67
1 1.0 Introduction Seismic exploration provides the engineer with knowledge of subsurface- conditions, required for the safe and economical design of a project and inform the engineer about the materials and conditions he will encounter. Explorations are normally accomplished in phased sequence as follows: - reconnaissance investigations - exploration for preliminary design - explorations for detailed design - explorations during construction SEISMIC SURVEYS

Seismic Student

Embed Size (px)

Citation preview

Page 1: Seismic Student

1

1.0 IntroductionSeismic exploration provides the engineer with knowledge of subsurface-conditions, required for the safe and economical design of a project and inform the engineer about the materials and conditions he will encounter. Explorations are normally accomplished in phased sequence as follows:

- reconnaissance investigations- exploration for preliminary design- explorations for detailed design- explorations during construction

SEISMIC SURVEYS

Page 2: Seismic Student

2

Page 3: Seismic Student

3

Page 4: Seismic Student

4

Page 5: Seismic Student

5

Seismic surveys are carried out primarily by the oil and gas industry:

- to identify areas (called hydrocarbon traps) where oil and gas may haveaccumulated

- determining a geologic formation’s potential for containing commercialquantities of economically producible oil and/or gas

- identifying the best locationsto drill an exploratory well

- drilling exploration anddelineation wells to deter-mine where hydrocarbons are present and to measure the area and thickness of the oil/gasreservoir.

Page 6: Seismic Student

6

Page 7: Seismic Student

7

The rock formations may indicate whether oil/gas might be present. These include former sedimentary basins, faults and ancient reefs that can act as underground traps for crude oil/gas.

Seismic information helps companies decide whether:

- the available information is sufficient to justify drilling an exploratory well

- additional surveys are needed to better define the structures beforedrilling

- the features present are not attractive enough to warrant further interest

Page 8: Seismic Student

8

A seismic line looks like a cross section through the earth. Initially these are used to map structural traps where hydrocarbons may accumulate – at its simplest at high points of domes known as anticlines, but also places where faults or erosion cut off a reservoir. Stratigraphic traps, where the geology changes laterally from one rock type to another, such as a buried sandy channel, sand bar, or carbonate reef can also be mapped using seismic data.

Page 9: Seismic Student

9

1.1 System Configuration

i) Acoustic signal processor and graphic recorder

ii) Sound source

Page 10: Seismic Student

10

iii) a recording cable called ‘streamer’ which contains hydrophones

Page 11: Seismic Student

11

iv) Energy source

The energy source required to drive aseismic source must be able to convertregular mains voltage into the high voltage (3500 volt/1500 amperes) necessary to energise the soundsource. It must be able to do this safely and reliably, and be sited in a convenientlocation.

Page 12: Seismic Student

12

1.11 Signal Processor and Graphic Recorder- The recorder is the visual interface for any seismic system.- The recorder also include a control panel to allow the operator to selectoptimum repetition rate of the energy source.

- Gain controls are used to vary the intensity of the traced record- By programming appropriate triggering and gating sequences, most of the undesirable background noise may be eliminated

Page 13: Seismic Student

13

1.12 HydrophonesHydrophone is the standard receiver in marine seismic and responds tovariations in pressure. It exist of a piezoelectric ceramic disc. A pressurewave effectively bends the piezoelectric disc, thus generating a voltage(sea picture). This voltage is proportional to the variation of the pressure.

Page 14: Seismic Student

14

1.13 StreamerStreamer digunakan untuk meletakkan hydrophones bagi merekod tenagaseismik yang dibalikkan dari lapisan dibawah dasar laut.

Biasanya didalam streamer diletak minyak khas bagi mengapungkanstreamer secara semula jadi dan membuang udara didalamnya yangmemberi kesan kepada sensitivi hidrophone.

Page 15: Seismic Student

15

Steramer akan merekod tenaga seismik yang dibalikkan menggunakanhidrophone. Tenaga seismik akan ditukar kepada tenaga elektrik dan disalurkan melalui streamer kepada sistem perekod di kapal.

Streamer terdiri dari beberapa komponen penting:

- hydrophones, usually spaced 1 m apart- electronic modules, which digitize and transmit the seismic data- stress members, steel or kevlar, that provide the physical strength, allowing the streamer to be towed in the roughest of weather

- an electrical transmission system, for power to the streamer electronicmodules, and peripheral devices, and for data telemetry

- the skin of the streamer in which all the above are housed

The streamer is divided into sections, each 50-100 m in length, to allow modular replacement of damaged components. Each section is terminated with a connector unit.

Each section is filled with special fluid (synthetic material), which has a specific gravity of less than 1, to make the overall streamer neutrally buoyant.

Page 16: Seismic Student

16

Recent advances have led to a new generation of streamers, moving away from the fluid filled to a solid cable, constructed of extruded foam. They are more robust and resistant to damage, don not leak oil, and are less sensitiveto weather and wave noise.

Streamer tow depths vary from 4-5 m for shallow and in good weather areas,to 8-10 m for deeper penetration in more open waters.

In addition to the internal components, there are 3 types of external device, which are attached to the streamer:

- depth control units or birds- magnetic compasses- acoustic positioning units

bird

Page 17: Seismic Student

17

The wings on the birds are electronically controlled to control the depth in response to the hydrostatic pressure measured by a pressure transducer inside each bird. The birds are normally spaced approximately 300 m apart.

Page 18: Seismic Student

18

For 3D seismic, the position of the streamer must be precisely located. The shape of the streamer is determined using compasses, which measure the deviation of the streamer. A computer algorithm is used to derive the true position from these individual compass measurements, which are located roughly every 300 m.

Page 19: Seismic Student

19

An acoustic ranging units are also used to provide additional position information. These units are attached to the hull of the vessel, the source floats, the streamers themselves and the tailbuoys.

A taibuoy is connected to each streamer to provide hazard warning of the submerged towed streamer and positioning infromation. The tailbuoy is used to house DGPS receivers that are used in the positioning solution for the hydrophone groups in the streamers.

Tailbuoy

Page 20: Seismic Student

20

Kedudukan streamer sepertimana perancangan pengukuran juga bolehdikawal mengguna alat yang bernama ‘Fin’.

Jika berlaku perubahan kedalaman, sudut ‘fin’ akan diubah untukmenetapkan kembali ke kedalaman asal.

Fin diletak pada sela 400-800 m. Setiap fin dikawal berasingan bagi menggerak streamer ke atas, ke bawah, ke kiri dan ke kanan.

Page 21: Seismic Student

21

Page 22: Seismic Student

22

Page 23: Seismic Student

23

1.2 Punca Tenaga/Gelombang SeismicPunca tenaga seismik terawal adalah bahan letupan, antaranyatermasuklah dinamit dan gas peletup (gas exploder). Pada masa sekarang teknologi ini telah diganti dengan non-exsplosive technology.

- echo sounder- pinger- boomers- sparker- air gun

Page 24: Seismic Student

24

Frekuensi tenaga seismik yang digunakan memainkan peranan penting dalam aplikasi seismik. Frekuensi rendah dapat menembusi sedimendengan lebih dalam dan sebaliknya. Frekuensi melebihi 40 kHz menyebabkan keseluruhan tenaga akustik akan dibalikkan oleh dasar. Jarak pulse yang pendek pula akan memberikan resolusi yang lebih baik.

Walau bagaimana pun, frekuensi yang rendah akan menghasilkan jarakpulse yang panjang. Oleh yang demikian nilai frekuensi dan panjang pulse tidak selari, menyebabkan kompromasi mestilah diambil bagi mendapatkan keputusan terbaik. Jadual di bawah menunjukkan panjang pulse dan kadarulangan pulse bagi jenis-jenis sistem seismik di atas

Page 25: Seismic Student

25

Penggunaan tenaga yang tinggi juga menimbulkan masaalah dimana lebih banyak balikan akan berlaku dalam lapisan kolum air. Ini akan menyebabkan data cerapan tidak begitu jelas. Masaalah lain berkaitandengan kuasa tenaga ialah kadar ulangan pulse.

Bagi menyelesaikan isu-isu yang dibincangkan di atas, terdapat berbagaijenis sistem seismik dipasaran yang dapat digunakan.

a. SparkersMerupakan sparker yang menggunakan tenaga tinggi bagi menghasilkantenaga bunyi berfrekuensi rendah (25-2000 Hz). Tenaga bunyi dipancarkandari elektrod yang disediakan. Tenaga elektrik yang dipancarkan biasanyadalam kadar yang rendah. Penembusan dalam julat 200 m hingga 1000 m.

Page 26: Seismic Student

26

Page 27: Seismic Student

27

Sparker melepaskan “steam bubble” dengan menyalurkan elektrik ke electrode yang dikelilingi oleh ‘conducting fluid’ iaitu air laut yang masin. Ini akan menghasilkan getaran tekanan dalam air.

Sparker memerlukan punca tenaga elektrik yang dapat menukarkanvoltage biasa (contoh 24 volts) kepada voltage yang tinggi (3500 volts/1500 amperes) yang diperlukan untuk energise sparker

Page 28: Seismic Student

28

b. BoomerTenaga elektrik yang hantar kepada coil yang dilekatkan kepada plate secara magnetik untuk menghasilkan tenaga akustik. Tenaga elektrik yang diterima oleh coil akan menghasilkan arus elektrik yang bertindak dalam arah keluar. Ini menyebabkan getaran pada plate yang menghasilkan tenaga bunyi. Boomer menghasilkan ‘sharp pulse’ pada frekuensi 500Hz hingga 10 kHz.

Punca tenaga elektrik

Page 29: Seismic Student

29

c. PingerPinger menggunakan transducer piezoelectric untuk menghasilkan tenaga akustik pada frekuensi sehingga 12 kHz. Kedalaman penembusanbergantung kepada jenis sedimen dimana dasar berpasir mempunyai julatpenembusan dari 0 hingga 3 meter dan sehingga 30 meter bagi jenis selut.

d. Air GunKaedah ini menggunakantenaga bunyi bertenaga tinggitetapi berfrekuensi rendahyang dihasilkan melalui perlepasan udara bertekanantinggi didalam chamber kedalam air. Tenaga bunyidilepaskan dengan sela 10-15 saat pada kedalaman 4-8 m. Frekuensi diantara 10-120 Hz.

Page 30: Seismic Student

30

Bagi exsplorasi minyak dan gas, punca tenaga seismic adalah dalam bentuk array bagi meningkatkan lagi resolusi imej. Array mengandungi beberapa air gun yang memancar tenaga seismic serentak pada selatertentu.

Page 31: Seismic Student

31

Page 32: Seismic Student

32

Page 33: Seismic Student

33

Page 34: Seismic Student

34

An airgun is a hollow metal cylinder that generates pulses of sound by releasing bursts of highly pressurized air into the water. In effect, an airgun is like an underwater “pop-gun”.

Airguns are usually combined into an array, and fired in unison to make a louder pulse that penetrates deeper into the seabed. Airgun noise is broadband, and is made up of low frequencies, from about 10 Hz to 1000 3000 Hz.

Airguns are designed to emit low frequency pulses, because only very low frequency sounds can penetrate deep into the earth.

Page 35: Seismic Student

35

Antara kemudahan lain yang penting bagi airgun adalah compressor room yang mengandungi compressor engine dan compressor. Compressor berupaya untuk recharging airguns dengan sela yang kerap dan berterusan.

Page 36: Seismic Student

36

1.3 Principle of Seismic SurveySeismic wave are used to give a picture of deep rock structures.

The seismic wave travels through the water and strikes the seafloor. Some of the energy of the wave is reflected back to the hydrophones.

The rest of the wave carries on until it reaches another rock layer. The time taken for the waves to travel from the source to the hydrophones is used to calculate the distancetraveled - hence the thicknessof the rock layers.

The strength of the reflected wavegives information about the densityof the reflecting rock.

Page 37: Seismic Student

37

Each time the seismic pulse meets a change in rock properties, for example from a shale to a sand layer, part of the pulse will be reflected back to the surface. This is called an event. By measuring precisely the difference in arrival time of a given event from the nearer and further hydrophone groups, the velocity of the rock material can be measured. The seismic measurements are made in time, so if the velocity and time are known, geophysicists can workout the depth of the event.

Page 38: Seismic Student

38

In marine seismic surveys, reflected sound waves, called signals, are combined and interpreted electronically or reproduced on graphic paper recorders. This data gives information on the depth, position and shape of underground geological formations that may contain crude oil or natural gas.

Page 39: Seismic Student

39

Signal ProcessingThe sound sources release seismic waves every 10-15 seconds . The signals are short, sharp pulses with most of the energy at 10-1000 Hz. The pressure waves travel to the ocean floor and subsurface layers. They are reflected back to the surface and recorded by the hydrophones. Different surfaces reflect the waves differently. These differences are recorded and transmitted to the vessel. The structure of the seabed and subsurface is then determined by analyzing the reflected signal.

seismic pulse

Page 40: Seismic Student

40

To reach the desired depths, seismic surveys use high energy, low frequency sound that can penetrate more than 6000 m below the sea floor. The survey results (rock formations/geological structures) do not show definitely whether oil/gas is present, but indicate where they are likely to be found and can help narrow the search area.

How Are The Seismic Data Collected?As the vessel moves along the line, computers control the simultaneous discharge of seismic waves from the sound sources, usually every 10 seconds.

The waves travel down through the rock formations. When they encounter a boundary between diff. formations, some sound waves are reflected back to high-capacity computers, check and store the data collected.

The collected data go through several processing steps to improve the quality of the signals and filter out background noise. Geophysicists then interpret the information to develop a detailed picture of the structures and rock formations.

Page 41: Seismic Student

41

Sela garis pengukuran seismic bergantung kepada tujuan pengukuran, bagi tujuan penyelidikan, sela mungkin beberapa km, kawasan minyak, selalebih rapat, dan 3D seismic melibat kawasan kecil dengan beberapa hidropon array pada sela beberapa puluh meter.

Sela tembakan bunyi bergantung kepada kedalaman, kawasan dalam memerlukan masa balikan yang lebih lama, menjadikan sela tembakan lebih panjang, 9-20 saat, kadangkala 30-60 saat dengan halaju bot 4-5 knots. Kawasan cetek, bot bergerak lebih laju (sehingga 10 knot) kerana masa balikan tenaga lebih cepat, membolehkan sela tembakan lebih singkat.

Bagi seismic cetek dengan kualiti yang baik, sistem seismic menggunakanpunca bunyi yang kecil saiznya dengan frekuensi tinggi dan streamer yang pendek. Sparker dan air gun seringkali digunakan.

Bagi imej yang jauh dibawah dasar, beberapa airgun yang besar digunakan bersama streamer yang panjang. Sparker tidak beberapa sesuai kerana masaalah ‘low power’, air gun sahaja yang sering digunakan.

Page 42: Seismic Student

42

1.4 Jenis Ukur SeismikBoleh diklasifikasikan kepada 2 iaitu

i) ukur seismic 2Dii) ukur seismic 3D

i) Ukur Seismik 2D

Page 43: Seismic Student

43

When exploring a new area where little is known of the subsurface geology, a 2D survey is usually performed. This consists of survey lines spaced one, two, five or more kilometres apart.

Page 44: Seismic Student

44

- Cuma satu streamer sahaja digunakan dan melibatkan kawasan liputanyang luas

- data tegak dan mendatar sahaja (2D) diperolehi iaitu hanyamenggambarkan keratan rentas

- kos yang lebih rendah berbanding ukur seismik 3D

- seismik 2D memberi imej yang kasar (coarse)sahaja untuk meramalkawasan yang mungkin ujud minyak/gas.

- kapal yang digunakan lebih kecil dengan streamer panjang 8-12 kmdigunakan

- sela garis pengukuran lebih jauh berbanding 3D seismik.

Page 45: Seismic Student

45

ii) Ukur seismic 3D3D teknik bukan sahaja menggambarkan struktur bawah tanah, tetapidapat memberi maklumat mengenai cecair yang berada didalamnya. cerapan berulangkali pada masa berbeza dapat mengesan perubahancecair, contohnya kepada minyak, gas, air, pergerakan cecair dan tekanan.

Oleh itu imej berbeza masa (3D/4D) boleh digunamengesan perubahan cecair, terutama telaga minyak, berguna bagi menentukanisipadu, masa yang di perlukanbagi mengambil hasil minyak, gas dan lain-lain langkahkeselamatan.

Page 46: Seismic Student

46

Pengukuran seismik 3D diperkenalkan dalam tahun 1993. Biasanyasumber tenaga seismikberbentuk ‘multiple arrays’ dan jugajuga multiple hydrophonestreamer dengan panjang beberapa kilometer bagimembentuk lebar liputansehingga 1 km. Ukur 3D biasanya dijalankan bagi penentuan kawasanminyak atau gas.

Page 47: Seismic Student

47

- merangkumi kawasan yang kecil, biasanya didalam kawasan seismic 2D yang telah dijalankan

- intrepretasi data yang lebih baik dengan data cerapan dikeseluruhankawasan pengukuran

- 3D seismic mengguna banyak streamer yang ditarik selari antara satu sama lain.

- data yang diperolehi adalah dalam bentuk 3 dimensi- kos pengukuran adalah lebih mahal berbanding 2D. Walau pun begitu dapat mengurangkan resiko kegagalan terhadap projek yang dirancangkan

Page 48: Seismic Student

48

Punca tenaga terdiri daripada beberapa array dengan 6-9 airgun setiap array. Lebih dari satu kapal mungkin terlibat bagi menghasilkan tenaga seismic dalam bentuk array tersebut. Array biasanya berada dalam keadaan selari antara satu sama lain pada jarak 50-200 m dibelakangkapal.

Dibelakang punca tenaga seismik adalah beberapa streamer (4-12 unit) pada jarak 100-200 m dari punca tenaga. Setiap streamer panjangnya 3-8 km tersebar dalam kawasan 400-900 m.

Beberapa kapal punca tenaga (compressors) mungkin diperlukan jika 1 kapal tidak berupaya untuk recharging airgun arrays dalam masa yang diperlukan untuk sela letupan pengukuran. Kapal akan bergerak beriringandan menghasilkan letupan secara selang-seli (sela 10-15 saat).

Page 49: Seismic Student

49

Pengukuran 3D dilakukan dalam bentuk ‘racetrack’, supaya garisanbersebelahan diukur dalam arahyang sama dan mengurangkanmasa untuk berpusing kepada garisan jika bersebelahan, oleh itu kerja lebih efisien.

Ukur 3D memerlukan komputerberkuasa tinggi untuk memprosesisipadu data yang besar.

3D seismik semakin popular dan digunakan dalam hampirkeseluruhan exsplorasimintak/gas, dari peringkat awal, mengenalpasti tempatpenggerudian hinggalahmengawasi isipadu minyak dari masa kesemasa.

Page 50: Seismic Student

50

Page 51: Seismic Student

51

Page 52: Seismic Student

52

Page 53: Seismic Student

53

Page 54: Seismic Student

54

Page 55: Seismic Student

55

Page 56: Seismic Student

56

Page 57: Seismic Student

57

Page 58: Seismic Student

58

Page 59: Seismic Student

59

Page 60: Seismic Student

60

Page 61: Seismic Student

61

Page 62: Seismic Student

62

Page 63: Seismic Student

63

Page 64: Seismic Student

64

Page 65: Seismic Student

65

Page 66: Seismic Student

66

1.5 Seismic Image QualityThere are a number of factors that affect the success of a seismic survey. These may be grouped into 3 classes

i) externalii) vesseliii) instrument limitations

i) External LimitationsThese are those that cannot be controlled. The major is weather: rough seasnot only create discomfort and difficult conditions aboard ship, but cause anincrease in background noise created by breaking waves. This may reducethe quality of the records.

ii) Vessel LimitationsThese can be generally overcome by evaluating the survey requirementsand by throughly checking the vessel’s capabilities before the survey. In some cases, there may be electrical or mechanical interference betweenthe ship’s equipment and seismic instruments.

Page 67: Seismic Student

67

iii) Instrument LimitationsThese may vary with individual systems, but in general the following factors are inherent in all seismic devices:

- the seismic records show layer thickness as a function of time, thus thetrue thickness may only be determined if the speed of sound is known.Accurate velocity data are seldom available, therefore layer thicknessmust be considered approximate