91
Scaling of High Frequency III-V Transistors [email protected] 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials, Newport Beach, CA, May 10-14 Mark Rodwell University of California, Santa Barbara

Scaling of High Frequency III-V Transistors [email protected] 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

Embed Size (px)

Citation preview

Page 1: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

Scaling of High Frequency III-V Transistors

[email protected] 805-893-3244, 805-893-5705 fax

Short Course, 2009 Conference on InP and Related Materials, Newport Beach, CA, May 10-14

Mark Rodwell University of California, Santa Barbara

Page 2: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

THz Transistors

Transistor bandwidths are increasing rapidly.

Si MOSFETs will soon reach 500+ GHz cutoff frequencies.

It is now clear III-V bipolar transistors can reach ~2-3 THz cutoff frequencies.

III-V FETs have comparable potential, but the prospects and analysis are less clear.

The limits to transistor bandwidth are:contact resistivities

gate dielectric capacitance densities.device and IC power density & thermal resistance.

challenges in reliably fabricating small devices.

Page 3: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

WhyTHz Transistors ?

Page 4: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

Why Build THz Transistors ?

THz amplifiers→ THz radios→ imaging, sensing, communications

precision analog design at microwave frequencies→ high-performance receivers

500 GHz digital logic→ fiber optics

Higher-Resolution Microwave ADCs, DACs, DDSs

Page 5: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

PerformanceFigures of Merit

Page 6: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

Transistor figures of Merit / Cutoff Frequencies

H21=short-circuit current gain

gain

s, d

B

MAG = maximum available power gain:impedance-matched

U= unilateral power gain:feedback nulled, impedance-matched

fmax

power-gaincutoff frequency

fcurrent-gaincutoff frequency

Page 7: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

What Determines Gate Delay ?

cexLOGIC

LOGIC

Ccb

becbi

becbC

LOGIC

IRq

kTV

V

IR

CCR

CCI

V

4

leastat bemust swing logic The

resistance base the through

charge stored

collector base Supplying

resistance base the through

charging ecapacitanc on Depleti

swing logic the through

charging ecapacitanc on Depleti

:by ermined Delay DetGate

bb

depletion,bb

depletion,

JVR

v

T

A

A

V

V

I

VC

T)V(VvεJ

CI

CCIV

f

ex

electron

C

CE

LOGIC

C

LOGICcb

cceceelectronKirk

cbC

becbCLOGIC

cb

highat low for low very bemust

22

/2

objective. design key HBTa is / High

total.of 80%-55% is

withcorrelated not well Delay

delay; totalof 25%-10y typicall)(

logic

emitter

collector

min,

2depletion full,operating ,max,

depl,

Page 8: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

HBT Design For Digital & Mixed-Signal Performance

from charge-control analysis:

)./5.05.0(

)/5.05.05.0(

)/5.05.0)(/(

)66)(/(

LCfcbijebb

LCfcbicbxex

LCfcbicbxjeC

fcbicbxjeCLgate

VICCR

VICCR

VICCCqIkT

CCCIVT

analog ICs have similar bandwidth constraints...

Page 9: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

High-FrequencyElectron Device

Design

Page 10: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

Simple Device Physics: Resistance

Good approximation for contactwidths less than 2 transfer lengths.

A

TR bulk

bulk resistance

AR contact

contact resistance-perpendicular

L

W

AR sheet

contact

3

'

contact resistance- parallel

Page 11: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

Simple Device Physics: Depletion Layers

capacitance

T

AC

transit time

v

T

2

space-chargelimited current

2

22

max depletionapplied VVT

v

A

I

2 where

max

depletionapplied VVI

C

T

VCI

Page 12: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

Simple Device Physics: Thermal Resistance

Exact

L

W

WK

W

L

LKR

th

thth

1

1

sinh1

sinh1

Carslaw & Jaeger 1959

LKW

L

LKR

ththth

1ln

1

junctionnear

flowheat lcylindrica

Long, Narrow StripeHBT Emitter, FET Gate

junction fromfar

flowheat spherical

LKLKR

ththth

1

4

1

surfacenear

flowheat planar

Square ( L by L ) IC on heat sink

surface fromfar

flowheat spherical

Page 13: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

Simple Device Physics: Fringing Capacitance

5.1T

W

L

C

wiring capacitance

plate-parallel fringing

)3 to(1

/ and / of

function varying-slowly

21 GWGWL

C

FET parasitic capacitances

LC / ~/ LCparasitic

VLSI power-delay limits FET scaling constraints

Page 14: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

Electron Plasma Resonance: Not a Dominant Limit

*2kinetic

1

nmqA

TL

T

AC

ntdisplaceme

m

dielecic L

Rf

2

1

2

1

frequency scattering

kinetic

bulk

mnmqA

TR

*2bulk

1

2

1

2/1

frequency relaxation dielectric

bulkntdisplaceme

RC

fdielecicntdisplacemekinetic

2/1

frequencyplasma

CLf plasma

THz 800 THz 7 THz 74319 cm/105.3

InGaAs-

n

319 cm/107

InGaAs-

pTHz 80 THz 12 THz 13

Page 15: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

Electron Plasma Resonance: Not a Dominant Limit

*2kinetic

1

nmqA

TL

T

AC

ntdisplaceme

m

dielecic L

Rf

2

1

2

1

frequency scattering

kinetic

bulk

mnmqA

TR

*2bulk

1

2

1

2/1

frequency relaxation dielectric

bulkntdisplaceme

RC

fdielecicntdisplacemekinetic

2/1

frequencyplasma

CLf plasma

THz 800 THz 7 THz 74319 cm/105.3

InGaAs-

n

319 cm/107

InGaAs-

pTHz 80 THz 12 THz 13

Page 16: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

Electron Plasma Resonance: Not a Dominant Limit

*2kinetic

1

nmqA

TL

T

AC

ntdisplaceme

m

dielecic L

Rf

2

1

2

1

frequency scattering

kinetic

bulk

mnmqA

TR

*2bulk

1

2

1

2/1

frequency relaxation dielectric

bulkntdisplaceme

RC

fdielecicntdisplacemekinetic

2/1

frequencyplasma

CLf plasma

THz 800 THz 7 THz 74319 cm/105.3

InGaAs-

n

319 cm/107

InGaAs-

pTHz 80 THz 12 THz 13

Page 17: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

Electron Plasma Resonance: Not a Dominant Limit

*2kinetic

1

nmqA

TL

T

AC

ntdisplaceme

m

dielecic L

Rf

2

1

2

1

frequency scattering

kinetic

bulk

mnmqA

TR

*2bulk

1

2

1

2/1

frequency relaxation dielectric

bulkntdisplaceme

RC

fdielecicntdisplacemekinetic

2/1

frequencyplasma

CLf plasma

THz 800 THz 7 THz 74319 cm/105.3

InGaAs-

n

319 cm/107

InGaAs-

pTHz 80 THz 12 THz 13

Page 18: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

Frequency Limitsand Scaling Laws of (most) Electron Devices

width

lengthlog

length

power

thicknessarea /

length

width

4area

area/

thickness/area

thickness

2limit-charge-space max,

T

I

R

R

C

sheetcontactbottom

contacttop

To double bandwidth, reduce thicknesses 2:1 Improve contacts 4:1reduce width 4:1, keep constant lengthincrease current density 4:1

topR

bottomR

PIN photodiode

Page 19: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

parameter change

collector depletion layer thickness decrease 2:1

base thickness decrease 1.414:1

emitter junction width decrease 4:1

collector junction width decrease 4:1

emitter contact resistance decrease 4:1

current density increase 4:1

base contact resistivity decrease 4:1

Changes required to double transistor bandwidth:

Linewidths scale as the inverse square of bandwidth because thermal constraints dominate.

eW

bcWcTbT

ELlength emitter

Bipolar Transistor Scaling Laws

Page 20: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

parameter change

gate length decrease 2:1

gate dielectric capacitance density increase 2:1

gate dielectric equivalent thickness decrease 2:1

channel electron density increase 2:1

source & drain contact resistance decrease 4:1

current density (mA/m) increase 2:1

Changes required to double transistor bandwidth:

Linewidths scale as the inverse of bandwidth because fringing capacitance does not scale.

FET Scaling Laws

GW widthgate

GL

Page 21: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

THz & nm Transistors: it's all about the interfaces

Metal-semiconductor interfaces (Ohmic contacts): very low resistivity

Dielectric-semiconductor interfaces (Gate dielectrics): very high capacitance density

Transistor & IC thermal resistivity.

Page 22: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

BipolarTransistors

Page 23: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

Indium Phosphide Heterojunction Bipolar Transistors

Z. GriffithE. Lind

Page 24: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

Bipolar Transistor Operation

cI

beV ceV

voltagecollector with little varies

it through pass base reaching electrons allAlmost

)/exp(

al)(exponenti thermalison distributienergy emitter Because

c

bec

I

kTqVI

Page 25: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

Transistor Hybrid-Pi equivalent circuit model

nkTqIg Em /

)( cbmjebe gCC

mbe gR /

Page 26: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

Cutoff frequencies in HBTs

collex

Ebc

Ejecollectorbase RR

qI

kTC

qI

kTC

f

2

1

nbbase DT 22 effccollector vT 2

cbibbCR

ff

8max

Page 27: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

Epitaxial Layer Structure

Page 28: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

emitter

emittercap

gradedbase

collector

subcollector

Epitaxy: InP Emitter, InGaAs Base, InP Collector, Both Junctions GradedKey Features:

N++ InGaAs emitter contact layer

InP emitter

InGaAs/InAlAs superlattice e/b grade

InGaAs graded basebandgap or doping grade

BC setback layer

InGaAs/InAlAs superlattice b/c grade

InP collector

InGaAs etch-stop layerthin for heat conduction

InP subcollector

Layer Material Doping Thickness (nm)

Emitter cap In0.53Ga0.47As 8 1019 cm-3: Si 25

N+ emitter InP 8 1019 cm-3: Si 50

N- emitter InP 1 1018 cm-3: Si 20

Emitter-base grade In0.53Ga0.47As / In0.52Al0.48As,

1.6 nm period N: 1 1017 cm-3: Si

24

Emitter-base grade In0.53Ga0.47As / In0.52Al0.48As,

1.5 nm period P: 8 1017 cm-3: C 1

Base In0.53Ga0.47As P: 7-4 1019 cm-3: C 24.5

Setback In0.53Ga0.47As N: 9 1016 cm-3: Si 4.5

Base-collector grade

In0.53Ga0.47As / In0.52Al0.48As, 1.6 nm period

N: 9 1016 cm-3: Si 15

Pulse doping InP 6 1018 cm-3: Si 3

Collector InP N: 2 1016 cm-3: Si 82

etch-stop In0.53Ga0.47As N: 8 1019 cm-3: Si 5

Subcollector InP N: 8 1019 cm-3: Si ~200

M. DahlstromZ. Griffith UCSB

M. UrteagaTSC

Page 29: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

emitter

emittercap

gradedbase

collector

subcollector

Epitaxy with Abrupt BE Junction

Similar design

Abrupt E/B junction (no e/b grade)

Advantages:ease of stopping emitter etch on base→ good base contacts

Disadvantages:Increased Vbe .Cannot make e/b ledge.

Layer Material Doping Thickness (nm)

Emitter cap In0.53Ga0.47As 8 1019 cm-3: Si 25

N+ emitter InP 8 1019 cm-3: Si 50

N- emitter InP 1 1018 cm-3: Si 20

N- emitter InP N: 1 1017 cm-3: Si 24

Emitter-base grade In0.53Ga0.47As / In0.52Al0.48As,

1.5 nm period P: 8 1017 cm-3: C 1

Base In0.53Ga0.47As P: 7-4 1019 cm-3: C 24.5

Setback In0.53Ga0.47As N: 9 1016 cm-3: Si 4.5

Base-collector grade

In0.53Ga0.47As / In0.52Al0.48As, 1.6 nm period

N: 9 1016 cm-3: Si 15

Pulse doping InP 6 1018 cm-3: Si 3

Collector InP N: 2 1016 cm-3: Si 82

etch-stop In0.53Ga0.47As N: 8 1019 cm-3: Si 5

Subcollector InP N: 8 1019 cm-3: Si ~200

M. DahlstromZ. GriffithE. Lind

Page 30: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

Alternative Grades for Thinner Epitaxy

Common Grade in LiteratureInGaAs/InAlAs 18 nm thick, 1.5 nm period

Sub-monolayer Grade0.15 nm InAlAs, (0.15 to 0.165 nm InGaAs)10.8 nm thick

Strained InxGa1-xAs Grade

InGaAs/GaAs 6 nm

E . LindZ. Griffith

Page 31: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

Other Methods of Grading the Junctions

IEDM 2001

InGaAs/InGaAsP/InP grade InP/GaAsSb/InP DHBT

-suitable for MOCVD growth

- excellent results

- does not need B/C grading

- E/B band alignment through GaAsSb alloy ratio (strain)

or InAlAs emitter

Page 32: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

Transport Analysis

Page 33: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

Approximate Carrier Transit Times eW

bcWcTbT

exitbnbb vTDT 22

satcc vT 2

ELlength emitter

TimeTransit Base

TimeTransit Collector

Page 34: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

Base Transit Time with Graded Base

gbg

g

LWsatgngngbb

EkTWL

L

evLDLDLW gb

/

:length grading theis where

1/// /2

fs 35/

ifcorrect modeldiffusion -Drift* kTmDτ nmb

cm/s 103

secV/cm 40

:Assumes

7

2

exit

N

v

D

Dino Mensa

Page 35: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

Base Transit Time: Grading Approaches Dino MensaMiguel UrteagaMattias Dahlström

Compositional grading: strained graded InGaAs base

Doping grading unstrained In0.53Ga0.47As base

(strained) AsGaIn AsGaIn

:drop potential meV 52

0.470.530.5450.455

/cm105~ to/cm108~

:from varieddoping Carbon319319

Page 36: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

V=0

TcTc/2

-

-+ +

V=0

Tc/4

+ +

-

-

+ +

-

-

-

-

+

+

Collector Transit TimeT. Ishibashi

base.near velocity tosensitive more is

2)(

)/1(

sketch) (refer to ticselectrosta elementary From

c

0

c

CT

eff

cc

v

Tdx

xv

Tx

.scattering L- todue decreasesthen

high, is velocity initial as ,Fortuitous

layers nm 200-70~for cm/s103.5 :InP

:voltagecollector .density vscurrent Kirk fromor ata,d RF fit tobest From7

Page 37: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

Space-Charge Limited Current Density → Ccb charging time

Collector Field Collapse (Kirk Effect)

Collector Depletion Layer Collapse

)2/)(/( 2 cdsatcb TqNvJV

)2/)(( 2min, cTqNV dcb

eff

C

CECE

LOGICCLOGICcCLOGICcb v

T

A

A

VV

VIVTAIVC

2/

emitter

collector

min,

collector

2

min,max /)2(2 ccbcbeff TVVvJ

cecbbe VVV )( hence , that Note

Collector capacitance charging time scales linearly with collector thickness if J = Jmax

Page 38: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

Space-Charge-Limited Current (Kirk effect) in DHBTs

ceV

Jff

increased with

increases esholdeffect thr-Kirk

highat and in Decrease max

CEEeffective

effectivesat

c

c

ce

satce

TWLA

Av

TR

dI

dV

JV

2

is areaflux current

collector effective thewhere

2

increased with in Increase2

chargespace

,

2min,

2min,max

/)(2

/)2(2

ccecesat

ccbcbsat

TVVv

TVVvJ

100

200

300

400

500

0 2 4 6 8 10 12

f (

GH

z)

Je (mA/um2)

f, -0.3 V

cb

0.0 Vcb

-0.2 Vcb

0.2 Vcb

0.6 Vcb

0

2

4

6

8

10

12

14

16

0 0.5 1 1.5 2 2.50

5

10

15

20

25

30

35

40

J e (m

A/

m2 )

Vce

(V)

Ajbe

= 0.6 x 4.3 m2

Ib step

= 180 uA

Vcb

= 0 V

Ic (mA

)

Peak ft, f

max

Page 39: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

Current-induced Collector Velocity Overshoot

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5 3 3.5

tau e

c, ps

inverse current density, 1/J,m2/mA

J=0

J= 8 mA/um2

300 Å InGaAs base

2000 Å InP collector

280 GHz peak f

bias. with of variation todue and),/ asnot vary does often (1/current bias hfactor witideality emitter in modulation toduepart in also is variationnonlinear observed :CAUTION ec jeEexm CqInkTRg

not

is metransit ticollector of definitioncorrect

toalproportionexactly not is )(

)/1(

metransit ticollector reduced

collector ofpart early in )( increases

,scattering L- reducescurrent Increased

cc

0

c

base

c

base

c

T

ccbase

I

Q

I

Q

Idxxv

TxIQ

xv

C

Nakajima, H. "A generalized expression for collector transit time of HBTstaking account of electron velocity modulation," Japanese Journal ofApplied Physics, vo. 36, Feb. 1997, pp. 667-668

T. Ishibashi

Page 40: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

Transit time Modulation Causes Ccb Modulation

),(//1)(constant0 cbccbc

T

celectronsbase

holesbase VIfTAVdxTxAxqnQQ c

cb

f

c

cb

c

holesbasef

cb

holesbasecb VI

C

I

Q

V

QC

Camnitz and Moll, Betser & Ritter, D. Root holesbaseb ΔQI ,

E

drift collectorbase

-

+

+

+

+

-

-

-

--

-

-

-2

-1

0

1

2

0 100 200 300 400

eV

nm

L

-2

-1

0

1

2

0 100 200 300 400

eV

nm

0 0 ccbcbf ICV

:Modulation Velocity Collector

0 0 ccbcbf ICV

: Effect Kirk

2

3

4

5

6

7

8

0 2.5 5 7.5 10 12.5

Ccb

/Ae (

fF/

m2 )

Je (mA/m2)

-0.2 V

0.0 V

0.2 V

Vcb

= 0.6 V

cbb

cb

C

by of modulation and-

collector into pushout base-

both to due is in Increase

100

200

300

400

500

0 2 4 6 8 10 12

f (

GH

z)

Je (mA/um2)

f, -0.3 V

cb

0.0 Vcb

-0.2 Vcb

0.2 Vcb

0.6 Vcb

DHBTs InP in effect weak-

SHBTs InGaAs in effect strong-

reduced with in Increase cbcbc CVτ

Page 41: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

Emitter-Base Junction Effects

Electron degeneracy contributes 1 - μm2

equivalent series resistance

10-3

10-2

10-1

100

101

102

-0.3 -0.2 -0.1 0 0.1 0.2

J(m

A/u

m^2

)

Vbe

-

Fermi-Dirac

Equivalent series resistance approximation

Boltzmann

)(

)(

xnq

J

x

xE

n

fn

Space-charge storage

need thin layer to avoid substantial charge storage delays

Voltage drops in depletion region

need thin layer &high electron density ).08.0/(emitter InPfor

eV 1.0m

mA130

2

)(*

limit degenerateHighly

0*

2

2

32

2

mm

EE

EEqmJ

cf

cf

RodwellLundstrom.

Page 42: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

RC parasitics

Page 43: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

Simple Device Physics: Resistance

Good approximation for contactwidths less than 2 transfer lengths.

A

TR bulk

bulk resistance

AR contact

contact resistance-perpendicular

L

W

AR sheet

contact

3

'

contact resistance- parallel

Page 44: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

HBT RC Parasitics

base contact width < 2 transfer lengths

→ simple analysis

Limiting case of Pulfrey / Vaidyanathanfmax model.

Page 45: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

HBT RC Parasitics

emitteremittercontactex AR /,

Eesspread LWR 12/ ELlength emitter

Egapsgap LWR 4/

Ebcscontactspread LWR 6/,

contactsbasebcbasecontactcontact AWR _, /

cemitterecb TAC /,

cgapgapcb TAC /,

ccontactsbasecontactcb TAC /_,

Page 46: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

Base-Collector Time Constant & Fmax.

where8max

cbibbCR

ff

)(

)2/(

,,

,,

,

spreadgapcontactspreadcontactecb

gapcontactspreadcontactgapcb

contactcontactcbcbibbcb

RRRRC

RRRC

RCCR

Page 47: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

Relationship to Equivalent Circuit Model

contactspreadcontactgapspreadbb RRRRR ,

contactcbgapcbecbcbicbx CCCCC ,,,

)(

)2/(

,,

,,,

spreadgapcontactspreadcontactecb

gapcontactspreadcontactgapcbcontactcontactcbcbibb

RRRRC

RRRCRCCR

Page 48: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

Device Design

Device Scaling

Page 49: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

Simple Device Physics: Thermal Resistance

Exact

L

W

WK

W

L

LKR

th

thth

1

1

sinh1

sinh1

Carslaw & Jaeger 1959

LKW

L

LKR

ththth

1ln

1

junctionnear

flowheat lcylindrica

Long, Narrow StripeHBT Emitter, FET Gate

junction fromfar

flowheat spherical

LKLKR

ththth

1

4

1

surfacenear

flowheat planar

Square ( L by L ) IC on heat sink

surface fromfar

flowheat spherical

Page 50: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

Bipolar Transistor Design eW

bcWcTbT

nbb DT 22

satcc vT 2

ELlength emitter

eex AR /contact

2through-punchce,operatingce,max cesatc TVVAvI /)(,

contacts

contactsheet 612 AL

W

L

WR

e

bc

e

ebb

e

e

E W

L

L

PT ln1

cccb /TAC

Page 51: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

Bipolar Transistor Design: Scaling eW

bcWcTbT

nbb DT 22

satcc vT 2

ELlength emitter cccb /TAC

eex AR /contact

2through-punchce,operatingce,max cesatc TVVAvI /)(,

contacts

contactsheet 612 AL

W

L

WR

e

bc

e

ebb

e

e

E W

L

L

PT ln1

Page 52: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

parameter change

collector depletion layer thickness decrease 2:1

base thickness decrease 1.414:1

emitter junction width decrease 4:1

collector junction width decrease 4:1

emitter contact resistance decrease 4:1

current density increase 4:1

base contact resistivity decrease 4:1

Changes required to double transistor bandwidth:

Linewidths scale as the inverse square of bandwidth because thermal constraints dominate.

eW

bcWcTbT

ELlength emitter

Bipolar Transistor Scaling Laws

Page 53: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

0

20

40

60

80

100

120

140

100 200 300 400 500 600 700

jun

ctio

n t

em

pe

ratu

re r

ise

, K

elv

in

master-slave D-Flip-Flop clock frequency, GHz

substrate: cylindrical+spherical regions

substrate: planar region

package

total

Thermal Resistance Scaling : Transistor, Substrate, Package

2substrate

2/11ln

D

DT

K

P

DLK

P

W

L

LK

PT sub

InPEInPe

e

EInP

junctionnear

flowheat lcylindrica

eLr for

flow spherical

2/for

flowplanar

HBTDr

callylogarithmi

increases

variation

antinsignificconstant is if

lly quadratica increases

subT

.)(bandwidth

as scales

density,Power

h.1/bandwidt

as scale

lenghts Wiring

2

chipCu

chippackage WK

PT

1

4

1

)/GHz 150( m 40 clocksub fT

IC CML HBT-2000

Page 54: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

0

20

40

60

80

100

120

140

100 200 300 400 500 600 700

jun

ctio

n t

em

pe

ratu

re r

ise

, K

elv

in

master-slave D-Flip-Flop clock frequency, GHz

substrate: cylindrical+spherical regions

substrate: planar region

package

total

Thermal Resistance Scaling : Transistor, Substrate, Package

2substrate

2/11ln

D

DT

K

P

DLK

P

W

L

LK

PT sub

InPEInPe

e

EInP

junctionnear

flowheat lcylindrica

eLr for

flow spherical

2/for

flowplanar

HBTDr

callylogarithmi

increases

variation

antinsignificconstant is if

lly quadratica increases

subT

.)(bandwidth

as scales

density,Power

h.1/bandwidt

as scale

lenghts Wiring

2

chipCu

chippackage WK

PT

1

4

1

)/GHz 150( m 40 clocksub fT

IC CML HBT-2000Probable best solution: Thermal Vias ~500 nm below InP subcollector...over full active IC area.

Page 55: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

InP Bipolar Transistor Scaling Roadmap

emitter 512 256 128 64 32 nm width16 8 4 2 1 m2 access

base 300 175 120 60 30 nm contact width, 20 10 5 2.5 1.25 m2 contact

collector 150 106 75 53 37.5 nm thick, 4.5 9 18 36 72 mA/m2 current density4.9 4 3.3 2.75 2-2.5 V, breakdown

f 370 520 730 1000 1400 GHzfmax 490 850 1300 2000 2800 GHz

power amplifiers 245 430 660 1000 1400 GHz digital 2:1 divider 150 240 330 480 660 GHz

industry university→industry

university2007-8

appearsfeasible

maybe

eW

bcWcTbT

Page 56: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

Can we make a 1 THz SiGe Bipolar Transistor ?

InP SiGeemitter 64 18 nm width

2 1.2 m2 access

base 64 56 nm contact width, 2.5 1.4 m2 contact

collector 53 15 nm thick 36 125 mA/m2 2.75 ??? V, breakdown

f 1000 1000 GHzfmax 2000 2000 GHz

PAs 1000 1000 GHz digital 480 480 GHz(2:1 static divider metric)Assumes collector junction 3:1 wider than emitter.Assumes SiGe contacts 2:1 wider than junctions

Simple physics clearly drives scaling transit times, Ccb/Ic → thinner layers, higher current density high power density → narrow junctions small junctions→ low resistance contacts

Key challenge: Breakdown 15 nm collector → very low breakdown

(also need better Ohmic contacts)

Page 57: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

HBT Design For Digital & Mixed-Signal Performance

from charge-control analysis:

)./5.05.0(

)/5.05.05.0(

)/5.05.0)(/(

)66)(/(

LCfcbijebb

LCfcbicbxex

LCfcbicbxjeC

fcbicbxjeCLgate

VICCR

VICCR

VICCCqIkT

CCCIVT

Page 58: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

InP HBT: Status

Page 59: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

0

200

400

600

800

1000

0 200 400 600 800 1000

Teledyne DBHT

UIUC DHBT

NTT DBHT

ETHZ DHBT

UIUC SHBT

UCSB DHBT

NGST DHBT

HRL DHBT

IBM SiGe

Vitesse DHBT

f ma

x (G

Hz)

ft (GHz)

600 GHz

500GHz maxff

Updated Sept. 2008

800 GHz

900 GHz

700 GHz

400GHz

InP DHBTs: September 2008

)(

),/(

),/(

),/(

hence ,

:digital

gain, associated ,F

:amplifiers noise low

mW/

gain, associated PAE,

:amplifierspower

)11(

2/) (

alone or

min

1max

max

max

max

cb

cbb

cex

ccb

clock

ττ

VIR

VIR

IVC

f

m

ff

ff

ff

ff

:metrics better much

:metrics popular

250 nm

600nm

350 nm

250 nm

125 nm

Page 60: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

512 nm InP DHBT

Production

DDS IC: 4500 HBTs 20-40 GHz op-amps

500 nm mesa HBT 150 GHz M/S latches 175 GHz amplifiers

LaboratoryTechnology

Teledyne / BAE Teledyne / UCSB

UCSB UCSB / Teledyne / GCS

500 nm sidewall HBT

f = 405 GHz

fmax = 392 GHz

Vbr, ceo = 4 V

Teledyne

20 GHz clock53-56 dBm OIP3 @ 2 GHzwith 1 W dissipation

( Teledyne )

Z. GriffithM. UrteagaP. RowellD. PiersonB. BrarV. Paidi

Page 61: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

256 nm GenerationInP DHBT

0

10

20

30

109 1010 1011 1012

109

101

0

101

1

1012

dB

Hz

f = 560 GHz

fmax

= 560 GHz

U

H21

0

10

20

30

40

109 1010 1011 1012

dB

Hz

UH21

f = 424 GHz

fmax

= 780 GHz

0

5

10

15

20

0 1 2 3 4V

ce

mA

/m

20

10

20

30

40

109 1010 1011 1012

dB

Hz

U

H21

ft = 660 GHz

fmax

= 218 GHz

0

10

20

30

0 1 2 3

mA

/m

2

Vce

150 nm thick collector

70 nm thick collector

60 nm thick collector

200 GHz master-slavelatch design

Z. Griffith, E. Lind

J. Hacker, M. Jones

324 GHzAmplifier

Page 62: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

324 GHz Medium Power Amplifiers in 256 nm HBT

ICs designed by Jon Hacker / Teledyne

Teledyne 256 nm process flow-

Hacker et al, 2008 IEEE MTT-S

~2 mW saturated output power

0

10

20

30

40

Cu

rre

nt,

mA

-20

-10

0

10

20

Gai

n (

dB

), P

ow

er

(dB

m),

PA

E (

%)

-20 -15 -10 -5 0 5

Input Power (dBm)

O utput Pow er (dBm )

G ain (dB)

D ra in C urrent (m A )

P AE (% )

Page 63: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

128 / 64 / 32 nm HBT Technologies

Page 64: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

Conventional ex-situ contacts are a mess

textbook contact with surface oxide

Interface barrier → resistance

Further intermixing during high-current operation → degradation

with metal penetration

THz transistor bandwidths: very low-resistivity contacts are required

Page 65: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

Improvements in Ohmic Contacts

128 nm generation requires ~ 4 - μm2 emitter & base resistivities

64 nm generation requires ~ 2 - μm2

Contacts to N-InGaAs*:Mo MBE in-situ 2.2 (+/- 0.5) - μm2

TiW ex-situ / NH4 pre-clean ~2.2 - μm2

variable between process runs

Contacts to P-InGaAs:Mo MBE in-situ below 2.5 - μm2

Pd/Ti... ex-situ ~4 - μm2

...far better contacts coming...

*measured emitter resistance remains higher than that of contacts.

A.. CrookV. JainA. BaraksharM. WisteyU. Singisetti

S. Bank

Page 66: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

Mo Emitter Contacts: Robust Integration into Process Flow

Proposed Process Integration:M. WisteyA. BaraksharU. SingisetttiV. Jain

Page 67: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

Process Must Change Greatly for 128 / 64 / 32 nm Nodes

Undercutting of emitter ends

control undercut→ thinner emitter thinner emitter

→ thinner base metalthinner base metal→ excess base metal resistance

{101}A planes: fast

{111}A planes: slow

Page 68: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

128 nm Emitter Process: Dry Etched Metal & Semiconductor

SiO2

TiW

InGaAs n++

InGaAs p++ Base

InP n

CrSF6/Ar ICP Cl2/N2 ICPSiNx sidewall

Wet Etch

HCl:H3PO4BHF

Ti

a b c d e

InGaAs p++ Base InGaAs p++ Base InGaAs p++ Base InGaAs p++ Base

InP n

InGaAs n++ InGaAs n++

Litho patternmetal

sidewall dry etch wet etch

0

10

20

30

109 1010 1011 1012

10

9

10

10

101

1

10

12

dB

Hz

f = 560 GHz

fmax

= 560 GHz

U

H21

0

5

10

15

20

0 1 2 3 4V

cem

A/

m2

results @ c.a. 200 nm emitter metal width

E. Lind

Page 69: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

Planarization E/B Processes for 64 & 32 nm

Planarization boundary

E; LobisserV. JainG. Burek

Page 70: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

III-V FET Scaling

Page 71: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

Simple FET ScalingGoal double transistor bandwidth when used in any circuit → reduce 2:1 all capacitances and all transport delays

→ keep constant all resistances, voltages, currents

All lengths, widths, thicknesses reduced 2:1

S/D contact resistivity reduced 4:1

oxgm TvWg /~/

oxgggs TLWC /~/

~/, gfgs WC

subcgsb TLWC /~/

If Tox cannot scale with gate length,

Cparasitic / Cgs increases,

gm / Wg does not increase

hence Cparasitic /gm does not scale

~/ ggd WC

Page 72: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

FET scaling: Output Conductance & DIBL effects) D.O.S.neglects expression ( gsC

gchd WC ~

dschdgsgsd VCVCQQI where/

/~ oxgggs TLWC

transconductance

→ Keep Lg / Tox constant as we scale Lg

output conductance

Page 73: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

parameter change

gate length decrease 2:1

gate dielectric capacitance density increase 2:1

gate dielectric equivalent thickness decrease 2:1

channel electron density increase 2:1

source & drain contact resistance decrease 4:1

current density (mA/m) increase 2:1

Changes required to double transistor bandwidth:

FET Scaling Laws

GW widthgate

GL

Page 74: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

III-V MOSFETs for VLSI

What is it ?MOSFET with an InGaAs channel

What are the problems ?low electron effective mass→ constraints on scaling !must grow high-K on InGaAs, must grow InGaAs on Si

Our focus today is III-V FET scaling generally

Why do it ?low electron effective mass→ higher electron velocitymore current, less charge at a given insulator thickness & gate lengthvery low access resistance

Page 75: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

Low Effective Mass Impairs Vertical Scaling

Shallow electron distribution needed for high gm / Gds ratio.

./ 2*2wellTmL

Only one vertical state in well. Minimum ~ 5 nm well thickness.→ constrains gate length scaling.

For thin wells, only 1st state can be populated.For very thin wells, 1st state approaches L-valley.

Energy of Lth well state

Page 76: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

Density-Of-States Capacitance

Two implications:

- With Ns >1013/cm2, electrons populate satellite valleys - Transconductance limited by finite state density

and n is the # of band minima

)//( 2* nmnEE swellf

2*2 / where nmqcdos

dosswellf cVV /

Fischetti et al, IEDM2007

Solomon & Laux , IEDM2001

motion) nalbidirectio(

Page 77: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

Drive Current in the Ballistic & Degenerate Limits

2/3*

,

2/1*2/3

)/()/(1 where,

V 1m

mA84

ooxodos

othgs

mmncc

mmnK

VVKJ

0

0.05

0.1

0.15

0.2

0.25

0.01 0.1 1

K

m*/mo

1.0 nm, n=1

0.8 nm, n=1

0.7 nm, n=6 0.4 nm, n=6

EOT includes wavefunction depth (0.5 nm for 3.5 nm InGaAs well)

n = # band minimacdos,o = density of states capacitance for m*=mo & n=1

Error bars on Si data points correct for (Ef-Ec)>> kT approximation

Page 78: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

HEMT Scaling Challenge: Low Gate Barrier

Tunneling through barrier→ sets minimum thickness

Source DrainGate

Ec

Ewell-

EF

Ec

Ewell-

EF

Gate barrier is low: ~0.6 eV

Emission over barrier→ limits 2D carrier density

K Shinohara

eV 6.0~)( ,cm/10At 213cfs EEN

Page 79: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

Ec

Ewell-

EF

N+ caplayer

HEMT Scaling Challenge: High Access Resistance

low leakage: need high barrier under gate

Source DrainGate

Ec

Ewell-

EF

Gate barrier also lies under source / drain contacts

low resistance: need low barrier under contacts

widegap barrier layer

N+ layer

K Shinohara

Page 80: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

THz III-V FET Scaling: What Must Be Done

As gate length is reduced...

channel thickness should be reduced...

barrier thickness should be reduced...

target gm/Wg and Id/Wg

should be increased...

source and drain access resistivity should be reduced...

We face serious difficulties in doing these.

parameter change

gate length decrease 2:1

gate dielectric capacitance density increase 2:1

gate dielectric equivalent thickness decrease 2:1

channel electron density increase 2:1

source & drain contact resistance decrease 4:1

current density (mA/m) increase 2:1

Changes required to double transistor bandwidth:

FET Scaling Laws

GW widthgate

GL

Page 81: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

substrate

barrier

sidewall

metal gate

quantum well / channel

gate dielectric

N+ source N+ drain

source contact drain contact

A MOSFET Might Scale Better than a HEMT

no gate barrier under S/D contacts

high-K gatebarrier

Overlap between gateand N+ source/drain

Page 82: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

Interconnects

Page 83: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

kz

Parasitic slot mode

-V 0V +V

0V

Coplanar WaveguideNo ground viasNo need (???) to thin substrate

Parasitic microstrip mode

+V +V +V

0V

Hard to ground IC to package

substrate mode coupling or substrate losses

ground plane breaks → loss of ground integrity

Repairing ground plane with ground straps is effective only in simple ICsIn more complex CPW ICs, ground plane rapidly vanishes → common-lead inductance → strong circuit-circuit coupling

40 Gb/s differential TWA modulator drivernote CPW lines, fragmented ground plane

35 GHz master-slave latch in CPWnote fragmented ground plane

175 GHz tuned amplifier in CPWnote fragmented ground plane

poor ground integrity

loss of impedance control

ground bounce

coupling, EMI, oscillation

III-V:semi-insulating substrate→ substrate mode coupling

Siliconconducting substrate→ substrate conductivity losses

Page 84: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

kz

Classic Substrate Microstrip

Strong coupling when substrate approaches ~d / 4 thickness

H

W Thick Substrate → low skin loss

Hrskin 2/1

1

Zero ground inductance in package

a

Brass carrier andassembly ground

interconnectsubstrate

IC with backsideground plane & vias

near-zeroground-groundinductance

IC viaseliminateon-wafergroundloops

High via inductance

12 pH for 100 m substrate -- 7.5 @ 100 GHz

TM substrate mode coupling

Line spacings must be ~3*(substrate thickness)

lines must be widely spaced

ground vias must be widely spaced

all factors require very thin substrates for >100 GHz ICs→ lapping to ~50 m substrate thickness typical for 100+ GHz

No ground planebreaks in IC

Page 85: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

fewer breaks in ground plane than CPW

III-V MIMIC Interconnects -- Thin-Film Microstrip

narrow line spacing → IC density

... but ground breaks at device placements

still have problem with package grounding

thin dielectrics → narrow lines → high line losses → low current capability → no high-Zo lines

H

W

HW

HZ

r

oo 2/1

~

...need to flip-chip bond

no substrate radiation, no substrate losses

InP mm-wave PA (Rockwell)

Page 86: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

No breaks in ground plane

III-V MIMIC Interconnects -- Inverted Thin-Film Microstrip

narrow line spacing → IC density

... no ground breaks at device placements

still have problem with package grounding

thin dielectrics → narrow lines → high line losses → low current capability → no high-Zo lines

...need to flip-chip bond

Some substrate radiation / substrate losses

InP 150 GHz master-slave latch

InP 8 GHz clock rate delta-sigma ADC

Page 87: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

No clean ground return ? → interconnects can't be modeled !

35 GHz static divider interconnects have no clear local ground return interconnect inductance is non-local interconnect inductance has no compact model

InP 8 GHz clock rate delta-sigma ADC

8 GHz clock-rate delta-sigma ADC thin-film microstrip wiring every interconnect can be modeled as microstrip some interconnects are terminated in their Zo some interconnects are not terminated ...but ALL are precisely modeled

Page 88: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

VLSI Interconnects with Ground Integrity & Controlled Zo

negligible breaks in ground plane

narrow line spacing → IC density

negligible ground breaks @ device placements

still have problem with package grounding

thin dielectrics → narrow lines → high line losses → low current capability → no high-Zo lines

...need to flip-chip bond

no substrate radiation, no substrate losses

Page 89: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

Conclusions

Page 90: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

Few-THz Transistors

Scaling limits: contact resistivities, device and IC thermal resistances.

Few-THz InP Bipolar Transistors: can it be done ?

62 nm (1 THz f, 1.5 THz fmax ) scaling generation is feasible.700 GHz amplifiers, 450 GHz digital logic

Is the 32 nm (1 THz amplifiers) generation feasible ?

Few-THz InP Field-Effect Transistors: can it be done?

challenges are gate barrier, vertical scaling,source/drain access resistance, increased gm and drive current.

2DEG carrier concentrations must increase.

S/D regrowth offers a path to lower access resistance.

Solutions needed for gate barrier: maybe even MOSFET ?

Page 91: Scaling of High Frequency III-V Transistors rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax Short Course, 2009 Conference on InP and Related Materials,

What Would We Do With Them ?

THz amplifiers→ THz radios→ imaging, sensing, communications

precision analog design at microwave frequencies→ high-performance receivers

500 GHz digital logic→ fiber optics

Higher-Resolution Microwave ADCs, DACs, DDSs