5

Click here to load reader

Satellite

Embed Size (px)

Citation preview

Page 1: Satellite

Azeem Ahmed EE-173

Satellite

In the context of spaceflight, a satellite is an artificial object which has been intentionally placed into orbit. Such objects are sometimes called artificial satellites to distinguish them from natural satellites such as the Moon.

Satellites are used for a large number of purposes. Common types include military and civilian Earth observation satellites, communications satellites, navigation satellites, weather satellites, and research satellites. Space stations and human spacecraft in orbit are also satellites. Satellite orbits vary greatly, depending on the purpose of the satellite, and are classified in a number of ways. Well-known classes include low Earth orbit, polar orbit, and geostationary orbit.

Satellites are propelled by rockets to their orbits. Usually the launch vehicle itself is a rocket lifting off from a launch pad on land. In a minority of cases satellites are launched at sea (from a submarine or a mobile maritime platform) or aboard a plane (see air launch to orbit).

Satellites are usually semi-independent computer-controlled systems. Satellite subsystems attend many tasks, such as power generation, thermal control, telemetry, altitude control and orbit control.

Early conceptions

"Newton's cannonball", presented as a "thought experiment" in A Treatise of the System of the World, was the first published mathematical study of the possibility of an artificial satellite.

The first fictional depiction of a satellite being launched into orbit is a short story by Edward Everett Hale, The Brick Moon. The story is serialized in The Atlantic Monthly, starting in 1869. The idea surfaces again in Jules Verne's The Begum's Fortune (1879).

In 1903, Konstantin Tsiolkovsky (1857–1935) published Exploring Space Using Jet Propulsion Devices (in Russian: Исследование мировых пространств реактивными приборами), which is the first academic treatise on the use of rocketry to launch spacecraft. He calculated the orbital speed required for a minimal orbit around the Earth at 8 km/s, and that a multi-stage rocket fuelled by liquid propellants could be used to achieve this. He proposed the use of liquid hydrogen and liquid oxygen, though other combinations can be used.

In 1928, Slovenian Herman Potočnik (1892–1929) published his sole book, The Problem of Space Travel — The Rocket Motor (German: Das Problem der Befahrung des Weltraums — der Raketen-Motor), a plan for a breakthrough into space and a permanent human presence there. He conceived of a space station in detail and calculated its geostationary orbit. He described the use of orbiting spacecraft for detailed peaceful and military observation of the ground and described how the special conditions of space could be useful for scientific experiments. The book described geostationary satellites (first put forward by Tsiolkovsky) and discussed communication between them and the ground using radio, but fell short of the idea of using satellites for mass broadcasting and as telecommunications relays.

In a 1945 Wireless World article, the English science fiction writer Arthur C. Clarke (1917–2008) described in detail the possible use of communications satellites for mass communications. Clarke examined the logistics of satellite launch, possible orbits and other aspects of the creation of a network of world-circling satellites, pointing to the benefits of high-speed global communications. He also suggested that three geostationary satellites would provide coverage over the entire planet.

History & Evolution

The first artificial satellite was Sputnik 1, launched by the Soviet Union on October 4, 1957, and initiating the Soviet Sputnik program, with Sergei Korolev as chief designer (there is a crater on the lunar far side which bears his name). This in turn triggered the Space Race between the Soviet Union and the United States.

Page 2: Satellite

Azeem Ahmed EE-173

Sputnik 1 helped to identify the density of high atmospheric layers through measurement of its orbital change and provided data on radio-signal distribution in the ionosphere. The unanticipated announcement of Sputnik 1's success precipitated the Sputnik crisis in the United States and ignited the so-called Space Race within the Cold War.Sputnik 2 was launched on November 3, 1957 and carried the first living passenger into orbit, a dog named Laika.

In May, 1946, Project RAND had released the Preliminary Design of an Experimental World-Circling Spaceship, which stated, "A satellite vehicle with appropriate instrumentation can be expected to be one of the most potent scientific tools of the Twentieth Century." The United States had been considering launching orbital satellites since 1945 under the Bureau of Aeronautics of the United States Navy. The United States Air Force's Project RAND eventually released the above report, but did not believe that the satellite was a potential military weapon; rather, they considered it to be a tool for science, politics, and propaganda. In 1954, the Secretary of Defense stated, "I know of no American satellite program."

On July 29, 1955, the White House announced that the U.S. intended to launch satellites by the spring of 1958. This became known as Project Vanguard. On July 31, the Soviets announced that they intended to launch a satellite by the fall of 1957.Following pressure by the American Rocket Society, the National Science Foundation, and the International Geophysical Year, military interest picked up and in early 1955 the Army and Navy were working on Project Orbiter, two competing programs: the army's which involved using a Jupiter C rocket, and the civilian/Navy Vanguard Rocket, to launch a satellite. At first, they failed: initial preference was given to the Vanguard program, whose first attempt at orbiting a satellite resulted in the explosion of the launch vehicle on national television. But finally, three months after Sputnik 2, the project succeeded; Explorer 1 became the United States' first artificial satellite on January 31, 1958. In June 1961, three-and-a-half years after the launch of Sputnik 1, the Air Force used resources of the United States Space Surveillance Network to catalog 115 Earth-orbiting satellites.

Early satellites were constructed as "one-off" designs. With growth in geosynchronous (GEO) satellite communication, multiple satellites began to be built on single model platforms called satellite buses. The first standardized satellite bus design was the HS-333 GEO commsat, launched in 1972. The largest artificial satellite currently orbiting the Earth is the International Space Station.

Types of Satellite:

Satellites can be divided into five principal types: research, communications, weather, navigational, and applications.

Research satellites measure fundamental properties of outer space, e.g., magnetic fields, the flux of cosmic rays

and micrometeorites, and properties of celestial objects that are difficult or impossible to observe from the earth. Early research satellites included a series of orbiting observatories designed to study radiation from the sun, light and radio emissions from distant stars, and the earth's atmosphere. Notable research satellites have included the Hubble Space Telescope, the Compton Gamma-Ray Observatory, the Chandra X-ray Observatory, the Infrared Space Observatory, and the Solar and Heliospheric Observatory.

Communications satellites provide a worldwide linkup of radio, telephone, and television. The

first communications satellite was Echo 1; launched in 1960, it was a large metalized balloon that reflected radio signals striking it. This passive mode of operation quickly gave way to the active or repeater mode, in which complex electronic equipment aboard the satellite receives a signal from the earth, amplifies it, and transmits it to another point on the earth. Relay 1 and Telstar 1, both launched in 1962, were the first active communications satellites; Telstar 1 relayed the first live television broadcast across the Atlantic Ocean. However, satellites in the Relay and Telstar program were not in geosynchronous orbits, which is the secret to continuous communications networks. Syncom 3, launched in 1964, was the first stationary earth satellite. It was used to telecast the 1964 Olympic Games in Tokyo to the United States, the first television program to cross the Pacific Ocean. In principle, three geosynchronous satellites located symmetrically in the plane of the earth's equator can provide complete coverage of the earth's surface. In practice, many more are used in order to increase the system's message-

Page 3: Satellite

Azeem Ahmed EE-173

handling capacity. The first commercial geosynchronous satellite, Intelsat 1 (better known as Early Bird), was launched by COMSAT in 1965. A network of 29 Intelsat satellites in geosynchronous orbit now provides instantaneous communications throughout the world. In addition, numerous communications satellites have been orbited by commercial organizations and individual nations for a variety of telecommunications tasks.

Weather satellites or meteorological satellites; provide continuous, up-to-date information about large-scale

atmospheric conditions such as cloud cover and temperature profiles. Tiros-1, the first such satellite, was launched in 1960; it transmitted infrared television pictures of the earth's cloud cover and was able to detect the development of hurricanes and to chart their paths. The Tiros series was followed by the Nimbus series, which carried six cameras for more detailed scanning, and the Itos series, which was able to transmit night photographs. Other weather satellites include the Geostationary Operational Environmental Satellites (GOES), which send weather data and pictures that cover a section of the United States; China, Japan, India, and the European Space Agency have orbited similar craft. Current weather satellites can transmit visible or infrared photos, focus on a narrow or wide area, and maneuver in space to obtain maximum coverage.

Navigation satellites were developed primarily to satisfy the need for a navigation system that nuclear

submarines could use to update their inertial navigation system. This led the U.S. navy to establish the Transit program in 1958; the system was declared operational in 1962 after the launch of Transit 5A. Transit satellites provided a constant signal by which aircraft and ships could determine their positions with great accuracy. In 1967 civilians were able to enjoy the benefits of Transit technology. However, the Transit system had an inherent limitation. The combination of the small number of Transit satellites and their polar orbits meant there were some areas of the globe that were not continuously covered—as a result, the users had to wait until a satellite was properly positioned before they could obtain navigational information. The limitations of the Transit system spurred the next advance in satellite navigation: the availability of 24-hour worldwide positioning information. The Navigation Satellite for Time and Ranging/Global Positioning Satellite System (Navstar/GPS) consists of 24 satellites approximately 11,000 miles above the surface of the earth in six different orbital planes. The GPS has several advantages over the Transit system: It provides greater accuracy in a shorter time; users can obtain information 24 hours a day; and users are always in view of at least five satellites, which yields highly accurate location information (a direct readout of position accurate to within a few yards) including altitude. In addition, because of technological improvements, the GPS system has user equipment that is smaller and less complex.

Applications satellites are designed to test ways of improving satellite technology itself. Areas of concern

include structure, instrumentation, controls, power supplies, and telemetry for future communications, meteorological, and navigation satellites.

Satellites also have been used for a number of military purposes, including infrared sensors that track missile launches; electronic sensors that eavesdrop on classified conversations; and optical and other sensors that aid military surveillance. Such reconnaissance satellites have subsequently proved to have civilian benefits, such as commercially available satellite photographs showing surface features and structures in great detail, and fire sensing in remote forested areas. The United States has launched a series of Landsat remote-imaging satellites to survey the earth's resources by means of special television cameras and radiometric scanners. The data from remote-imaging satellites has also been used in archaeological research. Russia and other nations have also launched such satellites; the French SPOT satellites provide higher-resolution photographs of the earth.

Applications:

Space technology has advanced rapidly in recent years. Satellite plays an important role in daily life. Here are few

important satellite applications:

Navigation: Navigation satellite is an artificial satellite stationed in space for the purposes of navigation. Satellite

navigation is a space-based radio positioning system that includes one or more satellite constellations, augmented as necessary to support the intended operation, and that provides 24-hour three-dimensional position, velocity and time information to suitably equipped users anywhere on, or near, the surface of Earth. A satellite navigation

Page 4: Satellite

Azeem Ahmed EE-173

system provides users with sufficient accuracy and integrity of information to be useable for critical navigation applications.

Communication: A communications satellite is an artificial satellite stationed in space for the purposes of

telecommunications. Modern communications satellites use geosynchronous orbits, Molniya orbits or low Earth orbits.

Geostationary orbits The geostationary orbit is useful for communications applications because ground based antennae, which must be directed toward the satellite, can operate effectively without the need for expensive equipment to track the satellite’s motion. Especially for applications that require a large number of ground antennae (such as direct TV distribution), the savings in ground equipment can more than justify the extra cost and onboard complexity of lifting a satellite into the relatively high geostationary orbit.

The first geostationary communications satellite was Anik 1, a Canadian satellite launched in 1972. The United States launched their own geostationary communication satellites afterward, with Western Union launching their Westar 1 satellite in 1974, and RCA Americom (later GE Americom, now SES Americom) launching Satcom 1 in 1975. By 2000 Hughes Space and Communications (now Boeing Satellite Systems) had built nearly 40 percent of the satellites in service worldwide. Other major satellite manufacturers include Space Systems/Loral, Lockheed Martin (owns former RCA Astro Electronics/GE Astro Space business), Northrop Grumman, Alcatel Space and EADS Astrium.

Telephony: The first and still, arguably, most important application for communication satellites is in

international telephony. Fixed-point telephones relay calls to an earth station, where they are then transmitted to a geostationary satellite. An analogous path is then followed on the downlink. In contrast, mobile telephones (to and from ships and airplanes) must be directly connected to equipment to uplink the signal to the satellite, as well as being able to ensure satellite pointing in the presence of disturbances, such as waves onboard a ship.

Broadband Digital Communications: Broadband satellites transmit high-speed data and video directly to

consumers and businesses. Markets for broadband services also include interactive TV, wholesale telecommunications, telephony, and point-of-sale communications, such as credit card transactions and inventory control.

Direct-Broadcast Services: Direct-broadcast satellites (DBS) transmit signals for direct reception by the

general public, such as satellite television and radio. Satellite signals are sent directly to users through their own receiving antennas or satellite dishes, in contrast to satellite/cable systems in which signals are received by a ground station, and re-broadcast to users by cable.

Environmental Monitoring: Environmental monitoring satellites carry highly sensitive imagers and sounders to

monitor the Earth's environment, including the vertical thermal structure of the atmosphere; the movement and formation of clouds; ocean temperatures; snow levels; glacial movement; and volcanic activity. Large-scale computers use this data to model the entire earth's atmosphere and create weather forecasts such as those provided by national weather services in the U.S. and abroad.

These satellites are typically self-contained systems that carry their own communications systems for distributing the data they gather in the form reports and other products for analyzing the condition of the environment. Satellites are particularly useful in this case because they can provide continuous coverage of very large geographic regions.

Fixed-Satellite Services: Satellites providing Fixed-Satellite Services (FSS) transmit radio

communications between ground Earth stations at fixed locations. Satellite-transmitted information is carried in the form of radio-frequency signals. Any number of satellites may be used to link these stations. Earth stations that are part of fixed-satellite services networks also use satellite news gathering vehicles to broadcast from media

Page 5: Satellite

Azeem Ahmed EE-173

events, such as sporting events or news conferences. In addition, FSS satellites provide a wide variety of services including paging networks and point-of-sale support, such as credit card transactions and inventory control.

Government: Providing X-band satellite communications services to governments is a new commercial

application with substantial growth potential. SSL has designed and built two X-band satellites, which will be available for lease to government users in the United States and Spain, as well as other friendly and allied nations within the satellites' extensive coverage areas. Government communications use specially allocated frequency bands and waveforms.

Beyond environmental applications, government sensors gather intelligence in various forms, including radar, infrared imaging, and optical sensing.