61
Holomorphic Projection and Mock Modular Forms Michael H. Mertens Emory University San Antonio, January 11, 2015 M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 1 / 23

San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

Holomorphic Projection and Mock Modular Forms

Michael H. Mertens

Emory University

San Antonio, January 11, 2015

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 1 / 23

Page 2: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

1 IntroductionMock modular formsHolomorphic projection

2 ApplicationsConstruction of mock modular formsClass number type relations for Fourier coefficientsShifted convolution L-functions and their special values

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 2 / 23

Page 3: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

Table of Contents

1 IntroductionMock modular formsHolomorphic projection

2 ApplicationsConstruction of mock modular formsClass number type relations for Fourier coefficientsShifted convolution L-functions and their special values

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 2 / 23

Page 4: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

Ramanujan’s deathbed letter

S. Ramanujan (1887-1920)

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 3 / 23

Page 5: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

The modern definition

Definition 1

A mock modular form f of weight k ∈ 12Z \ {1} for Γ0(N) is the

holomorphic part M+ of a harmonic Maaß form M, i.e. there is a weaklyholomorphic modular form g ∈M !

2−k(Γ0(N)), the shadow of f , s.t.M = f + g∗ with

g∗(τ) :=

∫ ∞−τ

g(−z)(z + τ)k

dz

transforms like a modular form of weight k under Γ0(N).

Appear in

combinatorial q-series (e.g. partition ranks)

quantum black holes and wall crossing

umbral moonshine

...

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 4 / 23

Page 6: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

The modern definition

Definition 1

A mock modular form f of weight k ∈ 12Z \ {1} for Γ0(N) is the

holomorphic part M+ of a harmonic Maaß form M, i.e. there is a weaklyholomorphic modular form g ∈M !

2−k(Γ0(N)), the shadow of f , s.t.M = f + g∗ with

g∗(τ) :=

∫ ∞−τ

g(−z)(z + τ)k

dz

transforms like a modular form of weight k under Γ0(N).

Appear in

combinatorial q-series (e.g. partition ranks)

quantum black holes and wall crossing

umbral moonshine

...

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 4 / 23

Page 7: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

The modern definition

Definition 1

A mock modular form f of weight k ∈ 12Z \ {1} for Γ0(N) is the

holomorphic part M+ of a harmonic Maaß form M, i.e. there is a weaklyholomorphic modular form g ∈M !

2−k(Γ0(N)), the shadow of f , s.t.M = f + g∗ with

g∗(τ) :=

∫ ∞−τ

g(−z)(z + τ)k

dz

transforms like a modular form of weight k under Γ0(N).

Appear in

combinatorial q-series (e.g. partition ranks)

quantum black holes and wall crossing

umbral moonshine

...

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 4 / 23

Page 8: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

The modern definition

Definition 1

A mock modular form f of weight k ∈ 12Z \ {1} for Γ0(N) is the

holomorphic part M+ of a harmonic Maaß form M, i.e. there is a weaklyholomorphic modular form g ∈M !

2−k(Γ0(N)), the shadow of f , s.t.M = f + g∗ with

g∗(τ) :=

∫ ∞−τ

g(−z)(z + τ)k

dz

transforms like a modular form of weight k under Γ0(N).

Appear in

combinatorial q-series (e.g. partition ranks)

quantum black holes and wall crossing

umbral moonshine

...

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 4 / 23

Page 9: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

The modern definition

Definition 1

A mock modular form f of weight k ∈ 12Z \ {1} for Γ0(N) is the

holomorphic part M+ of a harmonic Maaß form M, i.e. there is a weaklyholomorphic modular form g ∈M !

2−k(Γ0(N)), the shadow of f , s.t.M = f + g∗ with

g∗(τ) :=

∫ ∞−τ

g(−z)(z + τ)k

dz

transforms like a modular form of weight k under Γ0(N).

Appear in

combinatorial q-series (e.g. partition ranks)

quantum black holes and wall crossing

umbral moonshine

...

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 4 / 23

Page 10: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

The modern definition

Definition 1

A mock modular form f of weight k ∈ 12Z \ {1} for Γ0(N) is the

holomorphic part M+ of a harmonic Maaß form M, i.e. there is a weaklyholomorphic modular form g ∈M !

2−k(Γ0(N)), the shadow of f , s.t.M = f + g∗ with

g∗(τ) :=

∫ ∞−τ

g(−z)(z + τ)k

dz

transforms like a modular form of weight k under Γ0(N).

Appear in

combinatorial q-series (e.g. partition ranks)

quantum black holes and wall crossing

umbral moonshine

...

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 4 / 23

Page 11: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

Table of Contents

1 IntroductionMock modular formsHolomorphic projection

2 ApplicationsConstruction of mock modular formsClass number type relations for Fourier coefficientsShifted convolution L-functions and their special values

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 5 / 23

Page 12: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

Idea of holomorphic projection

Φ : H→ C continuous, transforming like a modular form of weightk ≥ 2 for some Γ0(N), moderate growth at cusps (Attention fork = 2!).

The map f 7→ 〈f,Φ〉 defines a linear functional on Sk(Γ0(N)).

⇒ ∃!Φ̃ ∈ Sk(Γ0(N)) s.t. 〈·,Φ〉 = 〈·, Φ̃〉This Φ̃ is (essentially) the holomorphic projection of Φ.

same reasoning works for regularized Petersson inner product regularized holomorphic projection.

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 6 / 23

Page 13: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

Idea of holomorphic projection

Φ : H→ C continuous, transforming like a modular form of weightk ≥ 2 for some Γ0(N), moderate growth at cusps (Attention fork = 2!).

The map f 7→ 〈f,Φ〉 defines a linear functional on Sk(Γ0(N)).

⇒ ∃!Φ̃ ∈ Sk(Γ0(N)) s.t. 〈·,Φ〉 = 〈·, Φ̃〉This Φ̃ is (essentially) the holomorphic projection of Φ.

same reasoning works for regularized Petersson inner product regularized holomorphic projection.

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 6 / 23

Page 14: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

Idea of holomorphic projection

Φ : H→ C continuous, transforming like a modular form of weightk ≥ 2 for some Γ0(N), moderate growth at cusps (Attention fork = 2!).

The map f 7→ 〈f,Φ〉 defines a linear functional on Sk(Γ0(N)).

⇒ ∃!Φ̃ ∈ Sk(Γ0(N)) s.t. 〈·,Φ〉 = 〈·, Φ̃〉

This Φ̃ is (essentially) the holomorphic projection of Φ.

same reasoning works for regularized Petersson inner product regularized holomorphic projection.

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 6 / 23

Page 15: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

Idea of holomorphic projection

Φ : H→ C continuous, transforming like a modular form of weightk ≥ 2 for some Γ0(N), moderate growth at cusps (Attention fork = 2!).

The map f 7→ 〈f,Φ〉 defines a linear functional on Sk(Γ0(N)).

⇒ ∃!Φ̃ ∈ Sk(Γ0(N)) s.t. 〈·,Φ〉 = 〈·, Φ̃〉This Φ̃ is (essentially) the holomorphic projection of Φ.

same reasoning works for regularized Petersson inner product regularized holomorphic projection.

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 6 / 23

Page 16: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

Idea of holomorphic projection

Φ : H→ C continuous, transforming like a modular form of weightk ≥ 2 for some Γ0(N), moderate growth at cusps (Attention fork = 2!).

The map f 7→ 〈f,Φ〉 defines a linear functional on Sk(Γ0(N)).

⇒ ∃!Φ̃ ∈ Sk(Γ0(N)) s.t. 〈·,Φ〉 = 〈·, Φ̃〉This Φ̃ is (essentially) the holomorphic projection of Φ.

same reasoning works for regularized Petersson inner product regularized holomorphic projection.

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 6 / 23

Page 17: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

Fourier coefficients

Definition 2

If Φ(τ) =∑n∈Z

aΦ(n, y)qn, (y = Im(τ)), then

(πholf)(τ) := (π(k)holf)(τ) :=

∞∑n=0

c(n)qn, where

c(n) =(4πn)k−1

(k − 2)!

∫ ∞0

aΦ(n, y)e−4πnyyk−2dy, n > 0.

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 7 / 23

Page 18: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

Properties of holomorphic projection

Proposition

If Φ is holomorphic, then πholΦ = Φ.

If Φ transforms like a modular form of weight k ∈ 12Z, k > 2, on

some group Γ ≤ SL2(Z), then πholΦ ∈Mk(Γ).

The operator πhol commutes with all the operators U(N), V (N), andSN,r (sieving operator).

Remark

For k = 2, πholΦ is a quasi-modular form of weight 2.

For the regularized holomorphic projection, weakly holomorphic formsare possible images

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 8 / 23

Page 19: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

Properties of holomorphic projection

Proposition

If Φ is holomorphic, then πholΦ = Φ.

If Φ transforms like a modular form of weight k ∈ 12Z, k > 2, on

some group Γ ≤ SL2(Z), then πholΦ ∈Mk(Γ).

The operator πhol commutes with all the operators U(N), V (N), andSN,r (sieving operator).

Remark

For k = 2, πholΦ is a quasi-modular form of weight 2.

For the regularized holomorphic projection, weakly holomorphic formsare possible images

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 8 / 23

Page 20: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

Properties of holomorphic projection

Proposition

If Φ is holomorphic, then πholΦ = Φ.

If Φ transforms like a modular form of weight k ∈ 12Z, k > 2, on

some group Γ ≤ SL2(Z), then πholΦ ∈Mk(Γ).

The operator πhol commutes with all the operators U(N), V (N), andSN,r (sieving operator).

Remark

For k = 2, πholΦ is a quasi-modular form of weight 2.

For the regularized holomorphic projection, weakly holomorphic formsare possible images

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 8 / 23

Page 21: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

Properties of holomorphic projection

Proposition

If Φ is holomorphic, then πholΦ = Φ.

If Φ transforms like a modular form of weight k ∈ 12Z, k > 2, on

some group Γ ≤ SL2(Z), then πholΦ ∈Mk(Γ).

The operator πhol commutes with all the operators U(N), V (N), andSN,r (sieving operator).

Remark

For k = 2, πholΦ is a quasi-modular form of weight 2.

For the regularized holomorphic projection, weakly holomorphic formsare possible images

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 8 / 23

Page 22: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

Properties of holomorphic projection

Proposition

If Φ is holomorphic, then πholΦ = Φ.

If Φ transforms like a modular form of weight k ∈ 12Z, k > 2, on

some group Γ ≤ SL2(Z), then πholΦ ∈Mk(Γ).

The operator πhol commutes with all the operators U(N), V (N), andSN,r (sieving operator).

Remark

For k = 2, πholΦ is a quasi-modular form of weight 2.

For the regularized holomorphic projection, weakly holomorphic formsare possible images

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 8 / 23

Page 23: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

Table of Contents

1 IntroductionMock modular formsHolomorphic projection

2 ApplicationsConstruction of mock modular formsClass number type relations for Fourier coefficientsShifted convolution L-functions and their special values

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 9 / 23

Page 24: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

A modification of holomorphic projection

Lemma 1 (S. Zwegers)

For any translation-invariant function Φ : H→ C and 1 < k ∈ 12Z we have

π(k)hol(Φ)(τ) =

(k − 1)(2i)k

∫H

Φ(z)yk

(τ − z)kdxdy

y2, (1)

provided that the right-hand side converges absolutely.

Lemma 2 (S. Zwegers)

Provided the rhs of (1) converges absolutely for k ∈ 12Z, then we have

(π(k)holΦ)|kγ = π

(k)hol(Φ|kγ)

for all γ ∈ SL2(Z).In particular this holds if |Φ(τ)|yr is bounded on H for some r andk > r + 1 > 1.

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 10 / 23

Page 25: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

A modification of holomorphic projection

Lemma 1 (S. Zwegers)

For any translation-invariant function Φ : H→ C and 1 < k ∈ 12Z we have

π(k)hol(Φ)(τ) =

(k − 1)(2i)k

∫H

Φ(z)yk

(τ − z)kdxdy

y2, (1)

provided that the right-hand side converges absolutely.

Lemma 2 (S. Zwegers)

Provided the rhs of (1) converges absolutely for k ∈ 12Z, then we have

(π(k)holΦ)|kγ = π

(k)hol(Φ|kγ)

for all γ ∈ SL2(Z).In particular this holds if |Φ(τ)|yr is bounded on H for some r andk > r + 1 > 1.

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 10 / 23

Page 26: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

The ξ-operator

Lemma

Let

ξk := 2iyk∂

∂τ.

Then it holds

ξ2−kg∗ .

= g

(ξ2−kg)|kγ = ξ2−k(g|2−kγ) for all γ ∈ SL2(Z).

Proposition 1 (S. Zwegers)

Let Φ be as in Lemma 2. If π(k)holΦ = 0 and ξkΦ is modular of weight 2− k

for some Γ0(N), then Φ is modular of weight k.

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 11 / 23

Page 27: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

The ξ-operator

Lemma

Let

ξk := 2iyk∂

∂τ.

Then it holds

ξ2−kg∗ .

= g

(ξ2−kg)|kγ = ξ2−k(g|2−kγ) for all γ ∈ SL2(Z).

Proposition 1 (S. Zwegers)

Let Φ be as in Lemma 2. If π(k)holΦ = 0 and ξkΦ is modular of weight 2− k

for some Γ0(N), then Φ is modular of weight k.

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 11 / 23

Page 28: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

The ξ-operator

Lemma

Let

ξk := 2iyk∂

∂τ.

Then it holds

ξ2−kg∗ .

= g

(ξ2−kg)|kγ = ξ2−k(g|2−kγ) for all γ ∈ SL2(Z).

Proposition 1 (S. Zwegers)

Let Φ be as in Lemma 2. If π(k)holΦ = 0 and ξkΦ is modular of weight 2− k

for some Γ0(N), then Φ is modular of weight k.

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 11 / 23

Page 29: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

Surjectivity of the shadow map

Proposition (J. H. Bruinier and J. Funke)

Every weakly holomorphic modular form g ∈M !k(Γ0(N)) (k 6= 1) is the

shadow of a mock modular form of weight 2− k.

Proof.

multiply the Eichler integral g∗ of g by a sufficiently large power of∆(τ) = q

∏n≥1(1− qn)24, say h with weight `, to ensure weight and

growth conditions

by Proposition 1, M := π(2−k+`)hol (g∗h)− g∗h is modular of weight

2− k + ` for Γ0(N).

M̃ = 1hM + g∗ is the desired mock modular form.

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 12 / 23

Page 30: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

Surjectivity of the shadow map

Proposition (J. H. Bruinier and J. Funke)

Every weakly holomorphic modular form g ∈M !k(Γ0(N)) (k 6= 1) is the

shadow of a mock modular form of weight 2− k.

Proof.

multiply the Eichler integral g∗ of g by a sufficiently large power of∆(τ) = q

∏n≥1(1− qn)24, say h with weight `, to ensure weight and

growth conditions

by Proposition 1, M := π(2−k+`)hol (g∗h)− g∗h is modular of weight

2− k + ` for Γ0(N).

M̃ = 1hM + g∗ is the desired mock modular form.

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 12 / 23

Page 31: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

Surjectivity of the shadow map

Proposition (J. H. Bruinier and J. Funke)

Every weakly holomorphic modular form g ∈M !k(Γ0(N)) (k 6= 1) is the

shadow of a mock modular form of weight 2− k.

Proof.

multiply the Eichler integral g∗ of g by a sufficiently large power of∆(τ) = q

∏n≥1(1− qn)24, say h with weight `, to ensure weight and

growth conditions

by Proposition 1, M := π(2−k+`)hol (g∗h)− g∗h is modular of weight

2− k + ` for Γ0(N).

M̃ = 1hM + g∗ is the desired mock modular form.

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 12 / 23

Page 32: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

Surjectivity of the shadow map

Proposition (J. H. Bruinier and J. Funke)

Every weakly holomorphic modular form g ∈M !k(Γ0(N)) (k 6= 1) is the

shadow of a mock modular form of weight 2− k.

Proof.

multiply the Eichler integral g∗ of g by a sufficiently large power of∆(τ) = q

∏n≥1(1− qn)24, say h with weight `, to ensure weight and

growth conditions

by Proposition 1, M := π(2−k+`)hol (g∗h)− g∗h is modular of weight

2− k + ` for Γ0(N).

M̃ = 1hM + g∗ is the desired mock modular form.

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 12 / 23

Page 33: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

Surjectivity of the shadow map

Proposition (J. H. Bruinier and J. Funke)

Every weakly holomorphic modular form g ∈M !k(Γ0(N)) (k 6= 1) is the

shadow of a mock modular form of weight 2− k.

Proof.

multiply the Eichler integral g∗ of g by a sufficiently large power of∆(τ) = q

∏n≥1(1− qn)24, say h with weight `, to ensure weight and

growth conditions

by Proposition 1, M := π(2−k+`)hol (g∗h)− g∗h is modular of weight

2− k + ` for Γ0(N).

M̃ = 1hM + g∗ is the desired mock modular form.

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 12 / 23

Page 34: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

Table of Contents

1 IntroductionMock modular formsHolomorphic projection

2 ApplicationsConstruction of mock modular formsClass number type relations for Fourier coefficientsShifted convolution L-functions and their special values

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 13 / 23

Page 35: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

Class number relations

σk(n) :=∑d|n

dk, λk(n) :=1

2

∑d|n

min(d,n

d

)k.

∑s∈Z

H(4n− s2) + 2λ1(n) = 2σ1(n),

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 14 / 23

Page 36: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

Class number relations

σk(n) :=∑d|n

dk, λk(n) :=1

2

∑d|n

min(d,n

d

)k.

∑s∈Z

H(4n− s2) + 2λ1(n) = 2σ1(n),∑s∈Z

(s2 − n)H(4n− s2) + 2λ3(n) = 0,

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 14 / 23

Page 37: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

Class number relations

σk(n) :=∑d|n

dk, λk(n) :=1

2

∑d|n

min(d,n

d

)k.

∑s∈Z

H(4n− s2) + 2λ1(n) = 2σ1(n),∑s∈Z

(s2 − n)H(4n− s2) + 2λ3(n) = 0,∑s∈Z

(s4 − 3ns2 + n2)H(4n− s2) + 2λ5(n) = 0,

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 14 / 23

Page 38: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

Class number relations

σk(n) :=∑d|n

dk, λk(n) :=1

2

∑d|n

min(d,n

d

)k.

∑s∈Z

H(4n− s2) + 2λ1(n) = 2σ1(n),∑s∈Z

(s2 − n)H(4n− s2) + 2λ3(n) = 0,∑s∈Z

(s4 − 3ns2 + n2)H(4n− s2) + 2λ5(n) = 0,

...

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 14 / 23

Page 39: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

Class number relations

σk(n) :=∑d|n

dk, λk(n) :=1

2

∑d|n

min(d,n

d

)k.

n odd∑s∈Z

H(n− s2) + λ1(n) =1

3σ1(n)∑

s∈Z

(4s2 − n

)H(n− s2

)+ λ3 (n) = 0,∑

s∈Z

(16s4 − 12ns2 + n2

)H(n− s2

)+ λ5 (n)

= − 1

12

∑n=x2+y2+z2+t2

(x4 − 6x2y2 + y4

),

...

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 14 / 23

Page 40: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

Connection to mock modular forms

Theorem (D. Zagier)

The function

H (τ) :=

∞∑n=0

H(n)qn

is a mock modular form of weight 32 for Γ0(4). Its shadow is (up to a

constant factor) the classical theta function

ϑ(τ) :=∑n∈Z

qn2.

All the above relations can be formulated as

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 15 / 23

Page 41: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

Connection to mock modular forms

Theorem (D. Zagier)

The function

H (τ) :=

∞∑n=0

H(n)qn

is a mock modular form of weight 32 for Γ0(4). Its shadow is (up to a

constant factor) the classical theta function

ϑ(τ) :=∑n∈Z

qn2.

All the above relations can be formulated as

cν [H (τ), ϑ]ν |U(4) + 2

∞∑n=1

λ2ν+1(n)qn ∈

{M̃2(SL2(Z)) if ν = 0,

S2+2ν(SL2(Z)) if ν > 0.

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 15 / 23

Page 42: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

Connection to mock modular forms

Theorem (D. Zagier)

The function

H (τ) :=

∞∑n=0

H(n)qn

is a mock modular form of weight 32 for Γ0(4). Its shadow is (up to a

constant factor) the classical theta function

ϑ(τ) :=∑n∈Z

qn2.

All the above relations can be formulated as

c̃ν [H (τ), ϑ]ν |S2,1 +

∞∑n=0

λ2ν+1(2n+ 1)q2n+1 ∈

{M2(Γ0(4)) if ν = 0,

S2+2ν(Γ0(4)) if ν > 0.

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 15 / 23

Page 43: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

Mock theta functions

Definition 3

A mock modular form f is called a mock theta function if its shadow is alinear combination of unary theta functions either of the form

ϑs,χ(τ) :=∑n∈Z

χ(n)qsn2

(s ∈ N, χ an even character) of weight 12 (i.e., f has weight 3

2) or of theform

θs,χ(τ) :=∑n∈Z

χ(n)nqsn2

(s ∈ N, χ an odd character) of weight 32 (i.e. f has weight 1

2).

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 16 / 23

Page 44: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

Class number type relations for mock modular forms

Theorem 1 (M., 2014)

Let f be a mock theta function of weight κ ∈ {12 ,

32} and g ∈M2−κ(Γ) be

a l.c. of theta functions with Γ = Γ1(4N) for some N ∈ N and fix ν ∈ N.

Then there is a finite linear combination Lf,gν of functions of the form

Λχ,ψs,t (τ ; ν) =

∞∑r=1

2∑

sm2−tn2=rm,n≥1

χ(m)ψ(n)(√sm−

√tn)2ν+1

qr

+ψ(0)

∞∑r=1

χ(r)(√sr)2ν+1qsr

2

with s, t ∈ N and χ, ψ are characters as in Definition 3 of conductors F (χ)

and F (ψ) respectively with sF (χ)2, tF (ψ)2|N , such that [f, g]ν + Lf,gν isa (quasi)-modular form of weight 2ν + 2 (possibly weakly holomorphic).

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 17 / 23

Page 45: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

Table of Contents

1 IntroductionMock modular formsHolomorphic projection

2 ApplicationsConstruction of mock modular formsClass number type relations for Fourier coefficientsShifted convolution L-functions and their special values

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 18 / 23

Page 46: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

Notation

Let f1 ∈ Sk1(Γ0(N)) and f2 ∈ Sk2(Γ0(N)) with

fi(τ) =

∞∑n=1

ai(n)qn.

shifted convolution Dirichlet series (Hoffstein-Hulse, 2013)

D(f1, f2, h; s) :=

∞∑n=1

a1(n+ h)a2(n)

ns.

symmetrized shifted convolution Dirichlet series

D̂(0)(f1, f2, h; s) := D(f1, f2, h; s)−D(f2, f1,−h; s),

generating function of special values

L(0)(f1, f2; τ) :=∞∑h=1

D̂(0)(f1, f2, h; k1 − 1)qh.

There is also a D̂(ν) and L(ν) for ν ∈ N0 (more complicated).

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 19 / 23

Page 47: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

Notation

Let f1 ∈ Sk1(Γ0(N)) and f2 ∈ Sk2(Γ0(N)) with

fi(τ) =

∞∑n=1

ai(n)qn.

shifted convolution Dirichlet series (Hoffstein-Hulse, 2013)

D(f1, f2, h; s) :=

∞∑n=1

a1(n+ h)a2(n)

ns.

symmetrized shifted convolution Dirichlet series

D̂(0)(f1, f2, h; s) := D(f1, f2, h; s)−D(f2, f1,−h; s),

generating function of special values

L(0)(f1, f2; τ) :=∞∑h=1

D̂(0)(f1, f2, h; k1 − 1)qh.

There is also a D̂(ν) and L(ν) for ν ∈ N0 (more complicated).

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 19 / 23

Page 48: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

Notation

Let f1 ∈ Sk1(Γ0(N)) and f2 ∈ Sk2(Γ0(N)) with

fi(τ) =

∞∑n=1

ai(n)qn.

shifted convolution Dirichlet series (Hoffstein-Hulse, 2013)

D(f1, f2, h; s) :=

∞∑n=1

a1(n+ h)a2(n)

ns.

symmetrized shifted convolution Dirichlet series

D̂(0)(f1, f2, h; s) := D(f1, f2, h; s)−D(f2, f1,−h; s),

generating function of special values

L(0)(f1, f2; τ) :=∞∑h=1

D̂(0)(f1, f2, h; k1 − 1)qh.

There is also a D̂(ν) and L(ν) for ν ∈ N0 (more complicated).

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 19 / 23

Page 49: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

Notation

Let f1 ∈ Sk1(Γ0(N)) and f2 ∈ Sk2(Γ0(N)) with

fi(τ) =

∞∑n=1

ai(n)qn.

shifted convolution Dirichlet series (Hoffstein-Hulse, 2013)

D(f1, f2, h; s) :=

∞∑n=1

a1(n+ h)a2(n)

ns.

symmetrized shifted convolution Dirichlet series

D̂(0)(f1, f2, h; s) := D(f1, f2, h; s)−D(f2, f1,−h; s),

generating function of special values

L(0)(f1, f2; τ) :=

∞∑h=1

D̂(0)(f1, f2, h; k1 − 1)qh.

There is also a D̂(ν) and L(ν) for ν ∈ N0 (more complicated).

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 19 / 23

Page 50: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

Notation

Let f1 ∈ Sk1(Γ0(N)) and f2 ∈ Sk2(Γ0(N)) with

fi(τ) =

∞∑n=1

ai(n)qn.

shifted convolution Dirichlet series (Hoffstein-Hulse, 2013)

D(f1, f2, h; s) :=

∞∑n=1

a1(n+ h)a2(n)

ns.

symmetrized shifted convolution Dirichlet series

D̂(0)(f1, f2, h; s) := D(f1, f2, h; s)−D(f2, f1,−h; s),

generating function of special values

L(0)(f1, f2; τ) :=

∞∑h=1

D̂(0)(f1, f2, h; k1 − 1)qh.

There is also a D̂(ν) and L(ν) for ν ∈ N0 (more complicated).

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 19 / 23

Page 51: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

A numerical conundrum

L(0)(∆,∆; τ)

=− 33.383 . . . q + 266.439 . . . q2 − 1519.218 . . . q3 + 4827.434 . . . q4 − . . .

define real numbers α = 106.10455 . . . and β = 2.8402 . . . , and theweight 12 weakly holomorphic modular form

∞∑n=−1

r(n)qn := −∆(τ)(j(τ)2 − 1464j(τ)− α2 + 1464α),

play around a bit and find

− ∆

β

65520

691+E2

∆−∑n6=0

r(n)n−11qn

=− 33.383 . . . q + 266.439 . . . q2 − 1519.218 . . . q3 + 4827.434 . . . q4 − . . . .

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 20 / 23

Page 52: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

A numerical conundrum

L(0)(∆,∆; τ)

=− 33.383 . . . q + 266.439 . . . q2 − 1519.218 . . . q3 + 4827.434 . . . q4 − . . .

define real numbers α = 106.10455 . . . and β = 2.8402 . . . , and theweight 12 weakly holomorphic modular form

∞∑n=−1

r(n)qn := −∆(τ)(j(τ)2 − 1464j(τ)− α2 + 1464α),

play around a bit and find

− ∆

β

65520

691+E2

∆−∑n6=0

r(n)n−11qn

=− 33.383 . . . q + 266.439 . . . q2 − 1519.218 . . . q3 + 4827.434 . . . q4 − . . . .

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 20 / 23

Page 53: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

A numerical conundrum

L(0)(∆,∆; τ)

=− 33.383 . . . q + 266.439 . . . q2 − 1519.218 . . . q3 + 4827.434 . . . q4 − . . .

define real numbers α = 106.10455 . . . and β = 2.8402 . . . , and theweight 12 weakly holomorphic modular form

∞∑n=−1

r(n)qn := −∆(τ)(j(τ)2 − 1464j(τ)− α2 + 1464α),

play around a bit and find

− ∆

β

65520

691+E2

∆−∑n6=0

r(n)n−11qn

=− 33.383 . . . q + 266.439 . . . q2 − 1519.218 . . . q3 + 4827.434 . . . q4 − . . . .

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 20 / 23

Page 54: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

The theorem

Theorem 2 (M.-Ono)

If 0 ≤ ν ≤ k1−k22 , then

L(ν)(f2, f1; τ) = − 1

(k1 − 2)!· [M+

f1, f2]ν + F,

where F ∈ M̃ !2ν+2−k1+k2

(Γ0(N)). Moreover, if Mf1 is good for f2, then

F ∈ M̃2ν+2−k1+k2(Γ0(N)).

Mf1 is a harmonic Maaß form with shadow f1. Mf1 is good for f2 if[M+

f1, f2]ν grows at most polynomially at all cusps (very rare

phenomenon).

M̃ !k(Γ0(N)) is the weakly holomorphic extension of

M̃k(Γ0(N)) =

{Mk(Γ0(N)) if k ≥ 4,

CE2 ⊕M2(Γ0(N)) if k = 2.

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 21 / 23

Page 55: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

The theorem

Theorem 2 (M.-Ono)

If 0 ≤ ν ≤ k1−k22 , then

L(ν)(f2, f1; τ) = − 1

(k1 − 2)!· [M+

f1, f2]ν + F,

where F ∈ M̃ !2ν+2−k1+k2

(Γ0(N)). Moreover, if Mf1 is good for f2, then

F ∈ M̃2ν+2−k1+k2(Γ0(N)).

Mf1 is a harmonic Maaß form with shadow f1. Mf1 is good for f2 if[M+

f1, f2]ν grows at most polynomially at all cusps (very rare

phenomenon).

M̃ !k(Γ0(N)) is the weakly holomorphic extension of

M̃k(Γ0(N)) =

{Mk(Γ0(N)) if k ≥ 4,

CE2 ⊕M2(Γ0(N)) if k = 2.

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 21 / 23

Page 56: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

The theorem

Theorem 2 (M.-Ono)

If 0 ≤ ν ≤ k1−k22 , then

L(ν)(f2, f1; τ) = − 1

(k1 − 2)!· [M+

f1, f2]ν + F,

where F ∈ M̃ !2ν+2−k1+k2

(Γ0(N)). Moreover, if Mf1 is good for f2, then

F ∈ M̃2ν+2−k1+k2(Γ0(N)).

Mf1 is a harmonic Maaß form with shadow f1. Mf1 is good for f2 if[M+

f1, f2]ν grows at most polynomially at all cusps (very rare

phenomenon).

M̃ !k(Γ0(N)) is the weakly holomorphic extension of

M̃k(Γ0(N)) =

{Mk(Γ0(N)) if k ≥ 4,

CE2 ⊕M2(Γ0(N)) if k = 2.

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 21 / 23

Page 57: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

An example

Let f1 = f2 = ∆ = 1βP (1, 12, 1; τ)

β :=(4π)11

10!·‖P (1, 12, 1)‖2 = 1+2π

∞∑c=1

K(1, 1, c)

c·J11(4π/c) = 2.8402 . . . .

Q(−1, 12, 1; τ) = Q+(−1, 12, 1; τ) +Q−(−1, 12, 1; τ) ∈ H−10(SL2(Z)),the canonical preimage of P (1, 12, 1; τ) under ξ−10 (up to a constantfactor), is good for ∆

L(0)(∆,∆; τ) =Q+(−1, 12, 1; τ) ·∆(τ)

11! · β− E2(τ)

β

=− 33.383 . . . q + 266.439 . . . q2 − 1519.218 . . . q3 + 4827.434 . . . q4 − . . . .

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 22 / 23

Page 58: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

An example

Let f1 = f2 = ∆ = 1βP (1, 12, 1; τ)

β :=(4π)11

10!·‖P (1, 12, 1)‖2 = 1+2π

∞∑c=1

K(1, 1, c)

c·J11(4π/c) = 2.8402 . . . .

Q(−1, 12, 1; τ) = Q+(−1, 12, 1; τ) +Q−(−1, 12, 1; τ) ∈ H−10(SL2(Z)),the canonical preimage of P (1, 12, 1; τ) under ξ−10 (up to a constantfactor), is good for ∆

L(0)(∆,∆; τ) =Q+(−1, 12, 1; τ) ·∆(τ)

11! · β− E2(τ)

β

=− 33.383 . . . q + 266.439 . . . q2 − 1519.218 . . . q3 + 4827.434 . . . q4 − . . . .

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 22 / 23

Page 59: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

An example

Let f1 = f2 = ∆ = 1βP (1, 12, 1; τ)

β :=(4π)11

10!·‖P (1, 12, 1)‖2 = 1+2π

∞∑c=1

K(1, 1, c)

c·J11(4π/c) = 2.8402 . . . .

Q(−1, 12, 1; τ) = Q+(−1, 12, 1; τ) +Q−(−1, 12, 1; τ) ∈ H−10(SL2(Z)),the canonical preimage of P (1, 12, 1; τ) under ξ−10 (up to a constantfactor), is good for ∆

L(0)(∆,∆; τ) =Q+(−1, 12, 1; τ) ·∆(τ)

11! · β− E2(τ)

β

=− 33.383 . . . q + 266.439 . . . q2 − 1519.218 . . . q3 + 4827.434 . . . q4 − . . . .

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 22 / 23

Page 60: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

An example

Let f1 = f2 = ∆ = 1βP (1, 12, 1; τ)

β :=(4π)11

10!·‖P (1, 12, 1)‖2 = 1+2π

∞∑c=1

K(1, 1, c)

c·J11(4π/c) = 2.8402 . . . .

Q(−1, 12, 1; τ) = Q+(−1, 12, 1; τ) +Q−(−1, 12, 1; τ) ∈ H−10(SL2(Z)),the canonical preimage of P (1, 12, 1; τ) under ξ−10 (up to a constantfactor), is good for ∆

L(0)(∆,∆; τ) =Q+(−1, 12, 1; τ) ·∆(τ)

11! · β− E2(τ)

β

=− 33.383 . . . q + 266.439 . . . q2 − 1519.218 . . . q3 + 4827.434 . . . q4 − . . . .

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 22 / 23

Page 61: San Antonio, January 11, 2015 - Max Planck Societypeople.mpim-bonn.mpg.de/.../Presentations/SanAntonio2015.pdf · 2016-09-05 · 1 Introduction Mock modular forms Holomorphic projection

Thank you for your attention.

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 23 / 23