29
Scintillator Tile Hadronic Calorimeter Prototype (analog or semidigital) M.Danilov ITEP(Moscow) CALICE Collaboration LCWS04, Paris

Scintillator Tile Hadronic Calorimeter Prototype (analog or semidigital) M.Danilov ITEP(Moscow)

Embed Size (px)

DESCRIPTION

LCWS04, Paris. Scintillator Tile Hadronic Calorimeter Prototype (analog or semidigital) M.Danilov ITEP(Moscow) CALICE Collaboration. O utline. Granularity required for Particle Flow Method Silicon Photomultiplier (SiPM) Optimization of Tile Fiber System - PowerPoint PPT Presentation

Citation preview

Page 1: Scintillator Tile Hadronic  Calorimeter Prototype (analog  or semidigital) M.Danilov ITEP(Moscow)

Scintillator Tile Hadronic Calorimeter Prototype

(analog or semidigital)

M.Danilov ITEP(Moscow)

CALICE Collaboration

LCWS04, Paris

Page 2: Scintillator Tile Hadronic  Calorimeter Prototype (analog  or semidigital) M.Danilov ITEP(Moscow)

Outline

• Granularity required for Particle Flow Method

• Silicon Photomultiplier (SiPM)

• Optimization of Tile Fiber System

• Experience with MINICAL production (108 channels)

• Preparation of Physics Prototype

• Conclusions

Page 3: Scintillator Tile Hadronic  Calorimeter Prototype (analog  or semidigital) M.Danilov ITEP(Moscow)

LC Physics goals require EJ/√EJ~30%

This can be achieved with Particle Flow Method (PFM): Use calorimeter only for measurement of K,n, and Substitute charged track showers with measurements in tracker

LC detector architecture is based on PFM, which is tested mainly with MC

Experimental tests of PFM are extremely importantWe are building now a prototype of scintillator tile calorimeter to test PFM

Page 4: Scintillator Tile Hadronic  Calorimeter Prototype (analog  or semidigital) M.Danilov ITEP(Moscow)

Longitudinalsegmentationmore important

Page 5: Scintillator Tile Hadronic  Calorimeter Prototype (analog  or semidigital) M.Danilov ITEP(Moscow)

(A.Raspereza)

Page 6: Scintillator Tile Hadronic  Calorimeter Prototype (analog  or semidigital) M.Danilov ITEP(Moscow)
Page 7: Scintillator Tile Hadronic  Calorimeter Prototype (analog  or semidigital) M.Danilov ITEP(Moscow)

Separation can be further improved by optimization of algorithm

Page 8: Scintillator Tile Hadronic  Calorimeter Prototype (analog  or semidigital) M.Danilov ITEP(Moscow)
Page 9: Scintillator Tile Hadronic  Calorimeter Prototype (analog  or semidigital) M.Danilov ITEP(Moscow)

SiPM main characteristics

R 50

h

pixel

Ubias

Al

Depletion Region2 m Substrate

ResistorRn=400 k

20m

42m

Pixel size ~20-30m Electrical inter-pixel cross-talk minimized by: - decoupling quenching resistor for each pixel - boundaries between pixels to decouple them reduction of sensitive area and geometrical efficiency• Optical inter-pixel cross -talk:-due to photons from Geiger discharge initiated by one electron and collected on adjacent pixel

Working point: VBias = Vbreakdown + V ~ 50-60 V V ~ 3V above breakdown voltage

Each pixel behaves as a Geiger counter withQpixel = V Cpixel

with Cpixel~50fmF Qpixel~150fmC=106e

Dynamic range ~ number of pixels (1024) saturation

Page 10: Scintillator Tile Hadronic  Calorimeter Prototype (analog  or semidigital) M.Danilov ITEP(Moscow)

SiPM Spectral EfficiencyDepletion region is very small ~ 2mstrong electric field (2-3) 105 V/cmcarrier drift velocity ~ 107 cm/svery short Geiger discharge development < 500 pspixel recovery time = (Cpixel Rpixel) ~ 20 ns

Photon detection efficiency (PDE):- for SiPM the QE (~90%) is multiplied by Geiger efficiency (~60%) and by geometrical efficiency (sensitive/total area ~30%) - highest efficiency for green light important when using with WLS fibers

Temperature and voltage dependence: -1 oC +3% in Gain * PDE+0.15 V +3% in Gain * PDE

WLS fiber emission

Page 11: Scintillator Tile Hadronic  Calorimeter Prototype (analog  or semidigital) M.Danilov ITEP(Moscow)

Photon detection efficiency = QEgeom

0

10

20

30

40

0 1 2 3 4 5 60

5

10

15

20

Ubreakdown=48V

operating voltage

one pixel gain (exp. data) one pixel gain (linear fit)

One

pix

el g

ain

M, 1

05

Overvoltage U=U-Ubreakdown

, V

detection efficiency ( =565nm)

Effi

cien

cyof

ligh

t reg

istr

atio

n

, %

Page 12: Scintillator Tile Hadronic  Calorimeter Prototype (analog  or semidigital) M.Danilov ITEP(Moscow)

1 10 100 1000 100001

10

100

1000

100 1

10 Energy Deposited, MIP

25

1

SiP

M s

ign

al

Number of phe

Individual tile energy reconstruction using calibration curve SiPM signal vs energy deposited:

0 200 400 600 800 1000 12000

200

400

600

800

1000

1200

1400

1600

1ch = 50 ps

LED Tile

TDC channel

Co

un

ts

50

100

150

200

250

Co

un

ts

,pix

e ls

:

SiPM signal saturation due to finite number of SiPM pixels

Very fast pixel recovery time ~ 20ns

For large signals each pixel fires about 2 times during pulse from tile

Average number of photoelectrons for

central tiles for 6 GeV

Page 13: Scintillator Tile Hadronic  Calorimeter Prototype (analog  or semidigital) M.Danilov ITEP(Moscow)

SiPM Noise

random trigger

1p.e.2p.e.

3p.e.Ped.

noise rate vs. threshold

Optimization of operatingvoltage is subject of R&Dat the moment.

1p.e. noise rate ~2MHz.threshold 3.5p.e. ~10kHzthreshold 6p.e. ~1kHz

Page 14: Scintillator Tile Hadronic  Calorimeter Prototype (analog  or semidigital) M.Danilov ITEP(Moscow)

LED signal ~150 pixels

A=f(G, , x)

Comparison of the SiPM characteristics in magnetic field of B=0Tand B=4T

(very prelimenary, DESY March 2004)

No Magnetic Field dependence at 1% level

(Experimental data accuracy)

Page 15: Scintillator Tile Hadronic  Calorimeter Prototype (analog  or semidigital) M.Danilov ITEP(Moscow)

Long term stability of SiPM

20 SiPMs worked during 1500 hours

Parameters under control:

•One pixel gain

•Efficiency of light registration

•Cross-talk

•Dark rate

•Dark current

•Saturation curve

•Breakdown voltageNo changes within experimental errors

5 SiPM were tested 24 hours at increased temperatures of 30, 40, 50, 60, 70, 80, and 90 degrees

No changes within experimental accuracy

Page 16: Scintillator Tile Hadronic  Calorimeter Prototype (analog  or semidigital) M.Danilov ITEP(Moscow)

Light Yield from Tiles with Circular WLS Fibers(Y11 MC 1mm fiber, Vladimir Scintillator, mated sides, 3M foil on top and bottom ) Reduction near tile edges is due to finite size of a source

Sufficient uniformity for a hadron calorimeter even for large tilesCan be further improved if required Sufficient light yield of 17, 28, 21 pixels/mip for 12x12, 6x6, and 3x3 cm2 tiles (quarter of a circle fiber in case of 3x3 cm2 tile)

16x16x0.5cm35x5x0,5cm3

Page 17: Scintillator Tile Hadronic  Calorimeter Prototype (analog  or semidigital) M.Danilov ITEP(Moscow)

Experience with a small (108ch) prototype (MINICAL)

Tile with SiPM

cassette

3x3 tiles

SiPM

Moscow Hamburg

Page 18: Scintillator Tile Hadronic  Calorimeter Prototype (analog  or semidigital) M.Danilov ITEP(Moscow)

Light Yield from Minical tiles (5x5x0.5cm3)

Using triggered Sr source and LED at ITEP

Using electron beam at DESY(SiPM signals without amplification)

Good reproducibility after transportation from Moscow to Hamburg

N pixel

LED

Page 19: Scintillator Tile Hadronic  Calorimeter Prototype (analog  or semidigital) M.Danilov ITEP(Moscow)

PMTile 1 Tile 2

Cross-talk measurement

- Conditions: 50 mm tiles with mated edges, - source, 2mm collimator.- Red points: 3M film on top and bottom of both tiles; blue points: black paper instead of 3M for tile 1.- Right picture: details of top and bottom of the left one.- Conclusion: Cross talk <1%

scanning

millimeters

I

Page 20: Scintillator Tile Hadronic  Calorimeter Prototype (analog  or semidigital) M.Danilov ITEP(Moscow)

Scheme of test bench for SiPM selection at ITEP

Steeringprogram

Remote control 16 channel

power supply

…….

Tested SiPM

.. X~100

16 ch amp

16 ch

12 bit ADC

16 ch

12 bit ADC

PC driven generatorLED driver

gate

DATA

BASE

SiPMs will be tested and calibrated with LED before installation into tiles (noise, amplification, efficiency, response curve, x-talk)

Page 21: Scintillator Tile Hadronic  Calorimeter Prototype (analog  or semidigital) M.Danilov ITEP(Moscow)

Test bench for tile tests at ITEP

16 sci tile plane-source

trigger counter

16 chan amps16 ch12 bitADC

movable frame

Steering program

stepmotor

DATA

BASE

discriminator

gate

16 ch remotecontrol powersupply

Tiles will be tested with a triggered β source and LED before installation into cassette

Page 22: Scintillator Tile Hadronic  Calorimeter Prototype (analog  or semidigital) M.Danilov ITEP(Moscow)

Cassette with Tiles and Electronic Cards

All tiles in the cassette will be tested before transportation to DESYFinal tests and commissioning with FE electronics and DAQ will be done at DESY

Page 23: Scintillator Tile Hadronic  Calorimeter Prototype (analog  or semidigital) M.Danilov ITEP(Moscow)

Absorber and Support Structure

Page 24: Scintillator Tile Hadronic  Calorimeter Prototype (analog  or semidigital) M.Danilov ITEP(Moscow)

CONCLUSIONS

Particle Flow Method requires high granularity especially longitudinally

Scintillator tiles with WLS fiber light collection and SiPM mounted directly on tiles can be used to build highly segmented hadronic calorimeter, which can be used in analog or semidigital mode

Tests of 108 channel prototype (MINICAL) demonstrated effectiveness and robustness of this technique

Seven thousand channel calorimeter prototype with tiles in the core as small as 3x3 cm2 is being constructed now. It will be ready for tests next year.

Hcal prototype together with Ecal prototype will allow to to test experimentally the Particle Flow Method

Page 25: Scintillator Tile Hadronic  Calorimeter Prototype (analog  or semidigital) M.Danilov ITEP(Moscow)

Scintillator strips with WLS fiber and SiPM readout can be used for muon system and shower position detectors in electromagnetic calorimeters

Scan of Strip Using Cosmics Setup at ITEP

LED cosmics

∑ PoissXtalk·G(x0+i·Δx,0+1 ·√i) Center of strip, N pixels (peak) = 9.7from each side

groove depth 2.5mm

Page 26: Scintillator Tile Hadronic  Calorimeter Prototype (analog  or semidigital) M.Danilov ITEP(Moscow)

Scan of Strip Using Cosmics Setup at ITEPLight yield was corrected for cosmics angular distribution

and interpixel cross talk in SiPM

Poisson mean for MIP at normal incidence for a strip 200x2.5x1cm3

Large number of p.e. leads to high efficiency >99.9 Technique for a compact,efficient and simple in operation muon detector

Left SiPM Right SiPM

Sum

Page 27: Scintillator Tile Hadronic  Calorimeter Prototype (analog  or semidigital) M.Danilov ITEP(Moscow)

Emission Spectrum of Y11 WLS Fiber

Measured at distances 10cm, 30cm, 100cm and 300cm from source.

Page 28: Scintillator Tile Hadronic  Calorimeter Prototype (analog  or semidigital) M.Danilov ITEP(Moscow)
Page 29: Scintillator Tile Hadronic  Calorimeter Prototype (analog  or semidigital) M.Danilov ITEP(Moscow)

Amplitude Dependence on Temperature

T=+9.5oC

T=+14.6oC

T=+20.1oC

T=+25.3oC