20
Simulation of heavy ion therapy system using Geant4 Satoru Kameoka※1,※2 Takashi SASAKI※1,※2, Koichi MURAKAMI※1,※2, Tsukasa ASO ※2※3, Akinori KIMURA※2※4, Masataka KOMORI※5, Tatsuaki KANAI※5, Nobuyuki KANEMATSU※5, Yuka KOBAYASHI※5, Syunsu ke YONAI※5, Yousuke KUSANO※6,Takeo NAKAJIMA※6, Osamu TA KAHASHI※6, Mutsumi TASHIRO※7, Yoshihisa IHARA※8, Hajime KOIKEGAMI※8 High Energy Accelerator Research Organizati on (KEK)※1, CREST JST※2, Toyama National College of Maritime Technol ogy※3, Ashikaga Institute of Technology※4, National Inst itute of Radiological Sciences※5, Accelerator Engineering Corporation※6, Gunma University※7 Ishikawa-harima Heavy Industries※8

Simulation of heavy ion therapy system using Geant4 Satoru Kameoka ※ 1, ※ 2 Takashi SASAKI ※ 1, ※ 2, Koichi MURAKAMI ※ 1, ※ 2, Tsukasa ASO ※ 2 ※ 3, Akinori

Embed Size (px)

Citation preview

Page 1: Simulation of heavy ion therapy system using Geant4 Satoru Kameoka ※ 1, ※ 2 Takashi SASAKI ※ 1, ※ 2, Koichi MURAKAMI ※ 1, ※ 2, Tsukasa ASO ※ 2 ※ 3, Akinori

Simulation of heavy ion therapy system using Geant4

Satoru Kameoka 1, 2※ ※ Takashi SASAKI 1, 2, Koichi MURAKAMI 1, 2, Tsukasa ASO 2 3, Ak※ ※ ※ ※ ※ ※inori KIMURA 2 4, Masataka KOMORI 5, Tatsuaki KANAI 5, Nobuyuki K※ ※ ※ ※ANEMATSU 5, Yuka KOBAYASHI 5, Syunsuke YONAI 5, Yousuke KUS※ ※ ※ANO 6,Takeo NAKAJIMA 6, Osamu TAKAHASHI 6, Mutsumi TASHIRO※ ※ ※

7, Yoshihisa IHARA 8, Hajime KOIKEGAMI 8※ ※ ※

High Energy Accelerator Research Organization (KEK) 1※ , CREST JST 2, Toyama National College of Maritime Technology 3, Ashika※ ※ga Institute of Technology 4, National Institute of Radiological Sciences 5, ※ ※

Accelerator Engineering Corporation 6, Gunma University 7※ ※Ishikawa-harima Heavy Industries 8 ※

Page 2: Simulation of heavy ion therapy system using Geant4 Satoru Kameoka ※ 1, ※ 2 Takashi SASAKI ※ 1, ※ 2, Koichi MURAKAMI ※ 1, ※ 2, Tsukasa ASO ※ 2 ※ 3, Akinori

Motivation

• Background– Effectiveness of Heavy ion beam for cancer treatment– Medical application of heavy ion beam

• Complex physics processes• Various specialized instruments

– Need for a reliable simulator for treatment planning– Geant4 – toolkit for the simulation of the passage of

particle through matter

• Objective of this work– Implementation of the geometry of a heavy ion beam

line of NIRS-HIMAC– Validation through comparison with experimental data

Page 3: Simulation of heavy ion therapy system using Geant4 Satoru Kameoka ※ 1, ※ 2 Takashi SASAKI ※ 1, ※ 2, Koichi MURAKAMI ※ 1, ※ 2, Tsukasa ASO ※ 2 ※ 3, Akinori

Physical (dis)advantage of heavy ion beam

• Dose-localizing capability (Bragg peak)

• High biological effect (cell-killing capability)

• Beam fragmentation

Site of cancer © NIRSDepth of penetration

Rel

ativ

e do

se (

%)

proton

Heavy ion

X-ray

-ray neutron

tail

Bragg peak

Page 4: Simulation of heavy ion therapy system using Geant4 Satoru Kameoka ※ 1, ※ 2 Takashi SASAKI ※ 1, ※ 2, Koichi MURAKAMI ※ 1, ※ 2, Tsukasa ASO ※ 2 ※ 3, Akinori

Heavy ion therapy (at NIRS-HIMAC)

• NIRS – National Institute of Radiological Science (Japan)

• HIMAC – Heavy Ion Medical Accelerator in Chiba

• First facility for heavy ion therapy in the world• Over 2,000 cases have been treated on trial basi

s• Broad beam method using wobbler-scatterer sys

tem

Page 5: Simulation of heavy ion therapy system using Geant4 Satoru Kameoka ※ 1, ※ 2 Takashi SASAKI ※ 1, ※ 2, Koichi MURAKAMI ※ 1, ※ 2, Tsukasa ASO ※ 2 ※ 3, Akinori

Broad beam method Patient body

Wobbler magnets

YX

Ridge Filter

Scatterer

RangeShifter

Collimator

Compensator(Bolus)

Target volume(tumor)

Bragg peak

Spread-outBragg peak

Depth

dose

Beam

RidgeFilter

By = Ay sin(t)

Bx = Ax sin(t+/2)

Page 6: Simulation of heavy ion therapy system using Geant4 Satoru Kameoka ※ 1, ※ 2 Takashi SASAKI ※ 1, ※ 2, Koichi MURAKAMI ※ 1, ※ 2, Tsukasa ASO ※ 2 ※ 3, Akinori

General introduction of Geant4

• Toolkit for the simulation of the passage of particle through matter

• Designed with object-oriented software technology

• Abundant physics models based on experimental data

• Powerful capability to describe complex geometry

Page 7: Simulation of heavy ion therapy system using Geant4 Satoru Kameoka ※ 1, ※ 2 Takashi SASAKI ※ 1, ※ 2, Koichi MURAKAMI ※ 1, ※ 2, Tsukasa ASO ※ 2 ※ 3, Akinori

Experimental setup / Geometry implementation in Geant4 simulation

Treatment position(isocenter)

Vacuum window

Watertarget

Acrylicvessel

New beam line of NIRS-HIMAC for R & D(overhead view)

Secondary emissionmonitor

Wobber magnets

X Y Scatterer(lead)

DoseMonitor

(ionization Chamber)

Collimator

Ridge filter(aluminum)

Range shifter(unused)

Multi-leafCollimator

(open)

Collimator

Beam profileMonitor

(ionizationChamber)

Beam12C

Page 8: Simulation of heavy ion therapy system using Geant4 Satoru Kameoka ※ 1, ※ 2 Takashi SASAKI ※ 1, ※ 2, Koichi MURAKAMI ※ 1, ※ 2, Tsukasa ASO ※ 2 ※ 3, Akinori

Target / sensitive detector

400 mm

300 mm

2 mm

1 mm

2 mmWatertarget

Beam (12C)

Sensitive region

Page 9: Simulation of heavy ion therapy system using Geant4 Satoru Kameoka ※ 1, ※ 2 Takashi SASAKI ※ 1, ※ 2, Koichi MURAKAMI ※ 1, ※ 2, Tsukasa ASO ※ 2 ※ 3, Akinori

Enabled physics processes in Geant4

• Ions – Electromagnetic interactions

• Ionization• Multiple scattering

– Inelastic hadronic reaction• Inclusive reaction cross section based on empirical formulae • Intranuclear cascade

– Radioactive Decay

• Other particles (secondaries)– Electromagnetic interactions– Hadronic interactions

Page 10: Simulation of heavy ion therapy system using Geant4 Satoru Kameoka ※ 1, ※ 2 Takashi SASAKI ※ 1, ※ 2, Koichi MURAKAMI ※ 1, ※ 2, Tsukasa ASO ※ 2 ※ 3, Akinori

Results (12C 290 MeV/n)

w/ Ridge filterwo/ Ridge filter

Offset = - 0.8 mm Offset = -1.0 mm

Single Bragg peak Spread-out Bragg peak

Depth in water (mm) Depth in water (mm)

Re

lativ

e d

ose

Re

lativ

e d

ose

Page 11: Simulation of heavy ion therapy system using Geant4 Satoru Kameoka ※ 1, ※ 2 Takashi SASAKI ※ 1, ※ 2, Koichi MURAKAMI ※ 1, ※ 2, Tsukasa ASO ※ 2 ※ 3, Akinori

Results (12C 400 MeV/n)

Offset = -1.2 mm Offset = -2.8 mm

w/ Ridge Filterwo/ Ridge Filter

Single Bragg peak Spread-out Bragg peak

Depth in water (mm) Depth in water (mm)

Re

lativ

e d

ose

Re

lativ

e d

ose

Page 12: Simulation of heavy ion therapy system using Geant4 Satoru Kameoka ※ 1, ※ 2 Takashi SASAKI ※ 1, ※ 2, Koichi MURAKAMI ※ 1, ※ 2, Tsukasa ASO ※ 2 ※ 3, Akinori

Summary

• Geometry of the new beamline of NIRS-HIMAC was implemented in Geant4.

• (Single) Bragg peak is well reproduced by Geant4 simulation.

• Geant4 tends to underestimate the tail dose coming from the beam fragmentation.

• To conduct thorough validation of ion physics models of Geant4, comparison with more detailed experiment including the identification of secondary particles is required.

Page 13: Simulation of heavy ion therapy system using Geant4 Satoru Kameoka ※ 1, ※ 2 Takashi SASAKI ※ 1, ※ 2, Koichi MURAKAMI ※ 1, ※ 2, Tsukasa ASO ※ 2 ※ 3, Akinori

Spare OHPs

Page 14: Simulation of heavy ion therapy system using Geant4 Satoru Kameoka ※ 1, ※ 2 Takashi SASAKI ※ 1, ※ 2, Koichi MURAKAMI ※ 1, ※ 2, Tsukasa ASO ※ 2 ※ 3, Akinori

Radiation therapy (of cancer)

• Important ‘local treatment’ (as well as surgery)

• Photon beam (X-ray or gamma ray)– Flux attenuates exponentially in matter with

increasing depth

• Unavoidable exposure of surrounding normal tissue limits tolerable dose

Page 15: Simulation of heavy ion therapy system using Geant4 Satoru Kameoka ※ 1, ※ 2 Takashi SASAKI ※ 1, ※ 2, Koichi MURAKAMI ※ 1, ※ 2, Tsukasa ASO ※ 2 ※ 3, Akinori

Horizontal dose profile

Position (mm)

Rel

ativ

e do

se

Page 16: Simulation of heavy ion therapy system using Geant4 Satoru Kameoka ※ 1, ※ 2 Takashi SASAKI ※ 1, ※ 2, Koichi MURAKAMI ※ 1, ※ 2, Tsukasa ASO ※ 2 ※ 3, Akinori

Objective

• To establish reliable simulation framework for heavy ion therapy based on Geant4 in order to extract the parameters of specialized instruments to optimize clinical effect (treatment planning)

• To implement the geometry of a heavy ion beamline of NIRS-HIMAC in Geant4 and assess the usability of the simulator through comparison with experimental data

Page 17: Simulation of heavy ion therapy system using Geant4 Satoru Kameoka ※ 1, ※ 2 Takashi SASAKI ※ 1, ※ 2, Koichi MURAKAMI ※ 1, ※ 2, Tsukasa ASO ※ 2 ※ 3, Akinori

Instruments for heavy ion therapy

• Devices to spread beam laterally– Broad beam method (describe in the next slide …)

• Wobbler magnet• Scatterer

– Dynamic beam delivery• Devices to shape lateral beam profile

– Collimator• Devices to modulate beam range

– Range shifter– Ridge filter– Compensator (Bolus)– Dynamic modulation (by accelerator)

• Detector– Dosimeter– Beam profile monitor

Spot scanning method

Page 18: Simulation of heavy ion therapy system using Geant4 Satoru Kameoka ※ 1, ※ 2 Takashi SASAKI ※ 1, ※ 2, Koichi MURAKAMI ※ 1, ※ 2, Tsukasa ASO ※ 2 ※ 3, Akinori

Wobbler-scatterer system

• Wobbler magnets + scatterer + ridge filter

Page 19: Simulation of heavy ion therapy system using Geant4 Satoru Kameoka ※ 1, ※ 2 Takashi SASAKI ※ 1, ※ 2, Koichi MURAKAMI ※ 1, ※ 2, Tsukasa ASO ※ 2 ※ 3, Akinori

Resutls

• この絵と一緒に (isocenter での ) beam profile を見せる

Centralregion

Peripheralregion

Beam profile at surface of water target

400 mm

300 mm

Page 20: Simulation of heavy ion therapy system using Geant4 Satoru Kameoka ※ 1, ※ 2 Takashi SASAKI ※ 1, ※ 2, Koichi MURAKAMI ※ 1, ※ 2, Tsukasa ASO ※ 2 ※ 3, Akinori

Implementation of the beamline geometry in the simulation

• Show the output of viewer

Treatment position(isocenter)

Wobbler magnet

Vacuum window

waterAcrylicvessel

NIRS-HIMAC