21
SAR Altimetry Applications over Water Surfaces Cristina Martin-Puig(1), Jose Marquez(1), Giulio Ruffini(1), R. Keith Raney (2), Jérôme Benveniste(3) (1) Starlab Barcelona S.L. (2) Johns Hopkins University APL (3) ESA - ESRIN

SAR Altimetry Applications over Water Surfaces · SAR Altimetry Applications over Water Surfaces Cristina Martin-Puig(1), Jose Marquez(1), Giulio Ruffini(1), R. Keith Raney (2), Jérôme

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: SAR Altimetry Applications over Water Surfaces · SAR Altimetry Applications over Water Surfaces Cristina Martin-Puig(1), Jose Marquez(1), Giulio Ruffini(1), R. Keith Raney (2), Jérôme

SAR AltimetryApplications overWater SurfacesCristina Martin-Puig(1), Jose Marquez(1), Giulio Ruffini(1), R. KeithRaney (2), Jérôme Benveniste(3)

(1) Starlab Barcelona S.L.(2) Johns Hopkins University APL(3) ESA - ESRIN

Page 2: SAR Altimetry Applications over Water Surfaces · SAR Altimetry Applications over Water Surfaces Cristina Martin-Puig(1), Jose Marquez(1), Giulio Ruffini(1), R. Keith Raney (2), Jérôme

2

Presentation Contents

i. SAMOSA Project• SAMOSA Context & Background

• SAR Altimetry in Brief

• SAMOSA in Brief

• SAMOSA Project Description

• Current Status: TASK 2

ii. Reduced SAR mode• Cryosat Acquisitions Modes• Cryosat Data Types L1 data• What is reduced SAR mode? Why reduced SAR?• How can we achieve Reduced SAR mode data?• Cramer Raô-Bound to assess on reduced SAR mode performance• Conclusions and SAMOSA Future work

Page 3: SAR Altimetry Applications over Water Surfaces · SAR Altimetry Applications over Water Surfaces Cristina Martin-Puig(1), Jose Marquez(1), Giulio Ruffini(1), R. Keith Raney (2), Jérôme

3

SAMOSA context &background

• 2009, Cryosat-2 SIRAL altimeter apply SyntheticAperture Radar (SAR) techniques to classical radaraltimetry

• In addition to Cryospheric communities, Hydrosphere andOceanographic communities

• SAMOSA is the short name of Development of SARAltimetry Mode Studies and Applications overOcean, Coastal Zones and Inland Waters

© Cryosat - ESA

Page 4: SAR Altimetry Applications over Water Surfaces · SAR Altimetry Applications over Water Surfaces Cristina Martin-Puig(1), Jose Marquez(1), Giulio Ruffini(1), R. Keith Raney (2), Jérôme

4

SAR Altimetry in Brief

[Ref] Raney , R.K., The Delay / Doppler RadarAltimeter, IEEE Trans. Geosci. RemoteSensing, 36, 1 57 8-1 588, 1 998.

SAR ALTIMETRY

key innovation along trackprocessing for:

• increased resolution• multi-look processing betterspeckle reduction

Page 5: SAR Altimetry Applications over Water Surfaces · SAR Altimetry Applications over Water Surfaces Cristina Martin-Puig(1), Jose Marquez(1), Giulio Ruffini(1), R. Keith Raney (2), Jérôme

5

SAMOSA in Brief

• Main objectiveQuantification of the improvement of SAR altimetry toconventional altimetry over water surfaces COASTAL,OCEAN, and IN LAND

• Consortium:Leader: Satellite Observing Systems (SOS,UK)The Danish National Space Centre (NDSC, Denmark)De Montfort University (DMU,UK)The National Oceanography Centre (NOCS, UK)Starlab Barcelona S.L (STARLAB,Spain).

• ESA Project Officer:Jérôme Benveniste (ESRIN)

• External collaboration of:Dr. Keith Raney (Johns Hopkins University)

Page 6: SAR Altimetry Applications over Water Surfaces · SAR Altimetry Applications over Water Surfaces Cristina Martin-Puig(1), Jose Marquez(1), Giulio Ruffini(1), R. Keith Raney (2), Jérôme

6

SAMOSA ProjectDescription

Task 1State of the art assessment

Task 2Range Error As a fon of

ocean surface

Task 3Potential capabilities of SAR modedata ov er ocean. How the higher

resolution of SAR may enhance thecapability to prov ide info on short-wav elength greop. Signals in areas

of high wav es

Task 4SAR Altimeter echo ov er water

-Non circular ground resolution cell- Multiple looks

Task 5New re-tracking method

ov er water

Task 6Improv ement of

capabilities for coastalzones estuaries, riv ers

and lakes

Task 7Assessment of RA-2

indiv idual echoes ov erwater

Task 8Validation using ASIRAS

data

Page 7: SAR Altimetry Applications over Water Surfaces · SAR Altimetry Applications over Water Surfaces Cristina Martin-Puig(1), Jose Marquez(1), Giulio Ruffini(1), R. Keith Raney (2), Jérôme

7

Task 2

Three subtasks

• Theoretical modelling to characterize expected gainbetween high PRF reduced SAR mode data and LowPRF classical Low Resolution Mode (LRM) data

• Development of a software to reduce SAR FBR datato reduced SAR mode data

• Processing of simulated data sets over slowly varying openocean Numerical Simulations Using CRYMPS

Page 8: SAR Altimetry Applications over Water Surfaces · SAR Altimetry Applications over Water Surfaces Cristina Martin-Puig(1), Jose Marquez(1), Giulio Ruffini(1), R. Keith Raney (2), Jérôme

8

Cryosat Acquisition Modes

[Ref] Cy osat Mission and Data Description. Page 28th. ESA Doc No. CS-RP-ESA-SV-0059

PRF = 17.8KHz

Page 9: SAR Altimetry Applications over Water Surfaces · SAR Altimetry Applications over Water Surfaces Cristina Martin-Puig(1), Jose Marquez(1), Giulio Ruffini(1), R. Keith Raney (2), Jérôme

9

Cryosat Data Types L1data - FBR

A/D

fs

HeightTracker

ChirpGenerator

2DStore

ATFFT iFFT

Doppler Positon Maping

|·|2 Σ

DopplerShift

RCMCPhase

A/D IFFT

|·|2

Σ

fs

HeightEstimation

HeightTracker

ChirpGenerator

Controllable delay

Conventional Altimeter

SAR Altimeter

LRM data Level 1 FBR.

Multilooked echoes at a rate of ~20 Hz

SAR data Level 1 FBR

Individual complex I,Q echoes

Page 10: SAR Altimetry Applications over Water Surfaces · SAR Altimetry Applications over Water Surfaces Cristina Martin-Puig(1), Jose Marquez(1), Giulio Ruffini(1), R. Keith Raney (2), Jérôme

10

What is reduced SAR modedata? Why reduced SAR?

What?

Reduced SAR mode data intends to emulate LRM starting with FBRSAR.

Why?

• This data would let us achieve two different product types from thesame acquisition mode (SAR)• The resulting data would support quantitative comparison of themeasurement precision delivered by the two styles of altimeter overidentical sea states

Page 11: SAR Altimetry Applications over Water Surfaces · SAR Altimetry Applications over Water Surfaces Cristina Martin-Puig(1), Jose Marquez(1), Giulio Ruffini(1), R. Keith Raney (2), Jérôme

11

How can we achieveReduced SAR mode data?

…LRM

tPRFLRM = 1970 Hz

Echo wav eforms

How do we will analyze theperformance?

CRAMÉR-RAO BOUND

92 echoes at a rate of ~ 20 Hz

How many waveforms can we achieve for a reduced SAR mode?

8-pulsepre-sum . . .

Pre-summing of n pseudo-LRMwaveforms after pre-sum

SAR

t

64 Echo wav eforms.

PRFSAR = 17.8KHz

9SAR

LRM

PRFn

PRF= =

8n =

Page 12: SAR Altimetry Applications over Water Surfaces · SAR Altimetry Applications over Water Surfaces Cristina Martin-Puig(1), Jose Marquez(1), Giulio Ruffini(1), R. Keith Raney (2), Jérôme

12

Cramér-Rao Bound (CRB) I

• N point dataset X = {X[0], X[1], …, X[N-1]} and X = fon(θ) weare interested in determine θ from X, or define a goodestimator of θ

• Provided that the data are inherently random

• CRB help us find the minimum variance of anunbiased estimator if it exists.

CRB theorem

If satisfies:

ˆ ( )g X! =

( ; )p X !

( ; )p X !

ln( ( ; ))0

d p XE for

d

!!

!

" #= $% &' (

2

2

1ˆvar( )ln ( ; )p X

E

!!

!

"# $%

& ' (%) *

Page 13: SAR Altimetry Applications over Water Surfaces · SAR Altimetry Applications over Water Surfaces Cristina Martin-Puig(1), Jose Marquez(1), Giulio Ruffini(1), R. Keith Raney (2), Jérôme

13

CRB II – decorrelatedsignal simplification

Focusing on complex, vectorial Gaussian-distributedsignals

Being г the covariance matrix

CRB ugly expression ; de-correlated signal as is the case

*( [ ]) ( [ ])

( )

1( , )

X E X X E X

card Xp X e!

"

# $% % &'& %( )='

( )( )*

[ ] [ ]ij i i j jE X E X X E X! "# = $ $% &' (

2

2

2

ˆvar( )

[ ]1 2i i

i i i

CRB

E XCRB

!

! !"

#

$% $& '= + ( )% $ % $* +,

Page 14: SAR Altimetry Applications over Water Surfaces · SAR Altimetry Applications over Water Surfaces Cristina Martin-Puig(1), Jose Marquez(1), Giulio Ruffini(1), R. Keith Raney (2), Jérôme

14

Conventional AltimetryComplex Waveform

A/D( )Rs t

( )n t ( )ds t

IFFT

i R d d

d

X S S N S

u N S

! "

! "

= # + # =

= + #

( )*

1/32

1

[ ] 0

1[ ] ;

4

i

ij i j

E X

E u u HSNR

!" #

!

=

$ = +%

Trickypart

dS S! = "

Sea surface scatteringSpeckle statistics

Complex, Vectorial, zero mean,Gaussian PDF

Thermal noiseComplex, Vectorial, with Im

and Re components bothGaussian, zero mean and stdev

1

The reflected waveform will also be Gaussian with:

Page 15: SAR Altimetry Applications over Water Surfaces · SAR Altimetry Applications over Water Surfaces Cristina Martin-Puig(1), Jose Marquez(1), Giulio Ruffini(1), R. Keith Raney (2), Jérôme

15

Reduced SAR mode vs LRM

• The main difference of both modes is the term SNR1

• With reduced SAR for approximately 20Hz rate we willachieve 32 pseudo-LRM de-correlated echoes, while for LRMwe will have 92 de-correlated echoes.

• This means that the reduce SAR mode SNR1 will beapproximately 10 log (sqrt(32/92)) = -2.29 dB worse thana conventional altimeter.

Page 16: SAR Altimetry Applications over Water Surfaces · SAR Altimetry Applications over Water Surfaces Cristina Martin-Puig(1), Jose Marquez(1), Giulio Ruffini(1), R. Keith Raney (2), Jérôme

16

How much will be the previousdegradation in precision?

Considering that

CRB simplifies to:

is related to θ and SWH, and θ related to “r”

[ ] 0i

E X =

2

2

ˆvar( )

1i

i i

CRB

CRB

!

!

"

#

$%=

% $&

( )( )1/3;i fon H! "# =

( )1/3;H! "

Page 17: SAR Altimetry Applications over Water Surfaces · SAR Altimetry Applications over Water Surfaces Cristina Martin-Puig(1), Jose Marquez(1), Giulio Ruffini(1), R. Keith Raney (2), Jérôme

17

Conclusions & future work

• The main difference in both acquisition modes is a -2.29SNR1 degradation

• Future work needs to be done in numerically simulate theperformance of range vs SWH. The theoretical work iscompleted

• A software to transform FBR data into pseudo-LRM data isalmost completed

• This software will permit numerical simulations withCRYMPS data to assess on range precision (NOCS) Jensen& Raney DDA: Better Measurement Precision 1998

Page 18: SAR Altimetry Applications over Water Surfaces · SAR Altimetry Applications over Water Surfaces Cristina Martin-Puig(1), Jose Marquez(1), Giulio Ruffini(1), R. Keith Raney (2), Jérôme

18

Acknowledgements

• My collaborators: Jose Marquez, Giulio Ruffini and Dr. KeithRaney

• The SAMOSA team

• Jérôme Benveniste (ESRIN)

• Maria Milagro (ESRIN)

Page 19: SAR Altimetry Applications over Water Surfaces · SAR Altimetry Applications over Water Surfaces Cristina Martin-Puig(1), Jose Marquez(1), Giulio Ruffini(1), R. Keith Raney (2), Jérôme

19

Thanks!

Contact:Cristina Martin-PuigStarlab Barcelona S.L.Camí de l’Observatori s/n08035 – Barcelona – Spain+34 93 254 03 69http://[email protected]

SAMOSA Project Contact:David Cotton; [email protected]

Page 20: SAR Altimetry Applications over Water Surfaces · SAR Altimetry Applications over Water Surfaces Cristina Martin-Puig(1), Jose Marquez(1), Giulio Ruffini(1), R. Keith Raney (2), Jérôme

20

De-correlated Signal

• Signal BW = 350 MHz

• Sampling rate approx 638.3MHz

• Nyquist = 2*BW = 700MHz

• Under-sampling, de-correlated signal

Page 21: SAR Altimetry Applications over Water Surfaces · SAR Altimetry Applications over Water Surfaces Cristina Martin-Puig(1), Jose Marquez(1), Giulio Ruffini(1), R. Keith Raney (2), Jérôme

21

Coherence time

d

2f

1f

Along trackAcross

track

1/2

1/3 01

0

( 2 )

1 /e

c H Rr

R R

!" #+= $ %

+& '