53
7/30/2019 S3 0 Kuipers http://slidepdf.com/reader/full/s3-0-kuipers 1/53 MULTI-SCALE MODELING OF DENSE PARTICLE-LADEN FLOWS J.A.M. KUIPERS M.A. VAN DER HOEF M. VAN SINT ANNALAND N.G. DEEN EINDHOVEN UNIVERSITY OF TECHNOLOGY FACULTY OF CHEMICAL ENGINEERING AND CHEMISTRY MULTIPHASE REACTORS GROUP THE NETHERLANDS

S3 0 Kuipers

Embed Size (px)

Citation preview

Page 1: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 1/53

MULTI-SCALE MODELING OF DENSE

PARTICLE-LADEN FLOWS

J.A.M. KUIPERS

M.A. VAN DER HOEF

M. VAN SINT ANNALAND

N.G. DEEN

EINDHOVEN UNIVERSITY OF TECHNOLOGY

FACULTY OF CHEMICAL ENGINEERING AND CHEMISTRY

MULTIPHASE REACTORS GROUP

THE NETHERLANDS

Page 2: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 2/53

DENSE GAS-PARTICLE FLOWS

shifting sands (Tanzania)

Page 3: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 3/53

DENSE GAS-PARTICLE FLOWS

clusters in co-current vertical gas-solid flows 

Page 4: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 4/53

DENSE GAS-PARTICLE FLOWS

clusters in co-current vertical gas-solid flows 

e = 1.0

µ = 0.0

e = 0.96

µ = 0.24

Page 5: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 5/53

DENSE GAS-PARTICLE FLOWS

fluidized bed family of gas-solid contactors

1: bubbling bed 

2: turbulent bed 

3: circulating bed 

4: riser 

5: downer 

6: lateral staged bed 

7: vertical staged bed 

8: spouted bed 

9: floating bed 10: twin bed 

Page 6: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 6/53

POLY-DISPERSE DENSE GAS-PARTICLE FLOWS

fluidized bed spray granulation

Prof. Stefan Heinrich (TUHH)

Page 7: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 7/53

DENSE GAS-PARTICLE FLOWS & MODELLING

• GAS-PARTICLE SYSTEMS

+ very broad range of applications and related equipment geometries

+ occurence of both dilute and dense particle-laden flows (poly-disperse)

+ display a great variety of (very complex) flow structures

+ flows are inherently unsteady (bubbles, clusters)

• IMPLICATIONS FOR MODELLING

+ development of a single universal model far to ambitious (irrealistic)

+ multi scale approach is appropriate

+ closures for gas-particle and particle-particle interaction required 

+ model should account for the transient nature of the flow

Page 8: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 8/53

MULTI-SCALE MODELLING

Van der Hoef et al., Annu. Rev. Fluid M., 2008

Page 9: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 9/53

MULTI-SCALE MODELLING

Page 10: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 10/53

LATTICE BOLTZMANN MODEL

• BASIC FEATURES

+ fictitious particles propagate in a three-dimensional (3D) lattice and 

collide at surface of real particles (or walls): momentum exchange

+ particle-particle collisions can be accounted for (hard sphere model)

• ADVANTAGES

+ all details of the flow field are obtained: drag closure is computed 

• DISADVANTAGES

+ number of particles is (very) limited (CPU limitations)

Page 11: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 11/53

RESULTS OF LATTICE BOLTZMANN MODEL

static array of bi-disperse particles at low Re p

example of initial particle

configuration for 

a bi-disperse system

generated with a

Monte Carlo procedure

Page 12: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 12/53

RESULTS OF LATTICE BOLTZMANN MODEL

static array of bi-disperse particles at low Re p

Page 13: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 13/53

RESULTS OF LATTICE BOLTZMANN MODEL

static array of particles with log-normal PSD 

Page 14: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 14/53

RESULTS OF LATTICE BOLTZMANN MODEL

static array of particles with log-normal PSD 

Re=0.1 Re=500

Page 15: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 15/53

RESULTS OF LATTICE BOLTZMANN MODEL

final drag closure for mono-disperse and poly-disperse particles 

good fit (deviation less then 8%) of basic LB simulation data

generated over wide range of εg and Re

strictly valid for homogeneous arrays of particles

Page 16: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 16/53

IB-DP MODEL

• FEATURES

+ Eulerian grid and Lagrangian force points on solid boundaries

• ADVANTAGES

+ all details of continuous phase flow field are captured 

+ arbitrary shape of solid particles can be accounted for 

• DISADVANTAGES

+ IB-DP simulations are CPU-demanding (especially in 3D)

+ limited to relatively small number of solid bodies (typically 103)

Page 17: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 17/53

Page 18: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 18/53

RESULTS OF IB-DP MODEL

single and simple cubic array of particles (3D)

Re p=100 Re p=1

1003 Eulerian grid 

 N=(d  p/h)=20

Dimensionless drag

F=10.9 (computed)

F=10.2 (analytical)

Page 19: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 19/53

RESULTS OF IB-DP MODEL

fluidization of 1296 spherical particles (3D)

Fluid phase Density 1216 kg/m3 

Viscosity 0.1 kg/(m.s)

Solid phase 

 Density 8000 kg/m3

 Particle diameter 0.005 m

Collision parameters 0.9, 0.3, 0.10 (-)

U mf  1.2 cm/s

U t  40 cm/s

U 0 8.0 cm/s

Grid 400x12x800 (-)

Grid size 0.5 mm

∆t 0.2 ms

Page 20: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 20/53

RESULTS OF IB-DP MODEL

fluidization of 1296 spherical particles (3D)

Page 21: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 21/53

RESULTS OF IB-DP MODEL

fluidization of 1296 spherical particles (3D)

Page 22: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 22/53

Page 23: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 23/53

DISCRETE PARTICLE MODEL

• BASIC FEATURES

+ individual particles are tracked in the computational domain taking

into account particle-particle and particle-wall encounters (collisions)

• ADVANTAGES

+ incorporation of arbitrary distribution of particle properties is easy

+ detailed particle-particle interaction models can be incorporated 

• DISADVANTAGES

+ number of particles is (very) limited (CPU limitations)

Page 24: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 24/53

Page 25: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 25/53

RESULTS DISCRETE PARTICLE MODEL

 bubble formation in pseudo 2D bed 

W=0.30 md  p=1.5 mm

ρs=2526 kg/m3 

U b=0.85 m/s

U j=15.0 m/s

Page 26: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 26/53

RESULTS DISCRETE PARTICLE MODEL

spouted bed 

“CAPABILITIES” OF DPM

(COLLISION PARAMETERS!!!)

(Link et al., CES, 2005)

REGIME PREDICTION

GAS BUBBLES BEHAVIOUR 

PRESSURE FLUCTUATIONS

SOLIDS MOTION

Page 27: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 27/53

RESULTS DISCRETE PARTICLE MODEL

spouted bed 

Page 28: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 28/53

RESULTS DISCRETE PARTICLE MODEL

spouted bed 

/ 16.0 / 1.2sf mf bf mf  u u u u= ↔ =

 particle configuration  particle velocity map

Page 29: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 29/53

RESULTS DISCRETE PARTICLE MODEL

spouted bed 

experimental simulated 

/ 16.0 / 1.2sf mf bf mf  u u u u= ↔ =

Page 30: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 30/53

RESULTS DISCRETE PARTICLE MODEL

spouted bed 

DPM PEPT

Page 31: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 31/53

1 bar 2 bar 4 bar 8 bar 16 bar 32 bar 64 bar 

RESULTS DISCRETE PARTICLE MODEL

effect of operating pressure

Page 32: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 32/53

 

RESULTS DISCRETE PARTICLE MODEL

effect of operating pressure

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Porosity

       P       D       F

1 bar

2 bar

4 bar

8 bar

16 bar

32 bar

Dense emulsion Intermediate Bubbles

 p p

 p

Page 33: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 33/53

RESULTS DISCRETE PARTICLE MODEL

Courtesy: Prof. Heinrich (TUHH) 

• wide residence time distribution

• stochastic flow profile

Page 34: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 34/53

RESULTS DISCRETE PARTICLE MODEL

Courtesy: Prof. Heinrich (TUHH)

• wetting cycles

• narrow residence time distribution

• stationary flow profile in spray zone

Page 35: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 35/53

TWO-FLUID MODEL BASED ON KINETIC THEORY

• BASIC FEATURES

+ statistical mechanical description of particle-particle encounters

• ADVANTAGES

+ based on more fundamental description of particle-particle interaction

compared to classical two-fluid model and the discrete bubble model

• DISADVANTAGES

+ incorporation of different particle properties (polydispersity) is quite

difficult and leads to (many) additional equations (CPU limitations)

Page 36: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 36/53

TWO-FLUID MODEL BASED ON KINETIC THEORY

• DEFINITION OF PARTICLE VELOCITIES

+ instantaneous particle velocity:

+ ensemble averaged particle velocity:

+ fluctuating particle velocity:

• DISTRIBUTION OF FLUCTUATING VELOCITIES (KTG)

vcC  −=

v

c

)2

exp()2

(2

2/3

kT 

mC 

kT 

mn f  −

π

= Maxwell’s velocity distribution

Boltzmann constantnumber density

Page 37: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 37/53

RESULTS TWO-FLUID MODEL

 bubble formation: 15 cm bed 

W=0.15 m

d  p=1.5 mm

ρs=2526 kg/m3 

U b=0.85 m/s

U j=15.0 m/s N p=120000

Page 38: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 38/53

RESULTS TWO-FLUID MODEL

 bubble formation: 30 cm bed 

W=0.30 m

d  p=2.5 mm

ρs=2526 kg/m3 

U b=1.20 m/s

U j=20.0 m/s N p=60000

Page 39: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 39/53

TWO-FLUID MODEL BASED ON KINETIC THEORY

Geldart A type fluidization 

grid size

0.8 mm

grid size0.2 mm

Page 40: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 40/53

SEGREGATION IN BIDISPERSE SYSTEMS

Page 41: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 41/53

SEGREGATION IN BIDISPERSE SYSTEMS

experimental technique

DIGITAL IMAGE ANALYSIS

USING TWO PARTICLE TYPES

WITH DIFFERENT COLORS

COLOR INTENSITY MEASURE

FOR PARTICLE FRACTION

CAREFUL CALLIBRATION

ESSENTIAL

Page 42: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 42/53

RESULTS DPM MODEL

segregation in bidisperse systems

Page 43: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 43/53

RESULTS DPM MODEL

segregation in bidisperse systems

Page 44: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 44/53

RESULTS DPM MODEL

segregation in bidisperse systems

Page 45: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 45/53

MULTI-FLUID MODEL (MFM) BASED ON KINETIC THEORY

• BASIC FEATURES OF CURRENT MFM

all particle species are assumed to possess a nearly Maxwellian

velocity distribution with respect to the particle mixture velocity

and the particle mixture granular temperature

in the corresponding equilibrium situation (no external forces and 

absence of gradients in porosity, velocity and granular temperature)

interaction between different particle species already exists

differences in the mean velocities and granular temperatures of the

 particle species result from higher order perturbation terms in theChapman-Enskog solution method of the Boltzmann equations

Page 46: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 46/53

SEGREGATION IN BIDISPERSE SYSTEMS

simulation with multi-fluid model 

Page 47: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 47/53

RESULTS MFM MODEL

segregation in bidisperse systems

Page 48: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 48/53

RESULTS MFM MODEL

segregation in bidisperse systems

 New MFMOld MFM

Page 49: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 49/53

RESULTS MFM MODEL

segregation in bidisperse systems

Page 50: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 50/53

CONCLUSIONS 

• MULTI –SCALE SIMULATION APPROACH

+ closures for gas-particle and particle-particle interaction are critical

+ LBM provides closures for gas-particle interaction

+ DPM essential………but should be viewed as a “learning model”

+ incorporation of friction in kinetic theory models (encounter model)

• EXPERIMENTAL VALIDATION

+ important role for non-invasive monitoring (CARPT, MRI, PEPT)

Page 51: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 51/53

FUTURE WORK  

• MULTI-SCALE SIMULATION APPROACH

+ readily applicable to non-spherical particles

+ extension to mass and heat transport (ERC Advanced Grant)

+ incorporation of liquid phase (droplets) (Prof. Heinrich TUHH)

+ filtered two-fluid models (Geldart A)

+ other multiphase flows (gas-liquid + gas-liquid-solid)

+ hybrid models (particle based + continuum)

Page 52: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 52/53

EXTENSION TO BUBBLY FLOW

O(105) bubblesO(102) bubbles

( ),

( , )1 25.88 exp( / 2)

 D g

g l

 D

C Eo Eo

ε ε ε 

= + −

Page 53: S3 0 Kuipers

7/30/2019 S3 0 Kuipers

http://slidepdf.com/reader/full/s3-0-kuipers 53/53

ACKNOWLEDGEMENTS

PhD’s + PD’s

Renske BeetstraAlbert Bokkers

Maureen van Buitenen

Willem Godlieb

Matthijs Goldschmidt

Bob HoomansJeroen Link 

Daneshwar Patil

Junwu Wang

Mao Ye

Funding

Akzo NobelCorus

DSM

FOM

 NWO-CW

SabicShell

STW

Unilever 

Yara