133
RF Transmitter based on Frequency Synthesizer F. Badets F. Badets 2010, May 26 th

RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

  • Upload
    others

  • View
    41

  • Download
    1

Embed Size (px)

Citation preview

Page 1: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

RF Transmitter based on Frequency Synthesizer

F. Badets F. Badets 2010, May 26th

Page 2: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Outline

Introduction Transmitter integration challenges

Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer

2

Modulation of sigma delta frequency synthesizer Two point modulation

DDS and ILO based RF transmitter Injection Locked Oscillator 400 MHz DDS Bluetooth DDS/ILO based transmitter

Page 3: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

I Q based RF transmitter

General expression of signal to be transmitted

Principle :

RF(t) =

RF(t)

Principle : Generation of I and Q in baseband Generation of RF signal using in phase and

quadrature Local Oscillator

3

Page 4: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Heterodyne Transmitter Architecture

D/AI(n)

PA

IF Filter

ImageFilter

LPF

Linear

IF LO In0°

90°

4

D/AQ(n) RF LO

LPF

Drawbacks : - needs one external high Q RF filter- Precision needed on IF image rejection mixer- 2 LOs : 2 PLLs- Linear PA : Power hungry

Page 5: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Homodyne Transmitter(1)

D/AI(n)

Q(n)

PARF LO

LPF

LPF

BPF Linear

In0°

90°

5

D/AQ(n)

LPF

Architecture :- Zero IF -> eliminates a filter- IQ modulator shifts the spectrum of baseband

signal directly to the Rf carrier frequency

Page 6: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Homodyne Transmiter(2)

D/AI(n)

Q(n)

PARF LO

LPF

LPF

BPF Linear

In0°

90°

6

D/AQ(n)

LPF

Mixers :- act as switches (lower noise)- work better when quickly switched- -> responsible for genration of odd harmonics- non linearity -> intermodulation products

Page 7: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Homodyne Transmitter(3)

D/AI(n)

Q(n)

PARF LO

LPF

LPF

BPF Linear

In0°

90°

7

D/AQ(n)

LPF

Mismatches:- DC at mixer input -> LO leakage- Phase and amplitude mismatch ->degrades

orthogonality: IQ leakage- need feedback or calibration to counteract mismatches

Page 8: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Homodyne Transmitter(4)

D/AI(n)

Q(n)

PARF LO

LPF

LPF

BPF Linear

In0°

90°

8

D/AQ(n)

LPF

DAC: - generates white noise over fs/2 bandwidth- Σ∆ : quantization noise pushed towards fs/2- output : NRZ like signal -> alias signal at each fs

harmonics. (upsampling or precompensation)- INL, DNL -> distortion

Page 9: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Homodyne Transmitter(5)

D/AI(n)

Q(n)

PARF LO

LPF

LPF

BPF Linear

In0°

90°

9

D/AQ(n)

LPF

LO and quadrature: - LO : twice RF frequency -> minimizing pulling- quadrature obtained using both rising and falling

edge of a divider by 2.

Page 10: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Homodyne Transmitter(6)

LO

LO_RF_I

LO_RF_Q

10

LO and quadrature: - any imbalance in LO rising and falling edge timing

degrades LO I&Q generations -> loss of orthogonality

Page 11: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Homodyne Transmitter(7)

D/AI(n)

Q(n)

PARF LO

LPF

BPF Linear

In0°

90°

11

D/AQ(n)

LPF

LO pulling: - PA leakage could lock by injection the LO (substate noise, power

supply, modulation of LO load impedance).- LO tracks the PA modulation especially outside PLL badnwidth. ->

corrupted signal at output

Page 12: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Homodyne Transmitter(8)

D/AI(n)

Q(n)

PARF LO

LPF

BPF Linear

In0°

90°

12

D/AQ(n)

LPF

PA and all others drivers: - must preserve enveloppe -> spectral regrowth- should be linear -> PA inefficient (40% at peak output power)- high DC power - power control

Page 13: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Polar RF transmitter (1)

RF transmission using a phase and an amplitude phase

))t(tcos()t(A)t(RF

)tsin().t(Q)tcos()t(I)t(RF

RF

RFRF

ϕ+ω=ω+ω=

13

))t(I)t(Q

arctan()t(

)t(Q)t(I)t(A 22

+=

Page 14: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Polar Transmitter (2)

PA

Modulated Power Supply

DC power

Linear amplifier

Driver

A

DSP

Amplitude Modulation

Phase Modulation

14

Phase modulator

PA

Non linear PA

Modulation

Principle :ls –l

- Generation of A and φ in baseband- A modulate the power supply of a saturated PA (good efficiency- Φ is provided at RF using PLL modulation

Page 15: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Polar Transmitter (3)

PA

Modulated Power Supply

DC power

Linear amplifier

Driver

A

DSP

Amplitude Modulation

Phase Modulation

15

Phase modulator

PA

Non linear PA

Modulation

PA:- Better efficiency obtained with saturated PA (> 60 %)- Modulation through a DC/DC converter -> efficiency depends on switching frequency (noise, AM bandwidth)-Distortion for low supply voltages- needsof predistortion or feedback correction

Page 16: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Polar Transmitter (4)

PA

Modulated Power Supply

DC power

Linear amplifier

Driver

A

DSP

Amplitude Modulation

Phase Modulation

16

Phase modulator

PA

Non linear PA

Modulation

Phase and amplitude combination:- To be effective, amplitude and phase modulations should

arrive in the same time.- The phase modulator using modulated PLL brings group

delay -> to be compensated

Page 17: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Polar Transmitter (5)

PA

Modulated Power Supply

DC power

Linear amplifier

Driver

A

DSP

Amplitude Modulation

Phase

17

Phase modulator

PA

Non linear PA

Phase Modulation

This presentation

Page 18: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Outline

Introduction Transmitter integration challenges

Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer

18

Modulation of sigma delta frequency synthesizer Two point modulation

DDS and ILO based RF transmitter Injection Locked Oscillator 400 MHz DDS Bluetooth DDS/ILO based transmitter

Page 19: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Offset PLL based Transmitter

D/AI(n)

TX VCO

LPF

LPF

LPF

LPF

IF LO In0°

90°

fVCO

fIF

19

D/AQ(n) PFD CP

RF LO

LPF

LPF

PAfVCO

fRF

Page 20: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Outline

Introduction Transmitter integration challenges

Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer

20

Modulation of sigma delta frequency synthesizer Two point modulation

DDS and ILO based RF transmitter Injection Locked Oscillator 400 MHz DDS Bluetooth DDS/ILO based transmitter

Page 21: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

FSK modulation (1)

FSK : Frequency Shift Keying

Bit duration = Tb

f 0f 0f1f12

f∆∆∆∆−−−−==== f 0f2

2

f∆∆∆∆++++====

∆∆∆∆ f

f 0f 0

RF expression:

Modulation index : h = ∆ f/fb Phase deviation over one bit : π.∆f.Tbit

21

∫∆π+ω=t

00 )du)u(sftcos(A)t(RF

Page 22: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

MSK modulation

When FSK modulation index = 0.5 -> MSK Phase deviation over one Tbit : 90o

0

90

0 1 1 1 1 10 0 0 0 0 0 0 0train

binairemodulant

BinaryTrain

22

-360

-270

-180

-90

0

temps (s)

phas

e (°

)

MSK

GMSK

time

Page 23: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

GMSK modulation(2)

FSK spectral occupation :

GMSK : filtering data using a gaussain filter in order to lower the spectral occupation without information loss

fT2

b

∆+

0

20MSK

23

-120

-100

-80

-60

-40

-20

0

-500 -400 -300 -200 -100 0 100 200 300 400 500

fréquence (kHz)

puis

san

ce (d

Bm

)

GMSK

Frequency (Hz)

Pow

er (

dbm

)

Page 24: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

GMSK modulation(3)

24

BIT

bit

2BIT

2

2

T.B.2)2ln(

)t(fT2

T2

texp

Tbitt

rect

π=σ

=⋅σ⋅π

⋅σ⋅−

Page 25: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Fractional N PLL based Transmitter

PFD CP

PrescalerN / N+1

LPF

PAfVCOfREF

25

Σ∆

Frac(Channel)ModulatingSignal

Filter

nnn

C

Int(channel)

reffREF

c2f ⋅∆=∆ ref

0vco f)

REFC

K(f ⋅+=

Page 26: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Gaussian Filter optimisation(2) Implementation of a digital gaussian filter

L=3*TBIT

R=8coeffic ients

par TBIT

réponse

L=4*TBIT

R=16coeffic ients

par TBIT

Theoritical

Determination of optimal impulse response length L and oversampling coefficient R.

Coefficient number: R*L

26

-4 -3 -2 -1 0 1 2 3 4t/TBIT

-4 -3 -2 -1 0 1 2 3 4t/TBIT

réponseimpulsionnelle

théorique

Theoriticalimpulse response

Page 27: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Gaussian Filter Optimisation(3)

Constraints on L&R Rmax = fref / fbit

Area occupied by digital filter Phase error due to the pulse response sampling

Reference filterϕref(t)ϕref(t)

27

modulating signal

Pseudo randoma(t)

156 bitsFBIT=270.8 kb/s

νref(t)

νL,R(t)

foversampling=R*f BIT

LL

+- Phase error

εεεεϕϕϕϕ

t

156*TBIT

t

156*TBIT2

∆fπ2 ××

2

∆fπ2 ××

digital filter∑

N

2Nx

N1 ∑

N

2Nx

N1

ϕL,R(t)

t

156*TBIT

N échantillons2∆f

π2 ××2∆f

π2 ××

Page 28: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Gaussian Filter Compensation

Before comparison, filters need to be compensated in

0

180360

540

720

9001080

1260

1440

0 2 4 6 8 10 12 14 16t/TBIT

(t) (°

)

filtre de référenceL=1 R=2L=1 R=8L=2 R=2L=2 R=8

0.00.10.20.30.40.50.60.70.80.91.0

0 2 4 6 8 10 12 14 16t/TBIT

(t)

filtre de référenceL=1 R=2L=1 R=8L=2 R=2L=2 R=8

Before comparison, filters need to be compensated in gain and group delay

28

0

180

360

540720

900

1080

1260

1440

0 2 4 6 8 10 12 14 16t/TBIT

(t)

filt re de référenceL=1 R=2L=1 R=8L=2 R=2L=2 R=8

0.00.10.20.30.40.50.60.70.80.91.0

0 2 4 6 8 10 12 14 16t/TBIT

(t)

filt re de référenceL=1 R=2L=1 R=8L=2 R=2L=2 R=8

Page 29: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Gaussian Filter Optimization

R

L

12.9 10.2 9.6 9.5 9.4

3.9 2.74 2.46 2.39 2.37

1.7 0.56 0.29 0.23 0.22

2 4 8 16 32

1

2

3

Table gives the quadratic phase error in degrees L=3 R=8 has been chosen

29

1.6 0.39 0.10 0.04 0.03

1.6 0.38 9.9E-2 3.8E-2 3.1E-2

1.6 0.38 9.9E-2 3.8E-2 3.1E-26

4

5

Page 30: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

GMSK Modulator Implementation (1)

Gaussian filter of 3-bit impulse response could be seen as a sliding window of 3 bits and that concerns 4 bit

Fsliding windowlength L*Tbit

moving direction

TBIT

Idea: store in a ROM the filter response over 4 bits sequences (16 possibilities)

30

TBIT/R

Page 31: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

GMSK Modulator implementation (2)

D entrée fixe du

convertisseur Σ∆Σ∆Σ∆Σ∆

D

D

registre àdécalage

adresseprincipale

ROM

FILTRE GAUSSIEN NUMERIQUE

n bits

Fref

Digital Gaussian Filter

Principal address

31

horloge de synchronisation provenant du

convertisseur Σ∆Σ∆Σ∆Σ∆

D

D

COMPTEUR

signalmodulant

adressesecondaire

entréeconvertisseur Σ∆

m bits

p bits

Modulating signal

Fref

Secondary addressCounter

Page 32: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

GMSK modulator implementation (3)

50

150

250

350

1111 01111110

0110

1100

1101

1011

0011

32

-350

-250

-150

-50

0 1 2 3 4 5 6 7

1010

0010

1010

0000 10000001

Page 33: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

PLL bandwidth influence on modulation (1)

33

Page 34: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

PLL bandwidth influence on phase noise

GSM

Pha

se n

oise

34

Pha

se n

oise

Page 35: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

PLL bandwidth tradeoff

0

5

10

15

20

25

30

50 70 90 110 130 150 170 190 210 230 250 270 290 310 330 350 370 390410 430 450 470 490 510 530 550B (kHz)

ϕϕ ϕϕm

ini (

° rm

s) Integrated error decreases with PLL bandwidth

35

0

1

2

3

4

5

6

7

8

50 70 90 110 130 150 170 190 210 230 250 270 290 310 330

B (kHz)

brui

t de

phas

e in

tég

ré ϕϕ ϕϕ

brui

t (°

rm

s)

Phase noise increases with PLL bandwidth

Page 36: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

PLL bandwidth effect on GSMK modulation

36

Page 37: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Modulation Bandwidth Extension

GaussianFilter

Pre Distortion

Modulating Signal

Proportional to frac(Navg)

Predistortion filter to counteract the PLL bandwidth effect Needs to know and control the PLL transfer bandwidth

over PVT -> rather complicated

37

Filter filter

Flat Transfer Function

Page 38: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Outline

Introduction Transmitter integration challenges

Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer

38

Modulation of sigma delta frequency synthesizer Two point modulation

DDS and ILO based RF transmitter Injection Locked Oscillator 400 MHz DDS Bluetooth DDS/ILO based transmitter

Page 39: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Two Point Modulation Architecture

N

F(p) VCO

Principle : PLL is a high pass filter for VCO noise and a low pass filter for divider noise.

Idea : apply modulation on both divider and VCO to enlarge the modulation bandwidth

39

Page 40: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Modulated Divider Small Signal Model

Frequency step at divider output:

Frequency modulation due to divider modulus deviation:avg

fRe2

avg

VCOVCOVCO

Nf

N

fN

f1N

fdf −≈−≈−

+=

reff*)t(n)t(df −= fref*)t(n)t(m =

Integration in z domain then in laplace domain leads to:

40

avg

refref N

f*)t(n)t(df −=

avgN1

*p

)p(m2)p(d π−=φ

fref*)t(n)t(m =

Page 41: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Two Point Modulation : small signal analysis (1)

F(p)p

1Kv2π

p2Kv

2πGvm(p)

π2I

41

N

Modulation applied on another VCO varactor Modulation applied on feed back loop divider: modulates the

frequency need thus to be integrated in phase noise model

Gdiv p2π−m(p)

Page 42: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Output response for VCO modulation:

Output response for divider modulation

Two Point Modulation : small signal analysis (1)

)p(BO11

p)p(m

GK2 V2v1out +π=φ

)p(BO)p(mG=φ

Output response for modulation applied on both inputs

42

)p(BO1pGDiv2out +

))p(BO1

)p(BOGKG(

p)p(m

2 div2Vv1out2outout +

+π=φ+φ=φ

Page 43: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

If Gdiv = 1 and Gv = 1/Kv2:

It is thus possible to use a frequency synthesizer as a modulator even for bandwidth signal greater than the PLL

Two Point Modulation : small signal analysis (2)

p)p(m

2out π=φ

modulator even for bandwidth signal greater than the PLL bandwidth

Accuracy of the method depends strongly on the accuracy of the gain Gv that should equal to the 1 over the VCO gain.

43

Page 44: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Example: GMSK modulation

GFSK 1Mb/s – modulation index 0.33 Gaussian filtering index BT = 0.5

44

Page 45: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Bluettooth Eye Diagram

Bluetooth specifies minimum openings of transmitted data eye diagram

45

Page 46: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

PLL test bench

46

Page 47: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Modulation gain vs gain on VCO

47

Page 48: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Effect on eye Diagram

Modulation on divider only Modulation on VCO

48

Output PLL Modulation

Page 49: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Precision on VCO gain

49

• Precision on VCO gain degrades eye opening -> precision needed of 5 % • Need to calibrate the VCO gain before each transmission in a new channel

Page 50: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Outline

Introduction Transmitter integration challenges

Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer

50

Modulation of sigma delta frequency synthesizer Two point modulation

DDS and ILO based RF transmitter Injection Locked Oscillator 400 MHz DDS Bluetooth DDS/ILO based transmitter

Page 51: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Research context

Frequency synthesis and transmitter trend All digital Re-congirugability : going towards SDR: Software Defined

Radio

Try to be competitive with all digital PLL Try to be competitive with all digital PLL

Applications: phase modulator to be able to be embedded in polar TX – Able to transmit constant phase envelop modulations (GSM, Bluetooth…)

Page 52: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Proposed Architecture Fully Integrated Bluetooth

transmitter: Fully integrated Reference

Oscillator (based on BAW oscillator for example)

RF – DDS generating 500 MHz signal

Injection Locked Oscillator as

BAW

Reference

Oscillator

500 MHz Direct

Digital

Frequency

Synthesizer

ILO RF filter

PA

500 MHz 2.5GHz

52

Injection Locked Oscillator as a frequency multiplier

Advantages: No feed Back Loop Fully integrated Could be quickly Powered on Low phase group delay ->

easy to handle within polar TX

Digital GSM/Bluetooth Modulator

Page 53: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Proposed Architecture Fully Integrated Bluetooth

transmitter: Fully integrated Reference

Oscillator (based on BAW oscillator for example)

RF – DDS generating 500 MHz signal

Injection Locked Oscillator as

BAW

Reference

Oscillator

500 MHz Direct

Digital

Frequency

Synthesizer

ILO RF filter

PA

500 MHz 2.5GHz

53

Injection Locked Oscillator as a frequency multiplier

Advantages: No feed Back Loop Fully integrated Could be quickly Powered on Low phase group delay ->

easy to handle within polar TX

Digital GSM/Bluetooth Modulator

Page 54: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Outline

Introduction Transmitter integration challenges

Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer

54

Modulation of sigma delta frequency synthesizer Two point modulation

DDS and ILO based RF transmitter Injection Locked Oscillator 400 MHz DDS Bluetooth DDS/ILO based transmitter

Page 55: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Injection Locking Phenomenon

SSB phase noise

Free running oscillator

Locked oscillator

Phase noise

Free runningoscillator

Injectedsignal

f

Injectedsignal

fLOCK

Locked oscillator

fn

Locked oscillatortracking bandwidth

Locked oscillator acts as a 1 st order PLL

f0f

fLOCK

Locking range ∆ffL fH

Middle band High limitLow limit

Page 56: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Injection Locking Theory (1) - Huntoon & Weiss (1947 ) (*)

Solid fact Oscillator frequency is function of admittance load Y0 fILO = fct(Y0)

V0

I

OscillatorfILO

Y0ILOCK

fLOCK

OscillatorfILO

Y0 dy

Oscillator load

Injected signal

Modeled injected signal

0 ILO 0

Hypothesis Injected signal at fLOCK in the vicinity of f0 ILOCK magnitude small enough to not modify V0 magnitudeAssumption Locking source modeled by a small load admittance variation dy

β

=

⋅=∂∂= .j

FYY

F eEYf

E0

5

Page 57: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Injection Locking Theory (2) - Huntoon & Weiss (1947)

)cos(V

I.E)ff(

dtd

.21

0

LOCKF0LOCK β+φ⋅−−=φ⋅

π

ILO output phase

ILOLOCK φ−φ=φ

Huntoon & Weiss theory leads to:

0

LOCKF

V

IE2f

⋅⋅=∆

ILO locking range

Constant depending on oscillator structureand locking process

ILOLOCK

66

Page 58: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

ILO Modulation

0ILOSYNC )t(n)t(m)t()t()t( φ+−=φ−φ=φ

( ))cos(

V

I.Ef

dttdm

21

fdtd

.21

0

LOCKF0LOCK β+φ⋅−

⋅π⋅

+=φ⋅π

)t(mt.f..2)t( LOCKLOCK +π=φ

0LOCKILO )t(nt.f..2)t( φ−+π=φ

Modulated locking signal phase

ILO output phase once locked

0ILOSYNC )t(n)t(m)t()t()t( φ+−=φ−φ=φ

nffj1

1)f(m)f(n

⋅+=

Assuming a small tracking phase error

( ) ( ) ( )[ ]tntmfdt

tdn21

n −⋅=⋅π⋅

Fourier Transform

( ) ( )20LOCK

2

n ff4f

f −−∆=

Page 59: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Tracking Phase Modulation

nffj1

1)f(m)f(n

⋅+=

Ability to track phase modulation

(dB)

ILO filtersmodulation

ILO tracks modulation

n(f)m(f)

20.logn(f)m(f)

20.log

Log 10(f) (Hz)0 dB

Modulation

ILO tracking bandwidth

-20 dB/dec

fnfLOCK

Page 60: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

ILO Tracking Bandwidth( ) ( )2

0LOCK

2

n ff4f

f −−∆=

60

Tracking bandwidth depends on the difference between the Injected signal frequency and the ILO free running frequency

Page 61: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

2-GHz Injection Locked Oscillator Design

AB0

LOCK

C41

VI

2f⋅π⋅

⋅⋅=∆ EF

VDD

L

M4

ILOCK

V0A B

M3

CAB=C+CM1+ CM2+CPARASITIC

∆f parameters known Optimized design possibleI0

C

L

M1 M2

V0

Page 62: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Injection Locking by a Sub-harmonic

Free running oscillator

dB

f0

f

∆f

fLOCK

FundamentalInjectionLocking

dB

f0

ffLOCK

∆f

5.fLOCK

Sub HarmonicInjectionLocking

Injected signal

Locked oscillator voltage

π==

.nI.2

II 0LOCKN

Locking source rich in nth harmonic

t

Locking current

I0

TLOCK TPULSE=α.TLOCK

Locked oscillator voltage

V0

T0

Page 63: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

2-GHz Fifth SbILO Schematic

Pulse

Buffer

VDD

Oscillator Core

2-GHzoutput

500 ps

t 250 ps

t

2.5 ns

MP

VDD

L

M4M3

PulseGenerator

Buffer

BandgapCurrentSource

400-MHzinput

t

2.5 ns

250 ps

t

2.5 ns

t

500 ps

MP

MN

I0

C

M1 M2

Page 64: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

2-GHz Fifth SbILO layout

350 µm

450

µm

Buffer

0.35-µµµµm BiCMOS STMicroelectronics technology

PulseGenerator

OscillatorCore

Band GapReference

Page 65: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Design Summary

PARAMETER VALUE Technology 0.35-µm BiCMOS STMicroelectronics

Voltage Supply 2.5 V

Current Consumption 16 mA

Output Buffers 15 mA Current Current

Consumption ILO Core + Pulse Generator + Bandgap Current Source

1 mA

Locking Range 400 MHz

Center Frequency 2 GHz

Chip Area (w/o pads and buffers) 0.160 mm2

Page 66: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Spectrum Measurements

-46.2 dB-46.0 dB

-32.3 dB-32.0 dB

1 MHz 1 MHz

+14 dB

1 MHz 1 MHz

SbILO input (400MHz) SbILO output (2GHz)10-mrad phase deviation 50-mrad phase deviation

-46.2 dB Measurement result-46.0 dB Bessel function of the first kind

S(t)=A.cos[n.ωC.t+n.Φ(t)] ≈ A.cos(n.ωC.t) - A.n.Φ(t).sin(n.ωC.t)

Phase multiplied by 5 20.log 10(5) = 14 dB

Page 67: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Spectrum Measurements

-23.6 dB-22.5 dB-49 dB

-50.9 dB

121 23 4

-9.2 dB-7.9 dB

-23.7 dB-22.2 dB

-41.3 dB-40.2 dB

-60.5 dB-60.6 dB

-46.2 dB Measurement result-46.0 dB Bessel function of he first kind

Large phase deviation requires Bessel functionsPhase deviation has to be multiplied by 5 at ILO output

SbILO input (400MHz) SbILO output (2GHz)150-mrad phase deviation 750-mrad phase deviation

Page 68: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Spectrum Measurements

1 MHz 5 MHzFreq. offset

x5

Frequency deviation widers spectrum by a ratio 5Carrier and offset between carrier and spurious are

multiplied by 5 at ILO output

SbILO input (400MHz) SbILO output (2GHz)500-kHz frequency deviation 2.5-MHz frequency deviation

Freq. carrier

x5

Page 69: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

ILO : Proof of Concept (1)

69

ILO designed in BiCMOS6 as a multiplier by 5

Page 70: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

ILO : Proof of Concept (2)

70

TEST MAXIMUM VALUES

REQUIRED

SBILO INPUT

SBILO OUTPUT

Phase Error (o rms)

5 0.22 0.26

Phase Error (o Peak)

20 0.83 0.85

ILO input ILO output

Page 71: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Conclusion ILO A theory on ILO modulation has been proposed

A fifth sub-harmonic injection locked oscillator designed Wide locking range: 400 MHz Center frequency: 2 GHz

Spectrum at SbILO output can be predicted for Low phase deviation with Bessel function or Taylor development Large phase deviation with Bessel function of the first kind Frequency deviation thanks to the ILO multiplication ratio

Phase error introduced by ILO once modulated negligeable

Page 72: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Outline

Introduction Transmitter integration challenges

Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer

72

Modulation of sigma delta frequency synthesizer Two point modulation

DDS and ILO based RF transmitter Injection Locked Oscillator 400 MHz DDS Bluetooth DDS/ILO based transmitter

Page 73: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Frequency synthesis could be seen as a phase modulation, where the modulated phase is a ramp.

400 MHz DDS Principle (1)

tf2)t(

))t(tcos(A)ttcos(A)tcos(A)t(V

1

0101RF

π=ϕϕ+ω=ω+ω=ω=

modulation, where the modulated phase is a ramp. The slope of the ramp is related to the frequency step Frequency synthesizer composed of

An RF clock A phase shifter that increments a value at each rising

edge of the clock

73

Page 74: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

0

400 MHz DDS Principle (2)

φ(t)=β

0

TCLK

Phasor Time waveform

0

TDDS

Page 75: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

0

400 MHz DDS Principle (2)

φ(t)=β

β0

TCLK

β

Phasor Time waveform

β0

TDDS

Page 76: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

0

400 MHz DDS Principle (2)

φ(t)=β

β 2β0β

TCLK

Phasor Time waveform

β 2β0

TDDS

Page 77: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

400 MHz DDS Principle (2)

φ(t)=β

β 2β 3β0

TCLK

Phasor Time waveform

β 2β 3β0

TDDS

Page 78: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

400 MHz DDS Principle (2)

φ(t)=β

β 2β 3β0

TCLKTDDS=TCLK(1+ )

β

Phase Accumulator:Digital context

Phase Interpolator:Analog Context

β 2β 3β0

TDDS

Page 79: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

400 MHz DDS architecture (1)

D

2n-phase Digitally Controlled Phase Shifter

Digital Phase Accumulator

n

79

CK

D

Adder

P

n

Page 80: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

400 MHz DDS architecture (2)

Advantages ROM less High frequency (classical implementation output

frequency restricted to Fclock/2 at least)

Drawbacks Step frequency limited by the resolution of the digitally

controlled phase shifter Spurious response depends on the phase accuracy

80

Page 81: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Decreasing Step Frequency

Σ∆ modulator is used to decrease the step of

f0

f0+df

DDS

Y=<X>

fDDS

the DDS by switching ramdomly between two coarse frequencies

81

Σ∆

X

NSD

Page 82: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Outline

Introduction Transmitter integration challenges

Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer

82

Modulation of sigma delta frequency synthesizer Two point modulation

DDS and ILO based RF transmitter Injection Locked Oscillator 400 MHz DDS Bluetooth DDS/ILO based transmitter

Page 83: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

DDS based RF transmitter principle

Σ∆

fDDS : DDS output frequency df : frequency step Σ∆ modulator synthesizes carrier frequency and shapes

quantification noise. An ILO will act as a frequency multiplier to get the RF signal

Page 84: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Frequency plan

GSM (x2) – DCS Frequency range: 1710 – 1830 MHz Frequency step: 0.1 ppm (170 Hz) ILO multiplication factor: 4 DDS frequency range 427.5 – 457.5 MHz DDS Frequency step: 42.5 Hz DDS Frequency step: 42.5 Hz

Bluetooth Frequency range: 2402 – 2480 MHz Frequency step: 1 ppm (2400 Hz) ILO multiplication factor: 5 DDS frequency range: 480.4 – 496 MHz DDS frequency step: 480 Hz

Page 85: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Σ∆

Bluetooth schematic

2450 MHz

K=5

490 MHz

Σ∆

Σ∆ generates 2NSD frequencies between f0 and f0+df

Page 86: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Transmitter modelization- Bluetooth

fILO=2.45 GHzfDDS=490 MHzRBW=100 kHz

Lowering df lowers the phase noise

Page 87: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Σ∆

GSM/DCS schematics

1800 MHz

K=4

450 MHz

Σ∆

Σ∆ modulator generates 2NSD frequencies between f0 and f0+df

Page 88: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Transmitter modelisation– GSM/DCS

fILO=1.8 GHzfDDS=450 MHzRBW=100 kHz

Page 89: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Modulations

fILO=1.8 GHzfDDS=450 MHzRBW=30 kHz

fILO=2.45 GHzfDDS=490 MHzRBW=100 kHz

GSMfBIT: 270.833 kb/sModulator oversampling: 64Symbols number: 148df: 400 kHz

BluetoothfBIT: 1 MHzModulator ovesampling: 32Symbols number: 50df: 400 kHz

Page 90: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Σ∆ and phase interpolation based DDS

Page 91: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Σ∆ and phase interpolation based DDS

DIGITAL ANALOG

Page 92: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

RAZ

/4

State

Machine

Phase

Accumulator

0

max DAC

VREF

+

-

2 GHzLO

COMP

Σ∆

Fine Coarse

CAP

VREF

500 MHz

Reset

Page 93: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Capacitor charge with variable current

/4

State

Machine

Phase

Accumulator

0

max DAC

VREF

+

-

2 GHzLO

COMP

Σ∆

Fine Coarse

CAP

VREF

500 MHz

Reset

Page 94: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Capacitor charge with Imax

/4

State

Machine

Phase

Accumulator

0

max DAC

VREF

+

-

2 GHzLO

COMP

Σ∆

Fine Coarse

CAP

VREF

500 MHz

Reset

Page 95: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Phase interpolation

Variable

chargeReset

VREF MIN

Constant

charge

MA

X

t

TCLK

M

Page 96: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Synthesizer working process

Page 97: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Synthesizer working process

Page 98: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

/4

State

Machine

Phase

Accumulator

Σ∆

0

max DAC

VREF

+

-

Reset

LO

C

VCAP VCOMP

Synthesizer working process

Page 99: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

/4

State

Machine

Phase

Accumulator

Σ∆

0

max DAC

VREF

+

-

Reset

LO

C

VCAP VCOMP

Synthesizer working process

Page 100: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Synthesizer working process

Page 101: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Synthesizer working process

Page 102: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

/4

State

Machine

Phase

Accumulator

Σ∆

0

max DAC

VREF

+

-

Reset

LO

C

VCAP VCOMP

Synthesizer working process

Page 103: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

/4

State

Machine

Phase

Accumulator

Σ∆

0

max DAC

VREF

+

-

Reset

LO

C

VCAP VCOMP

Synthesizer working process

Page 104: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Synthesizer working process

Page 105: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Synthesizer working process

Page 106: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

/4

State

Machine

Phase

Accumulator

Σ∆

0

max DAC

VREF

+

-

Reset

LO

C

VCAP VCOMP

Synthesizer working process

Page 107: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

/4

State

Machine

Phase

Accumulator

Σ∆

0

max DAC

VREF

+

-

Reset

LO

C

VCAP VCOMP

Synthesizer working process

Page 108: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Synthesizer working process

tTCLK

VREF

Delay

VCAP

VCOMP

Page 109: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Time waveform

Page 110: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

VREF

Combinaisons de l’interpolation de phase

28 - 1 phasesdans TCLK

CNA 8 bits

28 - 1combinaisons

t

TCLK TCLK

Page 111: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Detailed DDS bloc Diagramm

Page 112: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

DDS frequencies calculation

1 phase interpolation each 4TCLK

(28 – 1) phases in TCLK

fDDS=P

fCLK

4 fCLK = 2 GHz

f /4 = 500 MHzP4(28-1)

(1 + )fCLK/4 = 500 MHz

P = 0 fDDS_MAX = 500 MHzP = 28-1 fDDS_MIN = 400 MHz

∆f ≈ 500 kHz

Page 113: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Σ∆ Combinations

Σ∆ 14 bits (MASH11)2 levels quantisizer

13 data bits+ 1 signe bit

213

Combinationover time

Page 114: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Detailed DDS bloc Diagramm

/4

State

Machine

Phase

Accumulator

0

max DAC

VREF

+

-

LO

C

VCAP VCOMP

P 8 bits

Σ∆

MASH11

ResetC

PSD

14 bits

PPA

8 bits

<PSD>

3 bits

Page 115: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Σ∆ advantages

P is composed of an integer part PPA and a fractional one PSD

∆fCOARSE ≈ 500 kHzfDDS=

P +PSD

fCLK

4

Diminution of frequency resolution Quantisizer noise shaping

∆fACCURATE≈ ∆fCOARSE/2^13≈ 60 Hz

PPA+213

PSD

4(28-1)(1 + )

Page 116: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

DDS micrographCMOS 65-nm STMicroelectronics

Active ara: 0.1 mm2

Power supply: 1.2 VPower consumption:

29 mW (without buffers)

State machine, Σ∆,And phase accumulator

DecoupVref

50-ΩBufCAP

Vref

Reset

COMPCOMP500 And phase accumulatorP&R with standard cells

ClockTypcal: 2 GHzworst case: 2.8 GHz

package: TQFP 32

JTAG

Accu+Σ∆Accu+Σ∆Accu+Σ∆CNA

Reset

500 µm

300 µm

Page 117: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Frequency resolution0

-10

-20

-30

-40

-50

RBW: 10Hz

VBW: 10Hz60 Hz60 Hz60 Hz60 Hz

-50

-60

-70

-80

-90

-100 Span: 200 HzCenter: 496.511022 MHz

Page 118: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Phase Noise – LO / DDS

-110

-100

-90

-80

-70B

ruit

de p

hase

(dB

c/H

z)

2-GHz LO500-MHz DDS

Pha

se n

oise

-150

-140

-130

-120

-110

1,E+03 1,E+04 1,E+05 1,E+06 1,E+07 1,E+08

f (Hz)

Bru

it de

pha

se (

dBc/

Hz)

Pha

se n

oise

Page 119: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

-110

-100

-90

-80

Bru

it de

pha

se (

dBc/

Hz)

Phase noise – with/ Σ∆

fIM = 500 MHz – fC ≈ 2.5 MHz

4.fIM

Pha

se n

oise

-150

-140

-130

-120

1,E+03 1,E+04 1,E+05 1,E+06 1,E+07 1,E+08

f (Hz)

Bru

it de

pha

se (

dBc/

Hz)

Avec Σ∆

Sans Σ∆

fC: 497.5 MHz

With

Without

Pha

se n

oise

Page 120: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Phase Noise – model/measure

-120

-110

-100

-90

-80

Bru

it de

pha

se (

dBc/

Hz)

Pha

se n

oise

fC: 497.5 MHz

-150

-140

-130

-120

1,E+03 1,E+04 1,E+05 1,E+06 1,E+07 1,E+08

f (Hz)

Bru

it de

pha

se (

dBc/

Hz)

ModèleMesureP

hase

noi

se

Page 121: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

DDS output spectrum0

-10

-20

-30

-40

-50

RBW: 10kHz

VBW: 10kHz

AC: 8

68 dB

fC≈ 496 MHz

-50

-60

-70

-80

-90

-100 Span: 250 MHzCenter: 500 MHz

AC: 8SD: -31

~16 MHz

Page 122: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

DDS state of the art Lindeberg

JSSC 2005

Daï JSSC 2006

Strollo JSSC 2007

Ce travail ASSCC 2007

Min 0 0 0 400 Fréquence de sortie (MHz) Max 100 150 315 500

Fréquence d’horloge (MHz) 200 300 630 2000

Sortie 1 bit CAN 1 bit

1 bit CNA 12 bits

13 bits quadrature

1 bit CNA 8 bits CAN 1 bit CNA 12 bits quadrature CNA 8 bits

Tension d’alimentation (V) 1.5 3.3 2.5 1.2

Puissance consommée (mW)

138 200 76 29

Technologie (µm) 0.13 0.35 0.25 0.065

Surface (mm2) 2,02 1.11 0.063 0.1

Figure de mérite (mW/MHz)

690 666 121 29

Page 123: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Transmitter Block Diagramm

+

-VREF

VCAPAccumulateur

de phaseLO CNA

ILO OUT

CAP

2 GHz400-500 MHz

2-2.5 GHz

1001

01

1101

• Output Frequency Range: 2 to 2.5 GHz• Frequency step : 300 Hz• RF filtering provided by ILO

Σ∆

ModulationCanalEmetteur001011000

01

Numérique Analogique

Page 124: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

ILO frequency multiplication

ff1 f2f0

f5.f1 5.f25.f0

Signal injecté Sortie de l’ILO

ILO

x 5

Injected Signal ILO output

∆f ∆f 5. ∆f 5. ∆f

Schrinked Modulation Ouput ILO Modulation

Page 125: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

ILO Design

12

LOCKIf∆ = ⋅ ⋅

0

12

4

LOCK

Total

If

V π C∆ = ⋅ ⋅

⋅ ⋅

Page 126: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Transmitter MicrographCMOS 65-nm STMicroelectronics

Active area: 0.25 mm2

Power Supply: 1.2 VDissipated Power:

37 mW (without output buffers)

DDS + ILODDS + ILO

ILO locking range programmableFrom 1 to 31 MHz

TQFP 48 package

Page 127: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Free Running and Locked – ILO Phase Noise

-110,00

-100,00

-90,00

-80,00

-70,00

-60,00

-50,00B

ruit

de p

hase

(dB

c/H

z)

ILO libre

ILO verrouillé (31)

Pha

se n

oise

-160,00

-150,00

-140,00

-130,00

-120,00

-110,00

1,E+03 1,E+04 1,E+05 1,E+06 1,E+07 1,E+08

f (Hz)

Bru

it de

pha

se (

dBc/

Hz)

ILO verrouillé (31)

DDS

ILO verrouillé (1)

Pha

se n

oise

Page 128: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Phase Noise for different ILO locking range

-130,00

-120,00

-110,00

-100,00B

ruit

de p

hase

(dB

c/H

z) Masque

ILO libre

Pha

se n

oise

-160,00

-150,00

-140,00

1,E+05 1,E+06 1,E+07 1,E+08

f (Hz)

Bru

it de

pha

se (

dBc/

Hz)

DDSLCK 31

LCK 8

LCK 4

LCK 1

Pha

se n

oise

Page 129: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Phase Noise Filtering – ILO/DDS

-15,00

-10,00

-5,00

0,00

5,00B

ruit

de p

hase

[DD

S +

14d

B -

ILO

]

LCK 31

-30,00

-25,00

-20,00

-15,00

1,E+04 1,E+05 1,E+06 1,E+07 1,E+08

f (Hz)

Bru

it de

pha

se [D

DS

+ 1

4dB

- IL

O]

LCK 1

LCK 4

LCK 8

Pha

se n

oise

Page 130: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Transmitter output spectrum

Locking Range= 1 MHz

Locking Range= 31 MHz

Page 131: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

GSM 1 Bluetooth Modulation Plots

BluetoothModulation

GSMModulation

Page 132: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Conclusion

Innovative tansmitter based on Phase Shifter based pulse output DDS

Demonstrated feasabilitty from system to silicon Matlab modelization including mismatches DDS measurement

DDS output frequency from 400 MHz to 500 MHz DDS output frequency from 400 MHz to 500 MHz 60 Hz frequency resolution 29 mW

Transmitter Measurement Frequency band from 2 GHz à 2.5 GHz 300 Hz frequency resolution 37 mw

Page 133: RF Transmitter based on Frequency Synthesizer · Frequency Synthesizer Modulation Translationnal TX loop Modulation of sigma delta frequency synthesizer 2 Two point modulation DDS

Acknowledgements

This presentation is based on Ph D work of L.Camino (modulation of Σ∆ fractional PLL) and T. Finateu (DDS –ILO based transmitter)

133