50
Energiledarkonferensen: Så räddar tekniken oss till 2030 ! Solna, 12 november 2009 bra kommer våra batterier att vara 2030! Josh Thomas The Ångström Advanced Battery Centre, Department of Materials Chemistry, Uppsala University, Box 538, SE-751 21 Uppsala, Sweden. & LiFeSiZE AB Blomgatan 4E, SE-752 31 Uppsala, Sweden. [email protected]

Så bra kommer våra batterier att vara 2030! Josh Thomas · Energiledarkonferensen: Så räddar tekniken oss till 2030 ! Solna, 12 november 2009. Så bra kommer våra batterier att

  • Upload
    habao

  • View
    214

  • Download
    0

Embed Size (px)

Citation preview

Energiledarkonferensen: Så räddar tekniken oss till 2030 !Solna, 12 november 2009

Så bra kommer våra batterier att vara 2030!

Josh ThomasThe Ångström Advanced Battery Centre, Department of Materials Chemistry,

Uppsala University, Box 538, SE-751 21 Uppsala, Sweden.&

LiFeSiZE ABBlomgatan 4E, SE-752 31 Uppsala, Sweden.

[email protected]

Energiledarkonferensen: Så räddar tekniken oss till 2030 !Solna, 12 november 2009

Så mycket större/kraftfullare/billigare/säkrare/”grönare”

kommer våra batterier att vara 2030!

Josh ThomasThe Ångström Advanced Battery Centre, Department of Materials Chemistry,

Uppsala University, Box 538, SE-751 21 Uppsala, Sweden.&

LiFeSiZE ABBlomgatan 4E, SE-752 31 Uppsala, Sweden.

[email protected]

What’s wrong in our World today ?

Energyresourcesavailable

Currentutilization

sunwind, wave...

etc.

coal, oil, gas, wood

the cleanones !

!!!

And how can we put it right ?

Energyresourcesavailable

Desiredutilization

sunwind, wave...

etc.

coal, oil, gas, wood

the cleanones !

Sci.&

Techn.

Re: ” Så räddar tekniken oss till 2030 ! ”

Energiformer

i världen

idag

21%

24%

36%

4%

7%

6% 1% 0.5%

De vanligaste

är

de smutsigaste

!

21%

24%

36%

4%

7%

6% 1% 0.5%

How can batteries help ?

Clearly –

we must invest in RENEWABLES !

BUT ... the

wind

doesn’t blow every day, nor does the sun

shine on demand –

or at night !

1% 0.5%6%4% 1% 0.5%6%4%

An indisputable future scenario:Renewable E-sources

+ efficient E-conversion+

E-storage

+ fuel-cells

+ batteries

renewable E-sources

1. EV/HEV:s

2. Quality grid-power(the “smart grid”)

3. “Uninterruptible Power Supply”

(UPS) systems

From renewable E-sources

Transport

Grid

power

Today’s (Li-ion) battery

research

focusses

on:

-

cheaper, larger, safer, greener(Li-ion) batteries with

higher

energy-

and

power-densities

Wind Sun Wave

Bilen = miljöboven !!!!

C O 2emission

Exhaust emission

Global-scale

Energysupply & demand

Storstadsskalan Globalskalan

Världens 10 smutsigastestäder ( 7 i Kina )

1. Taipei2. Milano ! !3. Beijing4. Urumchi5. Mexico6. Lanzhou7. Chongqing8. Jinan9. Shijiazhuang10. Teheran

12000

10000

8000

6000

4000

2000

14000

2000 2005 2010 2015 2020 2025 20300

CarsBuses Trucks

Projektion

0

1.200

1.000

800

600

400

200

1.400CO2

emissioner(milj

ton)

2006 : >300 milj bilar i Europa

Luftföroreningar i världens städer

En tillfällig lösning ...... men en vändpunkt !

*

Fun to Drive

Fuel Economy

Current HEVst.ex. PRIUS

ICE Vehicles

“Plug-in” (H)EV’s

Better (H)EVs to come !

På längre sikt ?

ca. 2030 !?

* *

Remote(off-grid)

+-+-+- +-+-+-+-+-+- +-+-+-

LT box

Powergen. HT

HTA (20000V)BT(230V)

LT50 –150 KVA

LT

+-+- +-

+-+- +-

+-+-+- +-+-+-+-+-+- +-+-+-

Solar

panels

(Centralised)

HT

Centralbattery

storage

Grid-coupledsolar

panelssystem

A sustainable E-system:Centralised

och

decentralised

power supplies

Individualbattery

storage

On a broader scale: “sustainable electrical power supplies”

1

2 3

4

(Decentralised)

. . . through ”better batteries”

An el-tank in the basement !

So we need ”better” batteries !

I what way will they be better?

A clay jar containing an iron rod surrounded by a copper cylinder; when filled with vinegar + an electrolytic solution, the “battery” produced 1.1 volts DC.

Present day Iraq: 250 BC to 640 AD

The first battery ?

Where

are we

today

after

two

centuries ?

Alessandro Volta, 1799

1839 Fuel cell1859 Pb-battery1899 Ni-Cd

(Swedish)

1973 Li-metal1975 Ni-MH1979 Li-polymer

Li-ion: Sony 1990

(Cu/Zn)

Li-ion-polymer: 2000

Very slow development- definitely NOT Moore’s law !

«Research in the field of batteries moves at glacier pace »N.Y.Times: 2001

80% of electronics market today

Li-jonbatteriet

ger oss bästa möjlighet till uppskalning !(det tar >20 år att ta fram ett helt nytt batterikoncept)

Olika

batterimaterial . . .

Grafit

LiNi0.8

Co0.2

O2

(Kisel)

Nanorör

(VOx)

LiFePO4

NiSi

LiMn2

O4

Cu6

Sn5

(Li2

FeSiO4

)

Cu2

Sb

V6

O13

InSb

*

MnSb

*

Mn2

Sb

SnSb

Sn-glaser

- +

Li+

PF6-

BF4-

CF3

SO2 -

N(SO2

CF3

)2 -

EC

DEC

DMC

etc.organisk

lösningsmedel

electrolyt

Möjliga vägar fram ?

1. Bättre bulk-material (e.g., LiFeSiZE AB !)

2. Nanomaterial

3. Mikro-arkitekturer

1. Bättre bulk-material ?

”Bättrebatteri”

Bättrematerial

Säkrareanod

Stabilareelektrolyt

Katoden måste bli bättre . . .

• Högre kapacitet (”prestanda”)• Högre effekt (”prestanda”)• Högre säkerhet (”prestanda”)• Längre livstid (”prestanda”)..............................................................• Lägre pris (”marknad”)• Lägre toxicitet (”miljö”)

Men vi klarar uppskalningenmed vad vi har redan idag

KATODENfördröjer

uppskalningen av teknologin

Ett

bättre

batteri

= en bättre

KATOD

Betterbatteries

Bettermaterials

Saferanodes

More stable electrolytes

• Higher capacity (”performance”) cathodes• Higher power (”performance”) • Safer (”performance”) • Longer lifetime (”performance”) ................................................................• Lower cost (”market”) • More abundant materials

(”market”/ ”environment”)• Non-toxic (”environment”)

We can scale up with what we already have at lower voltages, but:

* Cu/graphitesustainability !!!

* LiPF6 !!!!

The CATHODE is hindering the

scaling up of the technology!

. . . esp. for EV scale-up

Ett nytt HEV/P-HEV/EV katodmaterial ? . . . från Uppsala

Dagens mobiltelefon/laptop material- LiCoO2

, Li(Co,Ni)O2

, LiNi1-y-z

Coy

Alz

O2

• Större

batterier kräver

billigare

katodmaterial

⇒ ⇒ ⇒

Fe-baserad material

• LiFePO4 (A123, etc. idag)

• Li2

FeSiO4 (litiumjärnsilikat)

( Fe-

och Si-oxider >10% av jordskorpan

!)

De gamla grekernas grundelement: ”Earth-Air-Fire-Water”

!

. . . an Uppsala University spin-off Company

Goal: We develop Fe-based cathodes for Li-ion batteries for large-scaleapplications (transport and sustainable energy storage)

. . . an inestimably large - but tough - market !

- develop a CHEAP green synthesis method for Li2 FeSiO4 (”LFS”)- produce/sell Li-ion battery cathodes based on LFS

• Poor electronic conductivity !

• Solutions:

- doping - nano-coating- nano-sizing

a) Layered: LiCoO2 -> Li0.5 CoO2 : ~3.9V, ~140 mAh/g

b) Spinels:LiMn2 O4 -> Mn2 O4 : ~3V or ~4.0V, 148 mAh/g

c) Olivines:LiFePO4 -> FePO4 , ~3.6V, ~170 mAh/g

d) OrthosilicatesLi2 FeSiO4 -> LiFeSiO4 , ~2.85V, ~ 170 mAh/g

• Instability ?• Solution:doping

Common Li-ion battery cathode materials

Extract >1 Li to give higher capacity at higher voltage . . .. . . the ”Holy Grail” of the Li-ion battery?

e.g., for x = 0.5

Li+2(Fe2+1-xMn2+

x)SiO4 ⇒

Li+1-x(Fe3+1-xMn4+

x)SiO4 + (1+x)Li+ + (1+x)e-

” a 1.5-electron reaction”

(transport?)

Solid-state synthesis:

Ball-milling

700

350

Tem

pera

ture

°C

time

e.g., FeC2

O4.2H2

O + Li2

SiO3 + C-precursor

700ºC in a CO/CO2

gas flow (20 h)

Heat treatment

Li2

FeSiO4 synthesis

BUT:Solgel, wet chemical and hydrothermal process routes also result in ”useable” active materials

SEM picture of Li2 FeSiO4 after ball-milling for 12h: 85 mAh/g

200nm

SEM picture of Li2 FeSiO4 after2 months mixing/grinding: 125 mAh/g

A cheap, fast microwave-assisted process ?

Mixture of reagents:LiAc, Fe(Ac)2, TEOS,Solvent: TEG

300oC, 15 minCEM Focused MicrowaveTM

synthesis system

Drying150oC, 4 h(vacuum)Quartz vessel

Ball-milling, 2h

Ball-milling, 2hw/ acetonew/ 20 wt% sucrose

w/ acetone

acetone evap.

acetone evap.

Post heat-treatment

600oC, 30 min (10oC/min)N2 flow (100 ml/min)

Li2 FeSiO4 ?

XRD,SEMTGA,

EC test…

Microwave heating

Shorter, cheaper synthesis methods

Grinding

RT, 2 m

onths750

oC, 24 h

Hydrotherm

al150

oC, 14 days

Sol -formation

RT, 12 h

700 oC, 1 h Solvotherm

al120

oC, 20 h

600oC

, 10 h

Microw

ave, 300oC

,15 min

600oC

,30 minSolid state

reactionHydrothermal

synthesis Pechini

synthesis

ProjectST-

process

time

14days

2 months

12 h

45 min

20

120

140

130122

Project-2MW-

process

capacity(mAh/g)

2. Nanomaterial ?

year1970 1980 1990 2000 2010

Ener

gyde

nsity

(Wh/

kg)

100

300

200

NiCdNiMH

Li-ion

Nano-materials

?

Incremental changes:The chances of making significant advances are slim

Nano-materials

!

0 0.5 1x in LixFe2O3

1.5

2

2.5

3

3.5

4

4.5

5

Volta

ge (V

olts

vs.

Li+

/Li)

n-Fe2O3

4 8 12 16 20 24 28 32 36 40Cycle number

0

0.1

0.2

0.3

0.4

0.5

0.6

Cha

rge

Cap

acity

(Li p

er F

e 2O

3)

0

20

40

60

80

100

Capacity (m

Ah/g)

0.51

1.52

2.53

3.54

4.5

Volta

ge (V

olts

vs.

Li+

/Li)

0 0.5 1x in LixFe2O3

M-Fe2O3

4 8 12 16 20Cycle number

0

0.1

0.2

0.3

0.4

0.5

0.6

Cha

rge

Cap

acity

(Li p

er F

e 2O

3)

0

20

40

60

80

100

Capacity

(mA

h/g)

Particle-size: cathode material

bulk-Fe2

O3

vs. nano-Fe2

O3

Larcher et al. J. Electrochem. Soc., 150 (2003) A133-A139.

3. Mikro-arkitekturer?

Today’s rechargeable Li-ion battery

2D !

A basic MB design principle: Perforated substrates with hiA basic MB design principle: Perforated substrates with high gh aspectaspect--ratio give higher electrode surface arearatio give higher electrode surface area--toto--volume ratiovolume ratio

( )2. . 22

d dAG td sπ ⎛ ⎞= − +⎜ ⎟

⎝ ⎠+

d-diameter

s-interhole spacing

t-substrate thickness

The geometric Area Gain (A.G.) per given substrate footprint

Porous alumina as a template for nano-electrodes

Along the poresFrom the side

Johansson, Boman et al.

(Materialkemi/UU)

.... for ”3D-microbatteries”

(3D-MB:s)!!

Al-pillared CC(Edström et al.)

TiO2 ALD-coated onto Al CC pillars(Edström et al.)

Result:

TiO2

AlPillars

0.0

20.0

40.0

60.0

80.0

100.0

120.0

0 10 20 30 40 50

Cycle Number

Nor

mal

ized

Cap

acity

2D

3D

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 5 10 15 20 25 30 35 40

Cycle Number

Dis

char

ge C

apac

ity (m

Ah)

Complete coverage of the nanostructured CCGood cycling stability

Solkraft källa

e.g., “Smart dust”

-

för

miljöbevakningIntegrerad solcell/3D-MB

mm-kuber !

*

Att sammanfatta . . .

Portable/on-board electrical energy demands will continue to increase over the coming decades:

• Portable communications:- more laptops, PDA’s, cellular phones, video cameras,power tools, and integrated applications like PDA’s witha cellular phone.

• (Hybrid?) electric cars, scooters, bicycles:- motivated by higher gasoline costs and the need for a “greener" environment.

These will all need better batteries of different types . . .

PROBABLE TECHNOLOGICAL TRENDS IN BATTERIES OVER THE NEXT 10-20 YEARS . . .

• More hybrid systems - integrating the advantages of different devices, e.g., battery + supercapacitor, battery + fuel cell, primary + rechargeable cell, etc.

• Li-ion technology will penetrates new applications, esp. with larger Li-ion batteries replacing other technologies.

• No dramatically new “battery chemistries” yet – but new battery engineering will soon emerge.

Sony

Sony

1990 2005

Conversion

cathodes (nano)

20151995

Ener

gy d

ensi

ty

Sony

Organic

cathodes

2020

250 Wh/kg, 800Wh/l

Sustai

nabil

ity !

A123

2007 Future

Li-air

Future

Li-S

Na-ion

chemistry

Future

The development of Li-ion batteries over the next 20-30 years

??????

x 2Still far from Moore’s law !!!

Vi har knappast kommit igång, spec. i den stora-batteri världen . . .

. . . 2030:s batterier kommer säkerligenatt vara bättre

än dagens på

alla sätt !

Tack för mig !

[email protected]@LiFeSiZE.se