47
Sensing the quantum motion of nanomechanical oscillators Konrad Lehnert Post-docs Tauno Palomaki Joseph Kerckhoff Collaborators John Teufel Cindy Regal Ray Simmonds Kent Irwin Graduate students Jennifer Harlow Reed Andrews Hsiang-Shen Ku William Kindel Adam Reed

Sensing the quantum motion of nanomechanical oscillators › ... › bpa_067262.pdf · Sensing the quantum motion of nanomechanical oscillators Konrad Lehnert Post-docs Tauno Palomaki

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Sensing the quantum motion of nanomechanical oscillators › ... › bpa_067262.pdf · Sensing the quantum motion of nanomechanical oscillators Konrad Lehnert Post-docs Tauno Palomaki

Sensing the quantum motion of nanomechanical oscillators

Konrad Lehnert Post-docs Tauno Palomaki Joseph Kerckhoff Collaborators John Teufel Cindy Regal Ray Simmonds Kent Irwin

Graduate students Jennifer Harlow Reed Andrews Hsiang-Shen Ku William Kindel Adam Reed

Page 2: Sensing the quantum motion of nanomechanical oscillators › ... › bpa_067262.pdf · Sensing the quantum motion of nanomechanical oscillators Konrad Lehnert Post-docs Tauno Palomaki

Precision measurement tools were once mechanical oscillators

Huygens pendulum clock The Cavendish balance for weighing the earth

Page 3: Sensing the quantum motion of nanomechanical oscillators › ... › bpa_067262.pdf · Sensing the quantum motion of nanomechanical oscillators Konrad Lehnert Post-docs Tauno Palomaki

Modern measurement tools exploit optics and electronics, not mechanics

Imag

e: C

undi

ff la

b JI

LA

Laser light electricity

Optical and electrical measurement tools: Large dynamic range

Page 4: Sensing the quantum motion of nanomechanical oscillators › ... › bpa_067262.pdf · Sensing the quantum motion of nanomechanical oscillators Konrad Lehnert Post-docs Tauno Palomaki

Compact, high-Q mechanical oscillators are ubiquitous in information technology

Quartz crystal oscillator: in everything electronic

Surface acoustic wave filters: In radios, tuners, mobile phones

Applications: Timing and filtering

1 mm

Q ~ 100,000

sound speed << light speed Compact and high-Q oscillators

Page 5: Sensing the quantum motion of nanomechanical oscillators › ... › bpa_067262.pdf · Sensing the quantum motion of nanomechanical oscillators Konrad Lehnert Post-docs Tauno Palomaki

system

optical or electrical probe

Optical probes are ill-suited to directly measuring many interesting systems

100 nm 100 nm

Systems with:

dense low-energy spectra

nanometer length scales

weak coupling to light

nuclear spins in a virus

electrons in an aluminum ring (Harris lab, Yale)

Page 6: Sensing the quantum motion of nanomechanical oscillators › ... › bpa_067262.pdf · Sensing the quantum motion of nanomechanical oscillators Konrad Lehnert Post-docs Tauno Palomaki

probe field

mechanical intermediary

Mechanical oscillators enable measurements of non-atomic systems

Systems with:

dense low-energy spectra

nanometer length scales

weak coupling to light

system

Page 7: Sensing the quantum motion of nanomechanical oscillators › ... › bpa_067262.pdf · Sensing the quantum motion of nanomechanical oscillators Konrad Lehnert Post-docs Tauno Palomaki

Mechanical oscillators are tools that access the nano-world

Mechanical oscillator nanometer probe universal coupling (senses any force)

Optical interferometer detects oscillator motion

Perkins lab, JILA

20 µm

Atomic Force Microscope

Page 8: Sensing the quantum motion of nanomechanical oscillators › ... › bpa_067262.pdf · Sensing the quantum motion of nanomechanical oscillators Konrad Lehnert Post-docs Tauno Palomaki

nanoscale MRI of a single virus Rugar Lab, IBM

Mechanical oscillators form ultrasensitive, mesoscopic magnetometers

tot 1/20.8 aN/HzfS =

Page 9: Sensing the quantum motion of nanomechanical oscillators › ... › bpa_067262.pdf · Sensing the quantum motion of nanomechanical oscillators Konrad Lehnert Post-docs Tauno Palomaki

mechanical oscillator

environment

quantum system

Mechanical oscillators as quantum coherent interfaces between incompatible systems

γ

bathBk T

quantum probe

Γ

1B

m

k T>>

ω

Mechanical oscillators are classical

Quantum regime •state preparation •state measurement •state manipulation

1B

m

k Tγ < Γ ω

Cleland group UCSB Nature 464, 697-703 (1 April 2010)

Page 10: Sensing the quantum motion of nanomechanical oscillators › ... › bpa_067262.pdf · Sensing the quantum motion of nanomechanical oscillators Konrad Lehnert Post-docs Tauno Palomaki

Cavity optomechanics: Use radiation pressure for state preparation and measurement

Fabry-Perot cavity with oscillating mirror

( ) ( )† 12

† 12

ˆ ˆc m IH Ha a b b= + ω ++ +ω

† †ˆ ˆˆ ( )I zpH F a ax x bg b= ⋅ = +

Infer motion through optical phase Cool with cavity-retarded radiation force

Aspelmeyer lab, IOQOI, Vienna

~ 2 10 Hzzpgx G≡ π×

Page 11: Sensing the quantum motion of nanomechanical oscillators › ... › bpa_067262.pdf · Sensing the quantum motion of nanomechanical oscillators Konrad Lehnert Post-docs Tauno Palomaki

Images of cavity optomechanical systems

UCSB: Bouwmeester

ENS: Pinard and Heidmann

Caltech, Painter

EPFL, Kippenberg

Yale, Harris

MIT, Mavalvala

2 1 MHzG ≈ π×

Page 12: Sensing the quantum motion of nanomechanical oscillators › ... › bpa_067262.pdf · Sensing the quantum motion of nanomechanical oscillators Konrad Lehnert Post-docs Tauno Palomaki

Microwave cavity optomechanics

Page 13: Sensing the quantum motion of nanomechanical oscillators › ... › bpa_067262.pdf · Sensing the quantum motion of nanomechanical oscillators Konrad Lehnert Post-docs Tauno Palomaki

coupling

cavity

Fabry-Perot cavity LC oscillator

Strategy

Cool environment to Tbath << 1 K

High Q mechanical oscillators

mk

mk

Reduce coupling to the environment by lowering temperature: microwave optomechanics

Microwave “light” in ultralow temperature cryostat

bath 1B

m

k Tγ < Γ ω

Page 14: Sensing the quantum motion of nanomechanical oscillators › ... › bpa_067262.pdf · Sensing the quantum motion of nanomechanical oscillators Konrad Lehnert Post-docs Tauno Palomaki

Braginsky, V. B., V. P. Mitrofanov, and V. I. Panov, 1981, Sistemi s maloi dissipatsei (Nauka, Moscow) [English translation: Systems with Small Dissipation (University of Chicago, Chicago, 1985)].

Superconducting electromechanics used in resonant mass gravitational wave detectors

Meter sized superconducting cavity with mechanically compliant element

Page 15: Sensing the quantum motion of nanomechanical oscillators › ... › bpa_067262.pdf · Sensing the quantum motion of nanomechanical oscillators Konrad Lehnert Post-docs Tauno Palomaki

Resonant electromechanics used in surveillance

Soviet passive bug hidden in the United States Seal

Henry Cabot Lodge, Jr. May 26, 1960 in the UN

Images appear in http://www.spybusters.com/Great_Seal_Bug.html

Page 16: Sensing the quantum motion of nanomechanical oscillators › ... › bpa_067262.pdf · Sensing the quantum motion of nanomechanical oscillators Konrad Lehnert Post-docs Tauno Palomaki

Wire response

drive frequency (MHz)

Cavity optomechanical system realized from a nanomechanical wire in a resonant circuit

Qm=300,000

400 µm

microwave resonant circuit

7 GHz2

cω=

π

150 µm

2 0.3 HzG = π×

200 kHzκ =

Page 17: Sensing the quantum motion of nanomechanical oscillators › ... › bpa_067262.pdf · Sensing the quantum motion of nanomechanical oscillators Konrad Lehnert Post-docs Tauno Palomaki

Parallel-plate capacitor geometry enhances microwave—mechanics interaction

capacitor built with suspended micromechanical membrane*

15 mµ

*K. Cicak, et al APL 96, 093502 (2010) . J. D. Teufel et al arXiv:1011.3067

Electrical circuit resonant at 7 GHz

2 50 HzG ≈ π×

Page 18: Sensing the quantum motion of nanomechanical oscillators › ... › bpa_067262.pdf · Sensing the quantum motion of nanomechanical oscillators Konrad Lehnert Post-docs Tauno Palomaki

Nanomechanical motion monitored with a microwave Mach-Zehnder interferometer

φ

0

1

0

221S

∆φ

c gx∆ω= =

κ∆φ

κ

Infer wire motion from phase shift

phase reference

12 noise quanta

/ photon fluxAS

NN

φ

+= =

τ

Phase sensitivity limited by amplifier (HEMT)

40AN ≈

/N τeω

φ

ωd

Page 19: Sensing the quantum motion of nanomechanical oscillators › ... › bpa_067262.pdf · Sensing the quantum motion of nanomechanical oscillators Konrad Lehnert Post-docs Tauno Palomaki

frequency (MHz)

260 mK 147 mK

Thermal motion of beam calibrates interferometer noise (imprecision)

50 mK

C. A. Regal, J. D. Teufel, KWL Nature Phys. (2008)

impxS

Determine measurement imprecision

TxS

impxS

()

2H

z/H

zc

S ω

imp 290 SQLxS = ×

Minimum imprecision

sqlx

m

Sm

=ω γ

Imprecision at the SQL

imp 145 ZPExS =

Page 20: Sensing the quantum motion of nanomechanical oscillators › ... › bpa_067262.pdf · Sensing the quantum motion of nanomechanical oscillators Konrad Lehnert Post-docs Tauno Palomaki

Amplifier added noise mimics quantum inefficiency

η

12 1AN

η =+

NA = 40 η = 1.2%

Excellent microwave amplifier:

Page 21: Sensing the quantum motion of nanomechanical oscillators › ... › bpa_067262.pdf · Sensing the quantum motion of nanomechanical oscillators Konrad Lehnert Post-docs Tauno Palomaki

Efficient quantum measurement

Page 22: Sensing the quantum motion of nanomechanical oscillators › ... › bpa_067262.pdf · Sensing the quantum motion of nanomechanical oscillators Konrad Lehnert Post-docs Tauno Palomaki

Linear amplifiers must add noise

Phase-preserving linear amplifiers at least double quantum noise

12AN ≥

( )1 2ˆ ˆ( ) cos sinqV t V X t X tω ω= +

1X

2X

in )( iout n

AVV G N+=

out

Page 23: Sensing the quantum motion of nanomechanical oscillators › ... › bpa_067262.pdf · Sensing the quantum motion of nanomechanical oscillators Konrad Lehnert Post-docs Tauno Palomaki

A single quadrature amplifier preserves entropy with photon number gain

1X

2X

1 2 2 1ˆ ˆ ˆ ˆ

2out out out out iX X X X− =

1 1

2 2

ˆ ˆ

1ˆ ˆ

out in

out in

X GX

X XG

=

=

0AN ≥

2 4

2 1

in out

NA , G in out

( )1 2ˆ ˆ( ) cos sinqV t V X t X tω ω= +

Page 24: Sensing the quantum motion of nanomechanical oscillators › ... › bpa_067262.pdf · Sensing the quantum motion of nanomechanical oscillators Konrad Lehnert Post-docs Tauno Palomaki

JPA HEMT

Incorporate quantum pre-amplifier into the Mach-Zehnder interferometer

HEMTJPA

JPAA

NN NG

= +

Josephson parametric amplifier (JPA) makes more photons without more entropy

Page 25: Sensing the quantum motion of nanomechanical oscillators › ... › bpa_067262.pdf · Sensing the quantum motion of nanomechanical oscillators Konrad Lehnert Post-docs Tauno Palomaki

Diagram conceals some complexity

50 cm

mechanics

JPA

Dilution refrigerator

Page 26: Sensing the quantum motion of nanomechanical oscillators › ... › bpa_067262.pdf · Sensing the quantum motion of nanomechanical oscillators Konrad Lehnert Post-docs Tauno Palomaki

signal port Kerr medium pump port

pump signal in

amplified signal out

Realization of Josephson parametric amplifier

array of 480 SQUIDs embedded in a CPW resonator

30 µm

M. A. Castellanos-Beltran, K. D Irwin, KWL, et al, Nature Phys. (2008)

JPA 0.1N <

Page 27: Sensing the quantum motion of nanomechanical oscillators › ... › bpa_067262.pdf · Sensing the quantum motion of nanomechanical oscillators Konrad Lehnert Post-docs Tauno Palomaki

Imprecision noise is below the standard quantum limit with the JPA

frequency (MHz)

Q 131,500131 mK

m

T=

=

sql

/x

xS

S

sql/ 0.83x xS S =sql 5.7 fm/ HzxS =

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. Harlow, KWL, Nature Nanotech., 4, 820-823 (2009).

Page 28: Sensing the quantum motion of nanomechanical oscillators › ... › bpa_067262.pdf · Sensing the quantum motion of nanomechanical oscillators Konrad Lehnert Post-docs Tauno Palomaki

Frequency (MHz)

S x (f

m2 /H

z)

efficient interferometer (JPA)

HEMT only

resolve n = 0.1 •10 minutes with JPA •1 week with HEMT

Detecting near ground state motion requires a quantum efficient interferometer

Page 29: Sensing the quantum motion of nanomechanical oscillators › ... › bpa_067262.pdf · Sensing the quantum motion of nanomechanical oscillators Konrad Lehnert Post-docs Tauno Palomaki

Radiation pressure cooling

Page 30: Sensing the quantum motion of nanomechanical oscillators › ... › bpa_067262.pdf · Sensing the quantum motion of nanomechanical oscillators Konrad Lehnert Post-docs Tauno Palomaki

cavity lineshape D.O.S.

ωm

ωc

ωd

ω

( )† ††ˆI zp aH g babx a a= +

Radiation pressure can cool the beam to ground state in the resolved sideband limit

24 dGNΓ =

κ

Nd cavity photons from cooling drive

( )† †ˆdI bH G a bN a+=

linearized interaction around strong cooling drive

Page 31: Sensing the quantum motion of nanomechanical oscillators › ... › bpa_067262.pdf · Sensing the quantum motion of nanomechanical oscillators Konrad Lehnert Post-docs Tauno Palomaki

Radiation pressure changes the wire’s damping rate and resonance frequency

detuning

ωdω

γ

detuning (MHz)

cooling damping

amplifying driving

m∆ω

Mechanical response measures antisymmetric force noise

2

2 [ ( ) ( )]zpf m f m

xS SΓ = ω − −ω

F. Marquardt et al., PRL 99 093902 (2007)

†f Ga a= 2 0.1 HzG = π×

Page 32: Sensing the quantum motion of nanomechanical oscillators › ... › bpa_067262.pdf · Sensing the quantum motion of nanomechanical oscillators Konrad Lehnert Post-docs Tauno Palomaki

Coupling to radiation is too weak to cool wire to motional ground state

2(p

m/H

z)xS

Frequency (MHz)

140B

m

k T=

ω

P = 0.008

P = 1.3

J. D. Teufel, J. W. Harlow, C. A. Regal, KWL Phys. Rev. Lett. 101, 197203 (2008).

Tbath = 50 mK 700B

m

k T=

ω

Nd

Page 33: Sensing the quantum motion of nanomechanical oscillators › ... › bpa_067262.pdf · Sensing the quantum motion of nanomechanical oscillators Konrad Lehnert Post-docs Tauno Palomaki

Use parallel-plate capacitor geometry to enhance coupling in microwave optomechanics

capacitor built with suspended micromechanical membrane*

15 mµ

*K. Cicak, et al APL 96, 093502 (2010) . J. D. Teufel et al arXiv:1011.3067

Electrical circuit resonant at 7 GHz

Page 34: Sensing the quantum motion of nanomechanical oscillators › ... › bpa_067262.pdf · Sensing the quantum motion of nanomechanical oscillators Konrad Lehnert Post-docs Tauno Palomaki

m 2 10.5 MHz2 30 Hz

ω πγ π

= ×= ×

c 2 7.5 GHz2 250 kHz

ω πκ π

= ×= ×

S x (f

m2 /H

z)

Frequency (MHz)

Page 35: Sensing the quantum motion of nanomechanical oscillators › ... › bpa_067262.pdf · Sensing the quantum motion of nanomechanical oscillators Konrad Lehnert Post-docs Tauno Palomaki

Thermal motion reveals large coupling

50 HzG =

2B s

m m

k xk Tnω ω

= =

n os

cilla

tor p

hono

ns

Tbath refrigerator temperature (mK)

Page 36: Sensing the quantum motion of nanomechanical oscillators › ... › bpa_067262.pdf · Sensing the quantum motion of nanomechanical oscillators Konrad Lehnert Post-docs Tauno Palomaki

Cooling mechanics to motional ground state

n = 22

S x (f

m2 /H

z)

n = 0.93

n = 8.5

n = 2.9

n = 27

Frequency (MHz)

Increasing strength of measurement and cooling

Nd

Page 37: Sensing the quantum motion of nanomechanical oscillators › ... › bpa_067262.pdf · Sensing the quantum motion of nanomechanical oscillators Konrad Lehnert Post-docs Tauno Palomaki

Cooling mechanics to motional ground state S c

(rad

2 /Hz)

n = 0.36

n = 0.55

n = 0.93

Frequency (MHz)

G / π ground state and strong coupling

n = 0.38

n = 0.42

J. D. Teufel, T. Donner, KWL et al Nature, 475, 359–363 (2011).

Page 38: Sensing the quantum motion of nanomechanical oscillators › ... › bpa_067262.pdf · Sensing the quantum motion of nanomechanical oscillators Konrad Lehnert Post-docs Tauno Palomaki

Manipulating mechanics with

microwave

Page 39: Sensing the quantum motion of nanomechanical oscillators › ... › bpa_067262.pdf · Sensing the quantum motion of nanomechanical oscillators Konrad Lehnert Post-docs Tauno Palomaki

Strong coupling enables coherent control of mechanics

time (µs)

swap states of cavity and mechanics

κ

V out

(mV

)

dG N > κ

dG N

Page 40: Sensing the quantum motion of nanomechanical oscillators › ... › bpa_067262.pdf · Sensing the quantum motion of nanomechanical oscillators Konrad Lehnert Post-docs Tauno Palomaki

Agile state control provided by extreme resolved sideband limit

ω

cavity preparation

cavity – mechanics interaction Nd (t)

κ/ 50mω κ =

cavi

ty

resp

onse

linearized phonon – photon interaction • beam splitter • time dependent

( )† †ˆ ( )dIH G tN ab ba+=

Page 41: Sensing the quantum motion of nanomechanical oscillators › ... › bpa_067262.pdf · Sensing the quantum motion of nanomechanical oscillators Konrad Lehnert Post-docs Tauno Palomaki

Mechanical oscillators are long-lived coherent memories

( )c mP ω − ω

( )cP ωprepare swap measure

intt

time (µs)

V out

(mV

)

220 π × κ

Page 42: Sensing the quantum motion of nanomechanical oscillators › ... › bpa_067262.pdf · Sensing the quantum motion of nanomechanical oscillators Konrad Lehnert Post-docs Tauno Palomaki

Mechanical oscillators are long-lived coherent memories

( )c mP ω − ω

( )cP ωprepare swap measure

intt

time (µs)

V out

(mV

)

220 π × κ

Page 43: Sensing the quantum motion of nanomechanical oscillators › ... › bpa_067262.pdf · Sensing the quantum motion of nanomechanical oscillators Konrad Lehnert Post-docs Tauno Palomaki

Mechanical oscillators are long-lived coherent memories

int ( )t sµ

V out

(mV

)

Ramsey like oscillation in coupled microwave-mechanical system

Page 44: Sensing the quantum motion of nanomechanical oscillators › ... › bpa_067262.pdf · Sensing the quantum motion of nanomechanical oscillators Konrad Lehnert Post-docs Tauno Palomaki

Quantum states of the micro-drum harmonic oscillator are long-lived

1 6.1 nsT = 1

1 bath

100 s1/T

T n≈ µ

= γCleland group UCSB Nature 464, 697-703 (1 April 2010)

Page 45: Sensing the quantum motion of nanomechanical oscillators › ... › bpa_067262.pdf · Sensing the quantum motion of nanomechanical oscillators Konrad Lehnert Post-docs Tauno Palomaki

Microwave to optical quantum state transfer

Hofheinz…Martinis, Cleland, Nature (2009)

Microwaves: Arbitrary quantum states Require ultralow temperatures Optics: Communication and storage

Page 46: Sensing the quantum motion of nanomechanical oscillators › ... › bpa_067262.pdf · Sensing the quantum motion of nanomechanical oscillators Konrad Lehnert Post-docs Tauno Palomaki

Ingredients for two cavities coupled to one oscillator

Si3N4 membrane

(0,0)

(1,1)

Mechanics and optics couple to different antinodes

GHz

MHz

L C

λ

metal dielectric

Membrane in free-space cavity Superconducting LC circuit

Page 47: Sensing the quantum motion of nanomechanical oscillators › ... › bpa_067262.pdf · Sensing the quantum motion of nanomechanical oscillators Konrad Lehnert Post-docs Tauno Palomaki

Conclusions •Measure, cool, and manipulate nanomechanical elements with microwaves • Optomechanical performance: in quantum regime! cooling: 0.35 phonons imprecision: 0.83 X SQL force: 0.5 aN/Hz1/2 • Microwave Mach-Zehnder interferometer quantum efficiency 30%

Funding: NSF, NIST, DARPA QuEST, DARPA QuASR, NASA