14
Shinya Komugi NAOJ Chile Observatory + Rie Miura, Sachiko Onodera, Tomoka Tosaki, Nario Kuno + many (NRO Legacy MAGiC team, ASTE team, AzTEC team) NRO UM Jul. 25 2013 MAGiC IV : 星星星星星星星星星

Shinya KomugiNAOJ Chile Observatory + Rie Miura, Sachiko Onodera, Tomoka Tosaki, Nario Kuno

  • Upload
    mari

  • View
    54

  • Download
    0

Embed Size (px)

DESCRIPTION

MAGiC IV : 星間物質の基本平面. Shinya KomugiNAOJ Chile Observatory + Rie Miura, Sachiko Onodera, Tomoka Tosaki, Nario Kuno + many (NRO Legacy MAGiC team, ASTE team, AzTEC team). NRO UM Jul. 25 2013. Star formation relation within M33. Increased scatter at 100pc scale Effect of GMC evolution ? - PowerPoint PPT Presentation

Citation preview

Page 1: Shinya KomugiNAOJ Chile Observatory + Rie Miura, Sachiko Onodera, Tomoka Tosaki, Nario Kuno

Shinya Komugi NAOJ Chile Observatory+ Rie Miura, Sachiko Onodera, Tomoka Tosaki, Nario Kuno+ many (NRO Legacy MAGiC team, ASTE team, AzTEC team)

NRO UM Jul. 25 2013

MAGiC IV : 星間物質の基本平面

Page 2: Shinya KomugiNAOJ Chile Observatory + Rie Miura, Sachiko Onodera, Tomoka Tosaki, Nario Kuno

Star formation relation within M33

Increased scatter at 100pc scaleEffect of GMC evolution ?(e.g., Kawamura et al. 2009, Onodera et al. 2010)

Onodera et al. 2010

Page 3: Shinya KomugiNAOJ Chile Observatory + Rie Miura, Sachiko Onodera, Tomoka Tosaki, Nario Kuno

・ All but 1 SF region are 7Myr old・ gas=CO@OVRO, sfr=Paα@TAO

log SFR=0.95 logΣvar(H2)-8.23

・ small dispersion @ 700pcσ = 0.1 for

varying Xcoc.f. σ = 0.5 in M51 (Liu+11)GMCs (SF regions) at a similar Evolution stage give tight SK laws

Star formation relation within Taffy I(Komugi+ 2012)

J=blue、 H=green、 Ks=red

Page 4: Shinya KomugiNAOJ Chile Observatory + Rie Miura, Sachiko Onodera, Tomoka Tosaki, Nario Kuno

Star formation

InterstellarRadiation

Field

Molecular gas

(CO)

Dust

Opt.-Near IR

“Dense” gas

Xco

metallicitytemperature

emissivity

heating

K-S law

Gas/dust ratio

IMF

UV input

extinction

The ISM at GMC scales

Hα, 24um

1.1 mm

12CO(J=1-0)

12CO(J=3-2)

2.1 um

+ time evolution

Page 5: Shinya KomugiNAOJ Chile Observatory + Rie Miura, Sachiko Onodera, Tomoka Tosaki, Nario Kuno

Interaction of ISM at 100pc in M33

12CO(J=1-0) @ NRO 45mTosaki et al. (2011)Catalog in progress

Page 6: Shinya KomugiNAOJ Chile Observatory + Rie Miura, Sachiko Onodera, Tomoka Tosaki, Nario Kuno

Interaction of ISM at 100pc in M33

12CO(J=3-2) map @ASTEMiura et al. (2012)

71 GMCs cataloguedLco, rmaj, rmin, σv, Tmb

Radius range 20 ~ 40

Page 7: Shinya KomugiNAOJ Chile Observatory + Rie Miura, Sachiko Onodera, Tomoka Tosaki, Nario Kuno

Interaction of ISM at 100pc in M33

1.1mm and dust temperature map ASTE and Spitzer 160umKomugi et al. (2011)

Page 8: Shinya KomugiNAOJ Chile Observatory + Rie Miura, Sachiko Onodera, Tomoka Tosaki, Nario Kuno

Interaction of ISM at 100pc in M33

57 GMCs at ~100pc resolution with 12CO(J=1-0) M10 : total

molecular gas 12CO(J=3-2) M32 : dense molecular gas

1.1mm Mdust : dust mass (using Tcold map and β=2)

Ks band K : measure of ISRF from old stellar pop.

Hα, 24um SFR : star formation rate (UV photon)

Type B, C, D : evolutionary stage

Page 9: Shinya KomugiNAOJ Chile Observatory + Rie Miura, Sachiko Onodera, Tomoka Tosaki, Nario Kuno

・ PC4 and PC5 have smallest variance, i.e. we can writePC4 = 0PC5 = 0・ SFR, K, Md contains 99.3% of the information in PC4

0.72 logSFR + 0.29 logK - 0.62 logMd = 0 ± 0.43 logSFR = (2.4 ± 0.3) logMdust – (0.23 ± 0.06) Kmag. + 0.15 ± 1.2

scatter = 0.4 dex・ SFR, M CO10, MCO32 contains 99.6% of the information in PC50.75 logMCO32 - 0.64 logMCO10 - 0.14 logSFR = 0 ± 0.29

logM32 = (0.86 ± 0.06) logM10 + (0.12 ± 0.02) logSFR + 1.0 ± 0.02scatter = 0.1 dex

Page 10: Shinya KomugiNAOJ Chile Observatory + Rie Miura, Sachiko Onodera, Tomoka Tosaki, Nario Kuno

PC5 : SFR-MCO32-MCO10 plane

log MCO32

(M◉ pc-2)

log MCO10

(M◉ pc-2)log SFR

(M◉ yr-1 pc-2)

Page 11: Shinya KomugiNAOJ Chile Observatory + Rie Miura, Sachiko Onodera, Tomoka Tosaki, Nario Kuno

• 3D version of SK law, but strongest correlation is between CO32 and CO10.

SK law at 100 pc is better expressed as “CO32/CO10 ratio is modulated by SFR” Consistent with “dense gas fraction is larger for

clouds with more active SF” (Onodera+ 2012)

PC5 : SFR-MCO32-MCO10 plane

Page 12: Shinya KomugiNAOJ Chile Observatory + Rie Miura, Sachiko Onodera, Tomoka Tosaki, Nario Kuno

PC4 : SFR-Mdust-KS plane

log Mdust

(M◉ pc-2)

log SFR(M◉ yr-1 pc-2)

ISRF(K band mag.)

Page 13: Shinya KomugiNAOJ Chile Observatory + Rie Miura, Sachiko Onodera, Tomoka Tosaki, Nario Kuno

• SFR-Mdust tighter than SFR-MCO32 or SFR-MCO10

Dust traces molecular gas better ??

• GMC evolution = movement in the plane; young GMC 2um dark, less dust, small SFR

< 10Myr GMC 2um bright, range of dust and SFR> 10Myr GMC intermediate in SFR, dust, 2um.

PC4 : SFR-Mdust- KS plane

Page 14: Shinya KomugiNAOJ Chile Observatory + Rie Miura, Sachiko Onodera, Tomoka Tosaki, Nario Kuno

summary• Multi-parameter analysis of GMC in M33• 2 most fundamental relations ;

“Classical” KS law can be explained by combining these

• PCA can be a powerful tool to interpret the entangled relations in the ISM

• Needs verification in other galaxies 12CO + Paα survey of NGC300 ongoing

logSFR = (2.4 ± 0.3) logMd – (0.23 ± 0.06) Kmag. + 0.15 ± 1.2scatter = 0.4 dex

logMCO32 = (0.86 ± 0.06) logMCO10 + (0.12 ± 0.02) logSFR + 1.0 ± 0.02 scatter = 0.1 dex