34
Chapter 6 Thermal Stress Analysis of Solid Structures Using Finite Element Method Instructor TaiRan Hsu, Professor San Jose State University Department of Mechanical Engineering ME 160 Introduction to Finite Element Method References for FE formulation: “A First Course in the Finite element Method,” by Daryl L. Logan, 6 th Edition, Cengage Learning, 2017, Chapter 15, P. 727 “The Finite Element Method in Thermomechanics,” by T.R. Hsu, Allen and Unwin, 1986, Chapter 3.

San Jose State University Engineering · San Jose State University Department of Mechanical Engineering ME 160 Introduction to Finite Element Method References for FE formulation:

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: San Jose State University Engineering · San Jose State University Department of Mechanical Engineering ME 160 Introduction to Finite Element Method References for FE formulation:

Chapter 6

Thermal Stress Analysis of Solid Structures Using Finite Element Method

InstructorTai‐Ran Hsu, Professor

San Jose State UniversityDepartment of Mechanical Engineering

ME 160 Introduction to Finite Element Method

References for FE formulation:

“A First Course in the Finite element Method,”  by Daryl L. Logan, 6th Edition, Cengage Learning,2017, Chapter 15, P. 727“The Finite Element Method in Thermomechanics,” by T.R. Hsu, Allen and Unwin, 1986, Chapter 3.

Page 2: San Jose State University Engineering · San Jose State University Department of Mechanical Engineering ME 160 Introduction to Finite Element Method References for FE formulation:

Fundamentals of Thermomechanics Analysis

It is a law of nature that “matter change shapes by temperature changes.”

For most materials, “Increase temperature will make its shape larger, and the reverseis true too.”

Almost all metals expand with temperature increase, and contract with decrease oftemperature.

In general temperature, or temperature changes in a solid may induce the following effects:

1) Temperature increase will change material properties: Such as decrease the Young’s modulus (E)and yield strength of materials (σy).

2) Induce thermal stresses that will be added to mechanically induced stresses in solid structures.

3) Induce creep of the material, and thereby make materials vulnerable for failure at high temperature

Page 3: San Jose State University Engineering · San Jose State University Department of Mechanical Engineering ME 160 Introduction to Finite Element Method References for FE formulation:

Causes of thermal stress:

There are two causes of thermal stress in solid structures:

1) Uniform temperature rise in solids with physical constraints‐:

A uniform temperature increase in a sold rod with both ends fixed will induce compressive stressin the rod with amount equal to:

σ = ‐ α∆Twhere   α = coefficient of linear thermal expansion of the material with a unit of /oC

∆T = temperature rise from a reference temperature

The above expression is derived by the following superposition of the situations:

The free expansion of a rod by the amount of ∆L = αL∆T

= +

Heat

∆T

∆LL ‐F

Equivalent force F“push” back by theamount of ∆L:

∆L

thermal strain: ε= ∆L/L=α∆Tby “free”

thermal expansion

The induced stress by –F is:σ=‐αE∆T

Page 4: San Jose State University Engineering · San Jose State University Department of Mechanical Engineering ME 160 Introduction to Finite Element Method References for FE formulation:

Causes of thermal stress – cont’d:

2) Solid with non‐uniform temperature distributions:Stress induced by non‐uniform temperature distribution in solids cause “internal restraints”for thermal expansion or contraction.

3) Solids with partial mechanical constraints coupled by non‐uniform temperature distributions.A common feature of structures subject to combine thermomechanical loading: 

q1

q2

q3

q4

Q(r,t)T(x,y,z,t)

x

z

0

Continuum solidy

t

tzyxTctzyxQz

tzyxTkzy

tzyxTkyx

tzyxTkx

,,,,,,,,,,,,,,,

The solution T(x,y,z,t) of the above equation is usually a necessary step proceeding to thethermal stress analysis of the solid in thefigure.

Page 5: San Jose State University Engineering · San Jose State University Department of Mechanical Engineering ME 160 Introduction to Finite Element Method References for FE formulation:

FE Formulation of Induced Thermal Stress in in Solid Structures 

q2

q3

q4

Q(r,t)T(x,y,z,t)

x

z

0

y

q1

P1

P2

P3

P4

The figure shows a solid with a temperature field (distribution) T(x,y,z,t) produced by the thermal forces: q1, q2, q3, q4,………, and self‐heat generation Q. The solidis  also subjected to mechanical forces, P1, P2, P3, P4,………

We expect the solid responds to the simultaneousapplications of thermal and mechanical load by producing  both combine mechanical and thermal strains and stresses to reach a new state of equilibrium

We further realize the fact that the solid will return to its original shape at “free‐stress” state once ALL the thermal and mechanical forces are removed. (we term this as “unloading.”)

The energy that prompts the restoration of the solid to its original shape after unloading is the “Strain energy” that was stored in the deformed state by the applied loads (combined thermal and mechanical loads in this case).

Page 6: San Jose State University Engineering · San Jose State University Department of Mechanical Engineering ME 160 Introduction to Finite Element Method References for FE formulation:

FE Formulation of Induced Thermal Stress in in Solid Structures – cont’d 

General (3‐D) Case Special (1‐D) Case

We begin our FE formulation by considering a simple 1‐D case as illustrated below:

Let the thermal strain εT induced in the 1‐D rod by a temperature rise ∆T to be expressed as:εT = α∆T (6.1)

Due to the fact that temperature is a “scalar” quantity, and thermal strain in the solid structuresuch as in a special case of 1‐D bar,  the induced thermal strain by the temperature rise or fieldmay be added on to the mechanical strains  in the following way with Hooke’s law:

Txx

xx E (6.2)

x

x=0

where E is the Young’s modulus of the rod material, and εT is the induced thermal strain bytemperature rise ∆T, and is equal to εT = α∆T. One should note that Thermal expansion of matterdue to temperature rise is UNIFORM in ALL directions. Consequently, only NORMAL strains are produced.

Page 7: San Jose State University Engineering · San Jose State University Department of Mechanical Engineering ME 160 Introduction to Finite Element Method References for FE formulation:

FE Formulation of Induced Thermal Stress in in Solid Structures – cont’d 

Temperature rise ∆T

We will derive the FE formulas for thermal stress analysis of general 3‐D solid structures withdiscretized FE models involving tetrahedral elements as illustrated in the above figure. The element is subjected to both mechanical loading and a temperature rise ∆T from a reference state.

By following the derivations in Chapter 4, we will have the FE formulas for the present case ofcombined mechanical and thermal forces acting on the solid simultaneously.

Page 8: San Jose State University Engineering · San Jose State University Department of Mechanical Engineering ME 160 Introduction to Finite Element Method References for FE formulation:

FE Formulation of Induced Thermal Stress in in Solid Structures – cont’d 

Temperature rise ∆T

TzyxzyxzyxzyxT

444333222111

1) Interpolation function:

Nodal displacement s:

The element displacement is: {Φ(x,y,z)} with three components: Φx(x,y,z) = the element displacement component along the x‐directionΦy (x,y,z) = the element displacement component along the y‐direction, andΦz(x,y,z) = the element displacement component along the z‐direction

{Φ(x,y,z)} = [N(x,y,z)] {φ}

where [N(x,y,z)] = interpolation function

(6.3)

Page 9: San Jose State University Engineering · San Jose State University Department of Mechanical Engineering ME 160 Introduction to Finite Element Method References for FE formulation:

2. Element strain vs. element displacements:

TTT

zzT

yyT

xxT

T

,

,

,

(6.5)

∆T

Let the total strain in the element to be:

{ε} = {εM} + {εT} (6.4)

where  {εM} = induced strains by mechanical means, e.g., P1, P2, P3 and P4.{εT} = induced strains by temperature change ∆T produced by q1, q2, q3, and q4 and Q

zyxzyxzyx

xz

yz

xy

z

y

x

z

y

x

xz

yz

xy

zz

yy

xx

M

,,,,,,

0

0

0

00

00

00

The induced thermal strain in the elementwith UNIFORM temperature change ∆T has CONSTANT values as: 

Page 10: San Jose State University Engineering · San Jose State University Department of Mechanical Engineering ME 160 Introduction to Finite Element Method References for FE formulation:

{ε(x,y,z)} = [D]{Φ(x,y,z)}+[DT]{ΦT(x,y,z)}where

xz

yz

xy

z

y

x

D

0

0

0

00

00

00

(4.4)

z

y

xDT

00

00

00

(6.6)

(6.7)

From Equation (6.5), we will have  

000

00

00

00

,,(TTT

z

y

xzyxDT

We will thus use the truncated Equation (6.6), i.e.  {ε(x,y,z)} = [D]{Φ(x,y,z)} for further FEformulations

Page 11: San Jose State University Engineering · San Jose State University Department of Mechanical Engineering ME 160 Introduction to Finite Element Method References for FE formulation:

5. Strain energy with nodal displacements:

dvUT

v

21 (4.9)

Hence dvzyxBCzyxBUv

T ,,,,21 (4.15)

dvzyxBCzyxBU TT

v ),,(),,(

21or (4.16)

4. Element stresses vs. nodal displacements:

{σ} = [C]{ε}                                                                 (4.6)

in which the elasticity matrix [C] in Equation (4.7)

Hence                                      {σ} = [C] [B(x,y,z)]{Φ} (4.14)

3. Element strains vs. Nodal displacements:

Hence              {ε} = [D][N(x,y,z)]{Φ}= [B(x,y,z)]{Φ} (4.12)

with [B(x,y,z)] = [D][N(x,y,z)]                                                                    (4.13)

Page 12: San Jose State University Engineering · San Jose State University Department of Mechanical Engineering ME 160 Introduction to Finite Element Method References for FE formulation:

Derivation of Element Equations‐Cont’d Potential energy in a deformed solid subjectedmechanical forces:

dv

dvdvU

v xzxzyzyzxyxyzzzzyyyyxxxx

v

xz

yz

xy

zz

yy

xx

xzyzxyzzyyxx

T

v

21

21

21

Strain energy:

Both the strain and stress components are function of (x,y,z), and dv = (dx)(dy)(dz) = the volume of given points in the deformed solid by mechanical forces.  

We did not include the thermal strain in the derivation of the strain energy because they are constantsas indicated in Equation (6.6). Thermal strain induced by thermal expansion (or contraction) at the nodes Will be accounted for as nodal forces.

Strain energy is a scalar quantity.

(4.9)

Page 13: San Jose State University Engineering · San Jose State University Department of Mechanical Engineering ME 160 Introduction to Finite Element Method References for FE formulation:

Work done to deform the solid: Definition of “work”:   Work (W) = Force x Displacement (deformatio

Two kinds of forces:  (1) body forces (uniformly distributed throughout the volume of the solid (v)),e.g., the weight.  Equivalent force of thermal strain by heat is a body force

(2) surface tractions, e.g., the pressure or concentrated forces acting on the boundary surface (s)

Mathematical expression of work:

dsttt

zyxzyxzyx

dvfff

zyxzyxzyx

dstzyxdvfzyxW

z

y

x

s zyx

z

y

x

v zyx

T

s

T

v

,,,,,,

,,,,,,

,,),,(

Derivation of Element Equations – cont’d Potential energy in a deformed solid subjected to external mechanical forces:

where {Φ(x,y,z)} = the element displacement of the solid at (x,y,z), {f} = body forces, and {t} = the surface tractions , and ds = the part of the surface boundary on which the surface tractions apply

(4.10)

Page 14: San Jose State University Engineering · San Jose State University Department of Mechanical Engineering ME 160 Introduction to Finite Element Method References for FE formulation:

Derivation of Element Equations – cont’d Potential energy in a deformed solid subjected to external mechanical forces:

So, the potential energy stored in a deformed solid is: P = U – W, or:

v s

TTT

vdstzyxdvfzyxdvzyxzyxWUP ,,,,,,,,

21 (4.11)

0P

Following the Rayleigh‐Ritz Variational principle, the equilibrium condition for the deformed solid should satisfy the following conditions:

..............,0,0,0321

PPP

From which, equations for each element may be derived from:

Page 15: San Jose State University Engineering · San Jose State University Department of Mechanical Engineering ME 160 Introduction to Finite Element Method References for FE formulation:

Derivation of Element Equations – cont’d Element equation by Variational process

0),,(),,(

),,(),,(

dstzyxNdvfzyxN

dvzyxBCzyxB

T

s

T

v

v

T

The above variation results in:

Upon moving the last two items to the right‐hand side:

dstzyxNdvfzyxN

dvzyxBCzyxBT

s

T

v

v

T

),,(),,(

),,(),,(

(4.20)

We may represent Equation by the following element equation:

[Ke] {Φ} = {q} (4.21)

where dvzyxBCzyxBKv

Te ,,),,( = Element stiffness matrix

(4.22)

scopmponentntdisplacemeNodal

matrixforceNodaldstzyxNdvfzyxNqT

sv

T ,,,, (4.23)

In Equation (4.23):  {f} = Body force and {t} = the surface traction, including the pressure loadingon specific boundary face of the element.

Page 16: San Jose State University Engineering · San Jose State University Department of Mechanical Engineering ME 160 Introduction to Finite Element Method References for FE formulation:

Thermal strain as nodal forces in thermal stress analysis

Due to the fact that we have excluded thermal strains from the computation of strain energy“U” in computing the potential energy in the deformed solids, the thermal strain is treated asA component of the nodal forces called “thermal forces”, acting at the nodes in the following element equation:

[Ke] {Φ} = {q} (4.21)

where dvzyxBCzyxBKv

Te ,,),,( = Element stiffness matrix

(4.22)

scopmponentntdisplacemeNodal

matrixforceNodaldstzyxNdvfzyxNqT

sv

T ,,,,v T

T dvεCB (6.8)

The thermal forces at the nodes:                                     obtained from the general expression shown in the integral in bold face in Equation (6.8) has expressions for the following special cases: 

dvCBf Tv

TT

We may express the element equation with lumped thermomechanical node forces in the following expression from Equations (4.21) and (6.8):

[Ke]{φ} = {fM} + {fT} (6.9)Element StiffnessMatrix

NodalDisplacement

Matrix

MechanicalNodalForces

ThermalForces

Page 17: San Jose State University Engineering · San Jose State University Department of Mechanical Engineering ME 160 Introduction to Finite Element Method References for FE formulation:

Nodal Forces Contributed by Thermal Strains

dvCzyxBq Tv

TT ),,(

General expression of nodal forces contributed by thermal strains:

(6.10)

For 1‐D bar elements:

Heat

∆T1 ∆T1

L1 L2x

Fx

x=0α1 α2

TTxT

Only one thermal strain component  along the x‐coordinate:

(6.11)

[C] = E

LLdxxNdxNDB 11)()( and

Hence the nodal forces at the two nodes of the 1‐D bar element becomes:

ATETE

ff

fT

TT

2

1

Node 1 Node 2X 

L

where A = cross‐sectional area of the bar element

(6.12)

Page 18: San Jose State University Engineering · San Jose State University Department of Mechanical Engineering ME 160 Introduction to Finite Element Method References for FE formulation:

Nodal Forces Contributed by Thermal Strains ‐ Cont’d

For Plate Elements:

Because temperature change in the element does not can onlyproduce normal strains, but not shear strain, so the induced thermal strain components in the element by temperature change ΔT care: 

00,

,

TT

Tyy

Txx

T

(6.13)

At

cbcbcb

TEvCBdvCzyxBf TT

Tv

TT

3

3

2

2

1

1

12),,(

The equivalent nodal forces are:

(6.14)

3113233212212 yxyxyxyxyxyxA

23132123321 xxcyybyxyxa 31213231132 xxcyybyxyxa 12321312213 xxcyybyxyxa

where

A = plan area of the element with and t = thickness

Page 19: San Jose State University Engineering · San Jose State University Department of Mechanical Engineering ME 160 Introduction to Finite Element Method References for FE formulation:

T(r,z)

Strains induced in the torus elements inducedby temperature change ΔT are those normalcomponents of: εrr, εθθ and εzz only, or in amatrix form:  

00,

,

,

TTT

T

Tzz

Trr

T

(6.15)

The equivalent nodal forces ae:

(6.16)

Nodal Forces Contributed by Thermal Strains ‐ Cont’d

For Axisymmetric Elements: Triangular torus element:

TT

TA

TTv

TT CBArrdACBdvCzyxBf 22),,(

where the average radius:3

mji rrrr

and the cross‐sectional area of the triangular torus element is:

miimjmmjijji yxyxyxyxyxyxA 21

Page 20: San Jose State University Engineering · San Jose State University Department of Mechanical Engineering ME 160 Introduction to Finite Element Method References for FE formulation:

TT

TA

TTv

TT CBArrdACBdvCzyxBf 22),,(

mmjjii

mm

mjj

jii

i

mji

mji

rz

rrz

rrz

rA

B

000

000000

21

ijmmijjmi

jimimjmji

jijimimimjmjmji

rrrrrr

zzzzzz

rzzrrzzrrzzr

Nodal Forces Contributed by Thermal Strains ‐ Cont’d

For Axisymmetric Elements: Triangular torus element:

where

with

221000

010101

211

ECand

Page 21: San Jose State University Engineering · San Jose State University Department of Mechanical Engineering ME 160 Introduction to Finite Element Method References for FE formulation:

Example 6.1 (Example 15.1, Textbook by Logan):

For the one‐dimensional bar fixed at both ends and subjected to a uniform temperature rise of ΔT = 50oFas shown in the figure  below. Determine the reaction at both ends and the axial stress in the bar. Let the Young’s modulus E = 30x106 psi, cross‐sectional area A= 4 in2, L=4 ft., and linear thermal expansioncoefficient α = 7x10‐6 in/in‐oF.

●● ●

L

L/2

Node 1Node 2 Node 3

1 2L1=L/2 L2=L/2

FE model

Bar subjected to temperature rise

Solution:

We recall that the [B] matrix for 1‐D elements is:

2/1

2/1

LLB for both Element 1 and 2

and with [C] = E, we may express the element equation for both elements to be:

1111

2/1

LAEKe for Element 1

1111

2/2

LAEKe

Node      1          2

Node      2          3

for element 2

Page 22: San Jose State University Engineering · San Jose State University Department of Mechanical Engineering ME 160 Introduction to Finite Element Method References for FE formulation:

Example 6.1 (Example 15.1, Textbook by Logan)‐ cont’d

The overall stiffness matrix [K] and the thermal force matrix for the structure can be obtained by assembling the element stiffness matrices and the thermal force matrices as follows:

1101111

011

2/21

LAEKKK ee

(b)

We thus get the overall stiffness structure equation for the applied thermal forces at the 3 nodes to be:

The thermal force matrix for each element is given by:

TETE

fT 1

TETE

fT 2

for Element 1

for Element 2

(a)

TE

TE

TETETE

TEfff TTT

021and

TE

TE

uuu

LAE

0

110121

011

2/3

2

1

(c)

Since we have the given boundary conditions of: u1 =u3 = 0, the solution of Equation (c) leads to u2 = 0.

Page 23: San Jose State University Engineering · San Jose State University Department of Mechanical Engineering ME 160 Introduction to Finite Element Method References for FE formulation:

Example 6.1 (Example 15.1, Textbook by Logan)‐ cont’d

Equation (6.9): [Ke]{φ} = {fM} + {fT} = 0 for the present example, leads to the 

TE

TE

fff

f

x

x

x

M

0

000

3

2

1(d)

We solve for:   f1x = 42,000 lb, f2x = 0, and f3x =‐42000 lb with the given material properties of α and E and ΔT = 50 oF.

following situation that {fM} = ‐ {fT} , or:

The induced stress in the bar by the forces f1x and f3x at repective nodes 1 and 3 is:

σxx = f1x/A = f3x/A = 42000/4 = 10500 psi (compressive)

Page 24: San Jose State University Engineering · San Jose State University Department of Mechanical Engineering ME 160 Introduction to Finite Element Method References for FE formulation:

Example 6.2 (Example 15.4, Textbook by Logan): Derive the element equation for a thin plate subjected to a 2000 psi pressure acting perpendicular to the side j‐m and is subjected to a 30oF temperature rise. (Modified example: to find nodal displacements and the induced stress in the element, with Node i being fixed and Node j is allowed to move along the x‐axis)

P=2000 psi

i j

m

1”

2”

3”

y

P=2000 psi

ij

m

1”

2”

3”

y

● οΔT=30oF

FE Model

Solution:Given nodal coordinates:  xi=0, yi=0; xj=2, yj =0; xm=1, ym=3, we may compute the followingconstant coefficients required to determine the [B] matrix in Equation (6.14):

The element and the structure

232

32

20

13

13

inAand

xxcyyb

xxcyyb

xxcyyb

ijmjim

mijimj

jmimji

Thickness t=1 in.E = 30x106 psiα = 7x10‐6 in/in‐oFν = 0.25

Page 25: San Jose State University Engineering · San Jose State University Department of Mechanical Engineering ME 160 Introduction to Finite Element Method References for FE formulation:

Example 6.2 ‐ Cont’d We may compute the [B] matrix by Equation (4.37) to be: 

AtBCBK Te

023131201010000303

61B (a)

The element stiffness matrix may be obtained by using Equation (4.22):

(b)

with [B] in Equation (a), and the [C] matrix in the following expression:

300082028

104375.0000125.0025.01

25.011030

2100

0101

16

2

6

2

EC (c)

From Equations (a) and (c), we have the following:

016460098236249823624

6104

300082028

104

020200310103310103

61 6

6CB T (d)

Page 26: San Jose State University Engineering · San Jose State University Department of Mechanical Engineering ME 160 Introduction to Finite Element Method References for FE formulation:

Example 6.2 ‐ Cont’d We may thus compute the element stiffness matrix as follows:

3201612161201218618616183515193

1261575369161819335151263691575

310

023131201010000303

016460098236249823624

6104

631

6

62ininKe

(e)

Page 27: San Jose State University Engineering · San Jose State University Department of Mechanical Engineering ME 160 Introduction to Finite Element Method References for FE formulation:

Example 6.2 ‐ Cont’d We are now ready to compute the nodal force matrices that include both the thermal force matrixand the mechanical force matrix.

Thermal force matrix:

The thermal force matrix at the nodes can be obtained by following Equation (6.14) as follows:

84000

420012600

420012600

201

313

4200

201

313

25.0123011030107

12

66

m

m

j

j

i

i

T

cbcbcb

TEf

(f)

Mechanical force matrix:

We realize that uniform pressure is applied along the edge j‐m, which leads to the following derivations: 

The length of the edge j‐m: Lj‐m = [(2‐1)2+(3‐0)2]1/2 = 3.163 in. Its components along the x‐ and y‐coordinates are:  Px=Pcosθ = 2000(3/3.163) = 1896 psi, and py = Psinθ = 2000(1/3.163) = 632 psi .

Page 28: San Jose State University Engineering · San Jose State University Department of Mechanical Engineering ME 160 Introduction to Finite Element Method References for FE formulation:

Example 6.2 ‐ Cont’d 

The equivalent forces applied to Node j and m can be obtained by the following expression:

y

xmj

y

x

S

m

m

j

j

i

i

y

xT

S sM pptL

dSpp

NN

NN

NN

dSpp

Nf

100110010000

2

00

00

00

(g)

From which, we get:

1000300010003000

00

6321896

100110010000

2163.31 ininfM

(h)

Page 29: San Jose State University Engineering · San Jose State University Department of Mechanical Engineering ME 160 Introduction to Finite Element Method References for FE formulation:

The element equation following Equation (6.9) takes the following form:

Example 6.2 ‐ Cont’d 

940030003200

156004200

12600

3201612161201218618616183515193

1261575369161819335151263691575

3101 6

m

m

j

j

i

i

vuvuvu

(j)

We realize that the elements in the matrix at right‐hand‐side of Equation (j)  are the summation of Those elements in Equations (f) and (h).

Page 30: San Jose State University Engineering · San Jose State University Department of Mechanical Engineering ME 160 Introduction to Finite Element Method References for FE formulation:

Example 6.2 ‐ Cont’d 

Solve for nodal displacements

Since there is only one element in the structure, we have the overall stiffness equationOf the structure to be identical to that for the element, we thus have:

940030003200

156004200

12600

3201612161201218618616183515193

1261575369161819335151263691575

3101 6

m

m

j

j

i

i

vuvuvu

(j)

We will impose the boundary conditions with: ui=vi= 0, and vj = 0 into the above equations.

Page 31: San Jose State University Engineering · San Jose State University Department of Mechanical Engineering ME 160 Introduction to Finite Element Method References for FE formulation:

Example 6.2 ‐ Cont’d 

Solve for nodal displacements

940030003200

156004200

12600

0

00

3201612161201218618616183515193

1261575369161819335151263691575

3101 6

m

m

j

j

i

i

vu

vu

vu

(k)

By shoveling rows and columns of the matrices in Equation (k) with unknown displacement componentsFollowing the rules stipulated in Step 6 in Chapter 3, we will interchange Row 3 and 4, followed bySimilar change of column 3 and 4 in the stiffness matrix to give:

94003000

1560032004200

12600

000

32012161612012618186

126751536916181535193161831935151266931575

3106

m

m

j

vuu (m)

Page 32: San Jose State University Engineering · San Jose State University Department of Mechanical Engineering ME 160 Introduction to Finite Element Method References for FE formulation:

{qb} = [Kbb]‐1 ({Rb} – [Kba]{qa})

Example 6.2 ‐ Cont’d 

Solve for nodal displacements

The partitioned matrix equation in Equation (m) provides the solution of the three unknowndisplacements  {qb} = {uj um vm}T  obtainable by the expression:

320120126

12675

bbK

94003000

15600

bR

1616121818615369

baK

000

aq

.1033.721067.116

108.66

54.21721.35044.200

310

94003000

15600

03333.00028.00056.00028.008703.00074.00056.00074.00148.0

310

94003000

15600

320120126

12675

310

6

6

66

6

1

6

in

vuu

m

m

j

So, the displacements of the three nodes are: 

uj = 66.8x10‐6 inch, um = 116.67 x10‐6 inch and vm = 72.33x10‐6 inch.

Page 33: San Jose State University Engineering · San Jose State University Department of Mechanical Engineering ME 160 Introduction to Finite Element Method References for FE formulation:

Example 6.2 ‐ Cont’d  Solve for element stresses

Equation (4.14) relates the element stress with nodal displacements:

psi

BC

xy

yy

xx

33.33312.1040

1260

50018.156012.1890

64

51.7267.116

067.66

00

069393160868640224224

64

51.7267.116

067.66

00

023131201010000303

300082028

64

10

51.7267.116

067.66

00

023131201010000303

61

300082028

104 66

Page 34: San Jose State University Engineering · San Jose State University Department of Mechanical Engineering ME 160 Introduction to Finite Element Method References for FE formulation:

Summary on Thermal Stress analysis by FE Method1. Temperature gradients will be induced in a solid whenever there is heat flow within the solid.

2. Solids will change their shape and dimensions whenever there is a temperature change:A solid will expand with a temperature rise and contract with a temperature drop.

3. Sources of heat flow include: heat generation by certain  parts or entire solid; heat fluxes entering or leaving the solid across the solid boundaries, or parts of the solid in contact with surroundingfluids with heat exchange between the solid and fluid through convective heat transfer.

4. Thermal stresses may be introduced to the solid if: (a) the induced solid  is physically constrained with a uniform temperature change in the solid, (b) unconstrained solid but with temperature gradients in the solid. Unconstrained solids with uniform temperature change does not generatethermal stress.

5. Thermal stresses induced in solids by temperature change are treated as a form of “Body Force.”As such, the induced thermal stress in the solids is treated as a form of additional nodal forces in a FE stress analysis. 

6. The FE formulation in this chapter is based on “uniform” temperature in individual elements. thermal stress analysis normally follows a “heat transfer analysis” from which the temperaturedistributions in sloid structures are made available.

7. Thermal stress analysis is an important part of ME and AE structure analyses. The induced thermal stresses should be considered as a part of total induced stresses in all stress analysis, in addition tothe accompanied material deteriorations with high temperature environment..