15
Serious Game for Cyber Threat Impact Assessment Air Traffic Controller Cyberattack Evaluation Serious Game (ACES) April 9, 2014 OR / SYST 699 Capstone Project Proposal Prepared by Group 3 Doran Cavett Will Fontan Imran Shah

Serious(GameforCyberThreat(Impact( Assessment( Air(Traffic ... · Serious(GameforCyberThreat(Impact(Assessment((Air(Traffic(Controller(Cyberattack(EvaluationSerious(Game(ACES)(! April!9,2014!!

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Serious(GameforCyberThreat(Impact( Assessment( Air(Traffic ... · Serious(GameforCyberThreat(Impact(Assessment((Air(Traffic(Controller(Cyberattack(EvaluationSerious(Game(ACES)(! April!9,2014!!

 

           

Serious  Game  for  Cyber  Threat  Impact  Assessment  

 Air  Traffic  Controller  Cyberattack  Evaluation  Serious  Game  (ACES)  

 April  9,  2014  

 OR  /  SYST  699  Capstone  Project  Proposal  

 Prepared  by  Group  3  

Doran  Cavett  Will  Fontan  Imran  Shah  

   

Page 2: Serious(GameforCyberThreat(Impact( Assessment( Air(Traffic ... · Serious(GameforCyberThreat(Impact(Assessment((Air(Traffic(Controller(Cyberattack(EvaluationSerious(Game(ACES)(! April!9,2014!!

 

Table  of  Contents    1.  Introduction  ............................................................................................................................................  1  2.  Overview  ..................................................................................................................................................  1  3.  Background  .............................................................................................................................................  1  4.  Problem  Statement  ..............................................................................................................................  3  4.1  Problems  With  ADS-­‐B  Communication  ...............................................................................  4  4.2  ADS-­‐B  Threats  ................................................................................................................................  4  4.2.1  Interception  Attacks  ............................................................................................................  5  4.2.2  Jamming  Attacks  ...................................................................................................................  5  4.2.3  Injection  Attacks  ...................................................................................................................  5  

4.3  Serious  Game  to  Detect  and  Adequately  Respond  to  ADS-­‐B  Cyber  Attacks  ........  6  5.  Stakeholders  ...........................................................................................................................................  7  6.  Project  Scope  ..........................................................................................................................................  7  7.  Assumptions  ...........................................................................................................................................  7  8.  Deliverables  ............................................................................................................................................  7  9.  Preliminary  Requirements  ...............................................................................................................  8  10.  Technical  Approach  ........................................................................................................................  10  10.1  Simulation  Approach  ..............................................................................................................  10  

11.  Expected  Results  ..............................................................................................................................  12  12.  Project  Work  Breakdown  Structure  ........................................................................................  12  13.  References  ...........................................................................................................................................  12    

Table  of  Figures    

Figure  1  –  Overview  of  Campos  Basin  Oil  Operations  ...............................................................  2  Figure  2  –  Campos  Basin  Radar  Coverage  ......................................................................................  3  Figure  3  –  ADS-­‐B  Communication  ......................................................................................................  4  Figure  4  –  Simulation-­‐Emulation  Scenario  ..................................................................................  11  

 

Page 3: Serious(GameforCyberThreat(Impact( Assessment( Air(Traffic ... · Serious(GameforCyberThreat(Impact(Assessment((Air(Traffic(Controller(Cyberattack(EvaluationSerious(Game(ACES)(! April!9,2014!!

  1    

1.  Introduction  As  computing  systems  have  become  more  ubiquitous  they  play  an  integral  role  in  the  daily  operation  of  critical  infrastructure  assets  and  operations  critical  to  society.  Automation  of  tasks  and  increased  capabilities  afforded  by  computing  systems  are  intertwined  into  critical  infrastructure  operations.    

The  interconnectedness  of  systems  and  reliance  upon  technology  has  opened  a  new  cyberspace  front  for  warfare.  To  protect  against  technological  attacks,  events  that  may  occur  must  be  identified,  threats  and  impact  to  critical  infrastructure  understood,  and  mitigating  actions  developed.    

Gaming  provides  a  means  to  evaluate  various  types  of  attacks  against  critical  infrastructure  without  the  need  for  large  investments  in  real  world  test  scenarios  and  harm  or  loss  of  life.  We  will  leverage  the  use  of  a  game,  Air  Traffic  Controller  Cyberattack  Evaluation  Serious  Game  (ACES),  to  simulate  cyber  attacks  on  the  critical  infrastructure  scenario  of  helicopter  operations  in  support  of  oil  production  off  the  Rio  De  Janeiro  coast  of  Brazil.    

ACES  will  provide  a  venue  for  training  of  air  traffic  controllers  and  understanding  the  impact  of  attacks  on  critical  infrastructure  and  operations  which  will  in  turn  help  to  identify  and  prepare  mitigating  actions.  

 

2.  Overview  Our  team  will  support  a  cadre  of  George  Mason  University  undergraduate  Simulation  and  Gaming  (SGI)  design  students  in  designing,  developing,  and  evaluating  a  serious  game  prototype  based  on  the  system  requirements  specifications.  

Section  3  provides  details  on  the  critical  infrastructure  scenario  that  will  be  captured  in  the  serious  game.  Section  4  describes  the  critical  infrastructure  target  and  threats  that  will  be  the  focus  of  the  project.  Our  stakeholders  and  their  roles  are  identified  in  section  5.  Section  6  defines  the  project  scope.  Section  7  identifies  the  project-­‐wide  assumptions.  Section  8  identifies  the  project  deliverables.  Section  9  includes  the  project  preliminary  requirements.  Section  10  summarizes  the  technical  approach.  Section  11  lists  the  expected  results.  Section  12  provides  the  project  Work  Breakdown  Structure  (WBS).  Section  13  lists  the  references  used  to  prepare  for  this  project  and  develop  this  proposal.    

3.  Background  The  Campos  Basin  is  a  petroleum  rich  area  located  in  the  Rio  de  Janeiro  state  that  is  responsible  for  1.3  million  barrels  a  day  of  petroleum  production.  The  Campos  Basin  accounts  for  80%  of  Brazil's  petroleum  production.  

Page 4: Serious(GameforCyberThreat(Impact( Assessment( Air(Traffic ... · Serious(GameforCyberThreat(Impact(Assessment((Air(Traffic(Controller(Cyberattack(EvaluationSerious(Game(ACES)(! April!9,2014!!

  2    

Oil  development  operations  in  the  Campos  Basin  include  heavy  helicopter  traffic  between  the  continent  and  oceanic  fields  during  daytime,  with  an  average  of  50  minutes  per  flight.  A  map  of  Rio  de  Janeiro  and  the  offshore  islands  and  oceanic  fields  is  shown  in  figure  1  below.      

 Figure  1  –  Overview  of  Campos  Basin  Oil  Operations  

 Helicopter  flights  are  conducted  at  low  altitudes  and  oil  platforms  are  located  more  than  60  nautical  miles  from  the  region’s  main  airport,  Macaé.  As  a  result,  helicopter  operations  cannot  be  monitored  by  Air  Traffic  Service  (ATS)  from  the  Macaé  airport,  the  region’s  main  airport,  which  only  supports  air  traffic  within  a  45  nautical  mile  radius  and  9500  foot  and  above  altitude.    ATS  for  these  offshore  helicopter  operations  is  then  provided  through  the  Automatic  Dependent  Surveillance-­‐Broadcast  (ADS-­‐B)  system  (see  figure  2  below).  

   

Page 5: Serious(GameforCyberThreat(Impact( Assessment( Air(Traffic ... · Serious(GameforCyberThreat(Impact(Assessment((Air(Traffic(Controller(Cyberattack(EvaluationSerious(Game(ACES)(! April!9,2014!!

  3    

 Figure  2  –  Campos  Basin  Radar  Coverage  

 

4.  Problem  Statement    Disruption  to  the  Campos  Basin  helicopter  operations  has  the  potential  to  severely  disrupt  and  even  bring  production  at  the  oceanic  fields  to  a  halt.    Safe  and  continuous  operation  of  helicopters  supporting  offshore  oil  production  is  critical  to  meet  production  capabilities  and  protect  against  loss  of  life  or  assets.  

ATS  personnel’s  reliance  on  ADS-­‐B  may  allow  for  hostile  individuals  to  disrupt  helicopter  operations  through  various  cyber  attacks.  To  better  understand  the  potential  mission  impacts  of  cyber  threats  and  to  allow  for  the  development  of  improved  operational  and  risk  management  processes,  gaming  and  simulation  tools  will  be  used  to  simulate  the  real-­‐time  scenario,  cyber  attacks,  and  their  effects.  

 

Paulo Cesar G Costa, Ph.D. NG University Tech Show - Nov 5, 2013

Campos Basin Scenario – ADS-B

!10

Radar Coverage

ADS-B Coverage

Legend

Page 6: Serious(GameforCyberThreat(Impact( Assessment( Air(Traffic ... · Serious(GameforCyberThreat(Impact(Assessment((Air(Traffic(Controller(Cyberattack(EvaluationSerious(Game(ACES)(! April!9,2014!!

  4    

4.1  Problems  With  ADS-­‐B  Communication    

 Figure  3  –  ADS-­‐B  Communication  

 Helicopter  operations  in  the  Campos  Basin  depend  on  ADS-­‐B  communication  to  promulgate  their  current  positions  and  thus  manage  flight  paths  and  operations  safely  and  effectively  (see  figure  3  above).  Vulnerabilities  and  their  possible  exploitation  are  of  interest  to  a  wider  audience  due  to  mandatory  use  of  ADS-­‐B  in  the  United  States  by  2020  and  in  Europe  by  2030.  ADS-­‐B  is  already  in  use  in  parts  of  North  America,  Europe,  China,  and  Australia.    

ADS-­‐B  communication  is  unencrypted  and  unauthenticated;  anyone  can  listen  to  it  and  decode  the  transmissions  from  aircraft  in  real  time.  ADS-­‐B  does  not  make  use  of  data  level  authentication  of  data  from  aircrafts,  only  checksums  are  use  to  verify  integrity  of  a  submitted  message.  

ADS-­‐B  communication  can  be  attacked  through  interception  of  messages,  jamming  of  transmission,  and  injection  of  messages.  The  target  of  ADS-­‐B  attacks  can  be  generally  grouped  into  two  categories:  aircrafts,  helicopters  in  our  scenario,  and  ground  stations.      

 

4.2  ADS-­‐B  Threats  We  will  seek  to  determine  the  impacts  of  interception,  jamming,  and  injection  attacks  and  their  direct  effects  to  the  Command  and  Control  operations  of  critical  infrastructure.  The  ADS-­‐B  attacks  below  are  provided  from  a  Graduate  Research  

Paulo Cesar G Costa, Ph.D. NG University Tech Show - Nov 5, 2013

Case Study – ADS-B

!7

GPS Track

GPS Track GPS Track

ADS-B !Radio Station Relay

ATC Center

Automatic Dependent Surveillance-Broadcast!

(ADS-B)

Page 7: Serious(GameforCyberThreat(Impact( Assessment( Air(Traffic ... · Serious(GameforCyberThreat(Impact(Assessment((Air(Traffic(Controller(Cyberattack(EvaluationSerious(Game(ACES)(! April!9,2014!!

  5    

Project  by  Donald  McCallie  in  June  of  2011  and  will  be  used  a  reference  source  for  this  project.  

4.2.1  Interception  Attacks    

Name:  Aircraft  Reconnaissance    Description:  Intercepts  and  decodes  ADS-­‐B  transmissions.    

Purpose:  Target  specific  aircraft,  gain  knowledge  about  movement  of  assets  and  build  an  air  order  of  battle,  often  the  first  step  of  a  more  insidious  attack.    Target:  Aircraft    

Attack  Technique:  Interception  of  ADS-­‐B  OUT  signals    

Difficulty:  Low    4.2.2  Jamming  Attacks  

Name:  Ground  Station  Flood  Denial      Description:  Disrupts  the  1090MHz  frequency  at  the  ground  station  

Purpose:  Blocks  all  ADS-­‐B  signals  intended  for  the  ground  station.  Impact  is  localized  to  a  small  area  determined  by  the  range  and  proximity  of  the  jamming  signal  to  the  ground  station.      

Target:  Aircraft  and  Air  Traffic  Controllers  

Attack  Technique:  Jamming  signal  capable  of  disrupting  the  1090MHz  frequency  range  or  GPS  frequency  

Difficulty:  Low  Name:  Aircraft  Flood  Denial  

Description:  Disrupts  the  1090MHz  frequency  for  an  aircraft  

Purpose:  Blocks  all  ADS-­‐B  signals  intended  for  an  aircraft.  Most  significant  impact  involving  this  attack  stems  from  gaining  close  proximity  to  an  airport  and  affecting  landing  or  taxi  operations.    Target:  Aircraft  

Attack  Technique:  Jamming  signal  capable  of  disrupting  1090MHz  

Difficulty:  Medium  4.2.3  Injection  Attacks  

Name:  Ground  Station  Target  Ghost  Inject  

Description:  Injects  an  ADS-­‐B  signal  into  a  ground  station  Purpose:  Cause  illegitimate  (i.e.,  ghost)  aircraft  to  appear  on  the  ground  controller’s  console.  Target:  Ground  Station  

Page 8: Serious(GameforCyberThreat(Impact( Assessment( Air(Traffic ... · Serious(GameforCyberThreat(Impact(Assessment((Air(Traffic(Controller(Cyberattack(EvaluationSerious(Game(ACES)(! April!9,2014!!

  6    

Attack  Technique:  Inject  message  that  conforms  to  ADS-­‐B  message  protocol  and  mirrors  legitimate  traffic.  Difficulty:  Medium-­‐High  

Name:  Aircraft  Target  Ghost  Inject      Description:  Injects  an  ADS-­‐B  signal  into  an  aircraft  

Purpose:  Cause  illegitimate  (i.e.,  ghost)  aircraft  to  appear  on  an  aircraft’s  console.  Target:  Aircraft  

Attack  Technique:  Inject  message  that  conforms  to  ADS-­‐B  message  protocol  and  mirrors  legitimate  traffic  Difficulty:  Medium-­‐High  

Name:  Ground  Station  Multiple  Ghost  Inject  Description:  Injects  ADS-­‐B  signals  into  a  ground  station  

Purpose:  Overwhelm  the  surveillance  system  and  create  mass  confusion  for  the  ground  controller  Target:  Ground  Station  

Attack  Technique:  Inject  multiple  messages  that  conform  to  ADS-­‐B  message  protocol  and  mirrors  legitimate  traffic  Difficulty:  Medium-­‐High  

 

4.3  Serious  Game  to  Detect  and  Adequately  Respond  to  ADS-­‐B  Cyber  Attacks  Unlike  traditional  games,  serious  games  have  an  explicit  and  carefully  thought-­‐out  educational  purpose  and  are  not  intended  to  be  played  primarily  for  amusement.  A  serious  game  provides  simulation  of  a  real  world  situation  and  offers  new  experiences,  insights,  and  knowledge  to  game  players  and  observers,  transforming  learning  into  a  more-­‐engaging  and  dynamic  process.  Gameplay  elements  such  as  scoring,  the  possibility  of  winning  or  losing  and  embedded  prizes  may  also  be  included  to  gauge  a  participant’s  progress  with  regards  to  established  learning  goals  or  objectives.               As  described  above,  ADS-­‐B  attacks  can  focus  on  either  aircrafts  or  ground  stations.  We  will  develop  requirements  and  a  Concept  of  Operations  (CONOPS)  for  a  serious  game  that  simulates  the  effect  of  cyber  attacks  on  helicopter  operations  in  support  of  Maritime  Oil  Fields  off  the  coast  of  Brazil.  The  scenario  will  model  Air  Traffic  Control  operations  in  the  Campos  Basin  and  serve  as  a  training  tool  for  Air  Traffic  Controllers  to  help  detect  and  respond  to  ADS-­‐B  cyber  attacks.  

 

Page 9: Serious(GameforCyberThreat(Impact( Assessment( Air(Traffic ... · Serious(GameforCyberThreat(Impact(Assessment((Air(Traffic(Controller(Cyberattack(EvaluationSerious(Game(ACES)(! April!9,2014!!

  7    

5.  Stakeholders  The  primary  stakeholders  for  this  project  are  listed  below:  

Dr.  Paulo  Costa,  GMU  C4I  Center  [email protected]  

 (703)  993-­‐9989  

Dr.  Chris  Ondrus,  GMU  Simulation  &  Game  Institute  [email protected]  

 (703)  993-­‐9423    

6.  Project  Scope    To  allow  for  completion  of  the  project  within  a  semester  we  will  only  focus  on  injection  attacks  listed  in  section  4.2.3.  The  effect  of  the  attacks  at  varying  intensities  of  injection  will  be  evaluated  against  critical  infrastructure  and  operations  from  the  perspectives  of  helicopter  pilot  and  crew  and  Air  Traffic  Controllers.    

 

7.  Assumptions  Attacks  such  as  interception  and  passive  monitoring  are  critical  to  the  successful  completion  of  more  advanced  attacks  such  as  injection.  We  will  assume  that  reconnaissance  and  monitoring  has  already  occurred  and  will  not  simulate  these  prerequisite  activities  by  malicious  entities.  We  will  also  assume  that  helicopters  will  follow  all  directions  provided  by  Air  Traffic  Controllers  as  long  as  they  will  not  result  in  obvious  harm  to  life  or  assets.    

8.  Deliverables  The  five  deliverables  listed  below  will  be  completed  by  the  end  of  the  semester:  

1. Requirements  Documentation  a. System  requirements  for  the  game  including  “gamification”  piece  

implemented  by  SGI  students.  2. CONOPS  

a. Frame  the  problem  

b. Define  the  solution  for  the  game  based  on  the  existing  simulation  engine.  

3. Proof  of  Concept  Evaluation  Plan  (and  evaluation  report)  

 

Page 10: Serious(GameforCyberThreat(Impact( Assessment( Air(Traffic ... · Serious(GameforCyberThreat(Impact(Assessment((Air(Traffic(Controller(Cyberattack(EvaluationSerious(Game(ACES)(! April!9,2014!!

  8    

9.  Preliminary  Requirements  Functional  Requirements  

• The  system  shall  integrate  existing  simulation  software  packages  with  Mak  VR-­‐Forces  to  generate  a  serious  game  for  purposes  of  better  preparing  air  traffic  controllers  to  identify,  assess,  and  mitigate  cyber  attacks.  

• The  system  shall  simulate  injection  attack  types  on  air  traffic  control  consoles.  

• The  system  shall  simulate  injection  attack  types  on  ADS-­‐B  technology.  

• The  system  shall  be  capable  of  handling  at  least  fifty  simultaneous  air  vehicle  tracks.  

• The  system  shall  simulate  at  least  five  ADS-­‐B  broadcast  towers.  

• The  system  shall  simulate  at  least  one  air  traffic  control  tower.  

• The  system  shall  utilize  the  existing  C2  Collaborative  Research  Testbed  Integration  to  generate  cyber  attacks.  

• The  system  shall  utilize  the  existing  C2  Collaborative  Research  Testbed  Integration  Engine  to  simulate  the  effects  of  cyber  attacks  on  IT  components.  

• The  system  shall  utilize  the  existing  Exata/Cyber  Emulation  Environment  to  simulate  cyber  warfare.  

• The  system  shall  update  aircraft  tracks  at  least  every  second.  

• The  system  shall  generate  ghost  tracks  for  placement  into  the  air  traffic  control  view.  

Scoring/Metrics  

• The  system  shall  provide  output  to  the  player  that  captures  the  time  for  flight  patterns  under  their  control  measured  by  an  expected  performance.  

• The  system  shall  provide  output  to  the  player  that  captures  the  estimated  degradation  in  helicopter  flight  operations  due  to  a  cyber  attack,  along  with  its  duration.    

• The  system  shall  provide  output  to  the  player  that  captures  the  time  and  accuracy  in  responding  to  and  recovering  from  a  cyber  attack.  

Difficulty  Levels  

• The  system  shall  have  two  levels  of  difficulty.    Difficulty  levels  are  determined  by  an  increase  in  quantity  of  simultaneous  or  near-­‐simultaneous  attacks  and/or  severity  in  operational  degradation  caused  by  attack(s).  

• The  system  shall  allow  the  player  to  increase  the  difficulty  to  the  highest  threshold.  

Page 11: Serious(GameforCyberThreat(Impact( Assessment( Air(Traffic ... · Serious(GameforCyberThreat(Impact(Assessment((Air(Traffic(Controller(Cyberattack(EvaluationSerious(Game(ACES)(! April!9,2014!!

  9    

• The  system  shall  allow  the  player  to  decrease  the  difficulty  to  the  lowest  threshold.  

Gameplay  History  

• The  system  shall  maintain  records  for  at  least  10  unique  players.  

• The  system  shall  maintain  a  users  performance  metrics  from  at  least  their  previous  10  games.  

• Upon  a  user  request  the  system  shall  display  a  users  performance  metrics  for  at  least  their  previous  10  games.  

 

Page 12: Serious(GameforCyberThreat(Impact( Assessment( Air(Traffic ... · Serious(GameforCyberThreat(Impact(Assessment((Air(Traffic(Controller(Cyberattack(EvaluationSerious(Game(ACES)(! April!9,2014!!

  10    

10.  Technical  Approach    In  using  our  knowledge  of  the  Systems  Engineering  processes  we  have  gained  throughout  the  SEOR  graduate  program  and  by  leveraging  the  experience  we  have  from  working  in  our  respective  fields,  we  have  formulated  a  technical  approach  that  provides  our  teammates  and  ourselves  the  best  chance  for  success.  Each  deliverable  listed  in  section  8  adds  to  the  understanding  and  knowledge  we  expect  to  gain  about  the  system  as  we  research  and  further  enhance  its  capabilities.  

We  plan  to  start  working  on  the  CONOPS  and  Requirements  documentation  as  we  perform  our  research  and  better  refine  the  problem  space.    As  we  work  the  CONOPS  documentation  we  will  interact  with  the  SGI  group  to  create  a  Storyboard  description  of  how  the  game  will  be  interacted  with,  from  the  perspective  of  the  trainee.    As  we  work  through  the  CONOPS,  we  will  continue  to  discover  requirements  that  will  be  applicable  at  both,  the  system  and  software  level,  and  we  will  continue  to  refine  those.    The  premise  behind  the  Storyboards  is  to  allow  for  parallel  efforts  between  both  teams.    This  approach  provides  the  SGI  group  timely  guidance  to  start  their  high-­‐level  design  efforts  and  thus  avoid  being  on  a  holding  pattern.  

While  the  SGI  group  is  evaluating  the  high-­‐level  design  guidelines  provided,  the  SEOR  team  will  start  looking  into  the  APIs  for  the  respective  components  of  the  system  and  create  content  for  the  IRS  document.    This  will  aid  in  the  integration  of  the  different  components  of  the  system  so  when  the  time  arrives  we  will  have  knowledge  on  what  interfaces  and  operation  calls  are  available.  During  this  time  we  also  be  working  with  the  SGI  group  to  determine  what  level  of  user  interaction  can  be  captured  from  the  prototype  in  order  to  develop  a  meaningful  Evaluation  Plan/Report.    One  desirable  related  activity  would  be  to  capture  data  during  users  interaction  with  the  game  to  better  understand  their  performance  and  areas  where  they  might  be  able  to  improve.    Some  initial  thoughts  on  data  they  we  would  like  to  capture  is  (1)  Rate  of  positive  identification  of  threats,  (2)  Response  time  in  identification,  (3)  Corrective  action  chosen,  and  (4)  Increased  C2  degradation  due  to  improper  actions  taken.    As  we  progress  through  our  research,  we  intend  to  further  refine  and  build  upon  the  above-­‐mentioned  metrics.  

 

10.1  Simulation  Approach  In  order  to  build  the  serious  game  we  intend  to  leverage  work  previous  completed  in  a  joint  effort  between  the  GMU  C4I  Center  and  the  Technological  Institute  of  Aeronautics  in  Brazil,  the  C2  Collaborative  Research  Testbed.    The  Testbed  is  a  set  of  Commercial  Off-­‐the-­‐Shelf  (COTS)  tools  that  provide  a  realistic  and  complex  simulation  environment  to  conduct  C2  research  experiments  for  operational  scenarios,  which  we  will  be  utilizing  for  our  air  traffic  controller  scenario.    The  C2  Collaborative  Research  Testbed  consists  of  a  number  of  different  components  to  simulate  cyber  attacks  on  a  C2  environment.    The  main  components  that  make  up  the  Testbed  are  as  follows:  (1)  A  Core  Simulation  Manager  that  consists  of  Cyber  

Page 13: Serious(GameforCyberThreat(Impact( Assessment( Air(Traffic ... · Serious(GameforCyberThreat(Impact(Assessment((Air(Traffic(Controller(Cyberattack(EvaluationSerious(Game(ACES)(! April!9,2014!!

  11    

Attack  and  IT  Effects  Generators,  (2)  A  selectable  attack  emulation  environment  (Exata  Cyber),  (3)  MAK  VR-­‐Forces  application,  (4)  and  various  interfaces  to  allow  the  components  to  communicate,  see  Figure  4  below  for  an  overview  of  the  architecture.      

 Figure  4  –  Simulation-­‐Emulation  Scenario  

 We  plan  to  leverage  this  work  by  researching  the  Application  Programming  Interfaces  (APIs)  for  the  components,  specifically  the  VR-­‐Forces  application  and  the  Cyber  Attack  &  IT  Effects  Generator.    This  is  to  understand  which  messages,  operations,  and  classes  will  need  to  be  utilized  in  order  to  make  the  simulated  cyber  attacks  be  represented  properly  inside  of  the  VR-­‐Forces  implementation  of  the  serious  game.      

Another  piece  of  software  that  will  be  integrated  with  VR-­‐Forces  is  the  Unity  Game  Design  Engine.    Unity  will  be  used  by  the  SGI  group  in  order  to  enhance  the  visual  aspects,  such  as  terrain  and  building  structures,  inside  of  the  game.    VR-­‐Forces  interfaces  with  Unity  in  order  to  accept  3-­‐dimensional  (3D)  model  updates  to  the  Geographical  Information  System  (GIS)  data  that  comes  preloaded  with  the  tool.    One  of  the  skills  that  the  SGI  group  will  bring  to  the  effort  is  to  build  these  enhanced  3D  models  inside  of  Unity  and  then  integrate  them  to  VR-­‐Forces  and  map  them  to  object  instances  so  that  the  visual  aspects  of  the  game  are  appealing  to  the  user.  

Another  overall  objective  is  build  beyond  the  framework  put  in  place  by  the  C2  Collaborative  Research  Testbed  by  implementing  additional  tools  in  place  that  will  allow  this  work  to  continue  beyond  our  involvement.      

Finally,  there  are  many  different  types  of  cyber  threats  that  can  be  used  to  attack  operational  C2  environments  yet  we  are  addressing  only  one  type  of  threat  during  this  compressed  design  and  development  timeline.    With  the  proper  architecture  and  tools  in  place  the  foundation  that  has  been  built  can  be  expanded  upon  by  teams  

Page 14: Serious(GameforCyberThreat(Impact( Assessment( Air(Traffic ... · Serious(GameforCyberThreat(Impact(Assessment((Air(Traffic(Controller(Cyberattack(EvaluationSerious(Game(ACES)(! April!9,2014!!

  12    

in  the  future  to  build  a  more  robust  system  that  can  incorporate  threats  that  we  do  not  touch  upon  and  even  new  threat  types  that  are  discovered  in  the  future.    

11.  Expected  Results    The  deliverables  listed  in  section  8  will  be  completed  by  the  end  of  the  semester.  A  working  prototype  of  the  serious  game  in  accordance  with  the  CONOPS  and  requirements  deliverables  will  also  be  completed  and  evaluated.    

 

12.  Project  Work  Breakdown  Structure  

   

13.  References    “Simulation-­‐based  Evaluation  of  the  Impact  of  Cyber  Actions  on  the  Operational  C2  Domain”,  Paulo  C.G.  Costa,  Ph.D.,  Associate  Professor,  Department  of  Systems  Engineering  and  Operations  Research  /  C4I  Center/  Center  for  Air  Transportation  Systems  Research  

 “Automatic  Dependent  Surveillance-­‐Broadcast  (ADS-­‐B)  Out  Performance  Requirements  To  Support  Air  Traffic  Control  (ATC)  Service”;  OMB  Approval  of  Information  Collection,  https://federalregister.gov/a/2010-­‐19809  

 “Exploring  Potential  ADS-­‐B  Vulnerabilities  in  the  FAA’s  Nextgen  Air  Transportation  System  Graduate  Research  Project”,    Air  Force  Institute  of  Technology,  Donald  L.  McCallie,  BS,  MS  Major,  USAF,  http://www.hsdl.org/?abstract&did=697737  

http://www.radartutorial.eu  

Page 15: Serious(GameforCyberThreat(Impact( Assessment( Air(Traffic ... · Serious(GameforCyberThreat(Impact(Assessment((Air(Traffic(Controller(Cyberattack(EvaluationSerious(Game(ACES)(! April!9,2014!!

  13    

http://www.oig.dot.gov/sites/dot/files/ADS-­‐B_Oct%202010.pdf  

 “Hackers  +  Airplanes  No  Good  Can  Come  Of  This”,  Defcon  20,    Brad  “RenderMan”  Haines,  CISSP