996

00997

00271

minus02735

00896

00999

17186

SD000

4100116

00121

000

4300051

00038

00074

000

4800010

TejaandRice

(15)

12059312

11

11

11

11

1SD

00306

00224

00132

00101

00083

00131

00056

00139

00279

ZihaoandJufu

(18)

12057412

09377

09099

08985

09431

09413

09016

09343

08178

08038

12057421

10684

11008

11162

10624

10636

11114

10709

12259

12473

SD00081

00055

000

4900252

00256

00071

00858

00193

00111

Two-parameter

mod

el(21)

1198601015840

00302

00304

00305

minus00053

minus00056

minus000

69minus00121

minus00118

00079

1198611015840

00072

000

6100057

000

6100052

00038

000

67000

9600079

SD00023

00019

00024

00055

00079

00023

00088

00088

000

41

Rice

andTeja(19)

12059312

11

11

11

11

1SD

006

4300128

00039

01423

01183

01183

02210

01862

01874

(b)

Mod

elCon

stants

Ethano

icacid

(1)+

acetop

heno

ne(2)

Prop

anoica

cid(1)+

acetop

heno

ne(2)

Butano

icacid

(1)+

acetop

heno

ne(2)

29815K

30815K

31815K

29815K

30815K

31815K

29815K

30815K

31815K

McA

lliste

r(11)

12057812

16072

14795

13403

15061

14196

13377

17139

16209

13511

12057821

16910

14186

11794

17024

15097

13028

17471

16208

15934

SD000

06000

06000

6900034

00071

00082

00013

00034

00120

Heric(13)

12057512

07141

09027

12314

06855

09560

13476

02817

07089

12371

12057521

01271

02502

03406

00584

01214

01976

00134

004

17minus02198

SD03671

01578

02654

03963

01814

02120

06821

03761

00201

Krish

nanandLadd

ha(17)

11986112

minus07161

minus09048

minus11986

minus06742

minus09286

minus13101

minus02854

minus07014

minus11893

11986212

minus01293

minus02525

minus03052

minus00511

minus01036

minus01733

minus00147

minus00392

02360

11986312

00149

00160

minus02399

minus00803

minus01955

minus02679

00262

minus00528

minus03361

SD03071

03478

04162

02904

03731

04819

01301

03097

04936

Ausla

nder

(14)

11986112

minus00265

minus08582

minus31960

minus01986

minus09382

minus33948

minus19

043

minus78

002

minus210019

11986021

15819

206

6512

531

05603

06151

09108

12163

10309

05851

ISRN Physical Chemistry 11

(b)Con

tinued

Mod

elCon

stants

Ethano

icacid

(1)+

acetop

heno

ne(2)

Prop

anoica

cid(1)+

acetop

heno

ne(2)

Butano

icacid

(1)+

acetop

heno

ne(2)

29815K

30815K

31815K

29815K

30815K

31815K

29815K

30815K

31815K

11986121

12206

1344

345532

33567

47933

60789

28998

95205

3913

08SD

000

02000

080002

000

02000

05000

01000

0100026

00029

TejaandRice

(15)

12059312

105

105

105

105

105

105

105

105

105

SD00284

00070

00146

00029

00324

00411

00826

00137

00178

ZihaoandJufu

(18)

12057412

08333

09319

08198

04586

04317

03288

12367

12653

13189

12057421

1046

809544

10082

15047

15256

04304

08074

07899

07593

SD00779

00395

004

0500474

004

6502786

01261

01209

01292

Two-parameter

mod

el(21)

1198601015840

03968

04167

04557

03096

03329

03509

02215

02365

02478

1198611015840

006

4300865

00764

minus00738

minus00893

minus01025

00989

01033

01075

SD006

6600599

004

0200298

004

0300983

00493

00557

00513

Rice

andTeja(19)

12059312

105

105

105

105

105

105

105

105

105

SD01802

01131

00764

02090

01756

01678

01604

01024

01126

12 ISRN Physical Chemistry

Table 6 Comparison of excess volume 119881119864 cm3 molminus1 of equimolarmixture at 29815 K

Component II Component IEthanoic acid Propanoic acid Butanoic acid

Benzene 08514 03898 03316Acetophenone minus02972 minus05396 minus05266

minus03minus025

minus02minus015

minus01minus005

0005

01015

02025

minus600 minus400 minus200 0 200 400 600GE(Jmiddotmolminus1)

ln (H

)

Figure 9 Plot of ln119867 versus 119866119864 (◼ EA + BEN ⧫ PA + BEN 998771 BA+BEN times EA + ACT PA + ACT + BA + ACT) at 29815 K

their sign from negative to positive with the increase intemperature from 29815 to 31815 K

According to Hildebrand [27] free volume is necessaryfor flow and then shrinkage on mixing (which would reducethe free volume) would be associated with increase inviscosity of the system If 119867 is defined as 120578120578119900 where 120578 isthe experimental viscosity of the mixture and 120578

119900 is the idealviscosity calculated using

120578119900= 1199091ln 1205781+ 1199092ln 1205782 (25)

then this quantity could be related to free volume (119881119900) of thesolution according to Stairs [28] by the following equation

119867minus1

=1

119881119900(119881119900+ 119881119864) (26)

According to (26) a plot of 119867minus1 versus 119881119864 should belinear However when119867minus1 is plotted against 119881119864 a nonlinearplot was obtained in the present study However when ln119867is plotted against 119866119864 a single straight line with a nonzerointercept was obtained in Figure 9 This type of result is notunexpected because the expression for119866119864 takes into accountboth viscosity and volume Also in all these systems positive120578119864 and negative 119881

119864 and vice versa have been observedfor most of the concentration range This behaviour wasalso observed by Palepu et al [29] in binary mixtures o-chlorophenol with substituted anilines

From the literature no clear cut theoretical basis hasbeen proposed for the prediction of nonideal behaviour ofthe binary mixtures in terms of their 120590119864 values Howeverrecently Papaioannou and Panayiotou [30] have correlatedthe sign of 120590119864 values with 120578119864 values and the deviations fromRaoultrsquos law Their observation reveals the following

(1) Corresponding to the positive enthalpies of mixing(119867119864) positive volume of mixing (119881

119864) and positive

deviations from Raoultrsquos law 120590119864 values have beenobserved to be negative

(2) Corresponding to the negative enthalpies of mixing(119867119864) negative volume of mixing (119881119864) and negative

deviations from Raoultrsquos law 120590119864 values have beenobserved to be positive As shown in Figures 7 and8 the excess surface tension (120590119864) values are negativefor CA + BEN system and are positive for CA +ACT system The positive values of excess surfacetension (120590119864) increase with the rise in temperaturein all systems The negative value of 120590119864 in CA +BEN system is due to the predominance of the fol-lowing factors homopolymer complex formation andthe tendency of the component with lower surfacetension to be adsorbed at the interface But in CA+ ACT system complex formed are block copolymer[CA]119899[ACT]

119898and also dipole-dipole interactions

between carboxylic functional group of CA and car-bonyl group of ACT in the bulk phase rather than inthe interface

The interaction parameters of various models used canchange with temperature but not with composition but theinteraction parameter 120593

12in Rice and Teja and Teja and Rice

models based on the theory of corresponding states has beenshown to be independent of temperature and composition[19 20] It is observed that the models of McAllister Aus-lander and Teja and Rice fit the experimental viscosity datavery well as compared to the Heric and Krishnan and Laddhamodels Surface tensiondata iswell predicted by the empiricaltwo-parameter model [21] as well as by Rice and Teja modelThe Zihao amp Jufu model based on the work of Hildebrandamp Scott [31] also predicts satisfactory results for the systemsstudied

Acknowledgment

The author (R Ahluwalia) is grateful to CSIR India for theaward of SeniorResearch Fellowship to carry out this researchwork successfully

References

[1] R Ahluwalia R KWanchoo and J L Vashisht ldquoSome physicalproperties of binary liquid systems (ethanoic acid or propanoicacid or butanoic acid + ethanenitrile)rdquo Physics and Chemistry ofLiquids vol 29 pp 87ndash96 1995

[2] B S Lark and T S Banipal ldquoExcess volumes and excessenthalpies of acetic and its methyl substituted acids + acetoni-trilerdquo Canadian Journal of Chemistry vol 63 pp 3269ndash32751985

[3] M C S Subha and S Brahmaji Rao ldquoThermodynamic prop-erties of binary acid-base mixturesrdquo Journal of Chemical andEngineering Data vol 33 no 2 pp 104ndash106 1988

[4] H E Affsprung G H Findenegg and F Kohler ldquoThe volu-metric and dielectric behaviour of acetic acid in mixtures with

ISRN Physical Chemistry 13

nonpolar liquidsrdquo Journal of the Chemical Society A pp 1364ndash1370 1968

[5] G Bolat D Sutiman and G Lisa ldquoExperimental densities ofbinary mixtures acetic acid with benzene at several tempera-turesrdquo AIP Conference Proceedings vol 1332 no 1 p 270 2011

[6] R K Wanchoo J Narayan G K Raina and V K RattanldquoExcess properties of (2-propanal + ethylacetate or benzene)binary liquid mixturerdquo Chemical Engineering Communicationsvol 81 no 1 pp 145ndash156 1989

[7] J A Riddick andW B Bunger Techniques of Chemistry vol IIWiley-Interscience New York NY USA 1970

[8] A Weissberger Techniques of Organic Chemistry InterscienceNew York NY USA 3rd edition 1965

[9] B P Levitt Findlayrsquos Practical Physical Chemistry LongmanLondon UK 9th edition 1973

[10] G C Franchini A Marchetti M Tagliazucchi L Tassi andG Tosi ldquoEthane-12-diol-2-methoxyethanol solvent systemDependence of the relative permittivity and refractive indexon the temperature and composition of the binary mixturerdquoJournal of the Chemical Society Faraday Transactions vol 87no 16 pp 2583ndash2588 1991

[11] L Grunberg and A H Nissan ldquoMixture law for viscosityrdquoNature vol 164 no 4175 pp 799ndash800 1949

[12] R C Reid J M Prausnitz and T K Sherwood The Propertiesof Gases and Liquids McGraw Hill New York NY USA 3rdedition 1958

[13] O Redlich and A T Kister ldquoAlgebraic representation ofthermodynamic properties and the classification of solutionsrdquoIndustrial amp Engineering Chemistry vol 40 pp 345ndash348 1948

[14] A B K Stevanovic G M Babic M Lj Kijevcanin S PSerbanoviv and D K Grozdanic ldquoCorrelation of the liquidmixture viscositiesrdquo Journal of the Serbian Chemical Society vol77 no 8 pp 1083ndash1089 2012

[15] R L McAllister ldquoThe viscosity of liquid mixturesrdquo AIChEJournal vol 6 pp 427ndash431 1960

[16] E L Heric ldquoOn the viscosity of ternary mixturesrdquo Journal ofChemical and Engineering Data vol 11 no 1 pp 66ndash68 1966

[17] G Auslander ldquoThe properties of mixtures part Irdquo BritishChemical Engineering vol 9 pp 610ndash618 1964

[18] A S Teja and P Rice ldquoGeneralized corresponding statesmethod for the viscosities of liquid mixturesrdquo Industrial andEngineering Chemistry Fundamentals vol 20 no 1 pp 77ndash811981

[19] A S Teja and P Rice ldquoThe measurement and prediction of theviscosities of somebinary liquidmixtures containing n-hexanerdquoChemical Engineering Science vol 36 no 1 pp 7ndash10 1981

[20] A S Teja and P Rice ldquoA generalized corresponding statesmethod for the prediction of the thermal conductivity of liquidsand liquid mixturesrdquo Chemical Engineering Science vol 36 no2 pp 417ndash422 1981

[21] T R Kubendran S P Palaniappan M R V Krishnan and GS Laddha ldquoViscosities of binary and ternary liquid mixturesinvolving acetone carbon-tetrachloride and benzenerdquo IndianJournal of Technology vol 24 no 1 pp 22ndash25 1986

[22] W Zihao and F Jufu ldquoSurface Tension of Binary liquid mix-turesrdquo in Proceedings of theJoint Meeting of Chemical Industryand Engineering Society of China and AIChE p 143 BeijingChina September 1982

[23] P Rice and A S Teja ldquoA generalized corresponding-statesmethod for the prediction of surface tension of pure liquids and

liquidmixturesrdquo Journal of Colloid and Interface Science vol 86no 1 pp 158ndash163 1982

[24] R K Wanchoo and J Narayan ldquoSome physical propertiesof binary liquid systems (2-butanone+n-propionic acid or n-butyric acid)rdquo Physics and Chemistry of Liquids vol 27 no 3pp 159ndash167 1994

[25] B S Lark S Singh S K Aggarwal and S Makkar ldquoExcess vol-umes of n-butyric acid + various polar and nonpolar solventsrdquoJournal of Chemical and Engineering Data vol 30 no 4 pp467ndash469 1985

[26] P Venkateswarlu and G K Raman ldquoExcess volumesof ethanoic propanoic and butanoic acids with 12-dichloroethane and 12-dibromoethanerdquo Journal of Chemicaland Engineering Data vol 30 no 2 pp 180ndash181 1985

[27] J HHildebrand ldquoMotions ofmolecules in liquids viscosity anddiffusivityrdquo Science vol 174 no 4008 pp 490ndash493 1971

[28] R A Stairs ldquoViscosity of binary solutions of polar liquidsrdquoCanadian Journal of Chemistry vol 58 pp 296ndash301 1980

[29] R Palepu J Oliver and D Campbell ldquoThermodynamic andtransport properties of o-chlorophenol with aniline and N-alkylanilinesrdquo Journal of Chemical and Engineering Data vol30 no 3 pp 355ndash360 1985

[30] D Papaioannou and C G Panayiotou ldquoSurface tensions andrelative adsorptions in hydrogen-bonded systemsrdquo Journal ofChemical and EngineeringData vol 39 no 3 pp 457ndash462 1994

[31] JHHildebrand andR L ScottTheSolubility of NonelectrolytesDover New York NY USA 3rd edition 1964

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 3: Research Article Thermophysical Properties of Binary ...downloads.hindawi.com/archive/2013/612837.pdf · ISRN Physical Chemistry T : Densities ( ,kgm) of the pure components at

ISRN Physical Chemistry 3

Table 2 Mole fraction of first component 1199091 density viscosity and surface tension for various systems

(a) System ethanoic acid (1) + benzene (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 K

1199091

10minus3 120588kgmminus3 120578 mPa s 103 120590

Nmminus1119889

10minus3 120588kgmminus3 120578 mPa s 103 120590

Nmminus1119889

10minus3 120588kgmminus3 120578 mPa s 103 120590

Nmminus1119889

00000 08782 06035 2821 mdash 08669 05294 2675 mdash 08560 04588 2524 mdash01465 08899 06157 2802 minus05760 08792 05599 2663 minus02350 08685 04941 2520 minus0008002786 09035 06165 2789 minus07652 08926 05451 2654 minus06631 08822 04746 2518 minus0544103984 09181 06258 2773 minus08931 09073 05380 2646 minus09022 08967 04682 2516 minus0769205074 09335 06517 2761 minus09683 09226 05528 2639 minus10121 09119 04941 2515 minus0746506071 09496 06964 2751 minus09991 09387 05906 2633 minus10263 09279 05477 2514 minus0564106986 09666 07587 2741 minus09972 09556 06470 2628 minus09831 09449 06167 2513 minus0299107829 09845 08364 2733 minus09733 09737 07158 2623 minus09122 09629 06859 2513 0000908607 10032 09265 2725 minus09330 09924 07904 2618 minus08450 09817 07418 2512 0320909329 10229 10263 2717 minus08784 10120 08647 2614 minus08561 10012 07728 2512 0677710000 10437 11310 2710 mdash 10325 09487 2610 mdash 10213 07667 2511 mdash

(b) System propanoic acid (1) + benzene (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 K

1199091

10minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

11988910minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

11988910minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

119889

00000 08782 06035 2821 mdash 08669 05294 2675 mdash 08560 04588 2524 mdash01164 08877 06299 2779 minus01880 08766 05533 2638 minus01531 08658 04809 2495 minus0085102287 08974 06452 2742 minus03151 08863 05619 2606 minus03290 08756 04889 2469 minus0262003254 09063 06617 2712 minus03742 08954 05722 2580 minus04092 08847 05081 2447 minus0247104415 09178 06954 2676 minus03831 09071 05995 2549 minus04180 08965 05483 2422 minus0136105425 09288 07408 2646 minus03430 09181 06404 2523 minus03583 09075 05992 2401 0027306401 09403 07985 2617 minus02711 09295 06944 2497 minus02530 09189 06572 2381 0227107345 09520 08638 2589 minus01764 09413 07553 2473 minus01171 09307 07128 2362 0452508181 09629 09242 2565 minus00772 09522 08095 2452 00241 09416 07516 2345 0679709143 09761 09886 2537 00556 09654 08616 2427 02091 09547 07697 2327 1005310000 09882 10305 2513 mdash 09774 08858 2407 mdash 09666 07412 2310 mdash

(c) System butanoic acid (1) + benzene (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 K

1199091

10minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

11988910minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

11988910minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

119889

00000 08782 06035 2821 mdash 08669 05294 2675 mdash 08560 04588 2524 mdash00965 08844 06554 2784 minus00821 08737 05723 2643 minus00502 08629 04944 2499 0044201938 08909 07002 2752 minus02023 08806 06046 2616 minus02071 08699 05501 2477 0250302918 08978 07427 2720 minus03081 08877 06437 2589 minus02583 08772 06162 2456 0390703906 09049 07987 2691 minus03482 08949 06954 2565 minus02540 08846 06849 2437 0478304902 09124 08763 2663 minus03304 09026 07645 2542 minus02031 08923 07501 2419 0526605906 09202 09788 2635 minus02691 09105 08516 2520 minus01171 09003 08078 2401 046006917 09279 11049 2608 minus01782 09186 09534 2497 minus00074 09085 08558 2384 0541307937 09360 12480 2581 minus00671 09268 10620 2475 01182 09169 08944 2367 0517008964 09444 13954 2555 00573 09351 11645 2453 02564 09253 09262 2351 0475410000 09533 15283 2531 mdash 09434 12421 2433 mdash 09335 09562 2335 mdash

4 ISRN Physical Chemistry

(d) System ethanoic acid (1) + acetophenone (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 K

1199091

10minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

11988910minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

11988910minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

119889

00000 10241 16589 3874 mdash 10156 13469 3767 mdash 10069 10082 3628 mdash

01852 10279 16468 3698 04216 10196 13674 3612 05305 10113 10954 3492 08861

03384 10309 16127 3553 04529 10228 13692 3457 06030 10139 11265 3359 09093

04672 10334 15613 3419 04753 10250 13465 3314 06565 10161 11242 3227 09515

05770 10357 14993 3283 04912 10269 13048 3184 06984 10179 11006 3100 10064

06717 10374 14329 3162 05028 10284 12511 3066 07329 10192 10622 2977 10707

07542 10393 13662 3055 05111 10299 11908 2960 07616 10205 10136 2859 11427

08268 10406 13014 2941 05166 10306 11282 2863 07860 10215 09577 2768 12224

08911 10419 12403 2852 05206 10317 10659 2776 08071 10221 08969 2674 13091

09485 10432 11834 2781 05239 10324 10057 2696 08245 10217 08328 2595 14040

10000 10437 11310 2710 mdash 10325 09487 2610 mdash 10213 07667 2511 mdash

(e) System propanoic acid (1) + acetophenone (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 K

1199091

10minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

11988910minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

11988910minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

119889

00000 10241 16589 3874 mdash 1 0156 13469 3767 mdash 10069 10082 3628 mdash

01485 10234 16616 3755 05718 10155 14078 3660 08421 10071 11222 3546 12083

02818 10211 16244 3595 05591 10132 14109 3505 08131 10047 11734 3393 11780

04022 10184 15657 3423 05559 10102 13815 3332 08065 10016 11826 3218 11781

05113 10155 14956 3261 05594 10070 13330 3160 08161 09982 11627 3045 12000

06108 10123 14199 3097 05689 10036 12730 2994 08395 09947 11217 2882 12302

07019 10087 13417 2952 05831 09999 12053 2848 08748 09908 10651 2740 12044

07855 10046 12630 2820 06014 09956 11318 2723 09211 09862 09965 2622 13648

08626 09999 11846 2710 06236 09905 10538 2605 09795 09808 09184 2514 14520

09339 09945 11069 2609 06494 09845 09718 2505 10520 09743 08326 2413 15548

10000 09882 10305 2513 mdash 09774 08858 2407 mdash 09666 07412 2310 mdash

(f) System butanoic acid (1) + acetophenone (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 K

1199091

10minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

11988910minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

11988910minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

119889

00000 10241 16589 3874 mdash 10156 13469 3767 mdash 10069 10082 3628 mdash

01238 10192 16809 3721 02147 10114 14359 3620 06827 10029 11843 3489 15446

02412 10135 16949 3581 02254 10057 14832 3482 06336 09975 12710 3355 13354

03528 10073 16994 3447 02323 09993 15199 3348 06545 09912 13134 3228 12401

04588 10007 16943 3319 02364 09925 15224 3220 06429 09844 13145 3104 11663

05598 09937 16803 3190 02382 09855 15164 3093 06650 09772 12913 2983 11244

06561 09864 16587 3063 02379 09781 14854 2967 06693 09696 12499 2860 11067

07480 09788 16311 2936 02358 09703 14423 2840 06845 09616 11897 2734 10885

08357 09708 15991 2808 02318 09621 13868 2713 07058 09529 11232 2610 11087

09197 09623 15644 2679 02269 09531 13154 2581 06884 09436 10526 2480 12427

10000 09533 15283 2531 mdash 09434 12421 2433 mdash 09335 09562 2335 mdash

ISRN Physical Chemistry 5

Table 3 Coefficients and standard deviation (SD) of (3)

(a) System ethanoic acid (1) + benzene (2)

Property 1198860

1198861

1198870

1198871

1198872

1198873

SD10minus3 120588 kgmminus3 00119 minus00023 1277241 256751 15885 260451 00005120578 mPa s 595012 minus00292 380928 153389 minus915172 1620792 00098103 120590 Nmminus1 152321 minus00092 788979 minus64061 54754 minus31067 00787

(b) System propanoic acid (1) + benzene (2)

Property 1198860

1198861

1198870

1198871

1198872

1198873

SD10minus3 120588 kgmminus3 00646 minus00023 238828 41347 20768 02422 00004120578 mPa s 85892 minus00253 840671 minus512057 2899852 minus917128 00121103 120590 Nmminus1 673803 minus00098 2189691 minus509015 144385 minus50172 00531

(c) System butanoic acid (1) + benzene (2)

Property 1198860

1198861

1198870

1198871

1198872

1198873

SD10minus3 120588 kgmminus3 00075 minus00022 1977351 310052 53648 00082 00004120578 mPa s 11224 minus00039 09317 09135 10511 09013 01174103 120590 Nmminus1 407458 minus00097 3455491 minus832693 356763 minus125341 00789

(d) System ethanoic acid (1) + acetophenone (2)

Property 1198860

1198861

1198870

1198871

1198872

1198873

SD10minus3 120588 kgmminus3 00133 minus00018 1354120 53912 05035 minus12567 00008120578 mPa s 55360 minus00078 10852 08055 01232 06509 03807103 120590 Nmminus1 198974 minus00061 4664421 minus1811751 minus1031812 434471 00814

(e) System propanoic acid (1) + acetophenone (2)

Property 1198860

1198861

1198870

1198871

1198872

1198873

SD10minus3 120588 kgmminus3 00247 minus00018 723523 minus12922 minus00496 minus39453 00011120578 mPa s 478863 minus00308 519435 325293 minus960902 333408 00217103 120590 Nmminus1 826053 minus00066 1292180 minus399785 minus999945 644734 00998

(f) System butanoic acid (1) + acetophenone (2)

Property 1198860

1198861

1198870

1198871

1198872

1198873

SD10minus3 120588 kgmminus3 00219 minus00017 805712 minus56413 minus43236 minus10553 00005120578 mPa s 4062351 minus00313 702532 697560 minus967418 167550 00271103 120590 Nmminus1 714271 minus00067 1561280 minus996785 263214 minus170516 00658

these parameters along with standard deviation is reportedin Table 4 Consider

SD = radicsum (observed minus calculated)2

119873 minus 1 (10)

where119873 is the total number of experimental pointsStevanovic et al [14] have recently compared the avail-

able correlation models for liquid mixture viscosities oforganic compounds Amongst the available correlations forpredicting the binary liquid mixture viscosity the presentexperimental binary viscosity data was fitted to the followingfive correlations

McAllisterrsquos [15] model

ln 120578mix = 1199093

1ln 1205781+ 1199093

2ln 1205782

+ 31199092

11199092ln 12057812+ 311990911199092

2ln 12057821

minus ln [1199091+ 1199092

2(1198722

1198721

)] + 1199092

11199092ln [2

3+ (

1198722

31198721

)]

+ 311990911199092

2ln [1

3+ (

21198722

31198721

)] + 1199093

2ln(1198722

1198721

)

(11)

where 12057812and 12057821are interaction parameters

Heric [16] model

ln 120578mix = 1199091ln 1205781+ 1199092ln 1205782+ 1199091ln1198721

+ 1199092ln1198722minus ln (119909

1ln1198721+ 1199091ln1198722) + 12057312

(12)

where 12057312is a deviation function given by

12057312= 11990911199092[12057512+ 12057521(1199091minus 1199092)] (13)

Here 12057512and 12057521are interaction parameters

6 ISRN Physical Chemistry

0

01

02

03

04

05

06

07

08

09

1

0 02 04 06 08 1x1

VE

(cm

3middotm

olminus

1)

Figure 1 Plot of 119881119864 versus 1199091for EA + BEN (◼ 29815 K 998771

30815 K ⧫ 31815 K) PA + BEN (◻ 29815 K 30815 K loz 3185 K)II BA+BEN ( 29815 K times 30815 K + 31815 K) III calculated from(5)

minus09

minus08

minus07

minus06

minus05

minus04

minus03

minus02

minus01

0

0 02 04 06 08 1x1

VE

(cm

3middotm

olminus

1)

Figure 2 Plot of119881119864 versus 1199091for EA +ACT (◼ 29815 K998771 30815 K

⧫ 31815 K) IV PA + ACT (◻ 29815 K 30815 K loz 31815 K) V BA+ ACT ( 29815 K times 30815 K + 31815 K) VI calculated from (5)

Auslander [17] model

1199091(1199091+ 119861121199092) (120578mix minus 120578

1) + 119860211199092(119861211199091+ 1199092) (120578mix minus 120578

2)

= 0

(14)

where 11986112 11986021 and 119861

21are parameters representing binary

interactionsTeja and Rice [18] model

ln (120578mix120576mix) = 1199091ln (12057811205761) + 1199092ln (12057821205762) (15)

minus025

minus02

minus015

minus01

minus005

0

005

01

015

0 01 02 03 04 05 06 07 08 09 1x1

120578E

(cP

)

Figure 3 Plot of 120578119864 versus 1199091for EA + BEN (◼ 29815 K998771 30815 K

⧫ 31815 K) I PA + BEN (◻ 29815 K 30815 K loz 31815 K) II BA +BEN ( 29815 K times 30815 K + 31815 K) III calculated from (6)

0

005

01

015

02

025

03

035

0 01 02 03 04 05 06 07 08 09 1x1

120578E

(cP

)

Figure 4 Plot of 120578119864 versus 1199091for EA + ACT (◼ 29815 K998771 30815 K

⧫ 31815 K) IV PA + ACT (◻ 29815 K 30815 K loz 31815 K) V BA+ ACT ( 29815 K times 30815 K + 31815 K) VI calculated from (6)

where 120576119894= 11988123

119888119894(119879119888119894119872119894)12 for 119894 = 1 or 2 component or the

mixture

119881119862mix =

1

8[1199092

11198811198621

+ 1199092

21198811198622

+ 211990911199092(11988113

1198621+ 11988113

1198622)]

119879119888mix =

1

119881119888mix

[1199092

111987911988811198811198881+ 1199092

211987911988821198811198882

+21199091119909212059312(1198791198881119881119888111987911988821198811198622)12]

(16)

1205781must be evaluated at a temperature 119879(119879

1198881119879119888mix) and 120578

2

at a temperature 119879(1198791198882119879119888mix) 119879 is the system temperature

and 12059312

is an adjustable interaction parameter having avalue unity The interaction parameter has been shown to be

ISRN Physical Chemistry 7

minus600minus500minus400minus300minus200minus100

0100200300400

0 01 02 03 04 05 06 07 08 09 1x1

GE

(Jmiddotm

olminus

1)

Figure 5 Plot of119866119864 versus 1199091for EA + BEN (◼ 29815 K998771 30815 K

⧫ 31815 K) I PA + BEN (◻ 29815 K 30815 K loz 31815 K) II BA +BEN ( 29815 K times 30815 K + 31815 K) III calculated from (7)

0

100

200

300

400

500

600

700

800

900

0 01 02 03 04 05 06 07 08 09 1

GE

(Jmiddotm

olminus

1)

x1

Figure 6 Plot of119866119864 versus 1199091for EA +ACT (◼ 29815 K998771 30815 K

⧫ 31815 K) IV PA + ACT (◻ 29815 K 30815 K loz 31815 K) V BA+ ACT ( 29815 K times 30815 K + 31815 K) VI calculated from (7)

independent of temperature and composition [19 20] Thesubscript 119888 indicates a reduced quantity

Kubendran et al model [21]

ln 120578mix

= 1199091ln 1205781+ 1199092ln 1205782+ 1199091ln1198721

+ 1199092ln1198722minus ln [119909

11198721+ 11990921198722]

minus 230311990911199092[11986112+ 11986212(1199091minus 1199092) + 11986312(1199091minus 1199092)2]

(17)

where 11986112 11986212 and119863

12are binary interaction constants

The observed data on surface tension of binary mixtureswas fitted to the following models available in the literature

Zihao and Jufu model [22]

120590mix =11990911205901

1199091+ 120574121199092

+11990921205902

1199092+ 120574211199091

(18)

where 12057412and 12057421are interaction parameters

minus018

minus016

minus014

minus012

minus01

minus008

minus006

minus004

minus002

0

0 01 02 03 04 05 06 07 08 09 1x1

120590E

(dy

nemiddotcm

minus1)

Figure 7 Plot of 120590119864 versus 1199091for EA + BEN (◼ 29815 K998771 30815 K

⧫ 31815 K) I PA +BEN (◻ 29815 K 30815 K loz 31815 K) V BA +BEN ( 29815 K times 30815 K + 31815 K) VI calculated from (8)

0

02

04

06

08

1

12

14

0 01 02 03 04 05 06 07 08 09 1x1

120590E

(dy

nemiddotcm

minus1)

Figure 8 Plot of 120590119864 versus 1199091for EA +ACT (◼ 29815 K998771 30815 K

⧫ 31815 K) I PA + ACT (◻ 29815 K 30815 K loz 31815 K) V BA +ACT ( 29815 K times 30815 K + 31815 K) VI calculated from (8)

Rice and Teja model [23]

120590mixΦmix

= 11990911205901Φ1+ 11990921205902Φ2 (19)

whereΦ119894= 11988123

119888119894119879119888119894for 119894 = 1 or 2 component or the mixture

119881119862mix =

1

8[1199092

11198811198621

+ 1199092

21198811198622

+ 211990911199092(11988113

1198621+ 11988113

1198622)]

119879119888mix =

1

119881119888mix

[1199092

111987911988811198811198881+ 1199092

211987911988821198811198882

+21199091119909212059312(1198791198881119881119888111987911988821198811198622)12]

(20)

Here1205901is to be evaluated at a temperature =119879 (119879

1198881119879119888mix)

and 1205902at a temperature = 119879(119879

1198882119879119888mix) 119879 is the system

temperature and 12059312

is an adjustable interaction parameterhaving a value around unity The interaction parameterhas been shown to be independent of temperature andcomposition [19 20] The subscript 119888 indicates a reducedquantity

8 ISRN Physical Chemistry

Table 4 Coefficients of (9) and standard deviation (SD) determined by the method of least squares

(a) System ethanoic acid (1) + benzene (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198600

34057 minus20367 minus07083 minus01438 33546 minus21904 minus06270 minus01148 32885 minus15821 minus04091 minus010211198601

01473 minus57094 minus03870 01166 02460 minus91975 minus03834 00811 03229 875912 01482 006711198602

05936 106026 01385 00069 02239 225375 03941 minus00229 00329 460296 10281 00052SD 00046 09097 00004 00024 00066 150513 00029 00019 00106 209443 00006 00025

(b) System propanoic acid (1) + benzene (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198600

15593 minus81753 minus02753 minus03333 14645 minus90881 minus02545 minus02841 13824 minus59558 minus00305 minus029061198601

minus01945 406993 00821 01821 minus02298 631847 01348 01516 minus02524 192695 04671 010261198602

minus05306 113763 03751 minus01745 minus04702 165371 04651 minus02454 minus04703 190034 05546 minus00278SD 00025 49749 00002 00022 00033 76158 00001 00032 00035 139527 00011 00023

(c) System butanoic acid (1) + benzene (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198600

13265 minus76641 minus02993 minus06355 09972 minus47911 minus01557 minus05632 09699 143798 03753 minus049961198601

minus00839 352158 00682 02170 minus02319 723101 02175 02762 minus02740 538149 02511 021611198602

02549 127188 05053 minus02678 minus02829 114488 04437 minus02589 minus04747 minus10975 minus02301 minus01274SD 00025 79049 00011 00037 00026 104486 00005 00045 00011 74136 00001 00019

(d) System ethanoic acid (1) + acetophenone (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198600

minus11887 177318 06988 35069 minus15271 230241 08237 34363 minus17228 314469 09608 475151198601

minus00156 318334 minus00168 minus01138 00861 643012 01139 minus01918 00136 795337 01274 minus043021198602

minus02739 minus46906 minus00924 minus24741 minus02552 minus51471 minus01390 11646 minus09039 60009 00699 04843SD 00078 02584 00001 00368 00107 05067 00001 00249 00077 28808 00001 00421

(e) System propanoic acid (1) + acetophenone (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 mol-1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198600

minus21586 157504 07842 32115 minus25740 226612 09866 35476 minus29319 333655 12061 363711198601

minus04770 899121 minus01441 minus41671 minus04158 224961 minus01081 minus48025 minus04622 412138 minus00243 minus543451198602

minus11862 159141 00621 08986 minus18773 440569 01263 16488 minus29319 636631 00692 37051SD 00057 04763 00001 00296 00046 17711 00001 00289 minus04622 25552 00001 00371

(f) System butanoic acid (1) + acetophenone (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198600

minus21062 609099 03895 25197 minus25541 168349 09184 27061 minus30827 301495 12999 291311198601

minus01445 198592 00009 19580 minus01158 820211 00129 18902 minus01071 minus64428 minus03272 18747

ISRN Physical Chemistry 9

(f) Continued

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198602

minus04769 minus78407 minus00556 06841 minus11813 104424 minus00028 09832 minus10573 860142 02081 08359SD 00019 00827 00001 00267 00049 50118 00029 00194 00031 81692 00031 00183

Empirical two-constant model [24]

120590mix = 11990911205901+ 11990921205902+ 11990911199092[1198601015840+ 1198611015840(1199091minus 1199092)] (21)

where 1198601015840 and 1198611015840 are binary interaction parametersThe model parameters of (11) and (13)ndash(21) were deter-

mined using nonlinear regression technique and the esti-mated values are reported in Table 5

4 Discussion

The values of 119881119864 as illustrated in Figures 1 and 2 are

positive for the entire concentration range at all the threetemperatures for the systems EA + BEN PA + BEN andBA + BEN and negative for the remaining three systemsAbout 5 more negative or less positive 119881119864 values at highertemperatures for all the systems may be due to increasedpopulation of acid monomers to enter into the hetero-intermolecular interactions

The positive and negative 119881119864 values may be explained byconsidering the following three steps equilibria accompany-ing the mixing process as proposed by Lark and Banipal [2]

119863 minus119872 lArrrArr 119863 +119872 (22)

119863 lArrrArr 2119872 (23)

119872+ II lArrrArr 119872mdashIInd component (BENorACT) (24)

where 119863 and 119872 denote a dimer and a monomer of the acidunder questionThe first process is accompanied with a largevolume increase in the right direction the second is isochoricthat is the volume of the dimer is assumed to be equal to twicethe value of themonomer [4 5] the third step is accompaniedwith large contraction in case of ACT and expansion in caseof BEN So the addition of ACT or BEN to anyone of theacids first creates monomers by the first two steps resulting inexpansion In the third step stronger heteromolecular dipole-dipole interactions result in the observed negative 119881119864 in caseof CA + ACT and positive119881119864 values in the case of CA + BENsystem due to induced dipole-dipole interactions Thereforethe third step is accompanied with contraction in volume incase of ACT and expansion in case of BEN

The pK119886values of EA PA and BA are 476 488 and

482 respectively It is expected that the order of dimerizationconstants of various acids would increase in the same orderThe increasing dimerization constant would lead to a smallernumber of available monomers and thus to a smaller volumeincrease as described by (22)

However the observed order of 119881119864 for the CA + BENsystem is as follows BA gt PA gt EA (Table 6) This showsthat in case of BEN there are strong acid-solvent interactionswhich govern the magnitude and sign of119881119864 which increasesas the inductive effect of alkyl chain of the acid as isalso observed by Lark et al [25] Similar results were alsoobtained by Venkateswarlu and Raman [26] as the positiveexcess volumes of 12-dichloroethane and 12-dibromoethanewith three acids observe the following order BA gt PAgt EA which is the same as discussed above that is theincrease in chain length of acid contributes to the decreasein excess volume The large negative 119881119864 values in the caseof CA + ACT mixture arise due to depolymerization of acidaccompanied with strong hydrogen-bonded heterocomplexformation However in CA + ACT system the 119881

119864 valuesfollow the order PA gt BA gt EA as was also observed by Larket al [25] in CA + MEOH system

The data presented in Figures 3 and 4 reveal that excessviscosity (120578119864) is positive for the systems EA+ACT PA+ACTand BA + ACT and is negative for the systems EA + BENPA + BEN and BA + BEN at 29815 K The algebraic positivevalues of 120578119864 may be represented in the following order PA+ ACT gt EA + ACT gt BA + ACT gt BA + BEN gt PA +BEN gt EA + BEN The sign and magnitude of 120578119864 dependon the combined effect of the factors such as molecular sizeshape and intermolecular forces The positive value of 120578119864for the CA + ACT system suggests that the viscosity of themixture is higher than that of the pure components and hencethe fluidity of the mixture is low This indicates the presenceof a specific interaction such as the formation of charge-transfer complex between unlike molecules The negativevalue of 120578119864 in the systems EA + BEN PA + BEN and BA+ BEN suggests the mutual loss of a specific interaction inlike molecules that outweigh the specific interaction betweenunlike molecules The positive values of 120578119864 increase with theincrease in temperature in all these systems The 119866119864 valuesalmost observe the similar trend as observed by 120578119864 as shownin Figures 5 and 6

The variation of Grunberg andNissan parameter ldquo119889rdquo withcomposition of a particular mixture is not largeThe values ofldquo119889rdquo are negative for CA + BEN system and positive for CA +ACT system formost of the concentration rangeThe positivevalues of ldquo119889rdquo for CA + ACT system show that CA formsan intermolecular complex with ACT in the liquid phaseThe values of ldquo119889rdquo increase with the increase in temperaturein all the systems showing that the interactions between thecomponents increase with the increase in temperature Eventhe negative values of ldquo119889rdquo for CA + BEN system change

10 ISRN Physical Chemistry

Table5Interactionparameterparam

etersfor

vario

usmod

elsandsta

ndarddeviation(SD)d

etermined

byleastsqu

arem

etho

d

(a)

Mod

elCon

stants

Ethano

icacid

(1)+

benzene(2)

Prop

anoica

cid(1)+

benzene(2)

Butano

icacid

(1)+

benzene(2)

29815K

30815K

31815K

29815K

30815K

31815K

29815K

30815K

31815K

McA

lliste

r(11)

12057812

06336

05291

064

0808286

07390

08245

10808

09825

09409

12057821

05943

05347

03980

06163

05221

04268

07227

06129

064

06SD

000

9200161

00289

00105

00128

00128

00146

00108

00088

Heric(13)

12057512

minus08692

minus08380

minus04591

minus02946

minus02916

00521

minus02445

minus01271

04815

12057521

minus02173

minus03069

04582

01763

02640

07480

01390

02814

02095

SD01357

02015

03185

01524

02269

03356

03258

02169

02614

Krish

nanandLadd

ha(17)

11986112

09275

09606

07031

03620

03859

00528

03173

01913

minus05399

11986212

02536

03832

minus03062

minus01643

minus02472

minus07294

minus01430

minus02849

minus02063

11986312

minus04145

minus08715

minus17

348

minus04654

minus06512

minus07241

minus05103

minus044

99040

99SD

01468

01225

00701

00559

00502

00629

00595

00378

01101

Ausla

nder

(14)

11986112

minus00168

minus00901

00523

1840

414

898

19109

39322

25479

01292

11986021

64585

82007

73214

65731

65502

56764

99261

60937

02803

11986121

044

0902966

minus00996

00997

00271

minus02735

00896

00999

17186

SD000

4100116

00121

000

4300051

00038

00074

000

4800010

TejaandRice

(15)

12059312

11

11

11

11

1SD

00306

00224

00132

00101

00083

00131

00056

00139

00279

ZihaoandJufu

(18)

12057412

09377

09099

08985

09431

09413

09016

09343

08178

08038

12057421

10684

11008

11162

10624

10636

11114

10709

12259

12473

SD00081

00055

000

4900252

00256

00071

00858

00193

00111

Two-parameter

mod

el(21)

1198601015840

00302

00304

00305

minus00053

minus00056

minus000

69minus00121

minus00118

00079

1198611015840

00072

000

6100057

000

6100052

00038

000

67000

9600079

SD00023

00019

00024

00055

00079

00023

00088

00088

000

41

Rice

andTeja(19)

12059312

11

11

11

11

1SD

006

4300128

00039

01423

01183

01183

02210

01862

01874

(b)

Mod

elCon

stants

Ethano

icacid

(1)+

acetop

heno

ne(2)

Prop

anoica

cid(1)+

acetop

heno

ne(2)

Butano

icacid

(1)+

acetop

heno

ne(2)

29815K

30815K

31815K

29815K

30815K

31815K

29815K

30815K

31815K

McA

lliste

r(11)

12057812

16072

14795

13403

15061

14196

13377

17139

16209

13511

12057821

16910

14186

11794

17024

15097

13028

17471

16208

15934

SD000

06000

06000

6900034

00071

00082

00013

00034

00120

Heric(13)

12057512

07141

09027

12314

06855

09560

13476

02817

07089

12371

12057521

01271

02502

03406

00584

01214

01976

00134

004

17minus02198

SD03671

01578

02654

03963

01814

02120

06821

03761

00201

Krish

nanandLadd

ha(17)

11986112

minus07161

minus09048

minus11986

minus06742

minus09286

minus13101

minus02854

minus07014

minus11893

11986212

minus01293

minus02525

minus03052

minus00511

minus01036

minus01733

minus00147

minus00392

02360

11986312

00149

00160

minus02399

minus00803

minus01955

minus02679

00262

minus00528

minus03361

SD03071

03478

04162

02904

03731

04819

01301

03097

04936

Ausla

nder

(14)

11986112

minus00265

minus08582

minus31960

minus01986

minus09382

minus33948

minus19

043

minus78

002

minus210019

11986021

15819

206

6512

531

05603

06151

09108

12163

10309

05851

ISRN Physical Chemistry 11

(b)Con

tinued

Mod

elCon

stants

Ethano

icacid

(1)+

acetop

heno

ne(2)

Prop

anoica

cid(1)+

acetop

heno

ne(2)

Butano

icacid

(1)+

acetop

heno

ne(2)

29815K

30815K

31815K

29815K

30815K

31815K

29815K

30815K

31815K

11986121

12206

1344

345532

33567

47933

60789

28998

95205

3913

08SD

000

02000

080002

000

02000

05000

01000

0100026

00029

TejaandRice

(15)

12059312

105

105

105

105

105

105

105

105

105

SD00284

00070

00146

00029

00324

00411

00826

00137

00178

ZihaoandJufu

(18)

12057412

08333

09319

08198

04586

04317

03288

12367

12653

13189

12057421

1046

809544

10082

15047

15256

04304

08074

07899

07593

SD00779

00395

004

0500474

004

6502786

01261

01209

01292

Two-parameter

mod

el(21)

1198601015840

03968

04167

04557

03096

03329

03509

02215

02365

02478

1198611015840

006

4300865

00764

minus00738

minus00893

minus01025

00989

01033

01075

SD006

6600599

004

0200298

004

0300983

00493

00557

00513

Rice

andTeja(19)

12059312

105

105

105

105

105

105

105

105

105

SD01802

01131

00764

02090

01756

01678

01604

01024

01126

12 ISRN Physical Chemistry

Table 6 Comparison of excess volume 119881119864 cm3 molminus1 of equimolarmixture at 29815 K

Component II Component IEthanoic acid Propanoic acid Butanoic acid

Benzene 08514 03898 03316Acetophenone minus02972 minus05396 minus05266

minus03minus025

minus02minus015

minus01minus005

0005

01015

02025

minus600 minus400 minus200 0 200 400 600GE(Jmiddotmolminus1)

ln (H

)

Figure 9 Plot of ln119867 versus 119866119864 (◼ EA + BEN ⧫ PA + BEN 998771 BA+BEN times EA + ACT PA + ACT + BA + ACT) at 29815 K

their sign from negative to positive with the increase intemperature from 29815 to 31815 K

According to Hildebrand [27] free volume is necessaryfor flow and then shrinkage on mixing (which would reducethe free volume) would be associated with increase inviscosity of the system If 119867 is defined as 120578120578119900 where 120578 isthe experimental viscosity of the mixture and 120578

119900 is the idealviscosity calculated using

120578119900= 1199091ln 1205781+ 1199092ln 1205782 (25)

then this quantity could be related to free volume (119881119900) of thesolution according to Stairs [28] by the following equation

119867minus1

=1

119881119900(119881119900+ 119881119864) (26)

According to (26) a plot of 119867minus1 versus 119881119864 should belinear However when119867minus1 is plotted against 119881119864 a nonlinearplot was obtained in the present study However when ln119867is plotted against 119866119864 a single straight line with a nonzerointercept was obtained in Figure 9 This type of result is notunexpected because the expression for119866119864 takes into accountboth viscosity and volume Also in all these systems positive120578119864 and negative 119881

119864 and vice versa have been observedfor most of the concentration range This behaviour wasalso observed by Palepu et al [29] in binary mixtures o-chlorophenol with substituted anilines

From the literature no clear cut theoretical basis hasbeen proposed for the prediction of nonideal behaviour ofthe binary mixtures in terms of their 120590119864 values Howeverrecently Papaioannou and Panayiotou [30] have correlatedthe sign of 120590119864 values with 120578119864 values and the deviations fromRaoultrsquos law Their observation reveals the following

(1) Corresponding to the positive enthalpies of mixing(119867119864) positive volume of mixing (119881

119864) and positive

deviations from Raoultrsquos law 120590119864 values have beenobserved to be negative

(2) Corresponding to the negative enthalpies of mixing(119867119864) negative volume of mixing (119881119864) and negative

deviations from Raoultrsquos law 120590119864 values have beenobserved to be positive As shown in Figures 7 and8 the excess surface tension (120590119864) values are negativefor CA + BEN system and are positive for CA +ACT system The positive values of excess surfacetension (120590119864) increase with the rise in temperaturein all systems The negative value of 120590119864 in CA +BEN system is due to the predominance of the fol-lowing factors homopolymer complex formation andthe tendency of the component with lower surfacetension to be adsorbed at the interface But in CA+ ACT system complex formed are block copolymer[CA]119899[ACT]

119898and also dipole-dipole interactions

between carboxylic functional group of CA and car-bonyl group of ACT in the bulk phase rather than inthe interface

The interaction parameters of various models used canchange with temperature but not with composition but theinteraction parameter 120593

12in Rice and Teja and Teja and Rice

models based on the theory of corresponding states has beenshown to be independent of temperature and composition[19 20] It is observed that the models of McAllister Aus-lander and Teja and Rice fit the experimental viscosity datavery well as compared to the Heric and Krishnan and Laddhamodels Surface tensiondata iswell predicted by the empiricaltwo-parameter model [21] as well as by Rice and Teja modelThe Zihao amp Jufu model based on the work of Hildebrandamp Scott [31] also predicts satisfactory results for the systemsstudied

Acknowledgment

The author (R Ahluwalia) is grateful to CSIR India for theaward of SeniorResearch Fellowship to carry out this researchwork successfully

References

[1] R Ahluwalia R KWanchoo and J L Vashisht ldquoSome physicalproperties of binary liquid systems (ethanoic acid or propanoicacid or butanoic acid + ethanenitrile)rdquo Physics and Chemistry ofLiquids vol 29 pp 87ndash96 1995

[2] B S Lark and T S Banipal ldquoExcess volumes and excessenthalpies of acetic and its methyl substituted acids + acetoni-trilerdquo Canadian Journal of Chemistry vol 63 pp 3269ndash32751985

[3] M C S Subha and S Brahmaji Rao ldquoThermodynamic prop-erties of binary acid-base mixturesrdquo Journal of Chemical andEngineering Data vol 33 no 2 pp 104ndash106 1988

[4] H E Affsprung G H Findenegg and F Kohler ldquoThe volu-metric and dielectric behaviour of acetic acid in mixtures with

ISRN Physical Chemistry 13

nonpolar liquidsrdquo Journal of the Chemical Society A pp 1364ndash1370 1968

[5] G Bolat D Sutiman and G Lisa ldquoExperimental densities ofbinary mixtures acetic acid with benzene at several tempera-turesrdquo AIP Conference Proceedings vol 1332 no 1 p 270 2011

[6] R K Wanchoo J Narayan G K Raina and V K RattanldquoExcess properties of (2-propanal + ethylacetate or benzene)binary liquid mixturerdquo Chemical Engineering Communicationsvol 81 no 1 pp 145ndash156 1989

[7] J A Riddick andW B Bunger Techniques of Chemistry vol IIWiley-Interscience New York NY USA 1970

[8] A Weissberger Techniques of Organic Chemistry InterscienceNew York NY USA 3rd edition 1965

[9] B P Levitt Findlayrsquos Practical Physical Chemistry LongmanLondon UK 9th edition 1973

[10] G C Franchini A Marchetti M Tagliazucchi L Tassi andG Tosi ldquoEthane-12-diol-2-methoxyethanol solvent systemDependence of the relative permittivity and refractive indexon the temperature and composition of the binary mixturerdquoJournal of the Chemical Society Faraday Transactions vol 87no 16 pp 2583ndash2588 1991

[11] L Grunberg and A H Nissan ldquoMixture law for viscosityrdquoNature vol 164 no 4175 pp 799ndash800 1949

[12] R C Reid J M Prausnitz and T K Sherwood The Propertiesof Gases and Liquids McGraw Hill New York NY USA 3rdedition 1958

[13] O Redlich and A T Kister ldquoAlgebraic representation ofthermodynamic properties and the classification of solutionsrdquoIndustrial amp Engineering Chemistry vol 40 pp 345ndash348 1948

[14] A B K Stevanovic G M Babic M Lj Kijevcanin S PSerbanoviv and D K Grozdanic ldquoCorrelation of the liquidmixture viscositiesrdquo Journal of the Serbian Chemical Society vol77 no 8 pp 1083ndash1089 2012

[15] R L McAllister ldquoThe viscosity of liquid mixturesrdquo AIChEJournal vol 6 pp 427ndash431 1960

[16] E L Heric ldquoOn the viscosity of ternary mixturesrdquo Journal ofChemical and Engineering Data vol 11 no 1 pp 66ndash68 1966

[17] G Auslander ldquoThe properties of mixtures part Irdquo BritishChemical Engineering vol 9 pp 610ndash618 1964

[18] A S Teja and P Rice ldquoGeneralized corresponding statesmethod for the viscosities of liquid mixturesrdquo Industrial andEngineering Chemistry Fundamentals vol 20 no 1 pp 77ndash811981

[19] A S Teja and P Rice ldquoThe measurement and prediction of theviscosities of somebinary liquidmixtures containing n-hexanerdquoChemical Engineering Science vol 36 no 1 pp 7ndash10 1981

[20] A S Teja and P Rice ldquoA generalized corresponding statesmethod for the prediction of the thermal conductivity of liquidsand liquid mixturesrdquo Chemical Engineering Science vol 36 no2 pp 417ndash422 1981

[21] T R Kubendran S P Palaniappan M R V Krishnan and GS Laddha ldquoViscosities of binary and ternary liquid mixturesinvolving acetone carbon-tetrachloride and benzenerdquo IndianJournal of Technology vol 24 no 1 pp 22ndash25 1986

[22] W Zihao and F Jufu ldquoSurface Tension of Binary liquid mix-turesrdquo in Proceedings of theJoint Meeting of Chemical Industryand Engineering Society of China and AIChE p 143 BeijingChina September 1982

[23] P Rice and A S Teja ldquoA generalized corresponding-statesmethod for the prediction of surface tension of pure liquids and

liquidmixturesrdquo Journal of Colloid and Interface Science vol 86no 1 pp 158ndash163 1982

[24] R K Wanchoo and J Narayan ldquoSome physical propertiesof binary liquid systems (2-butanone+n-propionic acid or n-butyric acid)rdquo Physics and Chemistry of Liquids vol 27 no 3pp 159ndash167 1994

[25] B S Lark S Singh S K Aggarwal and S Makkar ldquoExcess vol-umes of n-butyric acid + various polar and nonpolar solventsrdquoJournal of Chemical and Engineering Data vol 30 no 4 pp467ndash469 1985

[26] P Venkateswarlu and G K Raman ldquoExcess volumesof ethanoic propanoic and butanoic acids with 12-dichloroethane and 12-dibromoethanerdquo Journal of Chemicaland Engineering Data vol 30 no 2 pp 180ndash181 1985

[27] J HHildebrand ldquoMotions ofmolecules in liquids viscosity anddiffusivityrdquo Science vol 174 no 4008 pp 490ndash493 1971

[28] R A Stairs ldquoViscosity of binary solutions of polar liquidsrdquoCanadian Journal of Chemistry vol 58 pp 296ndash301 1980

[29] R Palepu J Oliver and D Campbell ldquoThermodynamic andtransport properties of o-chlorophenol with aniline and N-alkylanilinesrdquo Journal of Chemical and Engineering Data vol30 no 3 pp 355ndash360 1985

[30] D Papaioannou and C G Panayiotou ldquoSurface tensions andrelative adsorptions in hydrogen-bonded systemsrdquo Journal ofChemical and EngineeringData vol 39 no 3 pp 457ndash462 1994

[31] JHHildebrand andR L ScottTheSolubility of NonelectrolytesDover New York NY USA 3rd edition 1964

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 4: Research Article Thermophysical Properties of Binary ...downloads.hindawi.com/archive/2013/612837.pdf · ISRN Physical Chemistry T : Densities ( ,kgm) of the pure components at

4 ISRN Physical Chemistry

(d) System ethanoic acid (1) + acetophenone (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 K

1199091

10minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

11988910minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

11988910minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

119889

00000 10241 16589 3874 mdash 10156 13469 3767 mdash 10069 10082 3628 mdash

01852 10279 16468 3698 04216 10196 13674 3612 05305 10113 10954 3492 08861

03384 10309 16127 3553 04529 10228 13692 3457 06030 10139 11265 3359 09093

04672 10334 15613 3419 04753 10250 13465 3314 06565 10161 11242 3227 09515

05770 10357 14993 3283 04912 10269 13048 3184 06984 10179 11006 3100 10064

06717 10374 14329 3162 05028 10284 12511 3066 07329 10192 10622 2977 10707

07542 10393 13662 3055 05111 10299 11908 2960 07616 10205 10136 2859 11427

08268 10406 13014 2941 05166 10306 11282 2863 07860 10215 09577 2768 12224

08911 10419 12403 2852 05206 10317 10659 2776 08071 10221 08969 2674 13091

09485 10432 11834 2781 05239 10324 10057 2696 08245 10217 08328 2595 14040

10000 10437 11310 2710 mdash 10325 09487 2610 mdash 10213 07667 2511 mdash

(e) System propanoic acid (1) + acetophenone (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 K

1199091

10minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

11988910minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

11988910minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

119889

00000 10241 16589 3874 mdash 1 0156 13469 3767 mdash 10069 10082 3628 mdash

01485 10234 16616 3755 05718 10155 14078 3660 08421 10071 11222 3546 12083

02818 10211 16244 3595 05591 10132 14109 3505 08131 10047 11734 3393 11780

04022 10184 15657 3423 05559 10102 13815 3332 08065 10016 11826 3218 11781

05113 10155 14956 3261 05594 10070 13330 3160 08161 09982 11627 3045 12000

06108 10123 14199 3097 05689 10036 12730 2994 08395 09947 11217 2882 12302

07019 10087 13417 2952 05831 09999 12053 2848 08748 09908 10651 2740 12044

07855 10046 12630 2820 06014 09956 11318 2723 09211 09862 09965 2622 13648

08626 09999 11846 2710 06236 09905 10538 2605 09795 09808 09184 2514 14520

09339 09945 11069 2609 06494 09845 09718 2505 10520 09743 08326 2413 15548

10000 09882 10305 2513 mdash 09774 08858 2407 mdash 09666 07412 2310 mdash

(f) System butanoic acid (1) + acetophenone (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 K

1199091

10minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

11988910minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

11988910minus3 120588kgmminus3

120578 mPa s 103 120590Nmminus1

119889

00000 10241 16589 3874 mdash 10156 13469 3767 mdash 10069 10082 3628 mdash

01238 10192 16809 3721 02147 10114 14359 3620 06827 10029 11843 3489 15446

02412 10135 16949 3581 02254 10057 14832 3482 06336 09975 12710 3355 13354

03528 10073 16994 3447 02323 09993 15199 3348 06545 09912 13134 3228 12401

04588 10007 16943 3319 02364 09925 15224 3220 06429 09844 13145 3104 11663

05598 09937 16803 3190 02382 09855 15164 3093 06650 09772 12913 2983 11244

06561 09864 16587 3063 02379 09781 14854 2967 06693 09696 12499 2860 11067

07480 09788 16311 2936 02358 09703 14423 2840 06845 09616 11897 2734 10885

08357 09708 15991 2808 02318 09621 13868 2713 07058 09529 11232 2610 11087

09197 09623 15644 2679 02269 09531 13154 2581 06884 09436 10526 2480 12427

10000 09533 15283 2531 mdash 09434 12421 2433 mdash 09335 09562 2335 mdash

ISRN Physical Chemistry 5

Table 3 Coefficients and standard deviation (SD) of (3)

(a) System ethanoic acid (1) + benzene (2)

Property 1198860

1198861

1198870

1198871

1198872

1198873

SD10minus3 120588 kgmminus3 00119 minus00023 1277241 256751 15885 260451 00005120578 mPa s 595012 minus00292 380928 153389 minus915172 1620792 00098103 120590 Nmminus1 152321 minus00092 788979 minus64061 54754 minus31067 00787

(b) System propanoic acid (1) + benzene (2)

Property 1198860

1198861

1198870

1198871

1198872

1198873

SD10minus3 120588 kgmminus3 00646 minus00023 238828 41347 20768 02422 00004120578 mPa s 85892 minus00253 840671 minus512057 2899852 minus917128 00121103 120590 Nmminus1 673803 minus00098 2189691 minus509015 144385 minus50172 00531

(c) System butanoic acid (1) + benzene (2)

Property 1198860

1198861

1198870

1198871

1198872

1198873

SD10minus3 120588 kgmminus3 00075 minus00022 1977351 310052 53648 00082 00004120578 mPa s 11224 minus00039 09317 09135 10511 09013 01174103 120590 Nmminus1 407458 minus00097 3455491 minus832693 356763 minus125341 00789

(d) System ethanoic acid (1) + acetophenone (2)

Property 1198860

1198861

1198870

1198871

1198872

1198873

SD10minus3 120588 kgmminus3 00133 minus00018 1354120 53912 05035 minus12567 00008120578 mPa s 55360 minus00078 10852 08055 01232 06509 03807103 120590 Nmminus1 198974 minus00061 4664421 minus1811751 minus1031812 434471 00814

(e) System propanoic acid (1) + acetophenone (2)

Property 1198860

1198861

1198870

1198871

1198872

1198873

SD10minus3 120588 kgmminus3 00247 minus00018 723523 minus12922 minus00496 minus39453 00011120578 mPa s 478863 minus00308 519435 325293 minus960902 333408 00217103 120590 Nmminus1 826053 minus00066 1292180 minus399785 minus999945 644734 00998

(f) System butanoic acid (1) + acetophenone (2)

Property 1198860

1198861

1198870

1198871

1198872

1198873

SD10minus3 120588 kgmminus3 00219 minus00017 805712 minus56413 minus43236 minus10553 00005120578 mPa s 4062351 minus00313 702532 697560 minus967418 167550 00271103 120590 Nmminus1 714271 minus00067 1561280 minus996785 263214 minus170516 00658

these parameters along with standard deviation is reportedin Table 4 Consider

SD = radicsum (observed minus calculated)2

119873 minus 1 (10)

where119873 is the total number of experimental pointsStevanovic et al [14] have recently compared the avail-

able correlation models for liquid mixture viscosities oforganic compounds Amongst the available correlations forpredicting the binary liquid mixture viscosity the presentexperimental binary viscosity data was fitted to the followingfive correlations

McAllisterrsquos [15] model

ln 120578mix = 1199093

1ln 1205781+ 1199093

2ln 1205782

+ 31199092

11199092ln 12057812+ 311990911199092

2ln 12057821

minus ln [1199091+ 1199092

2(1198722

1198721

)] + 1199092

11199092ln [2

3+ (

1198722

31198721

)]

+ 311990911199092

2ln [1

3+ (

21198722

31198721

)] + 1199093

2ln(1198722

1198721

)

(11)

where 12057812and 12057821are interaction parameters

Heric [16] model

ln 120578mix = 1199091ln 1205781+ 1199092ln 1205782+ 1199091ln1198721

+ 1199092ln1198722minus ln (119909

1ln1198721+ 1199091ln1198722) + 12057312

(12)

where 12057312is a deviation function given by

12057312= 11990911199092[12057512+ 12057521(1199091minus 1199092)] (13)

Here 12057512and 12057521are interaction parameters

6 ISRN Physical Chemistry

0

01

02

03

04

05

06

07

08

09

1

0 02 04 06 08 1x1

VE

(cm

3middotm

olminus

1)

Figure 1 Plot of 119881119864 versus 1199091for EA + BEN (◼ 29815 K 998771

30815 K ⧫ 31815 K) PA + BEN (◻ 29815 K 30815 K loz 3185 K)II BA+BEN ( 29815 K times 30815 K + 31815 K) III calculated from(5)

minus09

minus08

minus07

minus06

minus05

minus04

minus03

minus02

minus01

0

0 02 04 06 08 1x1

VE

(cm

3middotm

olminus

1)

Figure 2 Plot of119881119864 versus 1199091for EA +ACT (◼ 29815 K998771 30815 K

⧫ 31815 K) IV PA + ACT (◻ 29815 K 30815 K loz 31815 K) V BA+ ACT ( 29815 K times 30815 K + 31815 K) VI calculated from (5)

Auslander [17] model

1199091(1199091+ 119861121199092) (120578mix minus 120578

1) + 119860211199092(119861211199091+ 1199092) (120578mix minus 120578

2)

= 0

(14)

where 11986112 11986021 and 119861

21are parameters representing binary

interactionsTeja and Rice [18] model

ln (120578mix120576mix) = 1199091ln (12057811205761) + 1199092ln (12057821205762) (15)

minus025

minus02

minus015

minus01

minus005

0

005

01

015

0 01 02 03 04 05 06 07 08 09 1x1

120578E

(cP

)

Figure 3 Plot of 120578119864 versus 1199091for EA + BEN (◼ 29815 K998771 30815 K

⧫ 31815 K) I PA + BEN (◻ 29815 K 30815 K loz 31815 K) II BA +BEN ( 29815 K times 30815 K + 31815 K) III calculated from (6)

0

005

01

015

02

025

03

035

0 01 02 03 04 05 06 07 08 09 1x1

120578E

(cP

)

Figure 4 Plot of 120578119864 versus 1199091for EA + ACT (◼ 29815 K998771 30815 K

⧫ 31815 K) IV PA + ACT (◻ 29815 K 30815 K loz 31815 K) V BA+ ACT ( 29815 K times 30815 K + 31815 K) VI calculated from (6)

where 120576119894= 11988123

119888119894(119879119888119894119872119894)12 for 119894 = 1 or 2 component or the

mixture

119881119862mix =

1

8[1199092

11198811198621

+ 1199092

21198811198622

+ 211990911199092(11988113

1198621+ 11988113

1198622)]

119879119888mix =

1

119881119888mix

[1199092

111987911988811198811198881+ 1199092

211987911988821198811198882

+21199091119909212059312(1198791198881119881119888111987911988821198811198622)12]

(16)

1205781must be evaluated at a temperature 119879(119879

1198881119879119888mix) and 120578

2

at a temperature 119879(1198791198882119879119888mix) 119879 is the system temperature

and 12059312

is an adjustable interaction parameter having avalue unity The interaction parameter has been shown to be

ISRN Physical Chemistry 7

minus600minus500minus400minus300minus200minus100

0100200300400

0 01 02 03 04 05 06 07 08 09 1x1

GE

(Jmiddotm

olminus

1)

Figure 5 Plot of119866119864 versus 1199091for EA + BEN (◼ 29815 K998771 30815 K

⧫ 31815 K) I PA + BEN (◻ 29815 K 30815 K loz 31815 K) II BA +BEN ( 29815 K times 30815 K + 31815 K) III calculated from (7)

0

100

200

300

400

500

600

700

800

900

0 01 02 03 04 05 06 07 08 09 1

GE

(Jmiddotm

olminus

1)

x1

Figure 6 Plot of119866119864 versus 1199091for EA +ACT (◼ 29815 K998771 30815 K

⧫ 31815 K) IV PA + ACT (◻ 29815 K 30815 K loz 31815 K) V BA+ ACT ( 29815 K times 30815 K + 31815 K) VI calculated from (7)

independent of temperature and composition [19 20] Thesubscript 119888 indicates a reduced quantity

Kubendran et al model [21]

ln 120578mix

= 1199091ln 1205781+ 1199092ln 1205782+ 1199091ln1198721

+ 1199092ln1198722minus ln [119909

11198721+ 11990921198722]

minus 230311990911199092[11986112+ 11986212(1199091minus 1199092) + 11986312(1199091minus 1199092)2]

(17)

where 11986112 11986212 and119863

12are binary interaction constants

The observed data on surface tension of binary mixtureswas fitted to the following models available in the literature

Zihao and Jufu model [22]

120590mix =11990911205901

1199091+ 120574121199092

+11990921205902

1199092+ 120574211199091

(18)

where 12057412and 12057421are interaction parameters

minus018

minus016

minus014

minus012

minus01

minus008

minus006

minus004

minus002

0

0 01 02 03 04 05 06 07 08 09 1x1

120590E

(dy

nemiddotcm

minus1)

Figure 7 Plot of 120590119864 versus 1199091for EA + BEN (◼ 29815 K998771 30815 K

⧫ 31815 K) I PA +BEN (◻ 29815 K 30815 K loz 31815 K) V BA +BEN ( 29815 K times 30815 K + 31815 K) VI calculated from (8)

0

02

04

06

08

1

12

14

0 01 02 03 04 05 06 07 08 09 1x1

120590E

(dy

nemiddotcm

minus1)

Figure 8 Plot of 120590119864 versus 1199091for EA +ACT (◼ 29815 K998771 30815 K

⧫ 31815 K) I PA + ACT (◻ 29815 K 30815 K loz 31815 K) V BA +ACT ( 29815 K times 30815 K + 31815 K) VI calculated from (8)

Rice and Teja model [23]

120590mixΦmix

= 11990911205901Φ1+ 11990921205902Φ2 (19)

whereΦ119894= 11988123

119888119894119879119888119894for 119894 = 1 or 2 component or the mixture

119881119862mix =

1

8[1199092

11198811198621

+ 1199092

21198811198622

+ 211990911199092(11988113

1198621+ 11988113

1198622)]

119879119888mix =

1

119881119888mix

[1199092

111987911988811198811198881+ 1199092

211987911988821198811198882

+21199091119909212059312(1198791198881119881119888111987911988821198811198622)12]

(20)

Here1205901is to be evaluated at a temperature =119879 (119879

1198881119879119888mix)

and 1205902at a temperature = 119879(119879

1198882119879119888mix) 119879 is the system

temperature and 12059312

is an adjustable interaction parameterhaving a value around unity The interaction parameterhas been shown to be independent of temperature andcomposition [19 20] The subscript 119888 indicates a reducedquantity

8 ISRN Physical Chemistry

Table 4 Coefficients of (9) and standard deviation (SD) determined by the method of least squares

(a) System ethanoic acid (1) + benzene (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198600

34057 minus20367 minus07083 minus01438 33546 minus21904 minus06270 minus01148 32885 minus15821 minus04091 minus010211198601

01473 minus57094 minus03870 01166 02460 minus91975 minus03834 00811 03229 875912 01482 006711198602

05936 106026 01385 00069 02239 225375 03941 minus00229 00329 460296 10281 00052SD 00046 09097 00004 00024 00066 150513 00029 00019 00106 209443 00006 00025

(b) System propanoic acid (1) + benzene (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198600

15593 minus81753 minus02753 minus03333 14645 minus90881 minus02545 minus02841 13824 minus59558 minus00305 minus029061198601

minus01945 406993 00821 01821 minus02298 631847 01348 01516 minus02524 192695 04671 010261198602

minus05306 113763 03751 minus01745 minus04702 165371 04651 minus02454 minus04703 190034 05546 minus00278SD 00025 49749 00002 00022 00033 76158 00001 00032 00035 139527 00011 00023

(c) System butanoic acid (1) + benzene (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198600

13265 minus76641 minus02993 minus06355 09972 minus47911 minus01557 minus05632 09699 143798 03753 minus049961198601

minus00839 352158 00682 02170 minus02319 723101 02175 02762 minus02740 538149 02511 021611198602

02549 127188 05053 minus02678 minus02829 114488 04437 minus02589 minus04747 minus10975 minus02301 minus01274SD 00025 79049 00011 00037 00026 104486 00005 00045 00011 74136 00001 00019

(d) System ethanoic acid (1) + acetophenone (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198600

minus11887 177318 06988 35069 minus15271 230241 08237 34363 minus17228 314469 09608 475151198601

minus00156 318334 minus00168 minus01138 00861 643012 01139 minus01918 00136 795337 01274 minus043021198602

minus02739 minus46906 minus00924 minus24741 minus02552 minus51471 minus01390 11646 minus09039 60009 00699 04843SD 00078 02584 00001 00368 00107 05067 00001 00249 00077 28808 00001 00421

(e) System propanoic acid (1) + acetophenone (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 mol-1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198600

minus21586 157504 07842 32115 minus25740 226612 09866 35476 minus29319 333655 12061 363711198601

minus04770 899121 minus01441 minus41671 minus04158 224961 minus01081 minus48025 minus04622 412138 minus00243 minus543451198602

minus11862 159141 00621 08986 minus18773 440569 01263 16488 minus29319 636631 00692 37051SD 00057 04763 00001 00296 00046 17711 00001 00289 minus04622 25552 00001 00371

(f) System butanoic acid (1) + acetophenone (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198600

minus21062 609099 03895 25197 minus25541 168349 09184 27061 minus30827 301495 12999 291311198601

minus01445 198592 00009 19580 minus01158 820211 00129 18902 minus01071 minus64428 minus03272 18747

ISRN Physical Chemistry 9

(f) Continued

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198602

minus04769 minus78407 minus00556 06841 minus11813 104424 minus00028 09832 minus10573 860142 02081 08359SD 00019 00827 00001 00267 00049 50118 00029 00194 00031 81692 00031 00183

Empirical two-constant model [24]

120590mix = 11990911205901+ 11990921205902+ 11990911199092[1198601015840+ 1198611015840(1199091minus 1199092)] (21)

where 1198601015840 and 1198611015840 are binary interaction parametersThe model parameters of (11) and (13)ndash(21) were deter-

mined using nonlinear regression technique and the esti-mated values are reported in Table 5

4 Discussion

The values of 119881119864 as illustrated in Figures 1 and 2 are

positive for the entire concentration range at all the threetemperatures for the systems EA + BEN PA + BEN andBA + BEN and negative for the remaining three systemsAbout 5 more negative or less positive 119881119864 values at highertemperatures for all the systems may be due to increasedpopulation of acid monomers to enter into the hetero-intermolecular interactions

The positive and negative 119881119864 values may be explained byconsidering the following three steps equilibria accompany-ing the mixing process as proposed by Lark and Banipal [2]

119863 minus119872 lArrrArr 119863 +119872 (22)

119863 lArrrArr 2119872 (23)

119872+ II lArrrArr 119872mdashIInd component (BENorACT) (24)

where 119863 and 119872 denote a dimer and a monomer of the acidunder questionThe first process is accompanied with a largevolume increase in the right direction the second is isochoricthat is the volume of the dimer is assumed to be equal to twicethe value of themonomer [4 5] the third step is accompaniedwith large contraction in case of ACT and expansion in caseof BEN So the addition of ACT or BEN to anyone of theacids first creates monomers by the first two steps resulting inexpansion In the third step stronger heteromolecular dipole-dipole interactions result in the observed negative 119881119864 in caseof CA + ACT and positive119881119864 values in the case of CA + BENsystem due to induced dipole-dipole interactions Thereforethe third step is accompanied with contraction in volume incase of ACT and expansion in case of BEN

The pK119886values of EA PA and BA are 476 488 and

482 respectively It is expected that the order of dimerizationconstants of various acids would increase in the same orderThe increasing dimerization constant would lead to a smallernumber of available monomers and thus to a smaller volumeincrease as described by (22)

However the observed order of 119881119864 for the CA + BENsystem is as follows BA gt PA gt EA (Table 6) This showsthat in case of BEN there are strong acid-solvent interactionswhich govern the magnitude and sign of119881119864 which increasesas the inductive effect of alkyl chain of the acid as isalso observed by Lark et al [25] Similar results were alsoobtained by Venkateswarlu and Raman [26] as the positiveexcess volumes of 12-dichloroethane and 12-dibromoethanewith three acids observe the following order BA gt PAgt EA which is the same as discussed above that is theincrease in chain length of acid contributes to the decreasein excess volume The large negative 119881119864 values in the caseof CA + ACT mixture arise due to depolymerization of acidaccompanied with strong hydrogen-bonded heterocomplexformation However in CA + ACT system the 119881

119864 valuesfollow the order PA gt BA gt EA as was also observed by Larket al [25] in CA + MEOH system

The data presented in Figures 3 and 4 reveal that excessviscosity (120578119864) is positive for the systems EA+ACT PA+ACTand BA + ACT and is negative for the systems EA + BENPA + BEN and BA + BEN at 29815 K The algebraic positivevalues of 120578119864 may be represented in the following order PA+ ACT gt EA + ACT gt BA + ACT gt BA + BEN gt PA +BEN gt EA + BEN The sign and magnitude of 120578119864 dependon the combined effect of the factors such as molecular sizeshape and intermolecular forces The positive value of 120578119864for the CA + ACT system suggests that the viscosity of themixture is higher than that of the pure components and hencethe fluidity of the mixture is low This indicates the presenceof a specific interaction such as the formation of charge-transfer complex between unlike molecules The negativevalue of 120578119864 in the systems EA + BEN PA + BEN and BA+ BEN suggests the mutual loss of a specific interaction inlike molecules that outweigh the specific interaction betweenunlike molecules The positive values of 120578119864 increase with theincrease in temperature in all these systems The 119866119864 valuesalmost observe the similar trend as observed by 120578119864 as shownin Figures 5 and 6

The variation of Grunberg andNissan parameter ldquo119889rdquo withcomposition of a particular mixture is not largeThe values ofldquo119889rdquo are negative for CA + BEN system and positive for CA +ACT system formost of the concentration rangeThe positivevalues of ldquo119889rdquo for CA + ACT system show that CA formsan intermolecular complex with ACT in the liquid phaseThe values of ldquo119889rdquo increase with the increase in temperaturein all the systems showing that the interactions between thecomponents increase with the increase in temperature Eventhe negative values of ldquo119889rdquo for CA + BEN system change

10 ISRN Physical Chemistry

Table5Interactionparameterparam

etersfor

vario

usmod

elsandsta

ndarddeviation(SD)d

etermined

byleastsqu

arem

etho

d

(a)

Mod

elCon

stants

Ethano

icacid

(1)+

benzene(2)

Prop

anoica

cid(1)+

benzene(2)

Butano

icacid

(1)+

benzene(2)

29815K

30815K

31815K

29815K

30815K

31815K

29815K

30815K

31815K

McA

lliste

r(11)

12057812

06336

05291

064

0808286

07390

08245

10808

09825

09409

12057821

05943

05347

03980

06163

05221

04268

07227

06129

064

06SD

000

9200161

00289

00105

00128

00128

00146

00108

00088

Heric(13)

12057512

minus08692

minus08380

minus04591

minus02946

minus02916

00521

minus02445

minus01271

04815

12057521

minus02173

minus03069

04582

01763

02640

07480

01390

02814

02095

SD01357

02015

03185

01524

02269

03356

03258

02169

02614

Krish

nanandLadd

ha(17)

11986112

09275

09606

07031

03620

03859

00528

03173

01913

minus05399

11986212

02536

03832

minus03062

minus01643

minus02472

minus07294

minus01430

minus02849

minus02063

11986312

minus04145

minus08715

minus17

348

minus04654

minus06512

minus07241

minus05103

minus044

99040

99SD

01468

01225

00701

00559

00502

00629

00595

00378

01101

Ausla

nder

(14)

11986112

minus00168

minus00901

00523

1840

414

898

19109

39322

25479

01292

11986021

64585

82007

73214

65731

65502

56764

99261

60937

02803

11986121

044

0902966

minus00996

00997

00271

minus02735

00896

00999

17186

SD000

4100116

00121

000

4300051

00038

00074

000

4800010

TejaandRice

(15)

12059312

11

11

11

11

1SD

00306

00224

00132

00101

00083

00131

00056

00139

00279

ZihaoandJufu

(18)

12057412

09377

09099

08985

09431

09413

09016

09343

08178

08038

12057421

10684

11008

11162

10624

10636

11114

10709

12259

12473

SD00081

00055

000

4900252

00256

00071

00858

00193

00111

Two-parameter

mod

el(21)

1198601015840

00302

00304

00305

minus00053

minus00056

minus000

69minus00121

minus00118

00079

1198611015840

00072

000

6100057

000

6100052

00038

000

67000

9600079

SD00023

00019

00024

00055

00079

00023

00088

00088

000

41

Rice

andTeja(19)

12059312

11

11

11

11

1SD

006

4300128

00039

01423

01183

01183

02210

01862

01874

(b)

Mod

elCon

stants

Ethano

icacid

(1)+

acetop

heno

ne(2)

Prop

anoica

cid(1)+

acetop

heno

ne(2)

Butano

icacid

(1)+

acetop

heno

ne(2)

29815K

30815K

31815K

29815K

30815K

31815K

29815K

30815K

31815K

McA

lliste

r(11)

12057812

16072

14795

13403

15061

14196

13377

17139

16209

13511

12057821

16910

14186

11794

17024

15097

13028

17471

16208

15934

SD000

06000

06000

6900034

00071

00082

00013

00034

00120

Heric(13)

12057512

07141

09027

12314

06855

09560

13476

02817

07089

12371

12057521

01271

02502

03406

00584

01214

01976

00134

004

17minus02198

SD03671

01578

02654

03963

01814

02120

06821

03761

00201

Krish

nanandLadd

ha(17)

11986112

minus07161

minus09048

minus11986

minus06742

minus09286

minus13101

minus02854

minus07014

minus11893

11986212

minus01293

minus02525

minus03052

minus00511

minus01036

minus01733

minus00147

minus00392

02360

11986312

00149

00160

minus02399

minus00803

minus01955

minus02679

00262

minus00528

minus03361

SD03071

03478

04162

02904

03731

04819

01301

03097

04936

Ausla

nder

(14)

11986112

minus00265

minus08582

minus31960

minus01986

minus09382

minus33948

minus19

043

minus78

002

minus210019

11986021

15819

206

6512

531

05603

06151

09108

12163

10309

05851

ISRN Physical Chemistry 11

(b)Con

tinued

Mod

elCon

stants

Ethano

icacid

(1)+

acetop

heno

ne(2)

Prop

anoica

cid(1)+

acetop

heno

ne(2)

Butano

icacid

(1)+

acetop

heno

ne(2)

29815K

30815K

31815K

29815K

30815K

31815K

29815K

30815K

31815K

11986121

12206

1344

345532

33567

47933

60789

28998

95205

3913

08SD

000

02000

080002

000

02000

05000

01000

0100026

00029

TejaandRice

(15)

12059312

105

105

105

105

105

105

105

105

105

SD00284

00070

00146

00029

00324

00411

00826

00137

00178

ZihaoandJufu

(18)

12057412

08333

09319

08198

04586

04317

03288

12367

12653

13189

12057421

1046

809544

10082

15047

15256

04304

08074

07899

07593

SD00779

00395

004

0500474

004

6502786

01261

01209

01292

Two-parameter

mod

el(21)

1198601015840

03968

04167

04557

03096

03329

03509

02215

02365

02478

1198611015840

006

4300865

00764

minus00738

minus00893

minus01025

00989

01033

01075

SD006

6600599

004

0200298

004

0300983

00493

00557

00513

Rice

andTeja(19)

12059312

105

105

105

105

105

105

105

105

105

SD01802

01131

00764

02090

01756

01678

01604

01024

01126

12 ISRN Physical Chemistry

Table 6 Comparison of excess volume 119881119864 cm3 molminus1 of equimolarmixture at 29815 K

Component II Component IEthanoic acid Propanoic acid Butanoic acid

Benzene 08514 03898 03316Acetophenone minus02972 minus05396 minus05266

minus03minus025

minus02minus015

minus01minus005

0005

01015

02025

minus600 minus400 minus200 0 200 400 600GE(Jmiddotmolminus1)

ln (H

)

Figure 9 Plot of ln119867 versus 119866119864 (◼ EA + BEN ⧫ PA + BEN 998771 BA+BEN times EA + ACT PA + ACT + BA + ACT) at 29815 K

their sign from negative to positive with the increase intemperature from 29815 to 31815 K

According to Hildebrand [27] free volume is necessaryfor flow and then shrinkage on mixing (which would reducethe free volume) would be associated with increase inviscosity of the system If 119867 is defined as 120578120578119900 where 120578 isthe experimental viscosity of the mixture and 120578

119900 is the idealviscosity calculated using

120578119900= 1199091ln 1205781+ 1199092ln 1205782 (25)

then this quantity could be related to free volume (119881119900) of thesolution according to Stairs [28] by the following equation

119867minus1

=1

119881119900(119881119900+ 119881119864) (26)

According to (26) a plot of 119867minus1 versus 119881119864 should belinear However when119867minus1 is plotted against 119881119864 a nonlinearplot was obtained in the present study However when ln119867is plotted against 119866119864 a single straight line with a nonzerointercept was obtained in Figure 9 This type of result is notunexpected because the expression for119866119864 takes into accountboth viscosity and volume Also in all these systems positive120578119864 and negative 119881

119864 and vice versa have been observedfor most of the concentration range This behaviour wasalso observed by Palepu et al [29] in binary mixtures o-chlorophenol with substituted anilines

From the literature no clear cut theoretical basis hasbeen proposed for the prediction of nonideal behaviour ofthe binary mixtures in terms of their 120590119864 values Howeverrecently Papaioannou and Panayiotou [30] have correlatedthe sign of 120590119864 values with 120578119864 values and the deviations fromRaoultrsquos law Their observation reveals the following

(1) Corresponding to the positive enthalpies of mixing(119867119864) positive volume of mixing (119881

119864) and positive

deviations from Raoultrsquos law 120590119864 values have beenobserved to be negative

(2) Corresponding to the negative enthalpies of mixing(119867119864) negative volume of mixing (119881119864) and negative

deviations from Raoultrsquos law 120590119864 values have beenobserved to be positive As shown in Figures 7 and8 the excess surface tension (120590119864) values are negativefor CA + BEN system and are positive for CA +ACT system The positive values of excess surfacetension (120590119864) increase with the rise in temperaturein all systems The negative value of 120590119864 in CA +BEN system is due to the predominance of the fol-lowing factors homopolymer complex formation andthe tendency of the component with lower surfacetension to be adsorbed at the interface But in CA+ ACT system complex formed are block copolymer[CA]119899[ACT]

119898and also dipole-dipole interactions

between carboxylic functional group of CA and car-bonyl group of ACT in the bulk phase rather than inthe interface

The interaction parameters of various models used canchange with temperature but not with composition but theinteraction parameter 120593

12in Rice and Teja and Teja and Rice

models based on the theory of corresponding states has beenshown to be independent of temperature and composition[19 20] It is observed that the models of McAllister Aus-lander and Teja and Rice fit the experimental viscosity datavery well as compared to the Heric and Krishnan and Laddhamodels Surface tensiondata iswell predicted by the empiricaltwo-parameter model [21] as well as by Rice and Teja modelThe Zihao amp Jufu model based on the work of Hildebrandamp Scott [31] also predicts satisfactory results for the systemsstudied

Acknowledgment

The author (R Ahluwalia) is grateful to CSIR India for theaward of SeniorResearch Fellowship to carry out this researchwork successfully

References

[1] R Ahluwalia R KWanchoo and J L Vashisht ldquoSome physicalproperties of binary liquid systems (ethanoic acid or propanoicacid or butanoic acid + ethanenitrile)rdquo Physics and Chemistry ofLiquids vol 29 pp 87ndash96 1995

[2] B S Lark and T S Banipal ldquoExcess volumes and excessenthalpies of acetic and its methyl substituted acids + acetoni-trilerdquo Canadian Journal of Chemistry vol 63 pp 3269ndash32751985

[3] M C S Subha and S Brahmaji Rao ldquoThermodynamic prop-erties of binary acid-base mixturesrdquo Journal of Chemical andEngineering Data vol 33 no 2 pp 104ndash106 1988

[4] H E Affsprung G H Findenegg and F Kohler ldquoThe volu-metric and dielectric behaviour of acetic acid in mixtures with

ISRN Physical Chemistry 13

nonpolar liquidsrdquo Journal of the Chemical Society A pp 1364ndash1370 1968

[5] G Bolat D Sutiman and G Lisa ldquoExperimental densities ofbinary mixtures acetic acid with benzene at several tempera-turesrdquo AIP Conference Proceedings vol 1332 no 1 p 270 2011

[6] R K Wanchoo J Narayan G K Raina and V K RattanldquoExcess properties of (2-propanal + ethylacetate or benzene)binary liquid mixturerdquo Chemical Engineering Communicationsvol 81 no 1 pp 145ndash156 1989

[7] J A Riddick andW B Bunger Techniques of Chemistry vol IIWiley-Interscience New York NY USA 1970

[8] A Weissberger Techniques of Organic Chemistry InterscienceNew York NY USA 3rd edition 1965

[9] B P Levitt Findlayrsquos Practical Physical Chemistry LongmanLondon UK 9th edition 1973

[10] G C Franchini A Marchetti M Tagliazucchi L Tassi andG Tosi ldquoEthane-12-diol-2-methoxyethanol solvent systemDependence of the relative permittivity and refractive indexon the temperature and composition of the binary mixturerdquoJournal of the Chemical Society Faraday Transactions vol 87no 16 pp 2583ndash2588 1991

[11] L Grunberg and A H Nissan ldquoMixture law for viscosityrdquoNature vol 164 no 4175 pp 799ndash800 1949

[12] R C Reid J M Prausnitz and T K Sherwood The Propertiesof Gases and Liquids McGraw Hill New York NY USA 3rdedition 1958

[13] O Redlich and A T Kister ldquoAlgebraic representation ofthermodynamic properties and the classification of solutionsrdquoIndustrial amp Engineering Chemistry vol 40 pp 345ndash348 1948

[14] A B K Stevanovic G M Babic M Lj Kijevcanin S PSerbanoviv and D K Grozdanic ldquoCorrelation of the liquidmixture viscositiesrdquo Journal of the Serbian Chemical Society vol77 no 8 pp 1083ndash1089 2012

[15] R L McAllister ldquoThe viscosity of liquid mixturesrdquo AIChEJournal vol 6 pp 427ndash431 1960

[16] E L Heric ldquoOn the viscosity of ternary mixturesrdquo Journal ofChemical and Engineering Data vol 11 no 1 pp 66ndash68 1966

[17] G Auslander ldquoThe properties of mixtures part Irdquo BritishChemical Engineering vol 9 pp 610ndash618 1964

[18] A S Teja and P Rice ldquoGeneralized corresponding statesmethod for the viscosities of liquid mixturesrdquo Industrial andEngineering Chemistry Fundamentals vol 20 no 1 pp 77ndash811981

[19] A S Teja and P Rice ldquoThe measurement and prediction of theviscosities of somebinary liquidmixtures containing n-hexanerdquoChemical Engineering Science vol 36 no 1 pp 7ndash10 1981

[20] A S Teja and P Rice ldquoA generalized corresponding statesmethod for the prediction of the thermal conductivity of liquidsand liquid mixturesrdquo Chemical Engineering Science vol 36 no2 pp 417ndash422 1981

[21] T R Kubendran S P Palaniappan M R V Krishnan and GS Laddha ldquoViscosities of binary and ternary liquid mixturesinvolving acetone carbon-tetrachloride and benzenerdquo IndianJournal of Technology vol 24 no 1 pp 22ndash25 1986

[22] W Zihao and F Jufu ldquoSurface Tension of Binary liquid mix-turesrdquo in Proceedings of theJoint Meeting of Chemical Industryand Engineering Society of China and AIChE p 143 BeijingChina September 1982

[23] P Rice and A S Teja ldquoA generalized corresponding-statesmethod for the prediction of surface tension of pure liquids and

liquidmixturesrdquo Journal of Colloid and Interface Science vol 86no 1 pp 158ndash163 1982

[24] R K Wanchoo and J Narayan ldquoSome physical propertiesof binary liquid systems (2-butanone+n-propionic acid or n-butyric acid)rdquo Physics and Chemistry of Liquids vol 27 no 3pp 159ndash167 1994

[25] B S Lark S Singh S K Aggarwal and S Makkar ldquoExcess vol-umes of n-butyric acid + various polar and nonpolar solventsrdquoJournal of Chemical and Engineering Data vol 30 no 4 pp467ndash469 1985

[26] P Venkateswarlu and G K Raman ldquoExcess volumesof ethanoic propanoic and butanoic acids with 12-dichloroethane and 12-dibromoethanerdquo Journal of Chemicaland Engineering Data vol 30 no 2 pp 180ndash181 1985

[27] J HHildebrand ldquoMotions ofmolecules in liquids viscosity anddiffusivityrdquo Science vol 174 no 4008 pp 490ndash493 1971

[28] R A Stairs ldquoViscosity of binary solutions of polar liquidsrdquoCanadian Journal of Chemistry vol 58 pp 296ndash301 1980

[29] R Palepu J Oliver and D Campbell ldquoThermodynamic andtransport properties of o-chlorophenol with aniline and N-alkylanilinesrdquo Journal of Chemical and Engineering Data vol30 no 3 pp 355ndash360 1985

[30] D Papaioannou and C G Panayiotou ldquoSurface tensions andrelative adsorptions in hydrogen-bonded systemsrdquo Journal ofChemical and EngineeringData vol 39 no 3 pp 457ndash462 1994

[31] JHHildebrand andR L ScottTheSolubility of NonelectrolytesDover New York NY USA 3rd edition 1964

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 5: Research Article Thermophysical Properties of Binary ...downloads.hindawi.com/archive/2013/612837.pdf · ISRN Physical Chemistry T : Densities ( ,kgm) of the pure components at

ISRN Physical Chemistry 5

Table 3 Coefficients and standard deviation (SD) of (3)

(a) System ethanoic acid (1) + benzene (2)

Property 1198860

1198861

1198870

1198871

1198872

1198873

SD10minus3 120588 kgmminus3 00119 minus00023 1277241 256751 15885 260451 00005120578 mPa s 595012 minus00292 380928 153389 minus915172 1620792 00098103 120590 Nmminus1 152321 minus00092 788979 minus64061 54754 minus31067 00787

(b) System propanoic acid (1) + benzene (2)

Property 1198860

1198861

1198870

1198871

1198872

1198873

SD10minus3 120588 kgmminus3 00646 minus00023 238828 41347 20768 02422 00004120578 mPa s 85892 minus00253 840671 minus512057 2899852 minus917128 00121103 120590 Nmminus1 673803 minus00098 2189691 minus509015 144385 minus50172 00531

(c) System butanoic acid (1) + benzene (2)

Property 1198860

1198861

1198870

1198871

1198872

1198873

SD10minus3 120588 kgmminus3 00075 minus00022 1977351 310052 53648 00082 00004120578 mPa s 11224 minus00039 09317 09135 10511 09013 01174103 120590 Nmminus1 407458 minus00097 3455491 minus832693 356763 minus125341 00789

(d) System ethanoic acid (1) + acetophenone (2)

Property 1198860

1198861

1198870

1198871

1198872

1198873

SD10minus3 120588 kgmminus3 00133 minus00018 1354120 53912 05035 minus12567 00008120578 mPa s 55360 minus00078 10852 08055 01232 06509 03807103 120590 Nmminus1 198974 minus00061 4664421 minus1811751 minus1031812 434471 00814

(e) System propanoic acid (1) + acetophenone (2)

Property 1198860

1198861

1198870

1198871

1198872

1198873

SD10minus3 120588 kgmminus3 00247 minus00018 723523 minus12922 minus00496 minus39453 00011120578 mPa s 478863 minus00308 519435 325293 minus960902 333408 00217103 120590 Nmminus1 826053 minus00066 1292180 minus399785 minus999945 644734 00998

(f) System butanoic acid (1) + acetophenone (2)

Property 1198860

1198861

1198870

1198871

1198872

1198873

SD10minus3 120588 kgmminus3 00219 minus00017 805712 minus56413 minus43236 minus10553 00005120578 mPa s 4062351 minus00313 702532 697560 minus967418 167550 00271103 120590 Nmminus1 714271 minus00067 1561280 minus996785 263214 minus170516 00658

these parameters along with standard deviation is reportedin Table 4 Consider

SD = radicsum (observed minus calculated)2

119873 minus 1 (10)

where119873 is the total number of experimental pointsStevanovic et al [14] have recently compared the avail-

able correlation models for liquid mixture viscosities oforganic compounds Amongst the available correlations forpredicting the binary liquid mixture viscosity the presentexperimental binary viscosity data was fitted to the followingfive correlations

McAllisterrsquos [15] model

ln 120578mix = 1199093

1ln 1205781+ 1199093

2ln 1205782

+ 31199092

11199092ln 12057812+ 311990911199092

2ln 12057821

minus ln [1199091+ 1199092

2(1198722

1198721

)] + 1199092

11199092ln [2

3+ (

1198722

31198721

)]

+ 311990911199092

2ln [1

3+ (

21198722

31198721

)] + 1199093

2ln(1198722

1198721

)

(11)

where 12057812and 12057821are interaction parameters

Heric [16] model

ln 120578mix = 1199091ln 1205781+ 1199092ln 1205782+ 1199091ln1198721

+ 1199092ln1198722minus ln (119909

1ln1198721+ 1199091ln1198722) + 12057312

(12)

where 12057312is a deviation function given by

12057312= 11990911199092[12057512+ 12057521(1199091minus 1199092)] (13)

Here 12057512and 12057521are interaction parameters

6 ISRN Physical Chemistry

0

01

02

03

04

05

06

07

08

09

1

0 02 04 06 08 1x1

VE

(cm

3middotm

olminus

1)

Figure 1 Plot of 119881119864 versus 1199091for EA + BEN (◼ 29815 K 998771

30815 K ⧫ 31815 K) PA + BEN (◻ 29815 K 30815 K loz 3185 K)II BA+BEN ( 29815 K times 30815 K + 31815 K) III calculated from(5)

minus09

minus08

minus07

minus06

minus05

minus04

minus03

minus02

minus01

0

0 02 04 06 08 1x1

VE

(cm

3middotm

olminus

1)

Figure 2 Plot of119881119864 versus 1199091for EA +ACT (◼ 29815 K998771 30815 K

⧫ 31815 K) IV PA + ACT (◻ 29815 K 30815 K loz 31815 K) V BA+ ACT ( 29815 K times 30815 K + 31815 K) VI calculated from (5)

Auslander [17] model

1199091(1199091+ 119861121199092) (120578mix minus 120578

1) + 119860211199092(119861211199091+ 1199092) (120578mix minus 120578

2)

= 0

(14)

where 11986112 11986021 and 119861

21are parameters representing binary

interactionsTeja and Rice [18] model

ln (120578mix120576mix) = 1199091ln (12057811205761) + 1199092ln (12057821205762) (15)

minus025

minus02

minus015

minus01

minus005

0

005

01

015

0 01 02 03 04 05 06 07 08 09 1x1

120578E

(cP

)

Figure 3 Plot of 120578119864 versus 1199091for EA + BEN (◼ 29815 K998771 30815 K

⧫ 31815 K) I PA + BEN (◻ 29815 K 30815 K loz 31815 K) II BA +BEN ( 29815 K times 30815 K + 31815 K) III calculated from (6)

0

005

01

015

02

025

03

035

0 01 02 03 04 05 06 07 08 09 1x1

120578E

(cP

)

Figure 4 Plot of 120578119864 versus 1199091for EA + ACT (◼ 29815 K998771 30815 K

⧫ 31815 K) IV PA + ACT (◻ 29815 K 30815 K loz 31815 K) V BA+ ACT ( 29815 K times 30815 K + 31815 K) VI calculated from (6)

where 120576119894= 11988123

119888119894(119879119888119894119872119894)12 for 119894 = 1 or 2 component or the

mixture

119881119862mix =

1

8[1199092

11198811198621

+ 1199092

21198811198622

+ 211990911199092(11988113

1198621+ 11988113

1198622)]

119879119888mix =

1

119881119888mix

[1199092

111987911988811198811198881+ 1199092

211987911988821198811198882

+21199091119909212059312(1198791198881119881119888111987911988821198811198622)12]

(16)

1205781must be evaluated at a temperature 119879(119879

1198881119879119888mix) and 120578

2

at a temperature 119879(1198791198882119879119888mix) 119879 is the system temperature

and 12059312

is an adjustable interaction parameter having avalue unity The interaction parameter has been shown to be

ISRN Physical Chemistry 7

minus600minus500minus400minus300minus200minus100

0100200300400

0 01 02 03 04 05 06 07 08 09 1x1

GE

(Jmiddotm

olminus

1)

Figure 5 Plot of119866119864 versus 1199091for EA + BEN (◼ 29815 K998771 30815 K

⧫ 31815 K) I PA + BEN (◻ 29815 K 30815 K loz 31815 K) II BA +BEN ( 29815 K times 30815 K + 31815 K) III calculated from (7)

0

100

200

300

400

500

600

700

800

900

0 01 02 03 04 05 06 07 08 09 1

GE

(Jmiddotm

olminus

1)

x1

Figure 6 Plot of119866119864 versus 1199091for EA +ACT (◼ 29815 K998771 30815 K

⧫ 31815 K) IV PA + ACT (◻ 29815 K 30815 K loz 31815 K) V BA+ ACT ( 29815 K times 30815 K + 31815 K) VI calculated from (7)

independent of temperature and composition [19 20] Thesubscript 119888 indicates a reduced quantity

Kubendran et al model [21]

ln 120578mix

= 1199091ln 1205781+ 1199092ln 1205782+ 1199091ln1198721

+ 1199092ln1198722minus ln [119909

11198721+ 11990921198722]

minus 230311990911199092[11986112+ 11986212(1199091minus 1199092) + 11986312(1199091minus 1199092)2]

(17)

where 11986112 11986212 and119863

12are binary interaction constants

The observed data on surface tension of binary mixtureswas fitted to the following models available in the literature

Zihao and Jufu model [22]

120590mix =11990911205901

1199091+ 120574121199092

+11990921205902

1199092+ 120574211199091

(18)

where 12057412and 12057421are interaction parameters

minus018

minus016

minus014

minus012

minus01

minus008

minus006

minus004

minus002

0

0 01 02 03 04 05 06 07 08 09 1x1

120590E

(dy

nemiddotcm

minus1)

Figure 7 Plot of 120590119864 versus 1199091for EA + BEN (◼ 29815 K998771 30815 K

⧫ 31815 K) I PA +BEN (◻ 29815 K 30815 K loz 31815 K) V BA +BEN ( 29815 K times 30815 K + 31815 K) VI calculated from (8)

0

02

04

06

08

1

12

14

0 01 02 03 04 05 06 07 08 09 1x1

120590E

(dy

nemiddotcm

minus1)

Figure 8 Plot of 120590119864 versus 1199091for EA +ACT (◼ 29815 K998771 30815 K

⧫ 31815 K) I PA + ACT (◻ 29815 K 30815 K loz 31815 K) V BA +ACT ( 29815 K times 30815 K + 31815 K) VI calculated from (8)

Rice and Teja model [23]

120590mixΦmix

= 11990911205901Φ1+ 11990921205902Φ2 (19)

whereΦ119894= 11988123

119888119894119879119888119894for 119894 = 1 or 2 component or the mixture

119881119862mix =

1

8[1199092

11198811198621

+ 1199092

21198811198622

+ 211990911199092(11988113

1198621+ 11988113

1198622)]

119879119888mix =

1

119881119888mix

[1199092

111987911988811198811198881+ 1199092

211987911988821198811198882

+21199091119909212059312(1198791198881119881119888111987911988821198811198622)12]

(20)

Here1205901is to be evaluated at a temperature =119879 (119879

1198881119879119888mix)

and 1205902at a temperature = 119879(119879

1198882119879119888mix) 119879 is the system

temperature and 12059312

is an adjustable interaction parameterhaving a value around unity The interaction parameterhas been shown to be independent of temperature andcomposition [19 20] The subscript 119888 indicates a reducedquantity

8 ISRN Physical Chemistry

Table 4 Coefficients of (9) and standard deviation (SD) determined by the method of least squares

(a) System ethanoic acid (1) + benzene (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198600

34057 minus20367 minus07083 minus01438 33546 minus21904 minus06270 minus01148 32885 minus15821 minus04091 minus010211198601

01473 minus57094 minus03870 01166 02460 minus91975 minus03834 00811 03229 875912 01482 006711198602

05936 106026 01385 00069 02239 225375 03941 minus00229 00329 460296 10281 00052SD 00046 09097 00004 00024 00066 150513 00029 00019 00106 209443 00006 00025

(b) System propanoic acid (1) + benzene (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198600

15593 minus81753 minus02753 minus03333 14645 minus90881 minus02545 minus02841 13824 minus59558 minus00305 minus029061198601

minus01945 406993 00821 01821 minus02298 631847 01348 01516 minus02524 192695 04671 010261198602

minus05306 113763 03751 minus01745 minus04702 165371 04651 minus02454 minus04703 190034 05546 minus00278SD 00025 49749 00002 00022 00033 76158 00001 00032 00035 139527 00011 00023

(c) System butanoic acid (1) + benzene (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198600

13265 minus76641 minus02993 minus06355 09972 minus47911 minus01557 minus05632 09699 143798 03753 minus049961198601

minus00839 352158 00682 02170 minus02319 723101 02175 02762 minus02740 538149 02511 021611198602

02549 127188 05053 minus02678 minus02829 114488 04437 minus02589 minus04747 minus10975 minus02301 minus01274SD 00025 79049 00011 00037 00026 104486 00005 00045 00011 74136 00001 00019

(d) System ethanoic acid (1) + acetophenone (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198600

minus11887 177318 06988 35069 minus15271 230241 08237 34363 minus17228 314469 09608 475151198601

minus00156 318334 minus00168 minus01138 00861 643012 01139 minus01918 00136 795337 01274 minus043021198602

minus02739 minus46906 minus00924 minus24741 minus02552 minus51471 minus01390 11646 minus09039 60009 00699 04843SD 00078 02584 00001 00368 00107 05067 00001 00249 00077 28808 00001 00421

(e) System propanoic acid (1) + acetophenone (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 mol-1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198600

minus21586 157504 07842 32115 minus25740 226612 09866 35476 minus29319 333655 12061 363711198601

minus04770 899121 minus01441 minus41671 minus04158 224961 minus01081 minus48025 minus04622 412138 minus00243 minus543451198602

minus11862 159141 00621 08986 minus18773 440569 01263 16488 minus29319 636631 00692 37051SD 00057 04763 00001 00296 00046 17711 00001 00289 minus04622 25552 00001 00371

(f) System butanoic acid (1) + acetophenone (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198600

minus21062 609099 03895 25197 minus25541 168349 09184 27061 minus30827 301495 12999 291311198601

minus01445 198592 00009 19580 minus01158 820211 00129 18902 minus01071 minus64428 minus03272 18747

ISRN Physical Chemistry 9

(f) Continued

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198602

minus04769 minus78407 minus00556 06841 minus11813 104424 minus00028 09832 minus10573 860142 02081 08359SD 00019 00827 00001 00267 00049 50118 00029 00194 00031 81692 00031 00183

Empirical two-constant model [24]

120590mix = 11990911205901+ 11990921205902+ 11990911199092[1198601015840+ 1198611015840(1199091minus 1199092)] (21)

where 1198601015840 and 1198611015840 are binary interaction parametersThe model parameters of (11) and (13)ndash(21) were deter-

mined using nonlinear regression technique and the esti-mated values are reported in Table 5

4 Discussion

The values of 119881119864 as illustrated in Figures 1 and 2 are

positive for the entire concentration range at all the threetemperatures for the systems EA + BEN PA + BEN andBA + BEN and negative for the remaining three systemsAbout 5 more negative or less positive 119881119864 values at highertemperatures for all the systems may be due to increasedpopulation of acid monomers to enter into the hetero-intermolecular interactions

The positive and negative 119881119864 values may be explained byconsidering the following three steps equilibria accompany-ing the mixing process as proposed by Lark and Banipal [2]

119863 minus119872 lArrrArr 119863 +119872 (22)

119863 lArrrArr 2119872 (23)

119872+ II lArrrArr 119872mdashIInd component (BENorACT) (24)

where 119863 and 119872 denote a dimer and a monomer of the acidunder questionThe first process is accompanied with a largevolume increase in the right direction the second is isochoricthat is the volume of the dimer is assumed to be equal to twicethe value of themonomer [4 5] the third step is accompaniedwith large contraction in case of ACT and expansion in caseof BEN So the addition of ACT or BEN to anyone of theacids first creates monomers by the first two steps resulting inexpansion In the third step stronger heteromolecular dipole-dipole interactions result in the observed negative 119881119864 in caseof CA + ACT and positive119881119864 values in the case of CA + BENsystem due to induced dipole-dipole interactions Thereforethe third step is accompanied with contraction in volume incase of ACT and expansion in case of BEN

The pK119886values of EA PA and BA are 476 488 and

482 respectively It is expected that the order of dimerizationconstants of various acids would increase in the same orderThe increasing dimerization constant would lead to a smallernumber of available monomers and thus to a smaller volumeincrease as described by (22)

However the observed order of 119881119864 for the CA + BENsystem is as follows BA gt PA gt EA (Table 6) This showsthat in case of BEN there are strong acid-solvent interactionswhich govern the magnitude and sign of119881119864 which increasesas the inductive effect of alkyl chain of the acid as isalso observed by Lark et al [25] Similar results were alsoobtained by Venkateswarlu and Raman [26] as the positiveexcess volumes of 12-dichloroethane and 12-dibromoethanewith three acids observe the following order BA gt PAgt EA which is the same as discussed above that is theincrease in chain length of acid contributes to the decreasein excess volume The large negative 119881119864 values in the caseof CA + ACT mixture arise due to depolymerization of acidaccompanied with strong hydrogen-bonded heterocomplexformation However in CA + ACT system the 119881

119864 valuesfollow the order PA gt BA gt EA as was also observed by Larket al [25] in CA + MEOH system

The data presented in Figures 3 and 4 reveal that excessviscosity (120578119864) is positive for the systems EA+ACT PA+ACTand BA + ACT and is negative for the systems EA + BENPA + BEN and BA + BEN at 29815 K The algebraic positivevalues of 120578119864 may be represented in the following order PA+ ACT gt EA + ACT gt BA + ACT gt BA + BEN gt PA +BEN gt EA + BEN The sign and magnitude of 120578119864 dependon the combined effect of the factors such as molecular sizeshape and intermolecular forces The positive value of 120578119864for the CA + ACT system suggests that the viscosity of themixture is higher than that of the pure components and hencethe fluidity of the mixture is low This indicates the presenceof a specific interaction such as the formation of charge-transfer complex between unlike molecules The negativevalue of 120578119864 in the systems EA + BEN PA + BEN and BA+ BEN suggests the mutual loss of a specific interaction inlike molecules that outweigh the specific interaction betweenunlike molecules The positive values of 120578119864 increase with theincrease in temperature in all these systems The 119866119864 valuesalmost observe the similar trend as observed by 120578119864 as shownin Figures 5 and 6

The variation of Grunberg andNissan parameter ldquo119889rdquo withcomposition of a particular mixture is not largeThe values ofldquo119889rdquo are negative for CA + BEN system and positive for CA +ACT system formost of the concentration rangeThe positivevalues of ldquo119889rdquo for CA + ACT system show that CA formsan intermolecular complex with ACT in the liquid phaseThe values of ldquo119889rdquo increase with the increase in temperaturein all the systems showing that the interactions between thecomponents increase with the increase in temperature Eventhe negative values of ldquo119889rdquo for CA + BEN system change

10 ISRN Physical Chemistry

Table5Interactionparameterparam

etersfor

vario

usmod

elsandsta

ndarddeviation(SD)d

etermined

byleastsqu

arem

etho

d

(a)

Mod

elCon

stants

Ethano

icacid

(1)+

benzene(2)

Prop

anoica

cid(1)+

benzene(2)

Butano

icacid

(1)+

benzene(2)

29815K

30815K

31815K

29815K

30815K

31815K

29815K

30815K

31815K

McA

lliste

r(11)

12057812

06336

05291

064

0808286

07390

08245

10808

09825

09409

12057821

05943

05347

03980

06163

05221

04268

07227

06129

064

06SD

000

9200161

00289

00105

00128

00128

00146

00108

00088

Heric(13)

12057512

minus08692

minus08380

minus04591

minus02946

minus02916

00521

minus02445

minus01271

04815

12057521

minus02173

minus03069

04582

01763

02640

07480

01390

02814

02095

SD01357

02015

03185

01524

02269

03356

03258

02169

02614

Krish

nanandLadd

ha(17)

11986112

09275

09606

07031

03620

03859

00528

03173

01913

minus05399

11986212

02536

03832

minus03062

minus01643

minus02472

minus07294

minus01430

minus02849

minus02063

11986312

minus04145

minus08715

minus17

348

minus04654

minus06512

minus07241

minus05103

minus044

99040

99SD

01468

01225

00701

00559

00502

00629

00595

00378

01101

Ausla

nder

(14)

11986112

minus00168

minus00901

00523

1840

414

898

19109

39322

25479

01292

11986021

64585

82007

73214

65731

65502

56764

99261

60937

02803

11986121

044

0902966

minus00996

00997

00271

minus02735

00896

00999

17186

SD000

4100116

00121

000

4300051

00038

00074

000

4800010

TejaandRice

(15)

12059312

11

11

11

11

1SD

00306

00224

00132

00101

00083

00131

00056

00139

00279

ZihaoandJufu

(18)

12057412

09377

09099

08985

09431

09413

09016

09343

08178

08038

12057421

10684

11008

11162

10624

10636

11114

10709

12259

12473

SD00081

00055

000

4900252

00256

00071

00858

00193

00111

Two-parameter

mod

el(21)

1198601015840

00302

00304

00305

minus00053

minus00056

minus000

69minus00121

minus00118

00079

1198611015840

00072

000

6100057

000

6100052

00038

000

67000

9600079

SD00023

00019

00024

00055

00079

00023

00088

00088

000

41

Rice

andTeja(19)

12059312

11

11

11

11

1SD

006

4300128

00039

01423

01183

01183

02210

01862

01874

(b)

Mod

elCon

stants

Ethano

icacid

(1)+

acetop

heno

ne(2)

Prop

anoica

cid(1)+

acetop

heno

ne(2)

Butano

icacid

(1)+

acetop

heno

ne(2)

29815K

30815K

31815K

29815K

30815K

31815K

29815K

30815K

31815K

McA

lliste

r(11)

12057812

16072

14795

13403

15061

14196

13377

17139

16209

13511

12057821

16910

14186

11794

17024

15097

13028

17471

16208

15934

SD000

06000

06000

6900034

00071

00082

00013

00034

00120

Heric(13)

12057512

07141

09027

12314

06855

09560

13476

02817

07089

12371

12057521

01271

02502

03406

00584

01214

01976

00134

004

17minus02198

SD03671

01578

02654

03963

01814

02120

06821

03761

00201

Krish

nanandLadd

ha(17)

11986112

minus07161

minus09048

minus11986

minus06742

minus09286

minus13101

minus02854

minus07014

minus11893

11986212

minus01293

minus02525

minus03052

minus00511

minus01036

minus01733

minus00147

minus00392

02360

11986312

00149

00160

minus02399

minus00803

minus01955

minus02679

00262

minus00528

minus03361

SD03071

03478

04162

02904

03731

04819

01301

03097

04936

Ausla

nder

(14)

11986112

minus00265

minus08582

minus31960

minus01986

minus09382

minus33948

minus19

043

minus78

002

minus210019

11986021

15819

206

6512

531

05603

06151

09108

12163

10309

05851

ISRN Physical Chemistry 11

(b)Con

tinued

Mod

elCon

stants

Ethano

icacid

(1)+

acetop

heno

ne(2)

Prop

anoica

cid(1)+

acetop

heno

ne(2)

Butano

icacid

(1)+

acetop

heno

ne(2)

29815K

30815K

31815K

29815K

30815K

31815K

29815K

30815K

31815K

11986121

12206

1344

345532

33567

47933

60789

28998

95205

3913

08SD

000

02000

080002

000

02000

05000

01000

0100026

00029

TejaandRice

(15)

12059312

105

105

105

105

105

105

105

105

105

SD00284

00070

00146

00029

00324

00411

00826

00137

00178

ZihaoandJufu

(18)

12057412

08333

09319

08198

04586

04317

03288

12367

12653

13189

12057421

1046

809544

10082

15047

15256

04304

08074

07899

07593

SD00779

00395

004

0500474

004

6502786

01261

01209

01292

Two-parameter

mod

el(21)

1198601015840

03968

04167

04557

03096

03329

03509

02215

02365

02478

1198611015840

006

4300865

00764

minus00738

minus00893

minus01025

00989

01033

01075

SD006

6600599

004

0200298

004

0300983

00493

00557

00513

Rice

andTeja(19)

12059312

105

105

105

105

105

105

105

105

105

SD01802

01131

00764

02090

01756

01678

01604

01024

01126

12 ISRN Physical Chemistry

Table 6 Comparison of excess volume 119881119864 cm3 molminus1 of equimolarmixture at 29815 K

Component II Component IEthanoic acid Propanoic acid Butanoic acid

Benzene 08514 03898 03316Acetophenone minus02972 minus05396 minus05266

minus03minus025

minus02minus015

minus01minus005

0005

01015

02025

minus600 minus400 minus200 0 200 400 600GE(Jmiddotmolminus1)

ln (H

)

Figure 9 Plot of ln119867 versus 119866119864 (◼ EA + BEN ⧫ PA + BEN 998771 BA+BEN times EA + ACT PA + ACT + BA + ACT) at 29815 K

their sign from negative to positive with the increase intemperature from 29815 to 31815 K

According to Hildebrand [27] free volume is necessaryfor flow and then shrinkage on mixing (which would reducethe free volume) would be associated with increase inviscosity of the system If 119867 is defined as 120578120578119900 where 120578 isthe experimental viscosity of the mixture and 120578

119900 is the idealviscosity calculated using

120578119900= 1199091ln 1205781+ 1199092ln 1205782 (25)

then this quantity could be related to free volume (119881119900) of thesolution according to Stairs [28] by the following equation

119867minus1

=1

119881119900(119881119900+ 119881119864) (26)

According to (26) a plot of 119867minus1 versus 119881119864 should belinear However when119867minus1 is plotted against 119881119864 a nonlinearplot was obtained in the present study However when ln119867is plotted against 119866119864 a single straight line with a nonzerointercept was obtained in Figure 9 This type of result is notunexpected because the expression for119866119864 takes into accountboth viscosity and volume Also in all these systems positive120578119864 and negative 119881

119864 and vice versa have been observedfor most of the concentration range This behaviour wasalso observed by Palepu et al [29] in binary mixtures o-chlorophenol with substituted anilines

From the literature no clear cut theoretical basis hasbeen proposed for the prediction of nonideal behaviour ofthe binary mixtures in terms of their 120590119864 values Howeverrecently Papaioannou and Panayiotou [30] have correlatedthe sign of 120590119864 values with 120578119864 values and the deviations fromRaoultrsquos law Their observation reveals the following

(1) Corresponding to the positive enthalpies of mixing(119867119864) positive volume of mixing (119881

119864) and positive

deviations from Raoultrsquos law 120590119864 values have beenobserved to be negative

(2) Corresponding to the negative enthalpies of mixing(119867119864) negative volume of mixing (119881119864) and negative

deviations from Raoultrsquos law 120590119864 values have beenobserved to be positive As shown in Figures 7 and8 the excess surface tension (120590119864) values are negativefor CA + BEN system and are positive for CA +ACT system The positive values of excess surfacetension (120590119864) increase with the rise in temperaturein all systems The negative value of 120590119864 in CA +BEN system is due to the predominance of the fol-lowing factors homopolymer complex formation andthe tendency of the component with lower surfacetension to be adsorbed at the interface But in CA+ ACT system complex formed are block copolymer[CA]119899[ACT]

119898and also dipole-dipole interactions

between carboxylic functional group of CA and car-bonyl group of ACT in the bulk phase rather than inthe interface

The interaction parameters of various models used canchange with temperature but not with composition but theinteraction parameter 120593

12in Rice and Teja and Teja and Rice

models based on the theory of corresponding states has beenshown to be independent of temperature and composition[19 20] It is observed that the models of McAllister Aus-lander and Teja and Rice fit the experimental viscosity datavery well as compared to the Heric and Krishnan and Laddhamodels Surface tensiondata iswell predicted by the empiricaltwo-parameter model [21] as well as by Rice and Teja modelThe Zihao amp Jufu model based on the work of Hildebrandamp Scott [31] also predicts satisfactory results for the systemsstudied

Acknowledgment

The author (R Ahluwalia) is grateful to CSIR India for theaward of SeniorResearch Fellowship to carry out this researchwork successfully

References

[1] R Ahluwalia R KWanchoo and J L Vashisht ldquoSome physicalproperties of binary liquid systems (ethanoic acid or propanoicacid or butanoic acid + ethanenitrile)rdquo Physics and Chemistry ofLiquids vol 29 pp 87ndash96 1995

[2] B S Lark and T S Banipal ldquoExcess volumes and excessenthalpies of acetic and its methyl substituted acids + acetoni-trilerdquo Canadian Journal of Chemistry vol 63 pp 3269ndash32751985

[3] M C S Subha and S Brahmaji Rao ldquoThermodynamic prop-erties of binary acid-base mixturesrdquo Journal of Chemical andEngineering Data vol 33 no 2 pp 104ndash106 1988

[4] H E Affsprung G H Findenegg and F Kohler ldquoThe volu-metric and dielectric behaviour of acetic acid in mixtures with

ISRN Physical Chemistry 13

nonpolar liquidsrdquo Journal of the Chemical Society A pp 1364ndash1370 1968

[5] G Bolat D Sutiman and G Lisa ldquoExperimental densities ofbinary mixtures acetic acid with benzene at several tempera-turesrdquo AIP Conference Proceedings vol 1332 no 1 p 270 2011

[6] R K Wanchoo J Narayan G K Raina and V K RattanldquoExcess properties of (2-propanal + ethylacetate or benzene)binary liquid mixturerdquo Chemical Engineering Communicationsvol 81 no 1 pp 145ndash156 1989

[7] J A Riddick andW B Bunger Techniques of Chemistry vol IIWiley-Interscience New York NY USA 1970

[8] A Weissberger Techniques of Organic Chemistry InterscienceNew York NY USA 3rd edition 1965

[9] B P Levitt Findlayrsquos Practical Physical Chemistry LongmanLondon UK 9th edition 1973

[10] G C Franchini A Marchetti M Tagliazucchi L Tassi andG Tosi ldquoEthane-12-diol-2-methoxyethanol solvent systemDependence of the relative permittivity and refractive indexon the temperature and composition of the binary mixturerdquoJournal of the Chemical Society Faraday Transactions vol 87no 16 pp 2583ndash2588 1991

[11] L Grunberg and A H Nissan ldquoMixture law for viscosityrdquoNature vol 164 no 4175 pp 799ndash800 1949

[12] R C Reid J M Prausnitz and T K Sherwood The Propertiesof Gases and Liquids McGraw Hill New York NY USA 3rdedition 1958

[13] O Redlich and A T Kister ldquoAlgebraic representation ofthermodynamic properties and the classification of solutionsrdquoIndustrial amp Engineering Chemistry vol 40 pp 345ndash348 1948

[14] A B K Stevanovic G M Babic M Lj Kijevcanin S PSerbanoviv and D K Grozdanic ldquoCorrelation of the liquidmixture viscositiesrdquo Journal of the Serbian Chemical Society vol77 no 8 pp 1083ndash1089 2012

[15] R L McAllister ldquoThe viscosity of liquid mixturesrdquo AIChEJournal vol 6 pp 427ndash431 1960

[16] E L Heric ldquoOn the viscosity of ternary mixturesrdquo Journal ofChemical and Engineering Data vol 11 no 1 pp 66ndash68 1966

[17] G Auslander ldquoThe properties of mixtures part Irdquo BritishChemical Engineering vol 9 pp 610ndash618 1964

[18] A S Teja and P Rice ldquoGeneralized corresponding statesmethod for the viscosities of liquid mixturesrdquo Industrial andEngineering Chemistry Fundamentals vol 20 no 1 pp 77ndash811981

[19] A S Teja and P Rice ldquoThe measurement and prediction of theviscosities of somebinary liquidmixtures containing n-hexanerdquoChemical Engineering Science vol 36 no 1 pp 7ndash10 1981

[20] A S Teja and P Rice ldquoA generalized corresponding statesmethod for the prediction of the thermal conductivity of liquidsand liquid mixturesrdquo Chemical Engineering Science vol 36 no2 pp 417ndash422 1981

[21] T R Kubendran S P Palaniappan M R V Krishnan and GS Laddha ldquoViscosities of binary and ternary liquid mixturesinvolving acetone carbon-tetrachloride and benzenerdquo IndianJournal of Technology vol 24 no 1 pp 22ndash25 1986

[22] W Zihao and F Jufu ldquoSurface Tension of Binary liquid mix-turesrdquo in Proceedings of theJoint Meeting of Chemical Industryand Engineering Society of China and AIChE p 143 BeijingChina September 1982

[23] P Rice and A S Teja ldquoA generalized corresponding-statesmethod for the prediction of surface tension of pure liquids and

liquidmixturesrdquo Journal of Colloid and Interface Science vol 86no 1 pp 158ndash163 1982

[24] R K Wanchoo and J Narayan ldquoSome physical propertiesof binary liquid systems (2-butanone+n-propionic acid or n-butyric acid)rdquo Physics and Chemistry of Liquids vol 27 no 3pp 159ndash167 1994

[25] B S Lark S Singh S K Aggarwal and S Makkar ldquoExcess vol-umes of n-butyric acid + various polar and nonpolar solventsrdquoJournal of Chemical and Engineering Data vol 30 no 4 pp467ndash469 1985

[26] P Venkateswarlu and G K Raman ldquoExcess volumesof ethanoic propanoic and butanoic acids with 12-dichloroethane and 12-dibromoethanerdquo Journal of Chemicaland Engineering Data vol 30 no 2 pp 180ndash181 1985

[27] J HHildebrand ldquoMotions ofmolecules in liquids viscosity anddiffusivityrdquo Science vol 174 no 4008 pp 490ndash493 1971

[28] R A Stairs ldquoViscosity of binary solutions of polar liquidsrdquoCanadian Journal of Chemistry vol 58 pp 296ndash301 1980

[29] R Palepu J Oliver and D Campbell ldquoThermodynamic andtransport properties of o-chlorophenol with aniline and N-alkylanilinesrdquo Journal of Chemical and Engineering Data vol30 no 3 pp 355ndash360 1985

[30] D Papaioannou and C G Panayiotou ldquoSurface tensions andrelative adsorptions in hydrogen-bonded systemsrdquo Journal ofChemical and EngineeringData vol 39 no 3 pp 457ndash462 1994

[31] JHHildebrand andR L ScottTheSolubility of NonelectrolytesDover New York NY USA 3rd edition 1964

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 6: Research Article Thermophysical Properties of Binary ...downloads.hindawi.com/archive/2013/612837.pdf · ISRN Physical Chemistry T : Densities ( ,kgm) of the pure components at

6 ISRN Physical Chemistry

0

01

02

03

04

05

06

07

08

09

1

0 02 04 06 08 1x1

VE

(cm

3middotm

olminus

1)

Figure 1 Plot of 119881119864 versus 1199091for EA + BEN (◼ 29815 K 998771

30815 K ⧫ 31815 K) PA + BEN (◻ 29815 K 30815 K loz 3185 K)II BA+BEN ( 29815 K times 30815 K + 31815 K) III calculated from(5)

minus09

minus08

minus07

minus06

minus05

minus04

minus03

minus02

minus01

0

0 02 04 06 08 1x1

VE

(cm

3middotm

olminus

1)

Figure 2 Plot of119881119864 versus 1199091for EA +ACT (◼ 29815 K998771 30815 K

⧫ 31815 K) IV PA + ACT (◻ 29815 K 30815 K loz 31815 K) V BA+ ACT ( 29815 K times 30815 K + 31815 K) VI calculated from (5)

Auslander [17] model

1199091(1199091+ 119861121199092) (120578mix minus 120578

1) + 119860211199092(119861211199091+ 1199092) (120578mix minus 120578

2)

= 0

(14)

where 11986112 11986021 and 119861

21are parameters representing binary

interactionsTeja and Rice [18] model

ln (120578mix120576mix) = 1199091ln (12057811205761) + 1199092ln (12057821205762) (15)

minus025

minus02

minus015

minus01

minus005

0

005

01

015

0 01 02 03 04 05 06 07 08 09 1x1

120578E

(cP

)

Figure 3 Plot of 120578119864 versus 1199091for EA + BEN (◼ 29815 K998771 30815 K

⧫ 31815 K) I PA + BEN (◻ 29815 K 30815 K loz 31815 K) II BA +BEN ( 29815 K times 30815 K + 31815 K) III calculated from (6)

0

005

01

015

02

025

03

035

0 01 02 03 04 05 06 07 08 09 1x1

120578E

(cP

)

Figure 4 Plot of 120578119864 versus 1199091for EA + ACT (◼ 29815 K998771 30815 K

⧫ 31815 K) IV PA + ACT (◻ 29815 K 30815 K loz 31815 K) V BA+ ACT ( 29815 K times 30815 K + 31815 K) VI calculated from (6)

where 120576119894= 11988123

119888119894(119879119888119894119872119894)12 for 119894 = 1 or 2 component or the

mixture

119881119862mix =

1

8[1199092

11198811198621

+ 1199092

21198811198622

+ 211990911199092(11988113

1198621+ 11988113

1198622)]

119879119888mix =

1

119881119888mix

[1199092

111987911988811198811198881+ 1199092

211987911988821198811198882

+21199091119909212059312(1198791198881119881119888111987911988821198811198622)12]

(16)

1205781must be evaluated at a temperature 119879(119879

1198881119879119888mix) and 120578

2

at a temperature 119879(1198791198882119879119888mix) 119879 is the system temperature

and 12059312

is an adjustable interaction parameter having avalue unity The interaction parameter has been shown to be

ISRN Physical Chemistry 7

minus600minus500minus400minus300minus200minus100

0100200300400

0 01 02 03 04 05 06 07 08 09 1x1

GE

(Jmiddotm

olminus

1)

Figure 5 Plot of119866119864 versus 1199091for EA + BEN (◼ 29815 K998771 30815 K

⧫ 31815 K) I PA + BEN (◻ 29815 K 30815 K loz 31815 K) II BA +BEN ( 29815 K times 30815 K + 31815 K) III calculated from (7)

0

100

200

300

400

500

600

700

800

900

0 01 02 03 04 05 06 07 08 09 1

GE

(Jmiddotm

olminus

1)

x1

Figure 6 Plot of119866119864 versus 1199091for EA +ACT (◼ 29815 K998771 30815 K

⧫ 31815 K) IV PA + ACT (◻ 29815 K 30815 K loz 31815 K) V BA+ ACT ( 29815 K times 30815 K + 31815 K) VI calculated from (7)

independent of temperature and composition [19 20] Thesubscript 119888 indicates a reduced quantity

Kubendran et al model [21]

ln 120578mix

= 1199091ln 1205781+ 1199092ln 1205782+ 1199091ln1198721

+ 1199092ln1198722minus ln [119909

11198721+ 11990921198722]

minus 230311990911199092[11986112+ 11986212(1199091minus 1199092) + 11986312(1199091minus 1199092)2]

(17)

where 11986112 11986212 and119863

12are binary interaction constants

The observed data on surface tension of binary mixtureswas fitted to the following models available in the literature

Zihao and Jufu model [22]

120590mix =11990911205901

1199091+ 120574121199092

+11990921205902

1199092+ 120574211199091

(18)

where 12057412and 12057421are interaction parameters

minus018

minus016

minus014

minus012

minus01

minus008

minus006

minus004

minus002

0

0 01 02 03 04 05 06 07 08 09 1x1

120590E

(dy

nemiddotcm

minus1)

Figure 7 Plot of 120590119864 versus 1199091for EA + BEN (◼ 29815 K998771 30815 K

⧫ 31815 K) I PA +BEN (◻ 29815 K 30815 K loz 31815 K) V BA +BEN ( 29815 K times 30815 K + 31815 K) VI calculated from (8)

0

02

04

06

08

1

12

14

0 01 02 03 04 05 06 07 08 09 1x1

120590E

(dy

nemiddotcm

minus1)

Figure 8 Plot of 120590119864 versus 1199091for EA +ACT (◼ 29815 K998771 30815 K

⧫ 31815 K) I PA + ACT (◻ 29815 K 30815 K loz 31815 K) V BA +ACT ( 29815 K times 30815 K + 31815 K) VI calculated from (8)

Rice and Teja model [23]

120590mixΦmix

= 11990911205901Φ1+ 11990921205902Φ2 (19)

whereΦ119894= 11988123

119888119894119879119888119894for 119894 = 1 or 2 component or the mixture

119881119862mix =

1

8[1199092

11198811198621

+ 1199092

21198811198622

+ 211990911199092(11988113

1198621+ 11988113

1198622)]

119879119888mix =

1

119881119888mix

[1199092

111987911988811198811198881+ 1199092

211987911988821198811198882

+21199091119909212059312(1198791198881119881119888111987911988821198811198622)12]

(20)

Here1205901is to be evaluated at a temperature =119879 (119879

1198881119879119888mix)

and 1205902at a temperature = 119879(119879

1198882119879119888mix) 119879 is the system

temperature and 12059312

is an adjustable interaction parameterhaving a value around unity The interaction parameterhas been shown to be independent of temperature andcomposition [19 20] The subscript 119888 indicates a reducedquantity

8 ISRN Physical Chemistry

Table 4 Coefficients of (9) and standard deviation (SD) determined by the method of least squares

(a) System ethanoic acid (1) + benzene (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198600

34057 minus20367 minus07083 minus01438 33546 minus21904 minus06270 minus01148 32885 minus15821 minus04091 minus010211198601

01473 minus57094 minus03870 01166 02460 minus91975 minus03834 00811 03229 875912 01482 006711198602

05936 106026 01385 00069 02239 225375 03941 minus00229 00329 460296 10281 00052SD 00046 09097 00004 00024 00066 150513 00029 00019 00106 209443 00006 00025

(b) System propanoic acid (1) + benzene (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198600

15593 minus81753 minus02753 minus03333 14645 minus90881 minus02545 minus02841 13824 minus59558 minus00305 minus029061198601

minus01945 406993 00821 01821 minus02298 631847 01348 01516 minus02524 192695 04671 010261198602

minus05306 113763 03751 minus01745 minus04702 165371 04651 minus02454 minus04703 190034 05546 minus00278SD 00025 49749 00002 00022 00033 76158 00001 00032 00035 139527 00011 00023

(c) System butanoic acid (1) + benzene (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198600

13265 minus76641 minus02993 minus06355 09972 minus47911 minus01557 minus05632 09699 143798 03753 minus049961198601

minus00839 352158 00682 02170 minus02319 723101 02175 02762 minus02740 538149 02511 021611198602

02549 127188 05053 minus02678 minus02829 114488 04437 minus02589 minus04747 minus10975 minus02301 minus01274SD 00025 79049 00011 00037 00026 104486 00005 00045 00011 74136 00001 00019

(d) System ethanoic acid (1) + acetophenone (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198600

minus11887 177318 06988 35069 minus15271 230241 08237 34363 minus17228 314469 09608 475151198601

minus00156 318334 minus00168 minus01138 00861 643012 01139 minus01918 00136 795337 01274 minus043021198602

minus02739 minus46906 minus00924 minus24741 minus02552 minus51471 minus01390 11646 minus09039 60009 00699 04843SD 00078 02584 00001 00368 00107 05067 00001 00249 00077 28808 00001 00421

(e) System propanoic acid (1) + acetophenone (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 mol-1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198600

minus21586 157504 07842 32115 minus25740 226612 09866 35476 minus29319 333655 12061 363711198601

minus04770 899121 minus01441 minus41671 minus04158 224961 minus01081 minus48025 minus04622 412138 minus00243 minus543451198602

minus11862 159141 00621 08986 minus18773 440569 01263 16488 minus29319 636631 00692 37051SD 00057 04763 00001 00296 00046 17711 00001 00289 minus04622 25552 00001 00371

(f) System butanoic acid (1) + acetophenone (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198600

minus21062 609099 03895 25197 minus25541 168349 09184 27061 minus30827 301495 12999 291311198601

minus01445 198592 00009 19580 minus01158 820211 00129 18902 minus01071 minus64428 minus03272 18747

ISRN Physical Chemistry 9

(f) Continued

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198602

minus04769 minus78407 minus00556 06841 minus11813 104424 minus00028 09832 minus10573 860142 02081 08359SD 00019 00827 00001 00267 00049 50118 00029 00194 00031 81692 00031 00183

Empirical two-constant model [24]

120590mix = 11990911205901+ 11990921205902+ 11990911199092[1198601015840+ 1198611015840(1199091minus 1199092)] (21)

where 1198601015840 and 1198611015840 are binary interaction parametersThe model parameters of (11) and (13)ndash(21) were deter-

mined using nonlinear regression technique and the esti-mated values are reported in Table 5

4 Discussion

The values of 119881119864 as illustrated in Figures 1 and 2 are

positive for the entire concentration range at all the threetemperatures for the systems EA + BEN PA + BEN andBA + BEN and negative for the remaining three systemsAbout 5 more negative or less positive 119881119864 values at highertemperatures for all the systems may be due to increasedpopulation of acid monomers to enter into the hetero-intermolecular interactions

The positive and negative 119881119864 values may be explained byconsidering the following three steps equilibria accompany-ing the mixing process as proposed by Lark and Banipal [2]

119863 minus119872 lArrrArr 119863 +119872 (22)

119863 lArrrArr 2119872 (23)

119872+ II lArrrArr 119872mdashIInd component (BENorACT) (24)

where 119863 and 119872 denote a dimer and a monomer of the acidunder questionThe first process is accompanied with a largevolume increase in the right direction the second is isochoricthat is the volume of the dimer is assumed to be equal to twicethe value of themonomer [4 5] the third step is accompaniedwith large contraction in case of ACT and expansion in caseof BEN So the addition of ACT or BEN to anyone of theacids first creates monomers by the first two steps resulting inexpansion In the third step stronger heteromolecular dipole-dipole interactions result in the observed negative 119881119864 in caseof CA + ACT and positive119881119864 values in the case of CA + BENsystem due to induced dipole-dipole interactions Thereforethe third step is accompanied with contraction in volume incase of ACT and expansion in case of BEN

The pK119886values of EA PA and BA are 476 488 and

482 respectively It is expected that the order of dimerizationconstants of various acids would increase in the same orderThe increasing dimerization constant would lead to a smallernumber of available monomers and thus to a smaller volumeincrease as described by (22)

However the observed order of 119881119864 for the CA + BENsystem is as follows BA gt PA gt EA (Table 6) This showsthat in case of BEN there are strong acid-solvent interactionswhich govern the magnitude and sign of119881119864 which increasesas the inductive effect of alkyl chain of the acid as isalso observed by Lark et al [25] Similar results were alsoobtained by Venkateswarlu and Raman [26] as the positiveexcess volumes of 12-dichloroethane and 12-dibromoethanewith three acids observe the following order BA gt PAgt EA which is the same as discussed above that is theincrease in chain length of acid contributes to the decreasein excess volume The large negative 119881119864 values in the caseof CA + ACT mixture arise due to depolymerization of acidaccompanied with strong hydrogen-bonded heterocomplexformation However in CA + ACT system the 119881

119864 valuesfollow the order PA gt BA gt EA as was also observed by Larket al [25] in CA + MEOH system

The data presented in Figures 3 and 4 reveal that excessviscosity (120578119864) is positive for the systems EA+ACT PA+ACTand BA + ACT and is negative for the systems EA + BENPA + BEN and BA + BEN at 29815 K The algebraic positivevalues of 120578119864 may be represented in the following order PA+ ACT gt EA + ACT gt BA + ACT gt BA + BEN gt PA +BEN gt EA + BEN The sign and magnitude of 120578119864 dependon the combined effect of the factors such as molecular sizeshape and intermolecular forces The positive value of 120578119864for the CA + ACT system suggests that the viscosity of themixture is higher than that of the pure components and hencethe fluidity of the mixture is low This indicates the presenceof a specific interaction such as the formation of charge-transfer complex between unlike molecules The negativevalue of 120578119864 in the systems EA + BEN PA + BEN and BA+ BEN suggests the mutual loss of a specific interaction inlike molecules that outweigh the specific interaction betweenunlike molecules The positive values of 120578119864 increase with theincrease in temperature in all these systems The 119866119864 valuesalmost observe the similar trend as observed by 120578119864 as shownin Figures 5 and 6

The variation of Grunberg andNissan parameter ldquo119889rdquo withcomposition of a particular mixture is not largeThe values ofldquo119889rdquo are negative for CA + BEN system and positive for CA +ACT system formost of the concentration rangeThe positivevalues of ldquo119889rdquo for CA + ACT system show that CA formsan intermolecular complex with ACT in the liquid phaseThe values of ldquo119889rdquo increase with the increase in temperaturein all the systems showing that the interactions between thecomponents increase with the increase in temperature Eventhe negative values of ldquo119889rdquo for CA + BEN system change

10 ISRN Physical Chemistry

Table5Interactionparameterparam

etersfor

vario

usmod

elsandsta

ndarddeviation(SD)d

etermined

byleastsqu

arem

etho

d

(a)

Mod

elCon

stants

Ethano

icacid

(1)+

benzene(2)

Prop

anoica

cid(1)+

benzene(2)

Butano

icacid

(1)+

benzene(2)

29815K

30815K

31815K

29815K

30815K

31815K

29815K

30815K

31815K

McA

lliste

r(11)

12057812

06336

05291

064

0808286

07390

08245

10808

09825

09409

12057821

05943

05347

03980

06163

05221

04268

07227

06129

064

06SD

000

9200161

00289

00105

00128

00128

00146

00108

00088

Heric(13)

12057512

minus08692

minus08380

minus04591

minus02946

minus02916

00521

minus02445

minus01271

04815

12057521

minus02173

minus03069

04582

01763

02640

07480

01390

02814

02095

SD01357

02015

03185

01524

02269

03356

03258

02169

02614

Krish

nanandLadd

ha(17)

11986112

09275

09606

07031

03620

03859

00528

03173

01913

minus05399

11986212

02536

03832

minus03062

minus01643

minus02472

minus07294

minus01430

minus02849

minus02063

11986312

minus04145

minus08715

minus17

348

minus04654

minus06512

minus07241

minus05103

minus044

99040

99SD

01468

01225

00701

00559

00502

00629

00595

00378

01101

Ausla

nder

(14)

11986112

minus00168

minus00901

00523

1840

414

898

19109

39322

25479

01292

11986021

64585

82007

73214

65731

65502

56764

99261

60937

02803

11986121

044

0902966

minus00996

00997

00271

minus02735

00896

00999

17186

SD000

4100116

00121

000

4300051

00038

00074

000

4800010

TejaandRice

(15)

12059312

11

11

11

11

1SD

00306

00224

00132

00101

00083

00131

00056

00139

00279

ZihaoandJufu

(18)

12057412

09377

09099

08985

09431

09413

09016

09343

08178

08038

12057421

10684

11008

11162

10624

10636

11114

10709

12259

12473

SD00081

00055

000

4900252

00256

00071

00858

00193

00111

Two-parameter

mod

el(21)

1198601015840

00302

00304

00305

minus00053

minus00056

minus000

69minus00121

minus00118

00079

1198611015840

00072

000

6100057

000

6100052

00038

000

67000

9600079

SD00023

00019

00024

00055

00079

00023

00088

00088

000

41

Rice

andTeja(19)

12059312

11

11

11

11

1SD

006

4300128

00039

01423

01183

01183

02210

01862

01874

(b)

Mod

elCon

stants

Ethano

icacid

(1)+

acetop

heno

ne(2)

Prop

anoica

cid(1)+

acetop

heno

ne(2)

Butano

icacid

(1)+

acetop

heno

ne(2)

29815K

30815K

31815K

29815K

30815K

31815K

29815K

30815K

31815K

McA

lliste

r(11)

12057812

16072

14795

13403

15061

14196

13377

17139

16209

13511

12057821

16910

14186

11794

17024

15097

13028

17471

16208

15934

SD000

06000

06000

6900034

00071

00082

00013

00034

00120

Heric(13)

12057512

07141

09027

12314

06855

09560

13476

02817

07089

12371

12057521

01271

02502

03406

00584

01214

01976

00134

004

17minus02198

SD03671

01578

02654

03963

01814

02120

06821

03761

00201

Krish

nanandLadd

ha(17)

11986112

minus07161

minus09048

minus11986

minus06742

minus09286

minus13101

minus02854

minus07014

minus11893

11986212

minus01293

minus02525

minus03052

minus00511

minus01036

minus01733

minus00147

minus00392

02360

11986312

00149

00160

minus02399

minus00803

minus01955

minus02679

00262

minus00528

minus03361

SD03071

03478

04162

02904

03731

04819

01301

03097

04936

Ausla

nder

(14)

11986112

minus00265

minus08582

minus31960

minus01986

minus09382

minus33948

minus19

043

minus78

002

minus210019

11986021

15819

206

6512

531

05603

06151

09108

12163

10309

05851

ISRN Physical Chemistry 11

(b)Con

tinued

Mod

elCon

stants

Ethano

icacid

(1)+

acetop

heno

ne(2)

Prop

anoica

cid(1)+

acetop

heno

ne(2)

Butano

icacid

(1)+

acetop

heno

ne(2)

29815K

30815K

31815K

29815K

30815K

31815K

29815K

30815K

31815K

11986121

12206

1344

345532

33567

47933

60789

28998

95205

3913

08SD

000

02000

080002

000

02000

05000

01000

0100026

00029

TejaandRice

(15)

12059312

105

105

105

105

105

105

105

105

105

SD00284

00070

00146

00029

00324

00411

00826

00137

00178

ZihaoandJufu

(18)

12057412

08333

09319

08198

04586

04317

03288

12367

12653

13189

12057421

1046

809544

10082

15047

15256

04304

08074

07899

07593

SD00779

00395

004

0500474

004

6502786

01261

01209

01292

Two-parameter

mod

el(21)

1198601015840

03968

04167

04557

03096

03329

03509

02215

02365

02478

1198611015840

006

4300865

00764

minus00738

minus00893

minus01025

00989

01033

01075

SD006

6600599

004

0200298

004

0300983

00493

00557

00513

Rice

andTeja(19)

12059312

105

105

105

105

105

105

105

105

105

SD01802

01131

00764

02090

01756

01678

01604

01024

01126

12 ISRN Physical Chemistry

Table 6 Comparison of excess volume 119881119864 cm3 molminus1 of equimolarmixture at 29815 K

Component II Component IEthanoic acid Propanoic acid Butanoic acid

Benzene 08514 03898 03316Acetophenone minus02972 minus05396 minus05266

minus03minus025

minus02minus015

minus01minus005

0005

01015

02025

minus600 minus400 minus200 0 200 400 600GE(Jmiddotmolminus1)

ln (H

)

Figure 9 Plot of ln119867 versus 119866119864 (◼ EA + BEN ⧫ PA + BEN 998771 BA+BEN times EA + ACT PA + ACT + BA + ACT) at 29815 K

their sign from negative to positive with the increase intemperature from 29815 to 31815 K

According to Hildebrand [27] free volume is necessaryfor flow and then shrinkage on mixing (which would reducethe free volume) would be associated with increase inviscosity of the system If 119867 is defined as 120578120578119900 where 120578 isthe experimental viscosity of the mixture and 120578

119900 is the idealviscosity calculated using

120578119900= 1199091ln 1205781+ 1199092ln 1205782 (25)

then this quantity could be related to free volume (119881119900) of thesolution according to Stairs [28] by the following equation

119867minus1

=1

119881119900(119881119900+ 119881119864) (26)

According to (26) a plot of 119867minus1 versus 119881119864 should belinear However when119867minus1 is plotted against 119881119864 a nonlinearplot was obtained in the present study However when ln119867is plotted against 119866119864 a single straight line with a nonzerointercept was obtained in Figure 9 This type of result is notunexpected because the expression for119866119864 takes into accountboth viscosity and volume Also in all these systems positive120578119864 and negative 119881

119864 and vice versa have been observedfor most of the concentration range This behaviour wasalso observed by Palepu et al [29] in binary mixtures o-chlorophenol with substituted anilines

From the literature no clear cut theoretical basis hasbeen proposed for the prediction of nonideal behaviour ofthe binary mixtures in terms of their 120590119864 values Howeverrecently Papaioannou and Panayiotou [30] have correlatedthe sign of 120590119864 values with 120578119864 values and the deviations fromRaoultrsquos law Their observation reveals the following

(1) Corresponding to the positive enthalpies of mixing(119867119864) positive volume of mixing (119881

119864) and positive

deviations from Raoultrsquos law 120590119864 values have beenobserved to be negative

(2) Corresponding to the negative enthalpies of mixing(119867119864) negative volume of mixing (119881119864) and negative

deviations from Raoultrsquos law 120590119864 values have beenobserved to be positive As shown in Figures 7 and8 the excess surface tension (120590119864) values are negativefor CA + BEN system and are positive for CA +ACT system The positive values of excess surfacetension (120590119864) increase with the rise in temperaturein all systems The negative value of 120590119864 in CA +BEN system is due to the predominance of the fol-lowing factors homopolymer complex formation andthe tendency of the component with lower surfacetension to be adsorbed at the interface But in CA+ ACT system complex formed are block copolymer[CA]119899[ACT]

119898and also dipole-dipole interactions

between carboxylic functional group of CA and car-bonyl group of ACT in the bulk phase rather than inthe interface

The interaction parameters of various models used canchange with temperature but not with composition but theinteraction parameter 120593

12in Rice and Teja and Teja and Rice

models based on the theory of corresponding states has beenshown to be independent of temperature and composition[19 20] It is observed that the models of McAllister Aus-lander and Teja and Rice fit the experimental viscosity datavery well as compared to the Heric and Krishnan and Laddhamodels Surface tensiondata iswell predicted by the empiricaltwo-parameter model [21] as well as by Rice and Teja modelThe Zihao amp Jufu model based on the work of Hildebrandamp Scott [31] also predicts satisfactory results for the systemsstudied

Acknowledgment

The author (R Ahluwalia) is grateful to CSIR India for theaward of SeniorResearch Fellowship to carry out this researchwork successfully

References

[1] R Ahluwalia R KWanchoo and J L Vashisht ldquoSome physicalproperties of binary liquid systems (ethanoic acid or propanoicacid or butanoic acid + ethanenitrile)rdquo Physics and Chemistry ofLiquids vol 29 pp 87ndash96 1995

[2] B S Lark and T S Banipal ldquoExcess volumes and excessenthalpies of acetic and its methyl substituted acids + acetoni-trilerdquo Canadian Journal of Chemistry vol 63 pp 3269ndash32751985

[3] M C S Subha and S Brahmaji Rao ldquoThermodynamic prop-erties of binary acid-base mixturesrdquo Journal of Chemical andEngineering Data vol 33 no 2 pp 104ndash106 1988

[4] H E Affsprung G H Findenegg and F Kohler ldquoThe volu-metric and dielectric behaviour of acetic acid in mixtures with

ISRN Physical Chemistry 13

nonpolar liquidsrdquo Journal of the Chemical Society A pp 1364ndash1370 1968

[5] G Bolat D Sutiman and G Lisa ldquoExperimental densities ofbinary mixtures acetic acid with benzene at several tempera-turesrdquo AIP Conference Proceedings vol 1332 no 1 p 270 2011

[6] R K Wanchoo J Narayan G K Raina and V K RattanldquoExcess properties of (2-propanal + ethylacetate or benzene)binary liquid mixturerdquo Chemical Engineering Communicationsvol 81 no 1 pp 145ndash156 1989

[7] J A Riddick andW B Bunger Techniques of Chemistry vol IIWiley-Interscience New York NY USA 1970

[8] A Weissberger Techniques of Organic Chemistry InterscienceNew York NY USA 3rd edition 1965

[9] B P Levitt Findlayrsquos Practical Physical Chemistry LongmanLondon UK 9th edition 1973

[10] G C Franchini A Marchetti M Tagliazucchi L Tassi andG Tosi ldquoEthane-12-diol-2-methoxyethanol solvent systemDependence of the relative permittivity and refractive indexon the temperature and composition of the binary mixturerdquoJournal of the Chemical Society Faraday Transactions vol 87no 16 pp 2583ndash2588 1991

[11] L Grunberg and A H Nissan ldquoMixture law for viscosityrdquoNature vol 164 no 4175 pp 799ndash800 1949

[12] R C Reid J M Prausnitz and T K Sherwood The Propertiesof Gases and Liquids McGraw Hill New York NY USA 3rdedition 1958

[13] O Redlich and A T Kister ldquoAlgebraic representation ofthermodynamic properties and the classification of solutionsrdquoIndustrial amp Engineering Chemistry vol 40 pp 345ndash348 1948

[14] A B K Stevanovic G M Babic M Lj Kijevcanin S PSerbanoviv and D K Grozdanic ldquoCorrelation of the liquidmixture viscositiesrdquo Journal of the Serbian Chemical Society vol77 no 8 pp 1083ndash1089 2012

[15] R L McAllister ldquoThe viscosity of liquid mixturesrdquo AIChEJournal vol 6 pp 427ndash431 1960

[16] E L Heric ldquoOn the viscosity of ternary mixturesrdquo Journal ofChemical and Engineering Data vol 11 no 1 pp 66ndash68 1966

[17] G Auslander ldquoThe properties of mixtures part Irdquo BritishChemical Engineering vol 9 pp 610ndash618 1964

[18] A S Teja and P Rice ldquoGeneralized corresponding statesmethod for the viscosities of liquid mixturesrdquo Industrial andEngineering Chemistry Fundamentals vol 20 no 1 pp 77ndash811981

[19] A S Teja and P Rice ldquoThe measurement and prediction of theviscosities of somebinary liquidmixtures containing n-hexanerdquoChemical Engineering Science vol 36 no 1 pp 7ndash10 1981

[20] A S Teja and P Rice ldquoA generalized corresponding statesmethod for the prediction of the thermal conductivity of liquidsand liquid mixturesrdquo Chemical Engineering Science vol 36 no2 pp 417ndash422 1981

[21] T R Kubendran S P Palaniappan M R V Krishnan and GS Laddha ldquoViscosities of binary and ternary liquid mixturesinvolving acetone carbon-tetrachloride and benzenerdquo IndianJournal of Technology vol 24 no 1 pp 22ndash25 1986

[22] W Zihao and F Jufu ldquoSurface Tension of Binary liquid mix-turesrdquo in Proceedings of theJoint Meeting of Chemical Industryand Engineering Society of China and AIChE p 143 BeijingChina September 1982

[23] P Rice and A S Teja ldquoA generalized corresponding-statesmethod for the prediction of surface tension of pure liquids and

liquidmixturesrdquo Journal of Colloid and Interface Science vol 86no 1 pp 158ndash163 1982

[24] R K Wanchoo and J Narayan ldquoSome physical propertiesof binary liquid systems (2-butanone+n-propionic acid or n-butyric acid)rdquo Physics and Chemistry of Liquids vol 27 no 3pp 159ndash167 1994

[25] B S Lark S Singh S K Aggarwal and S Makkar ldquoExcess vol-umes of n-butyric acid + various polar and nonpolar solventsrdquoJournal of Chemical and Engineering Data vol 30 no 4 pp467ndash469 1985

[26] P Venkateswarlu and G K Raman ldquoExcess volumesof ethanoic propanoic and butanoic acids with 12-dichloroethane and 12-dibromoethanerdquo Journal of Chemicaland Engineering Data vol 30 no 2 pp 180ndash181 1985

[27] J HHildebrand ldquoMotions ofmolecules in liquids viscosity anddiffusivityrdquo Science vol 174 no 4008 pp 490ndash493 1971

[28] R A Stairs ldquoViscosity of binary solutions of polar liquidsrdquoCanadian Journal of Chemistry vol 58 pp 296ndash301 1980

[29] R Palepu J Oliver and D Campbell ldquoThermodynamic andtransport properties of o-chlorophenol with aniline and N-alkylanilinesrdquo Journal of Chemical and Engineering Data vol30 no 3 pp 355ndash360 1985

[30] D Papaioannou and C G Panayiotou ldquoSurface tensions andrelative adsorptions in hydrogen-bonded systemsrdquo Journal ofChemical and EngineeringData vol 39 no 3 pp 457ndash462 1994

[31] JHHildebrand andR L ScottTheSolubility of NonelectrolytesDover New York NY USA 3rd edition 1964

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 7: Research Article Thermophysical Properties of Binary ...downloads.hindawi.com/archive/2013/612837.pdf · ISRN Physical Chemistry T : Densities ( ,kgm) of the pure components at

ISRN Physical Chemistry 7

minus600minus500minus400minus300minus200minus100

0100200300400

0 01 02 03 04 05 06 07 08 09 1x1

GE

(Jmiddotm

olminus

1)

Figure 5 Plot of119866119864 versus 1199091for EA + BEN (◼ 29815 K998771 30815 K

⧫ 31815 K) I PA + BEN (◻ 29815 K 30815 K loz 31815 K) II BA +BEN ( 29815 K times 30815 K + 31815 K) III calculated from (7)

0

100

200

300

400

500

600

700

800

900

0 01 02 03 04 05 06 07 08 09 1

GE

(Jmiddotm

olminus

1)

x1

Figure 6 Plot of119866119864 versus 1199091for EA +ACT (◼ 29815 K998771 30815 K

⧫ 31815 K) IV PA + ACT (◻ 29815 K 30815 K loz 31815 K) V BA+ ACT ( 29815 K times 30815 K + 31815 K) VI calculated from (7)

independent of temperature and composition [19 20] Thesubscript 119888 indicates a reduced quantity

Kubendran et al model [21]

ln 120578mix

= 1199091ln 1205781+ 1199092ln 1205782+ 1199091ln1198721

+ 1199092ln1198722minus ln [119909

11198721+ 11990921198722]

minus 230311990911199092[11986112+ 11986212(1199091minus 1199092) + 11986312(1199091minus 1199092)2]

(17)

where 11986112 11986212 and119863

12are binary interaction constants

The observed data on surface tension of binary mixtureswas fitted to the following models available in the literature

Zihao and Jufu model [22]

120590mix =11990911205901

1199091+ 120574121199092

+11990921205902

1199092+ 120574211199091

(18)

where 12057412and 12057421are interaction parameters

minus018

minus016

minus014

minus012

minus01

minus008

minus006

minus004

minus002

0

0 01 02 03 04 05 06 07 08 09 1x1

120590E

(dy

nemiddotcm

minus1)

Figure 7 Plot of 120590119864 versus 1199091for EA + BEN (◼ 29815 K998771 30815 K

⧫ 31815 K) I PA +BEN (◻ 29815 K 30815 K loz 31815 K) V BA +BEN ( 29815 K times 30815 K + 31815 K) VI calculated from (8)

0

02

04

06

08

1

12

14

0 01 02 03 04 05 06 07 08 09 1x1

120590E

(dy

nemiddotcm

minus1)

Figure 8 Plot of 120590119864 versus 1199091for EA +ACT (◼ 29815 K998771 30815 K

⧫ 31815 K) I PA + ACT (◻ 29815 K 30815 K loz 31815 K) V BA +ACT ( 29815 K times 30815 K + 31815 K) VI calculated from (8)

Rice and Teja model [23]

120590mixΦmix

= 11990911205901Φ1+ 11990921205902Φ2 (19)

whereΦ119894= 11988123

119888119894119879119888119894for 119894 = 1 or 2 component or the mixture

119881119862mix =

1

8[1199092

11198811198621

+ 1199092

21198811198622

+ 211990911199092(11988113

1198621+ 11988113

1198622)]

119879119888mix =

1

119881119888mix

[1199092

111987911988811198811198881+ 1199092

211987911988821198811198882

+21199091119909212059312(1198791198881119881119888111987911988821198811198622)12]

(20)

Here1205901is to be evaluated at a temperature =119879 (119879

1198881119879119888mix)

and 1205902at a temperature = 119879(119879

1198882119879119888mix) 119879 is the system

temperature and 12059312

is an adjustable interaction parameterhaving a value around unity The interaction parameterhas been shown to be independent of temperature andcomposition [19 20] The subscript 119888 indicates a reducedquantity

8 ISRN Physical Chemistry

Table 4 Coefficients of (9) and standard deviation (SD) determined by the method of least squares

(a) System ethanoic acid (1) + benzene (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198600

34057 minus20367 minus07083 minus01438 33546 minus21904 minus06270 minus01148 32885 minus15821 minus04091 minus010211198601

01473 minus57094 minus03870 01166 02460 minus91975 minus03834 00811 03229 875912 01482 006711198602

05936 106026 01385 00069 02239 225375 03941 minus00229 00329 460296 10281 00052SD 00046 09097 00004 00024 00066 150513 00029 00019 00106 209443 00006 00025

(b) System propanoic acid (1) + benzene (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198600

15593 minus81753 minus02753 minus03333 14645 minus90881 minus02545 minus02841 13824 minus59558 minus00305 minus029061198601

minus01945 406993 00821 01821 minus02298 631847 01348 01516 minus02524 192695 04671 010261198602

minus05306 113763 03751 minus01745 minus04702 165371 04651 minus02454 minus04703 190034 05546 minus00278SD 00025 49749 00002 00022 00033 76158 00001 00032 00035 139527 00011 00023

(c) System butanoic acid (1) + benzene (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198600

13265 minus76641 minus02993 minus06355 09972 minus47911 minus01557 minus05632 09699 143798 03753 minus049961198601

minus00839 352158 00682 02170 minus02319 723101 02175 02762 minus02740 538149 02511 021611198602

02549 127188 05053 minus02678 minus02829 114488 04437 minus02589 minus04747 minus10975 minus02301 minus01274SD 00025 79049 00011 00037 00026 104486 00005 00045 00011 74136 00001 00019

(d) System ethanoic acid (1) + acetophenone (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198600

minus11887 177318 06988 35069 minus15271 230241 08237 34363 minus17228 314469 09608 475151198601

minus00156 318334 minus00168 minus01138 00861 643012 01139 minus01918 00136 795337 01274 minus043021198602

minus02739 minus46906 minus00924 minus24741 minus02552 minus51471 minus01390 11646 minus09039 60009 00699 04843SD 00078 02584 00001 00368 00107 05067 00001 00249 00077 28808 00001 00421

(e) System propanoic acid (1) + acetophenone (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 mol-1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198600

minus21586 157504 07842 32115 minus25740 226612 09866 35476 minus29319 333655 12061 363711198601

minus04770 899121 minus01441 minus41671 minus04158 224961 minus01081 minus48025 minus04622 412138 minus00243 minus543451198602

minus11862 159141 00621 08986 minus18773 440569 01263 16488 minus29319 636631 00692 37051SD 00057 04763 00001 00296 00046 17711 00001 00289 minus04622 25552 00001 00371

(f) System butanoic acid (1) + acetophenone (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198600

minus21062 609099 03895 25197 minus25541 168349 09184 27061 minus30827 301495 12999 291311198601

minus01445 198592 00009 19580 minus01158 820211 00129 18902 minus01071 minus64428 minus03272 18747

ISRN Physical Chemistry 9

(f) Continued

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198602

minus04769 minus78407 minus00556 06841 minus11813 104424 minus00028 09832 minus10573 860142 02081 08359SD 00019 00827 00001 00267 00049 50118 00029 00194 00031 81692 00031 00183

Empirical two-constant model [24]

120590mix = 11990911205901+ 11990921205902+ 11990911199092[1198601015840+ 1198611015840(1199091minus 1199092)] (21)

where 1198601015840 and 1198611015840 are binary interaction parametersThe model parameters of (11) and (13)ndash(21) were deter-

mined using nonlinear regression technique and the esti-mated values are reported in Table 5

4 Discussion

The values of 119881119864 as illustrated in Figures 1 and 2 are

positive for the entire concentration range at all the threetemperatures for the systems EA + BEN PA + BEN andBA + BEN and negative for the remaining three systemsAbout 5 more negative or less positive 119881119864 values at highertemperatures for all the systems may be due to increasedpopulation of acid monomers to enter into the hetero-intermolecular interactions

The positive and negative 119881119864 values may be explained byconsidering the following three steps equilibria accompany-ing the mixing process as proposed by Lark and Banipal [2]

119863 minus119872 lArrrArr 119863 +119872 (22)

119863 lArrrArr 2119872 (23)

119872+ II lArrrArr 119872mdashIInd component (BENorACT) (24)

where 119863 and 119872 denote a dimer and a monomer of the acidunder questionThe first process is accompanied with a largevolume increase in the right direction the second is isochoricthat is the volume of the dimer is assumed to be equal to twicethe value of themonomer [4 5] the third step is accompaniedwith large contraction in case of ACT and expansion in caseof BEN So the addition of ACT or BEN to anyone of theacids first creates monomers by the first two steps resulting inexpansion In the third step stronger heteromolecular dipole-dipole interactions result in the observed negative 119881119864 in caseof CA + ACT and positive119881119864 values in the case of CA + BENsystem due to induced dipole-dipole interactions Thereforethe third step is accompanied with contraction in volume incase of ACT and expansion in case of BEN

The pK119886values of EA PA and BA are 476 488 and

482 respectively It is expected that the order of dimerizationconstants of various acids would increase in the same orderThe increasing dimerization constant would lead to a smallernumber of available monomers and thus to a smaller volumeincrease as described by (22)

However the observed order of 119881119864 for the CA + BENsystem is as follows BA gt PA gt EA (Table 6) This showsthat in case of BEN there are strong acid-solvent interactionswhich govern the magnitude and sign of119881119864 which increasesas the inductive effect of alkyl chain of the acid as isalso observed by Lark et al [25] Similar results were alsoobtained by Venkateswarlu and Raman [26] as the positiveexcess volumes of 12-dichloroethane and 12-dibromoethanewith three acids observe the following order BA gt PAgt EA which is the same as discussed above that is theincrease in chain length of acid contributes to the decreasein excess volume The large negative 119881119864 values in the caseof CA + ACT mixture arise due to depolymerization of acidaccompanied with strong hydrogen-bonded heterocomplexformation However in CA + ACT system the 119881

119864 valuesfollow the order PA gt BA gt EA as was also observed by Larket al [25] in CA + MEOH system

The data presented in Figures 3 and 4 reveal that excessviscosity (120578119864) is positive for the systems EA+ACT PA+ACTand BA + ACT and is negative for the systems EA + BENPA + BEN and BA + BEN at 29815 K The algebraic positivevalues of 120578119864 may be represented in the following order PA+ ACT gt EA + ACT gt BA + ACT gt BA + BEN gt PA +BEN gt EA + BEN The sign and magnitude of 120578119864 dependon the combined effect of the factors such as molecular sizeshape and intermolecular forces The positive value of 120578119864for the CA + ACT system suggests that the viscosity of themixture is higher than that of the pure components and hencethe fluidity of the mixture is low This indicates the presenceof a specific interaction such as the formation of charge-transfer complex between unlike molecules The negativevalue of 120578119864 in the systems EA + BEN PA + BEN and BA+ BEN suggests the mutual loss of a specific interaction inlike molecules that outweigh the specific interaction betweenunlike molecules The positive values of 120578119864 increase with theincrease in temperature in all these systems The 119866119864 valuesalmost observe the similar trend as observed by 120578119864 as shownin Figures 5 and 6

The variation of Grunberg andNissan parameter ldquo119889rdquo withcomposition of a particular mixture is not largeThe values ofldquo119889rdquo are negative for CA + BEN system and positive for CA +ACT system formost of the concentration rangeThe positivevalues of ldquo119889rdquo for CA + ACT system show that CA formsan intermolecular complex with ACT in the liquid phaseThe values of ldquo119889rdquo increase with the increase in temperaturein all the systems showing that the interactions between thecomponents increase with the increase in temperature Eventhe negative values of ldquo119889rdquo for CA + BEN system change

10 ISRN Physical Chemistry

Table5Interactionparameterparam

etersfor

vario

usmod

elsandsta

ndarddeviation(SD)d

etermined

byleastsqu

arem

etho

d

(a)

Mod

elCon

stants

Ethano

icacid

(1)+

benzene(2)

Prop

anoica

cid(1)+

benzene(2)

Butano

icacid

(1)+

benzene(2)

29815K

30815K

31815K

29815K

30815K

31815K

29815K

30815K

31815K

McA

lliste

r(11)

12057812

06336

05291

064

0808286

07390

08245

10808

09825

09409

12057821

05943

05347

03980

06163

05221

04268

07227

06129

064

06SD

000

9200161

00289

00105

00128

00128

00146

00108

00088

Heric(13)

12057512

minus08692

minus08380

minus04591

minus02946

minus02916

00521

minus02445

minus01271

04815

12057521

minus02173

minus03069

04582

01763

02640

07480

01390

02814

02095

SD01357

02015

03185

01524

02269

03356

03258

02169

02614

Krish

nanandLadd

ha(17)

11986112

09275

09606

07031

03620

03859

00528

03173

01913

minus05399

11986212

02536

03832

minus03062

minus01643

minus02472

minus07294

minus01430

minus02849

minus02063

11986312

minus04145

minus08715

minus17

348

minus04654

minus06512

minus07241

minus05103

minus044

99040

99SD

01468

01225

00701

00559

00502

00629

00595

00378

01101

Ausla

nder

(14)

11986112

minus00168

minus00901

00523

1840

414

898

19109

39322

25479

01292

11986021

64585

82007

73214

65731

65502

56764

99261

60937

02803

11986121

044

0902966

minus00996

00997

00271

minus02735

00896

00999

17186

SD000

4100116

00121

000

4300051

00038

00074

000

4800010

TejaandRice

(15)

12059312

11

11

11

11

1SD

00306

00224

00132

00101

00083

00131

00056

00139

00279

ZihaoandJufu

(18)

12057412

09377

09099

08985

09431

09413

09016

09343

08178

08038

12057421

10684

11008

11162

10624

10636

11114

10709

12259

12473

SD00081

00055

000

4900252

00256

00071

00858

00193

00111

Two-parameter

mod

el(21)

1198601015840

00302

00304

00305

minus00053

minus00056

minus000

69minus00121

minus00118

00079

1198611015840

00072

000

6100057

000

6100052

00038

000

67000

9600079

SD00023

00019

00024

00055

00079

00023

00088

00088

000

41

Rice

andTeja(19)

12059312

11

11

11

11

1SD

006

4300128

00039

01423

01183

01183

02210

01862

01874

(b)

Mod

elCon

stants

Ethano

icacid

(1)+

acetop

heno

ne(2)

Prop

anoica

cid(1)+

acetop

heno

ne(2)

Butano

icacid

(1)+

acetop

heno

ne(2)

29815K

30815K

31815K

29815K

30815K

31815K

29815K

30815K

31815K

McA

lliste

r(11)

12057812

16072

14795

13403

15061

14196

13377

17139

16209

13511

12057821

16910

14186

11794

17024

15097

13028

17471

16208

15934

SD000

06000

06000

6900034

00071

00082

00013

00034

00120

Heric(13)

12057512

07141

09027

12314

06855

09560

13476

02817

07089

12371

12057521

01271

02502

03406

00584

01214

01976

00134

004

17minus02198

SD03671

01578

02654

03963

01814

02120

06821

03761

00201

Krish

nanandLadd

ha(17)

11986112

minus07161

minus09048

minus11986

minus06742

minus09286

minus13101

minus02854

minus07014

minus11893

11986212

minus01293

minus02525

minus03052

minus00511

minus01036

minus01733

minus00147

minus00392

02360

11986312

00149

00160

minus02399

minus00803

minus01955

minus02679

00262

minus00528

minus03361

SD03071

03478

04162

02904

03731

04819

01301

03097

04936

Ausla

nder

(14)

11986112

minus00265

minus08582

minus31960

minus01986

minus09382

minus33948

minus19

043

minus78

002

minus210019

11986021

15819

206

6512

531

05603

06151

09108

12163

10309

05851

ISRN Physical Chemistry 11

(b)Con

tinued

Mod

elCon

stants

Ethano

icacid

(1)+

acetop

heno

ne(2)

Prop

anoica

cid(1)+

acetop

heno

ne(2)

Butano

icacid

(1)+

acetop

heno

ne(2)

29815K

30815K

31815K

29815K

30815K

31815K

29815K

30815K

31815K

11986121

12206

1344

345532

33567

47933

60789

28998

95205

3913

08SD

000

02000

080002

000

02000

05000

01000

0100026

00029

TejaandRice

(15)

12059312

105

105

105

105

105

105

105

105

105

SD00284

00070

00146

00029

00324

00411

00826

00137

00178

ZihaoandJufu

(18)

12057412

08333

09319

08198

04586

04317

03288

12367

12653

13189

12057421

1046

809544

10082

15047

15256

04304

08074

07899

07593

SD00779

00395

004

0500474

004

6502786

01261

01209

01292

Two-parameter

mod

el(21)

1198601015840

03968

04167

04557

03096

03329

03509

02215

02365

02478

1198611015840

006

4300865

00764

minus00738

minus00893

minus01025

00989

01033

01075

SD006

6600599

004

0200298

004

0300983

00493

00557

00513

Rice

andTeja(19)

12059312

105

105

105

105

105

105

105

105

105

SD01802

01131

00764

02090

01756

01678

01604

01024

01126

12 ISRN Physical Chemistry

Table 6 Comparison of excess volume 119881119864 cm3 molminus1 of equimolarmixture at 29815 K

Component II Component IEthanoic acid Propanoic acid Butanoic acid

Benzene 08514 03898 03316Acetophenone minus02972 minus05396 minus05266

minus03minus025

minus02minus015

minus01minus005

0005

01015

02025

minus600 minus400 minus200 0 200 400 600GE(Jmiddotmolminus1)

ln (H

)

Figure 9 Plot of ln119867 versus 119866119864 (◼ EA + BEN ⧫ PA + BEN 998771 BA+BEN times EA + ACT PA + ACT + BA + ACT) at 29815 K

their sign from negative to positive with the increase intemperature from 29815 to 31815 K

According to Hildebrand [27] free volume is necessaryfor flow and then shrinkage on mixing (which would reducethe free volume) would be associated with increase inviscosity of the system If 119867 is defined as 120578120578119900 where 120578 isthe experimental viscosity of the mixture and 120578

119900 is the idealviscosity calculated using

120578119900= 1199091ln 1205781+ 1199092ln 1205782 (25)

then this quantity could be related to free volume (119881119900) of thesolution according to Stairs [28] by the following equation

119867minus1

=1

119881119900(119881119900+ 119881119864) (26)

According to (26) a plot of 119867minus1 versus 119881119864 should belinear However when119867minus1 is plotted against 119881119864 a nonlinearplot was obtained in the present study However when ln119867is plotted against 119866119864 a single straight line with a nonzerointercept was obtained in Figure 9 This type of result is notunexpected because the expression for119866119864 takes into accountboth viscosity and volume Also in all these systems positive120578119864 and negative 119881

119864 and vice versa have been observedfor most of the concentration range This behaviour wasalso observed by Palepu et al [29] in binary mixtures o-chlorophenol with substituted anilines

From the literature no clear cut theoretical basis hasbeen proposed for the prediction of nonideal behaviour ofthe binary mixtures in terms of their 120590119864 values Howeverrecently Papaioannou and Panayiotou [30] have correlatedthe sign of 120590119864 values with 120578119864 values and the deviations fromRaoultrsquos law Their observation reveals the following

(1) Corresponding to the positive enthalpies of mixing(119867119864) positive volume of mixing (119881

119864) and positive

deviations from Raoultrsquos law 120590119864 values have beenobserved to be negative

(2) Corresponding to the negative enthalpies of mixing(119867119864) negative volume of mixing (119881119864) and negative

deviations from Raoultrsquos law 120590119864 values have beenobserved to be positive As shown in Figures 7 and8 the excess surface tension (120590119864) values are negativefor CA + BEN system and are positive for CA +ACT system The positive values of excess surfacetension (120590119864) increase with the rise in temperaturein all systems The negative value of 120590119864 in CA +BEN system is due to the predominance of the fol-lowing factors homopolymer complex formation andthe tendency of the component with lower surfacetension to be adsorbed at the interface But in CA+ ACT system complex formed are block copolymer[CA]119899[ACT]

119898and also dipole-dipole interactions

between carboxylic functional group of CA and car-bonyl group of ACT in the bulk phase rather than inthe interface

The interaction parameters of various models used canchange with temperature but not with composition but theinteraction parameter 120593

12in Rice and Teja and Teja and Rice

models based on the theory of corresponding states has beenshown to be independent of temperature and composition[19 20] It is observed that the models of McAllister Aus-lander and Teja and Rice fit the experimental viscosity datavery well as compared to the Heric and Krishnan and Laddhamodels Surface tensiondata iswell predicted by the empiricaltwo-parameter model [21] as well as by Rice and Teja modelThe Zihao amp Jufu model based on the work of Hildebrandamp Scott [31] also predicts satisfactory results for the systemsstudied

Acknowledgment

The author (R Ahluwalia) is grateful to CSIR India for theaward of SeniorResearch Fellowship to carry out this researchwork successfully

References

[1] R Ahluwalia R KWanchoo and J L Vashisht ldquoSome physicalproperties of binary liquid systems (ethanoic acid or propanoicacid or butanoic acid + ethanenitrile)rdquo Physics and Chemistry ofLiquids vol 29 pp 87ndash96 1995

[2] B S Lark and T S Banipal ldquoExcess volumes and excessenthalpies of acetic and its methyl substituted acids + acetoni-trilerdquo Canadian Journal of Chemistry vol 63 pp 3269ndash32751985

[3] M C S Subha and S Brahmaji Rao ldquoThermodynamic prop-erties of binary acid-base mixturesrdquo Journal of Chemical andEngineering Data vol 33 no 2 pp 104ndash106 1988

[4] H E Affsprung G H Findenegg and F Kohler ldquoThe volu-metric and dielectric behaviour of acetic acid in mixtures with

ISRN Physical Chemistry 13

nonpolar liquidsrdquo Journal of the Chemical Society A pp 1364ndash1370 1968

[5] G Bolat D Sutiman and G Lisa ldquoExperimental densities ofbinary mixtures acetic acid with benzene at several tempera-turesrdquo AIP Conference Proceedings vol 1332 no 1 p 270 2011

[6] R K Wanchoo J Narayan G K Raina and V K RattanldquoExcess properties of (2-propanal + ethylacetate or benzene)binary liquid mixturerdquo Chemical Engineering Communicationsvol 81 no 1 pp 145ndash156 1989

[7] J A Riddick andW B Bunger Techniques of Chemistry vol IIWiley-Interscience New York NY USA 1970

[8] A Weissberger Techniques of Organic Chemistry InterscienceNew York NY USA 3rd edition 1965

[9] B P Levitt Findlayrsquos Practical Physical Chemistry LongmanLondon UK 9th edition 1973

[10] G C Franchini A Marchetti M Tagliazucchi L Tassi andG Tosi ldquoEthane-12-diol-2-methoxyethanol solvent systemDependence of the relative permittivity and refractive indexon the temperature and composition of the binary mixturerdquoJournal of the Chemical Society Faraday Transactions vol 87no 16 pp 2583ndash2588 1991

[11] L Grunberg and A H Nissan ldquoMixture law for viscosityrdquoNature vol 164 no 4175 pp 799ndash800 1949

[12] R C Reid J M Prausnitz and T K Sherwood The Propertiesof Gases and Liquids McGraw Hill New York NY USA 3rdedition 1958

[13] O Redlich and A T Kister ldquoAlgebraic representation ofthermodynamic properties and the classification of solutionsrdquoIndustrial amp Engineering Chemistry vol 40 pp 345ndash348 1948

[14] A B K Stevanovic G M Babic M Lj Kijevcanin S PSerbanoviv and D K Grozdanic ldquoCorrelation of the liquidmixture viscositiesrdquo Journal of the Serbian Chemical Society vol77 no 8 pp 1083ndash1089 2012

[15] R L McAllister ldquoThe viscosity of liquid mixturesrdquo AIChEJournal vol 6 pp 427ndash431 1960

[16] E L Heric ldquoOn the viscosity of ternary mixturesrdquo Journal ofChemical and Engineering Data vol 11 no 1 pp 66ndash68 1966

[17] G Auslander ldquoThe properties of mixtures part Irdquo BritishChemical Engineering vol 9 pp 610ndash618 1964

[18] A S Teja and P Rice ldquoGeneralized corresponding statesmethod for the viscosities of liquid mixturesrdquo Industrial andEngineering Chemistry Fundamentals vol 20 no 1 pp 77ndash811981

[19] A S Teja and P Rice ldquoThe measurement and prediction of theviscosities of somebinary liquidmixtures containing n-hexanerdquoChemical Engineering Science vol 36 no 1 pp 7ndash10 1981

[20] A S Teja and P Rice ldquoA generalized corresponding statesmethod for the prediction of the thermal conductivity of liquidsand liquid mixturesrdquo Chemical Engineering Science vol 36 no2 pp 417ndash422 1981

[21] T R Kubendran S P Palaniappan M R V Krishnan and GS Laddha ldquoViscosities of binary and ternary liquid mixturesinvolving acetone carbon-tetrachloride and benzenerdquo IndianJournal of Technology vol 24 no 1 pp 22ndash25 1986

[22] W Zihao and F Jufu ldquoSurface Tension of Binary liquid mix-turesrdquo in Proceedings of theJoint Meeting of Chemical Industryand Engineering Society of China and AIChE p 143 BeijingChina September 1982

[23] P Rice and A S Teja ldquoA generalized corresponding-statesmethod for the prediction of surface tension of pure liquids and

liquidmixturesrdquo Journal of Colloid and Interface Science vol 86no 1 pp 158ndash163 1982

[24] R K Wanchoo and J Narayan ldquoSome physical propertiesof binary liquid systems (2-butanone+n-propionic acid or n-butyric acid)rdquo Physics and Chemistry of Liquids vol 27 no 3pp 159ndash167 1994

[25] B S Lark S Singh S K Aggarwal and S Makkar ldquoExcess vol-umes of n-butyric acid + various polar and nonpolar solventsrdquoJournal of Chemical and Engineering Data vol 30 no 4 pp467ndash469 1985

[26] P Venkateswarlu and G K Raman ldquoExcess volumesof ethanoic propanoic and butanoic acids with 12-dichloroethane and 12-dibromoethanerdquo Journal of Chemicaland Engineering Data vol 30 no 2 pp 180ndash181 1985

[27] J HHildebrand ldquoMotions ofmolecules in liquids viscosity anddiffusivityrdquo Science vol 174 no 4008 pp 490ndash493 1971

[28] R A Stairs ldquoViscosity of binary solutions of polar liquidsrdquoCanadian Journal of Chemistry vol 58 pp 296ndash301 1980

[29] R Palepu J Oliver and D Campbell ldquoThermodynamic andtransport properties of o-chlorophenol with aniline and N-alkylanilinesrdquo Journal of Chemical and Engineering Data vol30 no 3 pp 355ndash360 1985

[30] D Papaioannou and C G Panayiotou ldquoSurface tensions andrelative adsorptions in hydrogen-bonded systemsrdquo Journal ofChemical and EngineeringData vol 39 no 3 pp 457ndash462 1994

[31] JHHildebrand andR L ScottTheSolubility of NonelectrolytesDover New York NY USA 3rd edition 1964

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 8: Research Article Thermophysical Properties of Binary ...downloads.hindawi.com/archive/2013/612837.pdf · ISRN Physical Chemistry T : Densities ( ,kgm) of the pure components at

8 ISRN Physical Chemistry

Table 4 Coefficients of (9) and standard deviation (SD) determined by the method of least squares

(a) System ethanoic acid (1) + benzene (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198600

34057 minus20367 minus07083 minus01438 33546 minus21904 minus06270 minus01148 32885 minus15821 minus04091 minus010211198601

01473 minus57094 minus03870 01166 02460 minus91975 minus03834 00811 03229 875912 01482 006711198602

05936 106026 01385 00069 02239 225375 03941 minus00229 00329 460296 10281 00052SD 00046 09097 00004 00024 00066 150513 00029 00019 00106 209443 00006 00025

(b) System propanoic acid (1) + benzene (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198600

15593 minus81753 minus02753 minus03333 14645 minus90881 minus02545 minus02841 13824 minus59558 minus00305 minus029061198601

minus01945 406993 00821 01821 minus02298 631847 01348 01516 minus02524 192695 04671 010261198602

minus05306 113763 03751 minus01745 minus04702 165371 04651 minus02454 minus04703 190034 05546 minus00278SD 00025 49749 00002 00022 00033 76158 00001 00032 00035 139527 00011 00023

(c) System butanoic acid (1) + benzene (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198600

13265 minus76641 minus02993 minus06355 09972 minus47911 minus01557 minus05632 09699 143798 03753 minus049961198601

minus00839 352158 00682 02170 minus02319 723101 02175 02762 minus02740 538149 02511 021611198602

02549 127188 05053 minus02678 minus02829 114488 04437 minus02589 minus04747 minus10975 minus02301 minus01274SD 00025 79049 00011 00037 00026 104486 00005 00045 00011 74136 00001 00019

(d) System ethanoic acid (1) + acetophenone (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198600

minus11887 177318 06988 35069 minus15271 230241 08237 34363 minus17228 314469 09608 475151198601

minus00156 318334 minus00168 minus01138 00861 643012 01139 minus01918 00136 795337 01274 minus043021198602

minus02739 minus46906 minus00924 minus24741 minus02552 minus51471 minus01390 11646 minus09039 60009 00699 04843SD 00078 02584 00001 00368 00107 05067 00001 00249 00077 28808 00001 00421

(e) System propanoic acid (1) + acetophenone (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 mol-1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198600

minus21586 157504 07842 32115 minus25740 226612 09866 35476 minus29319 333655 12061 363711198601

minus04770 899121 minus01441 minus41671 minus04158 224961 minus01081 minus48025 minus04622 412138 minus00243 minus543451198602

minus11862 159141 00621 08986 minus18773 440569 01263 16488 minus29319 636631 00692 37051SD 00057 04763 00001 00296 00046 17711 00001 00289 minus04622 25552 00001 00371

(f) System butanoic acid (1) + acetophenone (2)

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198600

minus21062 609099 03895 25197 minus25541 168349 09184 27061 minus30827 301495 12999 291311198601

minus01445 198592 00009 19580 minus01158 820211 00129 18902 minus01071 minus64428 minus03272 18747

ISRN Physical Chemistry 9

(f) Continued

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198602

minus04769 minus78407 minus00556 06841 minus11813 104424 minus00028 09832 minus10573 860142 02081 08359SD 00019 00827 00001 00267 00049 50118 00029 00194 00031 81692 00031 00183

Empirical two-constant model [24]

120590mix = 11990911205901+ 11990921205902+ 11990911199092[1198601015840+ 1198611015840(1199091minus 1199092)] (21)

where 1198601015840 and 1198611015840 are binary interaction parametersThe model parameters of (11) and (13)ndash(21) were deter-

mined using nonlinear regression technique and the esti-mated values are reported in Table 5

4 Discussion

The values of 119881119864 as illustrated in Figures 1 and 2 are

positive for the entire concentration range at all the threetemperatures for the systems EA + BEN PA + BEN andBA + BEN and negative for the remaining three systemsAbout 5 more negative or less positive 119881119864 values at highertemperatures for all the systems may be due to increasedpopulation of acid monomers to enter into the hetero-intermolecular interactions

The positive and negative 119881119864 values may be explained byconsidering the following three steps equilibria accompany-ing the mixing process as proposed by Lark and Banipal [2]

119863 minus119872 lArrrArr 119863 +119872 (22)

119863 lArrrArr 2119872 (23)

119872+ II lArrrArr 119872mdashIInd component (BENorACT) (24)

where 119863 and 119872 denote a dimer and a monomer of the acidunder questionThe first process is accompanied with a largevolume increase in the right direction the second is isochoricthat is the volume of the dimer is assumed to be equal to twicethe value of themonomer [4 5] the third step is accompaniedwith large contraction in case of ACT and expansion in caseof BEN So the addition of ACT or BEN to anyone of theacids first creates monomers by the first two steps resulting inexpansion In the third step stronger heteromolecular dipole-dipole interactions result in the observed negative 119881119864 in caseof CA + ACT and positive119881119864 values in the case of CA + BENsystem due to induced dipole-dipole interactions Thereforethe third step is accompanied with contraction in volume incase of ACT and expansion in case of BEN

The pK119886values of EA PA and BA are 476 488 and

482 respectively It is expected that the order of dimerizationconstants of various acids would increase in the same orderThe increasing dimerization constant would lead to a smallernumber of available monomers and thus to a smaller volumeincrease as described by (22)

However the observed order of 119881119864 for the CA + BENsystem is as follows BA gt PA gt EA (Table 6) This showsthat in case of BEN there are strong acid-solvent interactionswhich govern the magnitude and sign of119881119864 which increasesas the inductive effect of alkyl chain of the acid as isalso observed by Lark et al [25] Similar results were alsoobtained by Venkateswarlu and Raman [26] as the positiveexcess volumes of 12-dichloroethane and 12-dibromoethanewith three acids observe the following order BA gt PAgt EA which is the same as discussed above that is theincrease in chain length of acid contributes to the decreasein excess volume The large negative 119881119864 values in the caseof CA + ACT mixture arise due to depolymerization of acidaccompanied with strong hydrogen-bonded heterocomplexformation However in CA + ACT system the 119881

119864 valuesfollow the order PA gt BA gt EA as was also observed by Larket al [25] in CA + MEOH system

The data presented in Figures 3 and 4 reveal that excessviscosity (120578119864) is positive for the systems EA+ACT PA+ACTand BA + ACT and is negative for the systems EA + BENPA + BEN and BA + BEN at 29815 K The algebraic positivevalues of 120578119864 may be represented in the following order PA+ ACT gt EA + ACT gt BA + ACT gt BA + BEN gt PA +BEN gt EA + BEN The sign and magnitude of 120578119864 dependon the combined effect of the factors such as molecular sizeshape and intermolecular forces The positive value of 120578119864for the CA + ACT system suggests that the viscosity of themixture is higher than that of the pure components and hencethe fluidity of the mixture is low This indicates the presenceof a specific interaction such as the formation of charge-transfer complex between unlike molecules The negativevalue of 120578119864 in the systems EA + BEN PA + BEN and BA+ BEN suggests the mutual loss of a specific interaction inlike molecules that outweigh the specific interaction betweenunlike molecules The positive values of 120578119864 increase with theincrease in temperature in all these systems The 119866119864 valuesalmost observe the similar trend as observed by 120578119864 as shownin Figures 5 and 6

The variation of Grunberg andNissan parameter ldquo119889rdquo withcomposition of a particular mixture is not largeThe values ofldquo119889rdquo are negative for CA + BEN system and positive for CA +ACT system formost of the concentration rangeThe positivevalues of ldquo119889rdquo for CA + ACT system show that CA formsan intermolecular complex with ACT in the liquid phaseThe values of ldquo119889rdquo increase with the increase in temperaturein all the systems showing that the interactions between thecomponents increase with the increase in temperature Eventhe negative values of ldquo119889rdquo for CA + BEN system change

10 ISRN Physical Chemistry

Table5Interactionparameterparam

etersfor

vario

usmod

elsandsta

ndarddeviation(SD)d

etermined

byleastsqu

arem

etho

d

(a)

Mod

elCon

stants

Ethano

icacid

(1)+

benzene(2)

Prop

anoica

cid(1)+

benzene(2)

Butano

icacid

(1)+

benzene(2)

29815K

30815K

31815K

29815K

30815K

31815K

29815K

30815K

31815K

McA

lliste

r(11)

12057812

06336

05291

064

0808286

07390

08245

10808

09825

09409

12057821

05943

05347

03980

06163

05221

04268

07227

06129

064

06SD

000

9200161

00289

00105

00128

00128

00146

00108

00088

Heric(13)

12057512

minus08692

minus08380

minus04591

minus02946

minus02916

00521

minus02445

minus01271

04815

12057521

minus02173

minus03069

04582

01763

02640

07480

01390

02814

02095

SD01357

02015

03185

01524

02269

03356

03258

02169

02614

Krish

nanandLadd

ha(17)

11986112

09275

09606

07031

03620

03859

00528

03173

01913

minus05399

11986212

02536

03832

minus03062

minus01643

minus02472

minus07294

minus01430

minus02849

minus02063

11986312

minus04145

minus08715

minus17

348

minus04654

minus06512

minus07241

minus05103

minus044

99040

99SD

01468

01225

00701

00559

00502

00629

00595

00378

01101

Ausla

nder

(14)

11986112

minus00168

minus00901

00523

1840

414

898

19109

39322

25479

01292

11986021

64585

82007

73214

65731

65502

56764

99261

60937

02803

11986121

044

0902966

minus00996

00997

00271

minus02735

00896

00999

17186

SD000

4100116

00121

000

4300051

00038

00074

000

4800010

TejaandRice

(15)

12059312

11

11

11

11

1SD

00306

00224

00132

00101

00083

00131

00056

00139

00279

ZihaoandJufu

(18)

12057412

09377

09099

08985

09431

09413

09016

09343

08178

08038

12057421

10684

11008

11162

10624

10636

11114

10709

12259

12473

SD00081

00055

000

4900252

00256

00071

00858

00193

00111

Two-parameter

mod

el(21)

1198601015840

00302

00304

00305

minus00053

minus00056

minus000

69minus00121

minus00118

00079

1198611015840

00072

000

6100057

000

6100052

00038

000

67000

9600079

SD00023

00019

00024

00055

00079

00023

00088

00088

000

41

Rice

andTeja(19)

12059312

11

11

11

11

1SD

006

4300128

00039

01423

01183

01183

02210

01862

01874

(b)

Mod

elCon

stants

Ethano

icacid

(1)+

acetop

heno

ne(2)

Prop

anoica

cid(1)+

acetop

heno

ne(2)

Butano

icacid

(1)+

acetop

heno

ne(2)

29815K

30815K

31815K

29815K

30815K

31815K

29815K

30815K

31815K

McA

lliste

r(11)

12057812

16072

14795

13403

15061

14196

13377

17139

16209

13511

12057821

16910

14186

11794

17024

15097

13028

17471

16208

15934

SD000

06000

06000

6900034

00071

00082

00013

00034

00120

Heric(13)

12057512

07141

09027

12314

06855

09560

13476

02817

07089

12371

12057521

01271

02502

03406

00584

01214

01976

00134

004

17minus02198

SD03671

01578

02654

03963

01814

02120

06821

03761

00201

Krish

nanandLadd

ha(17)

11986112

minus07161

minus09048

minus11986

minus06742

minus09286

minus13101

minus02854

minus07014

minus11893

11986212

minus01293

minus02525

minus03052

minus00511

minus01036

minus01733

minus00147

minus00392

02360

11986312

00149

00160

minus02399

minus00803

minus01955

minus02679

00262

minus00528

minus03361

SD03071

03478

04162

02904

03731

04819

01301

03097

04936

Ausla

nder

(14)

11986112

minus00265

minus08582

minus31960

minus01986

minus09382

minus33948

minus19

043

minus78

002

minus210019

11986021

15819

206

6512

531

05603

06151

09108

12163

10309

05851

ISRN Physical Chemistry 11

(b)Con

tinued

Mod

elCon

stants

Ethano

icacid

(1)+

acetop

heno

ne(2)

Prop

anoica

cid(1)+

acetop

heno

ne(2)

Butano

icacid

(1)+

acetop

heno

ne(2)

29815K

30815K

31815K

29815K

30815K

31815K

29815K

30815K

31815K

11986121

12206

1344

345532

33567

47933

60789

28998

95205

3913

08SD

000

02000

080002

000

02000

05000

01000

0100026

00029

TejaandRice

(15)

12059312

105

105

105

105

105

105

105

105

105

SD00284

00070

00146

00029

00324

00411

00826

00137

00178

ZihaoandJufu

(18)

12057412

08333

09319

08198

04586

04317

03288

12367

12653

13189

12057421

1046

809544

10082

15047

15256

04304

08074

07899

07593

SD00779

00395

004

0500474

004

6502786

01261

01209

01292

Two-parameter

mod

el(21)

1198601015840

03968

04167

04557

03096

03329

03509

02215

02365

02478

1198611015840

006

4300865

00764

minus00738

minus00893

minus01025

00989

01033

01075

SD006

6600599

004

0200298

004

0300983

00493

00557

00513

Rice

andTeja(19)

12059312

105

105

105

105

105

105

105

105

105

SD01802

01131

00764

02090

01756

01678

01604

01024

01126

12 ISRN Physical Chemistry

Table 6 Comparison of excess volume 119881119864 cm3 molminus1 of equimolarmixture at 29815 K

Component II Component IEthanoic acid Propanoic acid Butanoic acid

Benzene 08514 03898 03316Acetophenone minus02972 minus05396 minus05266

minus03minus025

minus02minus015

minus01minus005

0005

01015

02025

minus600 minus400 minus200 0 200 400 600GE(Jmiddotmolminus1)

ln (H

)

Figure 9 Plot of ln119867 versus 119866119864 (◼ EA + BEN ⧫ PA + BEN 998771 BA+BEN times EA + ACT PA + ACT + BA + ACT) at 29815 K

their sign from negative to positive with the increase intemperature from 29815 to 31815 K

According to Hildebrand [27] free volume is necessaryfor flow and then shrinkage on mixing (which would reducethe free volume) would be associated with increase inviscosity of the system If 119867 is defined as 120578120578119900 where 120578 isthe experimental viscosity of the mixture and 120578

119900 is the idealviscosity calculated using

120578119900= 1199091ln 1205781+ 1199092ln 1205782 (25)

then this quantity could be related to free volume (119881119900) of thesolution according to Stairs [28] by the following equation

119867minus1

=1

119881119900(119881119900+ 119881119864) (26)

According to (26) a plot of 119867minus1 versus 119881119864 should belinear However when119867minus1 is plotted against 119881119864 a nonlinearplot was obtained in the present study However when ln119867is plotted against 119866119864 a single straight line with a nonzerointercept was obtained in Figure 9 This type of result is notunexpected because the expression for119866119864 takes into accountboth viscosity and volume Also in all these systems positive120578119864 and negative 119881

119864 and vice versa have been observedfor most of the concentration range This behaviour wasalso observed by Palepu et al [29] in binary mixtures o-chlorophenol with substituted anilines

From the literature no clear cut theoretical basis hasbeen proposed for the prediction of nonideal behaviour ofthe binary mixtures in terms of their 120590119864 values Howeverrecently Papaioannou and Panayiotou [30] have correlatedthe sign of 120590119864 values with 120578119864 values and the deviations fromRaoultrsquos law Their observation reveals the following

(1) Corresponding to the positive enthalpies of mixing(119867119864) positive volume of mixing (119881

119864) and positive

deviations from Raoultrsquos law 120590119864 values have beenobserved to be negative

(2) Corresponding to the negative enthalpies of mixing(119867119864) negative volume of mixing (119881119864) and negative

deviations from Raoultrsquos law 120590119864 values have beenobserved to be positive As shown in Figures 7 and8 the excess surface tension (120590119864) values are negativefor CA + BEN system and are positive for CA +ACT system The positive values of excess surfacetension (120590119864) increase with the rise in temperaturein all systems The negative value of 120590119864 in CA +BEN system is due to the predominance of the fol-lowing factors homopolymer complex formation andthe tendency of the component with lower surfacetension to be adsorbed at the interface But in CA+ ACT system complex formed are block copolymer[CA]119899[ACT]

119898and also dipole-dipole interactions

between carboxylic functional group of CA and car-bonyl group of ACT in the bulk phase rather than inthe interface

The interaction parameters of various models used canchange with temperature but not with composition but theinteraction parameter 120593

12in Rice and Teja and Teja and Rice

models based on the theory of corresponding states has beenshown to be independent of temperature and composition[19 20] It is observed that the models of McAllister Aus-lander and Teja and Rice fit the experimental viscosity datavery well as compared to the Heric and Krishnan and Laddhamodels Surface tensiondata iswell predicted by the empiricaltwo-parameter model [21] as well as by Rice and Teja modelThe Zihao amp Jufu model based on the work of Hildebrandamp Scott [31] also predicts satisfactory results for the systemsstudied

Acknowledgment

The author (R Ahluwalia) is grateful to CSIR India for theaward of SeniorResearch Fellowship to carry out this researchwork successfully

References

[1] R Ahluwalia R KWanchoo and J L Vashisht ldquoSome physicalproperties of binary liquid systems (ethanoic acid or propanoicacid or butanoic acid + ethanenitrile)rdquo Physics and Chemistry ofLiquids vol 29 pp 87ndash96 1995

[2] B S Lark and T S Banipal ldquoExcess volumes and excessenthalpies of acetic and its methyl substituted acids + acetoni-trilerdquo Canadian Journal of Chemistry vol 63 pp 3269ndash32751985

[3] M C S Subha and S Brahmaji Rao ldquoThermodynamic prop-erties of binary acid-base mixturesrdquo Journal of Chemical andEngineering Data vol 33 no 2 pp 104ndash106 1988

[4] H E Affsprung G H Findenegg and F Kohler ldquoThe volu-metric and dielectric behaviour of acetic acid in mixtures with

ISRN Physical Chemistry 13

nonpolar liquidsrdquo Journal of the Chemical Society A pp 1364ndash1370 1968

[5] G Bolat D Sutiman and G Lisa ldquoExperimental densities ofbinary mixtures acetic acid with benzene at several tempera-turesrdquo AIP Conference Proceedings vol 1332 no 1 p 270 2011

[6] R K Wanchoo J Narayan G K Raina and V K RattanldquoExcess properties of (2-propanal + ethylacetate or benzene)binary liquid mixturerdquo Chemical Engineering Communicationsvol 81 no 1 pp 145ndash156 1989

[7] J A Riddick andW B Bunger Techniques of Chemistry vol IIWiley-Interscience New York NY USA 1970

[8] A Weissberger Techniques of Organic Chemistry InterscienceNew York NY USA 3rd edition 1965

[9] B P Levitt Findlayrsquos Practical Physical Chemistry LongmanLondon UK 9th edition 1973

[10] G C Franchini A Marchetti M Tagliazucchi L Tassi andG Tosi ldquoEthane-12-diol-2-methoxyethanol solvent systemDependence of the relative permittivity and refractive indexon the temperature and composition of the binary mixturerdquoJournal of the Chemical Society Faraday Transactions vol 87no 16 pp 2583ndash2588 1991

[11] L Grunberg and A H Nissan ldquoMixture law for viscosityrdquoNature vol 164 no 4175 pp 799ndash800 1949

[12] R C Reid J M Prausnitz and T K Sherwood The Propertiesof Gases and Liquids McGraw Hill New York NY USA 3rdedition 1958

[13] O Redlich and A T Kister ldquoAlgebraic representation ofthermodynamic properties and the classification of solutionsrdquoIndustrial amp Engineering Chemistry vol 40 pp 345ndash348 1948

[14] A B K Stevanovic G M Babic M Lj Kijevcanin S PSerbanoviv and D K Grozdanic ldquoCorrelation of the liquidmixture viscositiesrdquo Journal of the Serbian Chemical Society vol77 no 8 pp 1083ndash1089 2012

[15] R L McAllister ldquoThe viscosity of liquid mixturesrdquo AIChEJournal vol 6 pp 427ndash431 1960

[16] E L Heric ldquoOn the viscosity of ternary mixturesrdquo Journal ofChemical and Engineering Data vol 11 no 1 pp 66ndash68 1966

[17] G Auslander ldquoThe properties of mixtures part Irdquo BritishChemical Engineering vol 9 pp 610ndash618 1964

[18] A S Teja and P Rice ldquoGeneralized corresponding statesmethod for the viscosities of liquid mixturesrdquo Industrial andEngineering Chemistry Fundamentals vol 20 no 1 pp 77ndash811981

[19] A S Teja and P Rice ldquoThe measurement and prediction of theviscosities of somebinary liquidmixtures containing n-hexanerdquoChemical Engineering Science vol 36 no 1 pp 7ndash10 1981

[20] A S Teja and P Rice ldquoA generalized corresponding statesmethod for the prediction of the thermal conductivity of liquidsand liquid mixturesrdquo Chemical Engineering Science vol 36 no2 pp 417ndash422 1981

[21] T R Kubendran S P Palaniappan M R V Krishnan and GS Laddha ldquoViscosities of binary and ternary liquid mixturesinvolving acetone carbon-tetrachloride and benzenerdquo IndianJournal of Technology vol 24 no 1 pp 22ndash25 1986

[22] W Zihao and F Jufu ldquoSurface Tension of Binary liquid mix-turesrdquo in Proceedings of theJoint Meeting of Chemical Industryand Engineering Society of China and AIChE p 143 BeijingChina September 1982

[23] P Rice and A S Teja ldquoA generalized corresponding-statesmethod for the prediction of surface tension of pure liquids and

liquidmixturesrdquo Journal of Colloid and Interface Science vol 86no 1 pp 158ndash163 1982

[24] R K Wanchoo and J Narayan ldquoSome physical propertiesof binary liquid systems (2-butanone+n-propionic acid or n-butyric acid)rdquo Physics and Chemistry of Liquids vol 27 no 3pp 159ndash167 1994

[25] B S Lark S Singh S K Aggarwal and S Makkar ldquoExcess vol-umes of n-butyric acid + various polar and nonpolar solventsrdquoJournal of Chemical and Engineering Data vol 30 no 4 pp467ndash469 1985

[26] P Venkateswarlu and G K Raman ldquoExcess volumesof ethanoic propanoic and butanoic acids with 12-dichloroethane and 12-dibromoethanerdquo Journal of Chemicaland Engineering Data vol 30 no 2 pp 180ndash181 1985

[27] J HHildebrand ldquoMotions ofmolecules in liquids viscosity anddiffusivityrdquo Science vol 174 no 4008 pp 490ndash493 1971

[28] R A Stairs ldquoViscosity of binary solutions of polar liquidsrdquoCanadian Journal of Chemistry vol 58 pp 296ndash301 1980

[29] R Palepu J Oliver and D Campbell ldquoThermodynamic andtransport properties of o-chlorophenol with aniline and N-alkylanilinesrdquo Journal of Chemical and Engineering Data vol30 no 3 pp 355ndash360 1985

[30] D Papaioannou and C G Panayiotou ldquoSurface tensions andrelative adsorptions in hydrogen-bonded systemsrdquo Journal ofChemical and EngineeringData vol 39 no 3 pp 457ndash462 1994

[31] JHHildebrand andR L ScottTheSolubility of NonelectrolytesDover New York NY USA 3rd edition 1964

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 9: Research Article Thermophysical Properties of Binary ...downloads.hindawi.com/archive/2013/612837.pdf · ISRN Physical Chemistry T : Densities ( ,kgm) of the pure components at

ISRN Physical Chemistry 9

(f) Continued

Temp 119879 = 29815 K 119879 = 30815 K 119879 = 31815 KCoeffof (9)

119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1119881119864

cm3 molminus1119866119864

J molminus1120578119864

mPa s120590119864

dyne cmminus1

1198602

minus04769 minus78407 minus00556 06841 minus11813 104424 minus00028 09832 minus10573 860142 02081 08359SD 00019 00827 00001 00267 00049 50118 00029 00194 00031 81692 00031 00183

Empirical two-constant model [24]

120590mix = 11990911205901+ 11990921205902+ 11990911199092[1198601015840+ 1198611015840(1199091minus 1199092)] (21)

where 1198601015840 and 1198611015840 are binary interaction parametersThe model parameters of (11) and (13)ndash(21) were deter-

mined using nonlinear regression technique and the esti-mated values are reported in Table 5

4 Discussion

The values of 119881119864 as illustrated in Figures 1 and 2 are

positive for the entire concentration range at all the threetemperatures for the systems EA + BEN PA + BEN andBA + BEN and negative for the remaining three systemsAbout 5 more negative or less positive 119881119864 values at highertemperatures for all the systems may be due to increasedpopulation of acid monomers to enter into the hetero-intermolecular interactions

The positive and negative 119881119864 values may be explained byconsidering the following three steps equilibria accompany-ing the mixing process as proposed by Lark and Banipal [2]

119863 minus119872 lArrrArr 119863 +119872 (22)

119863 lArrrArr 2119872 (23)

119872+ II lArrrArr 119872mdashIInd component (BENorACT) (24)

where 119863 and 119872 denote a dimer and a monomer of the acidunder questionThe first process is accompanied with a largevolume increase in the right direction the second is isochoricthat is the volume of the dimer is assumed to be equal to twicethe value of themonomer [4 5] the third step is accompaniedwith large contraction in case of ACT and expansion in caseof BEN So the addition of ACT or BEN to anyone of theacids first creates monomers by the first two steps resulting inexpansion In the third step stronger heteromolecular dipole-dipole interactions result in the observed negative 119881119864 in caseof CA + ACT and positive119881119864 values in the case of CA + BENsystem due to induced dipole-dipole interactions Thereforethe third step is accompanied with contraction in volume incase of ACT and expansion in case of BEN

The pK119886values of EA PA and BA are 476 488 and

482 respectively It is expected that the order of dimerizationconstants of various acids would increase in the same orderThe increasing dimerization constant would lead to a smallernumber of available monomers and thus to a smaller volumeincrease as described by (22)

However the observed order of 119881119864 for the CA + BENsystem is as follows BA gt PA gt EA (Table 6) This showsthat in case of BEN there are strong acid-solvent interactionswhich govern the magnitude and sign of119881119864 which increasesas the inductive effect of alkyl chain of the acid as isalso observed by Lark et al [25] Similar results were alsoobtained by Venkateswarlu and Raman [26] as the positiveexcess volumes of 12-dichloroethane and 12-dibromoethanewith three acids observe the following order BA gt PAgt EA which is the same as discussed above that is theincrease in chain length of acid contributes to the decreasein excess volume The large negative 119881119864 values in the caseof CA + ACT mixture arise due to depolymerization of acidaccompanied with strong hydrogen-bonded heterocomplexformation However in CA + ACT system the 119881

119864 valuesfollow the order PA gt BA gt EA as was also observed by Larket al [25] in CA + MEOH system

The data presented in Figures 3 and 4 reveal that excessviscosity (120578119864) is positive for the systems EA+ACT PA+ACTand BA + ACT and is negative for the systems EA + BENPA + BEN and BA + BEN at 29815 K The algebraic positivevalues of 120578119864 may be represented in the following order PA+ ACT gt EA + ACT gt BA + ACT gt BA + BEN gt PA +BEN gt EA + BEN The sign and magnitude of 120578119864 dependon the combined effect of the factors such as molecular sizeshape and intermolecular forces The positive value of 120578119864for the CA + ACT system suggests that the viscosity of themixture is higher than that of the pure components and hencethe fluidity of the mixture is low This indicates the presenceof a specific interaction such as the formation of charge-transfer complex between unlike molecules The negativevalue of 120578119864 in the systems EA + BEN PA + BEN and BA+ BEN suggests the mutual loss of a specific interaction inlike molecules that outweigh the specific interaction betweenunlike molecules The positive values of 120578119864 increase with theincrease in temperature in all these systems The 119866119864 valuesalmost observe the similar trend as observed by 120578119864 as shownin Figures 5 and 6

The variation of Grunberg andNissan parameter ldquo119889rdquo withcomposition of a particular mixture is not largeThe values ofldquo119889rdquo are negative for CA + BEN system and positive for CA +ACT system formost of the concentration rangeThe positivevalues of ldquo119889rdquo for CA + ACT system show that CA formsan intermolecular complex with ACT in the liquid phaseThe values of ldquo119889rdquo increase with the increase in temperaturein all the systems showing that the interactions between thecomponents increase with the increase in temperature Eventhe negative values of ldquo119889rdquo for CA + BEN system change

10 ISRN Physical Chemistry

Table5Interactionparameterparam

etersfor

vario

usmod

elsandsta

ndarddeviation(SD)d

etermined

byleastsqu

arem

etho

d

(a)

Mod

elCon

stants

Ethano

icacid

(1)+

benzene(2)

Prop

anoica

cid(1)+

benzene(2)

Butano

icacid

(1)+

benzene(2)

29815K

30815K

31815K

29815K

30815K

31815K

29815K

30815K

31815K

McA

lliste

r(11)

12057812

06336

05291

064

0808286

07390

08245

10808

09825

09409

12057821

05943

05347

03980

06163

05221

04268

07227

06129

064

06SD

000

9200161

00289

00105

00128

00128

00146

00108

00088

Heric(13)

12057512

minus08692

minus08380

minus04591

minus02946

minus02916

00521

minus02445

minus01271

04815

12057521

minus02173

minus03069

04582

01763

02640

07480

01390

02814

02095

SD01357

02015

03185

01524

02269

03356

03258

02169

02614

Krish

nanandLadd

ha(17)

11986112

09275

09606

07031

03620

03859

00528

03173

01913

minus05399

11986212

02536

03832

minus03062

minus01643

minus02472

minus07294

minus01430

minus02849

minus02063

11986312

minus04145

minus08715

minus17

348

minus04654

minus06512

minus07241

minus05103

minus044

99040

99SD

01468

01225

00701

00559

00502

00629

00595

00378

01101

Ausla

nder

(14)

11986112

minus00168

minus00901

00523

1840

414

898

19109

39322

25479

01292

11986021

64585

82007

73214

65731

65502

56764

99261

60937

02803

11986121

044

0902966

minus00996

00997

00271

minus02735

00896

00999

17186

SD000

4100116

00121

000

4300051

00038

00074

000

4800010

TejaandRice

(15)

12059312

11

11

11

11

1SD

00306

00224

00132

00101

00083

00131

00056

00139

00279

ZihaoandJufu

(18)

12057412

09377

09099

08985

09431

09413

09016

09343

08178

08038

12057421

10684

11008

11162

10624

10636

11114

10709

12259

12473

SD00081

00055

000

4900252

00256

00071

00858

00193

00111

Two-parameter

mod

el(21)

1198601015840

00302

00304

00305

minus00053

minus00056

minus000

69minus00121

minus00118

00079

1198611015840

00072

000

6100057

000

6100052

00038

000

67000

9600079

SD00023

00019

00024

00055

00079

00023

00088

00088

000

41

Rice

andTeja(19)

12059312

11

11

11

11

1SD

006

4300128

00039

01423

01183

01183

02210

01862

01874

(b)

Mod

elCon

stants

Ethano

icacid

(1)+

acetop

heno

ne(2)

Prop

anoica

cid(1)+

acetop

heno

ne(2)

Butano

icacid

(1)+

acetop

heno

ne(2)

29815K

30815K

31815K

29815K

30815K

31815K

29815K

30815K

31815K

McA

lliste

r(11)

12057812

16072

14795

13403

15061

14196

13377

17139

16209

13511

12057821

16910

14186

11794

17024

15097

13028

17471

16208

15934

SD000

06000

06000

6900034

00071

00082

00013

00034

00120

Heric(13)

12057512

07141

09027

12314

06855

09560

13476

02817

07089

12371

12057521

01271

02502

03406

00584

01214

01976

00134

004

17minus02198

SD03671

01578

02654

03963

01814

02120

06821

03761

00201

Krish

nanandLadd

ha(17)

11986112

minus07161

minus09048

minus11986

minus06742

minus09286

minus13101

minus02854

minus07014

minus11893

11986212

minus01293

minus02525

minus03052

minus00511

minus01036

minus01733

minus00147

minus00392

02360

11986312

00149

00160

minus02399

minus00803

minus01955

minus02679

00262

minus00528

minus03361

SD03071

03478

04162

02904

03731

04819

01301

03097

04936

Ausla

nder

(14)

11986112

minus00265

minus08582

minus31960

minus01986

minus09382

minus33948

minus19

043

minus78

002

minus210019

11986021

15819

206

6512

531

05603

06151

09108

12163

10309

05851

ISRN Physical Chemistry 11

(b)Con

tinued

Mod

elCon

stants

Ethano

icacid

(1)+

acetop

heno

ne(2)

Prop

anoica

cid(1)+

acetop

heno

ne(2)

Butano

icacid

(1)+

acetop

heno

ne(2)

29815K

30815K

31815K

29815K

30815K

31815K

29815K

30815K

31815K

11986121

12206

1344

345532

33567

47933

60789

28998

95205

3913

08SD

000

02000

080002

000

02000

05000

01000

0100026

00029

TejaandRice

(15)

12059312

105

105

105

105

105

105

105

105

105

SD00284

00070

00146

00029

00324

00411

00826

00137

00178

ZihaoandJufu

(18)

12057412

08333

09319

08198

04586

04317

03288

12367

12653

13189

12057421

1046

809544

10082

15047

15256

04304

08074

07899

07593

SD00779

00395

004

0500474

004

6502786

01261

01209

01292

Two-parameter

mod

el(21)

1198601015840

03968

04167

04557

03096

03329

03509

02215

02365

02478

1198611015840

006

4300865

00764

minus00738

minus00893

minus01025

00989

01033

01075

SD006

6600599

004

0200298

004

0300983

00493

00557

00513

Rice

andTeja(19)

12059312

105

105

105

105

105

105

105

105

105

SD01802

01131

00764

02090

01756

01678

01604

01024

01126

12 ISRN Physical Chemistry

Table 6 Comparison of excess volume 119881119864 cm3 molminus1 of equimolarmixture at 29815 K

Component II Component IEthanoic acid Propanoic acid Butanoic acid

Benzene 08514 03898 03316Acetophenone minus02972 minus05396 minus05266

minus03minus025

minus02minus015

minus01minus005

0005

01015

02025

minus600 minus400 minus200 0 200 400 600GE(Jmiddotmolminus1)

ln (H

)

Figure 9 Plot of ln119867 versus 119866119864 (◼ EA + BEN ⧫ PA + BEN 998771 BA+BEN times EA + ACT PA + ACT + BA + ACT) at 29815 K

their sign from negative to positive with the increase intemperature from 29815 to 31815 K

According to Hildebrand [27] free volume is necessaryfor flow and then shrinkage on mixing (which would reducethe free volume) would be associated with increase inviscosity of the system If 119867 is defined as 120578120578119900 where 120578 isthe experimental viscosity of the mixture and 120578

119900 is the idealviscosity calculated using

120578119900= 1199091ln 1205781+ 1199092ln 1205782 (25)

then this quantity could be related to free volume (119881119900) of thesolution according to Stairs [28] by the following equation

119867minus1

=1

119881119900(119881119900+ 119881119864) (26)

According to (26) a plot of 119867minus1 versus 119881119864 should belinear However when119867minus1 is plotted against 119881119864 a nonlinearplot was obtained in the present study However when ln119867is plotted against 119866119864 a single straight line with a nonzerointercept was obtained in Figure 9 This type of result is notunexpected because the expression for119866119864 takes into accountboth viscosity and volume Also in all these systems positive120578119864 and negative 119881

119864 and vice versa have been observedfor most of the concentration range This behaviour wasalso observed by Palepu et al [29] in binary mixtures o-chlorophenol with substituted anilines

From the literature no clear cut theoretical basis hasbeen proposed for the prediction of nonideal behaviour ofthe binary mixtures in terms of their 120590119864 values Howeverrecently Papaioannou and Panayiotou [30] have correlatedthe sign of 120590119864 values with 120578119864 values and the deviations fromRaoultrsquos law Their observation reveals the following

(1) Corresponding to the positive enthalpies of mixing(119867119864) positive volume of mixing (119881

119864) and positive

deviations from Raoultrsquos law 120590119864 values have beenobserved to be negative

(2) Corresponding to the negative enthalpies of mixing(119867119864) negative volume of mixing (119881119864) and negative

deviations from Raoultrsquos law 120590119864 values have beenobserved to be positive As shown in Figures 7 and8 the excess surface tension (120590119864) values are negativefor CA + BEN system and are positive for CA +ACT system The positive values of excess surfacetension (120590119864) increase with the rise in temperaturein all systems The negative value of 120590119864 in CA +BEN system is due to the predominance of the fol-lowing factors homopolymer complex formation andthe tendency of the component with lower surfacetension to be adsorbed at the interface But in CA+ ACT system complex formed are block copolymer[CA]119899[ACT]

119898and also dipole-dipole interactions

between carboxylic functional group of CA and car-bonyl group of ACT in the bulk phase rather than inthe interface

The interaction parameters of various models used canchange with temperature but not with composition but theinteraction parameter 120593

12in Rice and Teja and Teja and Rice

models based on the theory of corresponding states has beenshown to be independent of temperature and composition[19 20] It is observed that the models of McAllister Aus-lander and Teja and Rice fit the experimental viscosity datavery well as compared to the Heric and Krishnan and Laddhamodels Surface tensiondata iswell predicted by the empiricaltwo-parameter model [21] as well as by Rice and Teja modelThe Zihao amp Jufu model based on the work of Hildebrandamp Scott [31] also predicts satisfactory results for the systemsstudied

Acknowledgment

The author (R Ahluwalia) is grateful to CSIR India for theaward of SeniorResearch Fellowship to carry out this researchwork successfully

References

[1] R Ahluwalia R KWanchoo and J L Vashisht ldquoSome physicalproperties of binary liquid systems (ethanoic acid or propanoicacid or butanoic acid + ethanenitrile)rdquo Physics and Chemistry ofLiquids vol 29 pp 87ndash96 1995

[2] B S Lark and T S Banipal ldquoExcess volumes and excessenthalpies of acetic and its methyl substituted acids + acetoni-trilerdquo Canadian Journal of Chemistry vol 63 pp 3269ndash32751985

[3] M C S Subha and S Brahmaji Rao ldquoThermodynamic prop-erties of binary acid-base mixturesrdquo Journal of Chemical andEngineering Data vol 33 no 2 pp 104ndash106 1988

[4] H E Affsprung G H Findenegg and F Kohler ldquoThe volu-metric and dielectric behaviour of acetic acid in mixtures with

ISRN Physical Chemistry 13

nonpolar liquidsrdquo Journal of the Chemical Society A pp 1364ndash1370 1968

[5] G Bolat D Sutiman and G Lisa ldquoExperimental densities ofbinary mixtures acetic acid with benzene at several tempera-turesrdquo AIP Conference Proceedings vol 1332 no 1 p 270 2011

[6] R K Wanchoo J Narayan G K Raina and V K RattanldquoExcess properties of (2-propanal + ethylacetate or benzene)binary liquid mixturerdquo Chemical Engineering Communicationsvol 81 no 1 pp 145ndash156 1989

[7] J A Riddick andW B Bunger Techniques of Chemistry vol IIWiley-Interscience New York NY USA 1970

[8] A Weissberger Techniques of Organic Chemistry InterscienceNew York NY USA 3rd edition 1965

[9] B P Levitt Findlayrsquos Practical Physical Chemistry LongmanLondon UK 9th edition 1973

[10] G C Franchini A Marchetti M Tagliazucchi L Tassi andG Tosi ldquoEthane-12-diol-2-methoxyethanol solvent systemDependence of the relative permittivity and refractive indexon the temperature and composition of the binary mixturerdquoJournal of the Chemical Society Faraday Transactions vol 87no 16 pp 2583ndash2588 1991

[11] L Grunberg and A H Nissan ldquoMixture law for viscosityrdquoNature vol 164 no 4175 pp 799ndash800 1949

[12] R C Reid J M Prausnitz and T K Sherwood The Propertiesof Gases and Liquids McGraw Hill New York NY USA 3rdedition 1958

[13] O Redlich and A T Kister ldquoAlgebraic representation ofthermodynamic properties and the classification of solutionsrdquoIndustrial amp Engineering Chemistry vol 40 pp 345ndash348 1948

[14] A B K Stevanovic G M Babic M Lj Kijevcanin S PSerbanoviv and D K Grozdanic ldquoCorrelation of the liquidmixture viscositiesrdquo Journal of the Serbian Chemical Society vol77 no 8 pp 1083ndash1089 2012

[15] R L McAllister ldquoThe viscosity of liquid mixturesrdquo AIChEJournal vol 6 pp 427ndash431 1960

[16] E L Heric ldquoOn the viscosity of ternary mixturesrdquo Journal ofChemical and Engineering Data vol 11 no 1 pp 66ndash68 1966

[17] G Auslander ldquoThe properties of mixtures part Irdquo BritishChemical Engineering vol 9 pp 610ndash618 1964

[18] A S Teja and P Rice ldquoGeneralized corresponding statesmethod for the viscosities of liquid mixturesrdquo Industrial andEngineering Chemistry Fundamentals vol 20 no 1 pp 77ndash811981

[19] A S Teja and P Rice ldquoThe measurement and prediction of theviscosities of somebinary liquidmixtures containing n-hexanerdquoChemical Engineering Science vol 36 no 1 pp 7ndash10 1981

[20] A S Teja and P Rice ldquoA generalized corresponding statesmethod for the prediction of the thermal conductivity of liquidsand liquid mixturesrdquo Chemical Engineering Science vol 36 no2 pp 417ndash422 1981

[21] T R Kubendran S P Palaniappan M R V Krishnan and GS Laddha ldquoViscosities of binary and ternary liquid mixturesinvolving acetone carbon-tetrachloride and benzenerdquo IndianJournal of Technology vol 24 no 1 pp 22ndash25 1986

[22] W Zihao and F Jufu ldquoSurface Tension of Binary liquid mix-turesrdquo in Proceedings of theJoint Meeting of Chemical Industryand Engineering Society of China and AIChE p 143 BeijingChina September 1982

[23] P Rice and A S Teja ldquoA generalized corresponding-statesmethod for the prediction of surface tension of pure liquids and

liquidmixturesrdquo Journal of Colloid and Interface Science vol 86no 1 pp 158ndash163 1982

[24] R K Wanchoo and J Narayan ldquoSome physical propertiesof binary liquid systems (2-butanone+n-propionic acid or n-butyric acid)rdquo Physics and Chemistry of Liquids vol 27 no 3pp 159ndash167 1994

[25] B S Lark S Singh S K Aggarwal and S Makkar ldquoExcess vol-umes of n-butyric acid + various polar and nonpolar solventsrdquoJournal of Chemical and Engineering Data vol 30 no 4 pp467ndash469 1985

[26] P Venkateswarlu and G K Raman ldquoExcess volumesof ethanoic propanoic and butanoic acids with 12-dichloroethane and 12-dibromoethanerdquo Journal of Chemicaland Engineering Data vol 30 no 2 pp 180ndash181 1985

[27] J HHildebrand ldquoMotions ofmolecules in liquids viscosity anddiffusivityrdquo Science vol 174 no 4008 pp 490ndash493 1971

[28] R A Stairs ldquoViscosity of binary solutions of polar liquidsrdquoCanadian Journal of Chemistry vol 58 pp 296ndash301 1980

[29] R Palepu J Oliver and D Campbell ldquoThermodynamic andtransport properties of o-chlorophenol with aniline and N-alkylanilinesrdquo Journal of Chemical and Engineering Data vol30 no 3 pp 355ndash360 1985

[30] D Papaioannou and C G Panayiotou ldquoSurface tensions andrelative adsorptions in hydrogen-bonded systemsrdquo Journal ofChemical and EngineeringData vol 39 no 3 pp 457ndash462 1994

[31] JHHildebrand andR L ScottTheSolubility of NonelectrolytesDover New York NY USA 3rd edition 1964

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 10: Research Article Thermophysical Properties of Binary ...downloads.hindawi.com/archive/2013/612837.pdf · ISRN Physical Chemistry T : Densities ( ,kgm) of the pure components at

10 ISRN Physical Chemistry

Table5Interactionparameterparam

etersfor

vario

usmod

elsandsta

ndarddeviation(SD)d

etermined

byleastsqu

arem

etho

d

(a)

Mod

elCon

stants

Ethano

icacid

(1)+

benzene(2)

Prop

anoica

cid(1)+

benzene(2)

Butano

icacid

(1)+

benzene(2)

29815K

30815K

31815K

29815K

30815K

31815K

29815K

30815K

31815K

McA

lliste

r(11)

12057812

06336

05291

064

0808286

07390

08245

10808

09825

09409

12057821

05943

05347

03980

06163

05221

04268

07227

06129

064

06SD

000

9200161

00289

00105

00128

00128

00146

00108

00088

Heric(13)

12057512

minus08692

minus08380

minus04591

minus02946

minus02916

00521

minus02445

minus01271

04815

12057521

minus02173

minus03069

04582

01763

02640

07480

01390

02814

02095

SD01357

02015

03185

01524

02269

03356

03258

02169

02614

Krish

nanandLadd

ha(17)

11986112

09275

09606

07031

03620

03859

00528

03173

01913

minus05399

11986212

02536

03832

minus03062

minus01643

minus02472

minus07294

minus01430

minus02849

minus02063

11986312

minus04145

minus08715

minus17

348

minus04654

minus06512

minus07241

minus05103

minus044

99040

99SD

01468

01225

00701

00559

00502

00629

00595

00378

01101

Ausla

nder

(14)

11986112

minus00168

minus00901

00523

1840

414

898

19109

39322

25479

01292

11986021

64585

82007

73214

65731

65502

56764

99261

60937

02803

11986121

044

0902966

minus00996

00997

00271

minus02735

00896

00999

17186

SD000

4100116

00121

000

4300051

00038

00074

000

4800010

TejaandRice

(15)

12059312

11

11

11

11

1SD

00306

00224

00132

00101

00083

00131

00056

00139

00279

ZihaoandJufu

(18)

12057412

09377

09099

08985

09431

09413

09016

09343

08178

08038

12057421

10684

11008

11162

10624

10636

11114

10709

12259

12473

SD00081

00055

000

4900252

00256

00071

00858

00193

00111

Two-parameter

mod

el(21)

1198601015840

00302

00304

00305

minus00053

minus00056

minus000

69minus00121

minus00118

00079

1198611015840

00072

000

6100057

000

6100052

00038

000

67000

9600079

SD00023

00019

00024

00055

00079

00023

00088

00088

000

41

Rice

andTeja(19)

12059312

11

11

11

11

1SD

006

4300128

00039

01423

01183

01183

02210

01862

01874

(b)

Mod

elCon

stants

Ethano

icacid

(1)+

acetop

heno

ne(2)

Prop

anoica

cid(1)+

acetop

heno

ne(2)

Butano

icacid

(1)+

acetop

heno

ne(2)

29815K

30815K

31815K

29815K

30815K

31815K

29815K

30815K

31815K

McA

lliste

r(11)

12057812

16072

14795

13403

15061

14196

13377

17139

16209

13511

12057821

16910

14186

11794

17024

15097

13028

17471

16208

15934

SD000

06000

06000

6900034

00071

00082

00013

00034

00120

Heric(13)

12057512

07141

09027

12314

06855

09560

13476

02817

07089

12371

12057521

01271

02502

03406

00584

01214

01976

00134

004

17minus02198

SD03671

01578

02654

03963

01814

02120

06821

03761

00201

Krish

nanandLadd

ha(17)

11986112

minus07161

minus09048

minus11986

minus06742

minus09286

minus13101

minus02854

minus07014

minus11893

11986212

minus01293

minus02525

minus03052

minus00511

minus01036

minus01733

minus00147

minus00392

02360

11986312

00149

00160

minus02399

minus00803

minus01955

minus02679

00262

minus00528

minus03361

SD03071

03478

04162

02904

03731

04819

01301

03097

04936

Ausla

nder

(14)

11986112

minus00265

minus08582

minus31960

minus01986

minus09382

minus33948

minus19

043

minus78

002

minus210019

11986021

15819

206

6512

531

05603

06151

09108

12163

10309

05851

ISRN Physical Chemistry 11

(b)Con

tinued

Mod

elCon

stants

Ethano

icacid

(1)+

acetop

heno

ne(2)

Prop

anoica

cid(1)+

acetop

heno

ne(2)

Butano

icacid

(1)+

acetop

heno

ne(2)

29815K

30815K

31815K

29815K

30815K

31815K

29815K

30815K

31815K

11986121

12206

1344

345532

33567

47933

60789

28998

95205

3913

08SD

000

02000

080002

000

02000

05000

01000

0100026

00029

TejaandRice

(15)

12059312

105

105

105

105

105

105

105

105

105

SD00284

00070

00146

00029

00324

00411

00826

00137

00178

ZihaoandJufu

(18)

12057412

08333

09319

08198

04586

04317

03288

12367

12653

13189

12057421

1046

809544

10082

15047

15256

04304

08074

07899

07593

SD00779

00395

004

0500474

004

6502786

01261

01209

01292

Two-parameter

mod

el(21)

1198601015840

03968

04167

04557

03096

03329

03509

02215

02365

02478

1198611015840

006

4300865

00764

minus00738

minus00893

minus01025

00989

01033

01075

SD006

6600599

004

0200298

004

0300983

00493

00557

00513

Rice

andTeja(19)

12059312

105

105

105

105

105

105

105

105

105

SD01802

01131

00764

02090

01756

01678

01604

01024

01126

12 ISRN Physical Chemistry

Table 6 Comparison of excess volume 119881119864 cm3 molminus1 of equimolarmixture at 29815 K

Component II Component IEthanoic acid Propanoic acid Butanoic acid

Benzene 08514 03898 03316Acetophenone minus02972 minus05396 minus05266

minus03minus025

minus02minus015

minus01minus005

0005

01015

02025

minus600 minus400 minus200 0 200 400 600GE(Jmiddotmolminus1)

ln (H

)

Figure 9 Plot of ln119867 versus 119866119864 (◼ EA + BEN ⧫ PA + BEN 998771 BA+BEN times EA + ACT PA + ACT + BA + ACT) at 29815 K

their sign from negative to positive with the increase intemperature from 29815 to 31815 K

According to Hildebrand [27] free volume is necessaryfor flow and then shrinkage on mixing (which would reducethe free volume) would be associated with increase inviscosity of the system If 119867 is defined as 120578120578119900 where 120578 isthe experimental viscosity of the mixture and 120578

119900 is the idealviscosity calculated using

120578119900= 1199091ln 1205781+ 1199092ln 1205782 (25)

then this quantity could be related to free volume (119881119900) of thesolution according to Stairs [28] by the following equation

119867minus1

=1

119881119900(119881119900+ 119881119864) (26)

According to (26) a plot of 119867minus1 versus 119881119864 should belinear However when119867minus1 is plotted against 119881119864 a nonlinearplot was obtained in the present study However when ln119867is plotted against 119866119864 a single straight line with a nonzerointercept was obtained in Figure 9 This type of result is notunexpected because the expression for119866119864 takes into accountboth viscosity and volume Also in all these systems positive120578119864 and negative 119881

119864 and vice versa have been observedfor most of the concentration range This behaviour wasalso observed by Palepu et al [29] in binary mixtures o-chlorophenol with substituted anilines

From the literature no clear cut theoretical basis hasbeen proposed for the prediction of nonideal behaviour ofthe binary mixtures in terms of their 120590119864 values Howeverrecently Papaioannou and Panayiotou [30] have correlatedthe sign of 120590119864 values with 120578119864 values and the deviations fromRaoultrsquos law Their observation reveals the following

(1) Corresponding to the positive enthalpies of mixing(119867119864) positive volume of mixing (119881

119864) and positive

deviations from Raoultrsquos law 120590119864 values have beenobserved to be negative

(2) Corresponding to the negative enthalpies of mixing(119867119864) negative volume of mixing (119881119864) and negative

deviations from Raoultrsquos law 120590119864 values have beenobserved to be positive As shown in Figures 7 and8 the excess surface tension (120590119864) values are negativefor CA + BEN system and are positive for CA +ACT system The positive values of excess surfacetension (120590119864) increase with the rise in temperaturein all systems The negative value of 120590119864 in CA +BEN system is due to the predominance of the fol-lowing factors homopolymer complex formation andthe tendency of the component with lower surfacetension to be adsorbed at the interface But in CA+ ACT system complex formed are block copolymer[CA]119899[ACT]

119898and also dipole-dipole interactions

between carboxylic functional group of CA and car-bonyl group of ACT in the bulk phase rather than inthe interface

The interaction parameters of various models used canchange with temperature but not with composition but theinteraction parameter 120593

12in Rice and Teja and Teja and Rice

models based on the theory of corresponding states has beenshown to be independent of temperature and composition[19 20] It is observed that the models of McAllister Aus-lander and Teja and Rice fit the experimental viscosity datavery well as compared to the Heric and Krishnan and Laddhamodels Surface tensiondata iswell predicted by the empiricaltwo-parameter model [21] as well as by Rice and Teja modelThe Zihao amp Jufu model based on the work of Hildebrandamp Scott [31] also predicts satisfactory results for the systemsstudied

Acknowledgment

The author (R Ahluwalia) is grateful to CSIR India for theaward of SeniorResearch Fellowship to carry out this researchwork successfully

References

[1] R Ahluwalia R KWanchoo and J L Vashisht ldquoSome physicalproperties of binary liquid systems (ethanoic acid or propanoicacid or butanoic acid + ethanenitrile)rdquo Physics and Chemistry ofLiquids vol 29 pp 87ndash96 1995

[2] B S Lark and T S Banipal ldquoExcess volumes and excessenthalpies of acetic and its methyl substituted acids + acetoni-trilerdquo Canadian Journal of Chemistry vol 63 pp 3269ndash32751985

[3] M C S Subha and S Brahmaji Rao ldquoThermodynamic prop-erties of binary acid-base mixturesrdquo Journal of Chemical andEngineering Data vol 33 no 2 pp 104ndash106 1988

[4] H E Affsprung G H Findenegg and F Kohler ldquoThe volu-metric and dielectric behaviour of acetic acid in mixtures with

ISRN Physical Chemistry 13

nonpolar liquidsrdquo Journal of the Chemical Society A pp 1364ndash1370 1968

[5] G Bolat D Sutiman and G Lisa ldquoExperimental densities ofbinary mixtures acetic acid with benzene at several tempera-turesrdquo AIP Conference Proceedings vol 1332 no 1 p 270 2011

[6] R K Wanchoo J Narayan G K Raina and V K RattanldquoExcess properties of (2-propanal + ethylacetate or benzene)binary liquid mixturerdquo Chemical Engineering Communicationsvol 81 no 1 pp 145ndash156 1989

[7] J A Riddick andW B Bunger Techniques of Chemistry vol IIWiley-Interscience New York NY USA 1970

[8] A Weissberger Techniques of Organic Chemistry InterscienceNew York NY USA 3rd edition 1965

[9] B P Levitt Findlayrsquos Practical Physical Chemistry LongmanLondon UK 9th edition 1973

[10] G C Franchini A Marchetti M Tagliazucchi L Tassi andG Tosi ldquoEthane-12-diol-2-methoxyethanol solvent systemDependence of the relative permittivity and refractive indexon the temperature and composition of the binary mixturerdquoJournal of the Chemical Society Faraday Transactions vol 87no 16 pp 2583ndash2588 1991

[11] L Grunberg and A H Nissan ldquoMixture law for viscosityrdquoNature vol 164 no 4175 pp 799ndash800 1949

[12] R C Reid J M Prausnitz and T K Sherwood The Propertiesof Gases and Liquids McGraw Hill New York NY USA 3rdedition 1958

[13] O Redlich and A T Kister ldquoAlgebraic representation ofthermodynamic properties and the classification of solutionsrdquoIndustrial amp Engineering Chemistry vol 40 pp 345ndash348 1948

[14] A B K Stevanovic G M Babic M Lj Kijevcanin S PSerbanoviv and D K Grozdanic ldquoCorrelation of the liquidmixture viscositiesrdquo Journal of the Serbian Chemical Society vol77 no 8 pp 1083ndash1089 2012

[15] R L McAllister ldquoThe viscosity of liquid mixturesrdquo AIChEJournal vol 6 pp 427ndash431 1960

[16] E L Heric ldquoOn the viscosity of ternary mixturesrdquo Journal ofChemical and Engineering Data vol 11 no 1 pp 66ndash68 1966

[17] G Auslander ldquoThe properties of mixtures part Irdquo BritishChemical Engineering vol 9 pp 610ndash618 1964

[18] A S Teja and P Rice ldquoGeneralized corresponding statesmethod for the viscosities of liquid mixturesrdquo Industrial andEngineering Chemistry Fundamentals vol 20 no 1 pp 77ndash811981

[19] A S Teja and P Rice ldquoThe measurement and prediction of theviscosities of somebinary liquidmixtures containing n-hexanerdquoChemical Engineering Science vol 36 no 1 pp 7ndash10 1981

[20] A S Teja and P Rice ldquoA generalized corresponding statesmethod for the prediction of the thermal conductivity of liquidsand liquid mixturesrdquo Chemical Engineering Science vol 36 no2 pp 417ndash422 1981

[21] T R Kubendran S P Palaniappan M R V Krishnan and GS Laddha ldquoViscosities of binary and ternary liquid mixturesinvolving acetone carbon-tetrachloride and benzenerdquo IndianJournal of Technology vol 24 no 1 pp 22ndash25 1986

[22] W Zihao and F Jufu ldquoSurface Tension of Binary liquid mix-turesrdquo in Proceedings of theJoint Meeting of Chemical Industryand Engineering Society of China and AIChE p 143 BeijingChina September 1982

[23] P Rice and A S Teja ldquoA generalized corresponding-statesmethod for the prediction of surface tension of pure liquids and

liquidmixturesrdquo Journal of Colloid and Interface Science vol 86no 1 pp 158ndash163 1982

[24] R K Wanchoo and J Narayan ldquoSome physical propertiesof binary liquid systems (2-butanone+n-propionic acid or n-butyric acid)rdquo Physics and Chemistry of Liquids vol 27 no 3pp 159ndash167 1994

[25] B S Lark S Singh S K Aggarwal and S Makkar ldquoExcess vol-umes of n-butyric acid + various polar and nonpolar solventsrdquoJournal of Chemical and Engineering Data vol 30 no 4 pp467ndash469 1985

[26] P Venkateswarlu and G K Raman ldquoExcess volumesof ethanoic propanoic and butanoic acids with 12-dichloroethane and 12-dibromoethanerdquo Journal of Chemicaland Engineering Data vol 30 no 2 pp 180ndash181 1985

[27] J HHildebrand ldquoMotions ofmolecules in liquids viscosity anddiffusivityrdquo Science vol 174 no 4008 pp 490ndash493 1971

[28] R A Stairs ldquoViscosity of binary solutions of polar liquidsrdquoCanadian Journal of Chemistry vol 58 pp 296ndash301 1980

[29] R Palepu J Oliver and D Campbell ldquoThermodynamic andtransport properties of o-chlorophenol with aniline and N-alkylanilinesrdquo Journal of Chemical and Engineering Data vol30 no 3 pp 355ndash360 1985

[30] D Papaioannou and C G Panayiotou ldquoSurface tensions andrelative adsorptions in hydrogen-bonded systemsrdquo Journal ofChemical and EngineeringData vol 39 no 3 pp 457ndash462 1994

[31] JHHildebrand andR L ScottTheSolubility of NonelectrolytesDover New York NY USA 3rd edition 1964

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 11: Research Article Thermophysical Properties of Binary ...downloads.hindawi.com/archive/2013/612837.pdf · ISRN Physical Chemistry T : Densities ( ,kgm) of the pure components at

ISRN Physical Chemistry 11

(b)Con

tinued

Mod

elCon

stants

Ethano

icacid

(1)+

acetop

heno

ne(2)

Prop

anoica

cid(1)+

acetop

heno

ne(2)

Butano

icacid

(1)+

acetop

heno

ne(2)

29815K

30815K

31815K

29815K

30815K

31815K

29815K

30815K

31815K

11986121

12206

1344

345532

33567

47933

60789

28998

95205

3913

08SD

000

02000

080002

000

02000

05000

01000

0100026

00029

TejaandRice

(15)

12059312

105

105

105

105

105

105

105

105

105

SD00284

00070

00146

00029

00324

00411

00826

00137

00178

ZihaoandJufu

(18)

12057412

08333

09319

08198

04586

04317

03288

12367

12653

13189

12057421

1046

809544

10082

15047

15256

04304

08074

07899

07593

SD00779

00395

004

0500474

004

6502786

01261

01209

01292

Two-parameter

mod

el(21)

1198601015840

03968

04167

04557

03096

03329

03509

02215

02365

02478

1198611015840

006

4300865

00764

minus00738

minus00893

minus01025

00989

01033

01075

SD006

6600599

004

0200298

004

0300983

00493

00557

00513

Rice

andTeja(19)

12059312

105

105

105

105

105

105

105

105

105

SD01802

01131

00764

02090

01756

01678

01604

01024

01126

12 ISRN Physical Chemistry

Table 6 Comparison of excess volume 119881119864 cm3 molminus1 of equimolarmixture at 29815 K

Component II Component IEthanoic acid Propanoic acid Butanoic acid

Benzene 08514 03898 03316Acetophenone minus02972 minus05396 minus05266

minus03minus025

minus02minus015

minus01minus005

0005

01015

02025

minus600 minus400 minus200 0 200 400 600GE(Jmiddotmolminus1)

ln (H

)

Figure 9 Plot of ln119867 versus 119866119864 (◼ EA + BEN ⧫ PA + BEN 998771 BA+BEN times EA + ACT PA + ACT + BA + ACT) at 29815 K

their sign from negative to positive with the increase intemperature from 29815 to 31815 K

According to Hildebrand [27] free volume is necessaryfor flow and then shrinkage on mixing (which would reducethe free volume) would be associated with increase inviscosity of the system If 119867 is defined as 120578120578119900 where 120578 isthe experimental viscosity of the mixture and 120578

119900 is the idealviscosity calculated using

120578119900= 1199091ln 1205781+ 1199092ln 1205782 (25)

then this quantity could be related to free volume (119881119900) of thesolution according to Stairs [28] by the following equation

119867minus1

=1

119881119900(119881119900+ 119881119864) (26)

According to (26) a plot of 119867minus1 versus 119881119864 should belinear However when119867minus1 is plotted against 119881119864 a nonlinearplot was obtained in the present study However when ln119867is plotted against 119866119864 a single straight line with a nonzerointercept was obtained in Figure 9 This type of result is notunexpected because the expression for119866119864 takes into accountboth viscosity and volume Also in all these systems positive120578119864 and negative 119881

119864 and vice versa have been observedfor most of the concentration range This behaviour wasalso observed by Palepu et al [29] in binary mixtures o-chlorophenol with substituted anilines

From the literature no clear cut theoretical basis hasbeen proposed for the prediction of nonideal behaviour ofthe binary mixtures in terms of their 120590119864 values Howeverrecently Papaioannou and Panayiotou [30] have correlatedthe sign of 120590119864 values with 120578119864 values and the deviations fromRaoultrsquos law Their observation reveals the following

(1) Corresponding to the positive enthalpies of mixing(119867119864) positive volume of mixing (119881

119864) and positive

deviations from Raoultrsquos law 120590119864 values have beenobserved to be negative

(2) Corresponding to the negative enthalpies of mixing(119867119864) negative volume of mixing (119881119864) and negative

deviations from Raoultrsquos law 120590119864 values have beenobserved to be positive As shown in Figures 7 and8 the excess surface tension (120590119864) values are negativefor CA + BEN system and are positive for CA +ACT system The positive values of excess surfacetension (120590119864) increase with the rise in temperaturein all systems The negative value of 120590119864 in CA +BEN system is due to the predominance of the fol-lowing factors homopolymer complex formation andthe tendency of the component with lower surfacetension to be adsorbed at the interface But in CA+ ACT system complex formed are block copolymer[CA]119899[ACT]

119898and also dipole-dipole interactions

between carboxylic functional group of CA and car-bonyl group of ACT in the bulk phase rather than inthe interface

The interaction parameters of various models used canchange with temperature but not with composition but theinteraction parameter 120593

12in Rice and Teja and Teja and Rice

models based on the theory of corresponding states has beenshown to be independent of temperature and composition[19 20] It is observed that the models of McAllister Aus-lander and Teja and Rice fit the experimental viscosity datavery well as compared to the Heric and Krishnan and Laddhamodels Surface tensiondata iswell predicted by the empiricaltwo-parameter model [21] as well as by Rice and Teja modelThe Zihao amp Jufu model based on the work of Hildebrandamp Scott [31] also predicts satisfactory results for the systemsstudied

Acknowledgment

The author (R Ahluwalia) is grateful to CSIR India for theaward of SeniorResearch Fellowship to carry out this researchwork successfully

References

[1] R Ahluwalia R KWanchoo and J L Vashisht ldquoSome physicalproperties of binary liquid systems (ethanoic acid or propanoicacid or butanoic acid + ethanenitrile)rdquo Physics and Chemistry ofLiquids vol 29 pp 87ndash96 1995

[2] B S Lark and T S Banipal ldquoExcess volumes and excessenthalpies of acetic and its methyl substituted acids + acetoni-trilerdquo Canadian Journal of Chemistry vol 63 pp 3269ndash32751985

[3] M C S Subha and S Brahmaji Rao ldquoThermodynamic prop-erties of binary acid-base mixturesrdquo Journal of Chemical andEngineering Data vol 33 no 2 pp 104ndash106 1988

[4] H E Affsprung G H Findenegg and F Kohler ldquoThe volu-metric and dielectric behaviour of acetic acid in mixtures with

ISRN Physical Chemistry 13

nonpolar liquidsrdquo Journal of the Chemical Society A pp 1364ndash1370 1968

[5] G Bolat D Sutiman and G Lisa ldquoExperimental densities ofbinary mixtures acetic acid with benzene at several tempera-turesrdquo AIP Conference Proceedings vol 1332 no 1 p 270 2011

[6] R K Wanchoo J Narayan G K Raina and V K RattanldquoExcess properties of (2-propanal + ethylacetate or benzene)binary liquid mixturerdquo Chemical Engineering Communicationsvol 81 no 1 pp 145ndash156 1989

[7] J A Riddick andW B Bunger Techniques of Chemistry vol IIWiley-Interscience New York NY USA 1970

[8] A Weissberger Techniques of Organic Chemistry InterscienceNew York NY USA 3rd edition 1965

[9] B P Levitt Findlayrsquos Practical Physical Chemistry LongmanLondon UK 9th edition 1973

[10] G C Franchini A Marchetti M Tagliazucchi L Tassi andG Tosi ldquoEthane-12-diol-2-methoxyethanol solvent systemDependence of the relative permittivity and refractive indexon the temperature and composition of the binary mixturerdquoJournal of the Chemical Society Faraday Transactions vol 87no 16 pp 2583ndash2588 1991

[11] L Grunberg and A H Nissan ldquoMixture law for viscosityrdquoNature vol 164 no 4175 pp 799ndash800 1949

[12] R C Reid J M Prausnitz and T K Sherwood The Propertiesof Gases and Liquids McGraw Hill New York NY USA 3rdedition 1958

[13] O Redlich and A T Kister ldquoAlgebraic representation ofthermodynamic properties and the classification of solutionsrdquoIndustrial amp Engineering Chemistry vol 40 pp 345ndash348 1948

[14] A B K Stevanovic G M Babic M Lj Kijevcanin S PSerbanoviv and D K Grozdanic ldquoCorrelation of the liquidmixture viscositiesrdquo Journal of the Serbian Chemical Society vol77 no 8 pp 1083ndash1089 2012

[15] R L McAllister ldquoThe viscosity of liquid mixturesrdquo AIChEJournal vol 6 pp 427ndash431 1960

[16] E L Heric ldquoOn the viscosity of ternary mixturesrdquo Journal ofChemical and Engineering Data vol 11 no 1 pp 66ndash68 1966

[17] G Auslander ldquoThe properties of mixtures part Irdquo BritishChemical Engineering vol 9 pp 610ndash618 1964

[18] A S Teja and P Rice ldquoGeneralized corresponding statesmethod for the viscosities of liquid mixturesrdquo Industrial andEngineering Chemistry Fundamentals vol 20 no 1 pp 77ndash811981

[19] A S Teja and P Rice ldquoThe measurement and prediction of theviscosities of somebinary liquidmixtures containing n-hexanerdquoChemical Engineering Science vol 36 no 1 pp 7ndash10 1981

[20] A S Teja and P Rice ldquoA generalized corresponding statesmethod for the prediction of the thermal conductivity of liquidsand liquid mixturesrdquo Chemical Engineering Science vol 36 no2 pp 417ndash422 1981

[21] T R Kubendran S P Palaniappan M R V Krishnan and GS Laddha ldquoViscosities of binary and ternary liquid mixturesinvolving acetone carbon-tetrachloride and benzenerdquo IndianJournal of Technology vol 24 no 1 pp 22ndash25 1986

[22] W Zihao and F Jufu ldquoSurface Tension of Binary liquid mix-turesrdquo in Proceedings of theJoint Meeting of Chemical Industryand Engineering Society of China and AIChE p 143 BeijingChina September 1982

[23] P Rice and A S Teja ldquoA generalized corresponding-statesmethod for the prediction of surface tension of pure liquids and

liquidmixturesrdquo Journal of Colloid and Interface Science vol 86no 1 pp 158ndash163 1982

[24] R K Wanchoo and J Narayan ldquoSome physical propertiesof binary liquid systems (2-butanone+n-propionic acid or n-butyric acid)rdquo Physics and Chemistry of Liquids vol 27 no 3pp 159ndash167 1994

[25] B S Lark S Singh S K Aggarwal and S Makkar ldquoExcess vol-umes of n-butyric acid + various polar and nonpolar solventsrdquoJournal of Chemical and Engineering Data vol 30 no 4 pp467ndash469 1985

[26] P Venkateswarlu and G K Raman ldquoExcess volumesof ethanoic propanoic and butanoic acids with 12-dichloroethane and 12-dibromoethanerdquo Journal of Chemicaland Engineering Data vol 30 no 2 pp 180ndash181 1985

[27] J HHildebrand ldquoMotions ofmolecules in liquids viscosity anddiffusivityrdquo Science vol 174 no 4008 pp 490ndash493 1971

[28] R A Stairs ldquoViscosity of binary solutions of polar liquidsrdquoCanadian Journal of Chemistry vol 58 pp 296ndash301 1980

[29] R Palepu J Oliver and D Campbell ldquoThermodynamic andtransport properties of o-chlorophenol with aniline and N-alkylanilinesrdquo Journal of Chemical and Engineering Data vol30 no 3 pp 355ndash360 1985

[30] D Papaioannou and C G Panayiotou ldquoSurface tensions andrelative adsorptions in hydrogen-bonded systemsrdquo Journal ofChemical and EngineeringData vol 39 no 3 pp 457ndash462 1994

[31] JHHildebrand andR L ScottTheSolubility of NonelectrolytesDover New York NY USA 3rd edition 1964

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 12: Research Article Thermophysical Properties of Binary ...downloads.hindawi.com/archive/2013/612837.pdf · ISRN Physical Chemistry T : Densities ( ,kgm) of the pure components at

12 ISRN Physical Chemistry

Table 6 Comparison of excess volume 119881119864 cm3 molminus1 of equimolarmixture at 29815 K

Component II Component IEthanoic acid Propanoic acid Butanoic acid

Benzene 08514 03898 03316Acetophenone minus02972 minus05396 minus05266

minus03minus025

minus02minus015

minus01minus005

0005

01015

02025

minus600 minus400 minus200 0 200 400 600GE(Jmiddotmolminus1)

ln (H

)

Figure 9 Plot of ln119867 versus 119866119864 (◼ EA + BEN ⧫ PA + BEN 998771 BA+BEN times EA + ACT PA + ACT + BA + ACT) at 29815 K

their sign from negative to positive with the increase intemperature from 29815 to 31815 K

According to Hildebrand [27] free volume is necessaryfor flow and then shrinkage on mixing (which would reducethe free volume) would be associated with increase inviscosity of the system If 119867 is defined as 120578120578119900 where 120578 isthe experimental viscosity of the mixture and 120578

119900 is the idealviscosity calculated using

120578119900= 1199091ln 1205781+ 1199092ln 1205782 (25)

then this quantity could be related to free volume (119881119900) of thesolution according to Stairs [28] by the following equation

119867minus1

=1

119881119900(119881119900+ 119881119864) (26)

According to (26) a plot of 119867minus1 versus 119881119864 should belinear However when119867minus1 is plotted against 119881119864 a nonlinearplot was obtained in the present study However when ln119867is plotted against 119866119864 a single straight line with a nonzerointercept was obtained in Figure 9 This type of result is notunexpected because the expression for119866119864 takes into accountboth viscosity and volume Also in all these systems positive120578119864 and negative 119881

119864 and vice versa have been observedfor most of the concentration range This behaviour wasalso observed by Palepu et al [29] in binary mixtures o-chlorophenol with substituted anilines

From the literature no clear cut theoretical basis hasbeen proposed for the prediction of nonideal behaviour ofthe binary mixtures in terms of their 120590119864 values Howeverrecently Papaioannou and Panayiotou [30] have correlatedthe sign of 120590119864 values with 120578119864 values and the deviations fromRaoultrsquos law Their observation reveals the following

(1) Corresponding to the positive enthalpies of mixing(119867119864) positive volume of mixing (119881

119864) and positive

deviations from Raoultrsquos law 120590119864 values have beenobserved to be negative

(2) Corresponding to the negative enthalpies of mixing(119867119864) negative volume of mixing (119881119864) and negative

deviations from Raoultrsquos law 120590119864 values have beenobserved to be positive As shown in Figures 7 and8 the excess surface tension (120590119864) values are negativefor CA + BEN system and are positive for CA +ACT system The positive values of excess surfacetension (120590119864) increase with the rise in temperaturein all systems The negative value of 120590119864 in CA +BEN system is due to the predominance of the fol-lowing factors homopolymer complex formation andthe tendency of the component with lower surfacetension to be adsorbed at the interface But in CA+ ACT system complex formed are block copolymer[CA]119899[ACT]

119898and also dipole-dipole interactions

between carboxylic functional group of CA and car-bonyl group of ACT in the bulk phase rather than inthe interface

The interaction parameters of various models used canchange with temperature but not with composition but theinteraction parameter 120593

12in Rice and Teja and Teja and Rice

models based on the theory of corresponding states has beenshown to be independent of temperature and composition[19 20] It is observed that the models of McAllister Aus-lander and Teja and Rice fit the experimental viscosity datavery well as compared to the Heric and Krishnan and Laddhamodels Surface tensiondata iswell predicted by the empiricaltwo-parameter model [21] as well as by Rice and Teja modelThe Zihao amp Jufu model based on the work of Hildebrandamp Scott [31] also predicts satisfactory results for the systemsstudied

Acknowledgment

The author (R Ahluwalia) is grateful to CSIR India for theaward of SeniorResearch Fellowship to carry out this researchwork successfully

References

[1] R Ahluwalia R KWanchoo and J L Vashisht ldquoSome physicalproperties of binary liquid systems (ethanoic acid or propanoicacid or butanoic acid + ethanenitrile)rdquo Physics and Chemistry ofLiquids vol 29 pp 87ndash96 1995

[2] B S Lark and T S Banipal ldquoExcess volumes and excessenthalpies of acetic and its methyl substituted acids + acetoni-trilerdquo Canadian Journal of Chemistry vol 63 pp 3269ndash32751985

[3] M C S Subha and S Brahmaji Rao ldquoThermodynamic prop-erties of binary acid-base mixturesrdquo Journal of Chemical andEngineering Data vol 33 no 2 pp 104ndash106 1988

[4] H E Affsprung G H Findenegg and F Kohler ldquoThe volu-metric and dielectric behaviour of acetic acid in mixtures with

ISRN Physical Chemistry 13

nonpolar liquidsrdquo Journal of the Chemical Society A pp 1364ndash1370 1968

[5] G Bolat D Sutiman and G Lisa ldquoExperimental densities ofbinary mixtures acetic acid with benzene at several tempera-turesrdquo AIP Conference Proceedings vol 1332 no 1 p 270 2011

[6] R K Wanchoo J Narayan G K Raina and V K RattanldquoExcess properties of (2-propanal + ethylacetate or benzene)binary liquid mixturerdquo Chemical Engineering Communicationsvol 81 no 1 pp 145ndash156 1989

[7] J A Riddick andW B Bunger Techniques of Chemistry vol IIWiley-Interscience New York NY USA 1970

[8] A Weissberger Techniques of Organic Chemistry InterscienceNew York NY USA 3rd edition 1965

[9] B P Levitt Findlayrsquos Practical Physical Chemistry LongmanLondon UK 9th edition 1973

[10] G C Franchini A Marchetti M Tagliazucchi L Tassi andG Tosi ldquoEthane-12-diol-2-methoxyethanol solvent systemDependence of the relative permittivity and refractive indexon the temperature and composition of the binary mixturerdquoJournal of the Chemical Society Faraday Transactions vol 87no 16 pp 2583ndash2588 1991

[11] L Grunberg and A H Nissan ldquoMixture law for viscosityrdquoNature vol 164 no 4175 pp 799ndash800 1949

[12] R C Reid J M Prausnitz and T K Sherwood The Propertiesof Gases and Liquids McGraw Hill New York NY USA 3rdedition 1958

[13] O Redlich and A T Kister ldquoAlgebraic representation ofthermodynamic properties and the classification of solutionsrdquoIndustrial amp Engineering Chemistry vol 40 pp 345ndash348 1948

[14] A B K Stevanovic G M Babic M Lj Kijevcanin S PSerbanoviv and D K Grozdanic ldquoCorrelation of the liquidmixture viscositiesrdquo Journal of the Serbian Chemical Society vol77 no 8 pp 1083ndash1089 2012

[15] R L McAllister ldquoThe viscosity of liquid mixturesrdquo AIChEJournal vol 6 pp 427ndash431 1960

[16] E L Heric ldquoOn the viscosity of ternary mixturesrdquo Journal ofChemical and Engineering Data vol 11 no 1 pp 66ndash68 1966

[17] G Auslander ldquoThe properties of mixtures part Irdquo BritishChemical Engineering vol 9 pp 610ndash618 1964

[18] A S Teja and P Rice ldquoGeneralized corresponding statesmethod for the viscosities of liquid mixturesrdquo Industrial andEngineering Chemistry Fundamentals vol 20 no 1 pp 77ndash811981

[19] A S Teja and P Rice ldquoThe measurement and prediction of theviscosities of somebinary liquidmixtures containing n-hexanerdquoChemical Engineering Science vol 36 no 1 pp 7ndash10 1981

[20] A S Teja and P Rice ldquoA generalized corresponding statesmethod for the prediction of the thermal conductivity of liquidsand liquid mixturesrdquo Chemical Engineering Science vol 36 no2 pp 417ndash422 1981

[21] T R Kubendran S P Palaniappan M R V Krishnan and GS Laddha ldquoViscosities of binary and ternary liquid mixturesinvolving acetone carbon-tetrachloride and benzenerdquo IndianJournal of Technology vol 24 no 1 pp 22ndash25 1986

[22] W Zihao and F Jufu ldquoSurface Tension of Binary liquid mix-turesrdquo in Proceedings of theJoint Meeting of Chemical Industryand Engineering Society of China and AIChE p 143 BeijingChina September 1982

[23] P Rice and A S Teja ldquoA generalized corresponding-statesmethod for the prediction of surface tension of pure liquids and

liquidmixturesrdquo Journal of Colloid and Interface Science vol 86no 1 pp 158ndash163 1982

[24] R K Wanchoo and J Narayan ldquoSome physical propertiesof binary liquid systems (2-butanone+n-propionic acid or n-butyric acid)rdquo Physics and Chemistry of Liquids vol 27 no 3pp 159ndash167 1994

[25] B S Lark S Singh S K Aggarwal and S Makkar ldquoExcess vol-umes of n-butyric acid + various polar and nonpolar solventsrdquoJournal of Chemical and Engineering Data vol 30 no 4 pp467ndash469 1985

[26] P Venkateswarlu and G K Raman ldquoExcess volumesof ethanoic propanoic and butanoic acids with 12-dichloroethane and 12-dibromoethanerdquo Journal of Chemicaland Engineering Data vol 30 no 2 pp 180ndash181 1985

[27] J HHildebrand ldquoMotions ofmolecules in liquids viscosity anddiffusivityrdquo Science vol 174 no 4008 pp 490ndash493 1971

[28] R A Stairs ldquoViscosity of binary solutions of polar liquidsrdquoCanadian Journal of Chemistry vol 58 pp 296ndash301 1980

[29] R Palepu J Oliver and D Campbell ldquoThermodynamic andtransport properties of o-chlorophenol with aniline and N-alkylanilinesrdquo Journal of Chemical and Engineering Data vol30 no 3 pp 355ndash360 1985

[30] D Papaioannou and C G Panayiotou ldquoSurface tensions andrelative adsorptions in hydrogen-bonded systemsrdquo Journal ofChemical and EngineeringData vol 39 no 3 pp 457ndash462 1994

[31] JHHildebrand andR L ScottTheSolubility of NonelectrolytesDover New York NY USA 3rd edition 1964

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 13: Research Article Thermophysical Properties of Binary ...downloads.hindawi.com/archive/2013/612837.pdf · ISRN Physical Chemistry T : Densities ( ,kgm) of the pure components at

ISRN Physical Chemistry 13

nonpolar liquidsrdquo Journal of the Chemical Society A pp 1364ndash1370 1968

[5] G Bolat D Sutiman and G Lisa ldquoExperimental densities ofbinary mixtures acetic acid with benzene at several tempera-turesrdquo AIP Conference Proceedings vol 1332 no 1 p 270 2011

[6] R K Wanchoo J Narayan G K Raina and V K RattanldquoExcess properties of (2-propanal + ethylacetate or benzene)binary liquid mixturerdquo Chemical Engineering Communicationsvol 81 no 1 pp 145ndash156 1989

[7] J A Riddick andW B Bunger Techniques of Chemistry vol IIWiley-Interscience New York NY USA 1970

[8] A Weissberger Techniques of Organic Chemistry InterscienceNew York NY USA 3rd edition 1965

[9] B P Levitt Findlayrsquos Practical Physical Chemistry LongmanLondon UK 9th edition 1973

[10] G C Franchini A Marchetti M Tagliazucchi L Tassi andG Tosi ldquoEthane-12-diol-2-methoxyethanol solvent systemDependence of the relative permittivity and refractive indexon the temperature and composition of the binary mixturerdquoJournal of the Chemical Society Faraday Transactions vol 87no 16 pp 2583ndash2588 1991

[11] L Grunberg and A H Nissan ldquoMixture law for viscosityrdquoNature vol 164 no 4175 pp 799ndash800 1949

[12] R C Reid J M Prausnitz and T K Sherwood The Propertiesof Gases and Liquids McGraw Hill New York NY USA 3rdedition 1958

[13] O Redlich and A T Kister ldquoAlgebraic representation ofthermodynamic properties and the classification of solutionsrdquoIndustrial amp Engineering Chemistry vol 40 pp 345ndash348 1948

[14] A B K Stevanovic G M Babic M Lj Kijevcanin S PSerbanoviv and D K Grozdanic ldquoCorrelation of the liquidmixture viscositiesrdquo Journal of the Serbian Chemical Society vol77 no 8 pp 1083ndash1089 2012

[15] R L McAllister ldquoThe viscosity of liquid mixturesrdquo AIChEJournal vol 6 pp 427ndash431 1960

[16] E L Heric ldquoOn the viscosity of ternary mixturesrdquo Journal ofChemical and Engineering Data vol 11 no 1 pp 66ndash68 1966

[17] G Auslander ldquoThe properties of mixtures part Irdquo BritishChemical Engineering vol 9 pp 610ndash618 1964

[18] A S Teja and P Rice ldquoGeneralized corresponding statesmethod for the viscosities of liquid mixturesrdquo Industrial andEngineering Chemistry Fundamentals vol 20 no 1 pp 77ndash811981

[19] A S Teja and P Rice ldquoThe measurement and prediction of theviscosities of somebinary liquidmixtures containing n-hexanerdquoChemical Engineering Science vol 36 no 1 pp 7ndash10 1981

[20] A S Teja and P Rice ldquoA generalized corresponding statesmethod for the prediction of the thermal conductivity of liquidsand liquid mixturesrdquo Chemical Engineering Science vol 36 no2 pp 417ndash422 1981

[21] T R Kubendran S P Palaniappan M R V Krishnan and GS Laddha ldquoViscosities of binary and ternary liquid mixturesinvolving acetone carbon-tetrachloride and benzenerdquo IndianJournal of Technology vol 24 no 1 pp 22ndash25 1986

[22] W Zihao and F Jufu ldquoSurface Tension of Binary liquid mix-turesrdquo in Proceedings of theJoint Meeting of Chemical Industryand Engineering Society of China and AIChE p 143 BeijingChina September 1982

[23] P Rice and A S Teja ldquoA generalized corresponding-statesmethod for the prediction of surface tension of pure liquids and

liquidmixturesrdquo Journal of Colloid and Interface Science vol 86no 1 pp 158ndash163 1982

[24] R K Wanchoo and J Narayan ldquoSome physical propertiesof binary liquid systems (2-butanone+n-propionic acid or n-butyric acid)rdquo Physics and Chemistry of Liquids vol 27 no 3pp 159ndash167 1994

[25] B S Lark S Singh S K Aggarwal and S Makkar ldquoExcess vol-umes of n-butyric acid + various polar and nonpolar solventsrdquoJournal of Chemical and Engineering Data vol 30 no 4 pp467ndash469 1985

[26] P Venkateswarlu and G K Raman ldquoExcess volumesof ethanoic propanoic and butanoic acids with 12-dichloroethane and 12-dibromoethanerdquo Journal of Chemicaland Engineering Data vol 30 no 2 pp 180ndash181 1985

[27] J HHildebrand ldquoMotions ofmolecules in liquids viscosity anddiffusivityrdquo Science vol 174 no 4008 pp 490ndash493 1971

[28] R A Stairs ldquoViscosity of binary solutions of polar liquidsrdquoCanadian Journal of Chemistry vol 58 pp 296ndash301 1980

[29] R Palepu J Oliver and D Campbell ldquoThermodynamic andtransport properties of o-chlorophenol with aniline and N-alkylanilinesrdquo Journal of Chemical and Engineering Data vol30 no 3 pp 355ndash360 1985

[30] D Papaioannou and C G Panayiotou ldquoSurface tensions andrelative adsorptions in hydrogen-bonded systemsrdquo Journal ofChemical and EngineeringData vol 39 no 3 pp 457ndash462 1994

[31] JHHildebrand andR L ScottTheSolubility of NonelectrolytesDover New York NY USA 3rd edition 1964

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 14: Research Article Thermophysical Properties of Binary ...downloads.hindawi.com/archive/2013/612837.pdf · ISRN Physical Chemistry T : Densities ( ,kgm) of the pure components at

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of