Simulation of Tracked Vehicles

Embed Size (px)

Citation preview

  • 8/19/2019 Simulation of Tracked Vehicles

    1/30

    arc Automotive Research Center 

    Simulating Track/Sprocketand Track/Wheel/Terrain Contact

    in Tracked VehiclesZ.-D. Ma

    C. Scholar

    N. C. PerkinsUniversity of Michigan

  • 8/19/2019 Simulation of Tracked Vehicles

    2/30

    arc Automotive Research Center 

    ObjectiveEfficient simulation of vehicle response including track vibration, track/sprocket contact, and track/wheel/terrain

    interaction.

    n

    Overview of recent efforts

    n New effort: Track/SprocketContact

    n New effort: Track/Wheel/TerrainInteraction

  • 8/19/2019 Simulation of Tracked Vehicles

    3/30

    arc Automotive Research Center 

    Track Models

    QUASI-STATICMULTI-BODY CHAIN

    HYBRID DISCRETE-CONTINUOUS ELEMENT

  • 8/19/2019 Simulation of Tracked Vehicles

    4/30

    arc Automotive Research Center 

    Continuous Track Model

    LONGITUDINAL

    TRANSVERSEIN-PLANE RESPONSE

  • 8/19/2019 Simulation of Tracked Vehicles

    5/30

    arc Automotive Research Center 

    Continuous Track Model

    u1( s,t ) =   f  (t ) s + k u

    2(η, t )d η

    0

     s

    ∫ 

    m(u2,tt  + 2Vu2, st  + V 2u2, ss ) + kEAf  (t ) =  Tu2, ss

     f  (t ) = − k 

     Lu2 (η,t )d η0

     L

    ∫ 

    s, u1(s,t)

    u2(s,t)

    d

    V

    V - track speed

    d - static sag

    k - static curvature

    T - static tension

    f(t) - dynamic strain

    Longitudinal Response

    (quasi-static)

    Transverse

    Response

  • 8/19/2019 Simulation of Tracked Vehicles

    6/30

    arc Automotive Research Center 

    Experimental Validation

  • 8/19/2019 Simulation of Tracked Vehicles

    7/30

    arc Automotive Research Center 

    M1 Tank Traversing Profile 4

  • 8/19/2019 Simulation of Tracked Vehicles

    8/30

    arc Automotive Research Center 

    Track Transverse Vibration

  • 8/19/2019 Simulation of Tracked Vehicles

    9/30

    arc Automotive Research Center 

    Including Track/Sprocket Contact

    P&H 4100A Crawler 

    Objective: To model of dynamic shoe-tumblerseating process

    n

    Inputs: shoe pitchelongation, tumbler lugwear, track tension,interface friction, appliedtorque, ground conditions.

    n Outputs: pin loading,shoe/tumbler contactforces, animation of 

    seating process

  • 8/19/2019 Simulation of Tracked Vehicles

    10/30

    arc Automotive Research Center 

    P&H 4100A Crawler 

    n Operating weight:1,200 tons

    n

    Max. speed: 0.56mph.

    n Max. appliedtorque: 1,580,000ft-lbs

    n Max. designtension: 1,480,000lbs

  • 8/19/2019 Simulation of Tracked Vehicles

    11/30

    arc Automotive Research Center 

    Shoe/Tumbler Seating Process

  • 8/19/2019 Simulation of Tracked Vehicles

    12/30

    arc Automotive Research Center 

    Hybrid Track Model

    Multibody Model of Shoes Continuous Model of Track Segments

    Tumbler Rear Idler 

    Front Idler Rollers

    Guide

    Shoes

  • 8/19/2019 Simulation of Tracked Vehicles

    13/30

    arc Automotive Research Center 

    Shoe/Tumbler Interface

    a) Slight Wear b) Heavy Wear  

  • 8/19/2019 Simulation of Tracked Vehicles

    14/30

    arc Automotive Research Center 

    Prescribed Tumbler Velocity

  • 8/19/2019 Simulation of Tracked Vehicles

    15/30

    arc Automotive Research Center 

    Machine Travel Speed

  • 8/19/2019 Simulation of Tracked Vehicles

    16/30

    arc Automotive Research Center 

    Shoe/Tumbler Normal Contact Force

    For Shoe 3-7

    shoe 7

    shoe 6

    shoe 5 shoe 4

    shoe 3

    3

    4

    5

    67

  • 8/19/2019 Simulation of Tracked Vehicles

    17/30

    arc Automotive Research Center 

    Vertical Load For Pins 01 to 03 Under 

    Rear Idler 

     pin 01  pin 02  pin 03

  • 8/19/2019 Simulation of Tracked Vehicles

    18/30

    arc Automotive Research Center 

    Case: Slight Wear, Very Tight

  • 8/19/2019 Simulation of Tracked Vehicles

    19/30

    arc Automotive Research Center 

    Case: Heavy Wear, Extremely Loose

  • 8/19/2019 Simulation of Tracked Vehicles

    20/30

    arc Automotive Research Center 

    Including Track/Wheel/Terrain Contact

    Track/Wheel/Terrain Interaction

    Objective: To developtrack/wheel/terrain interface

    model to efficiently predictthe loading on the vehicledue to the ground pressureand shear.

  • 8/19/2019 Simulation of Tracked Vehicles

    21/30

    arc Automotive Research Center 

    Track/Wheel/Terrain Interaction Model

    (Force Element)

     X 

     Z 

     x

     z 

     A

    O

     x

    Wheel 1

    Wheel 2

    α

    g

     B P ( x,z )

     z t ( x)

    O1 ( X 1, Z 1)

    O2 ( X 2

    , Z 2)

    Terrain

     s

    o

    φ1

    φ2

     F  X 1

     F  Z 1

     F  X 2

     F  Z 2τ1

    τ2

    Inputs

    ( X 1,  Z 1, φ1)( X 2,  Z 2, φ2)

     z t ( x)

    Outputs

    ( F  X 1,  F  Z 

    1, τ1)( F  X 

    2,  F  Z 2, τ2)

  • 8/19/2019 Simulation of Tracked Vehicles

    22/30

    arc Automotive Research Center 

    Track/Wheel/Terrain Interaction

    T  

    T+dT  f  z ds

    f  x 

    dsθ+d θ

    θ

     x

     z 

    o

    P

    dsθ+d θ

    θ

     x

     z 

    o

    dx

    dz 

    d ρ

    P

    Equilibrium

    Kinematic Relationships

    Constitutive Law

    dsdsd  EAT  /)(   −=   ρ

    0)cos()(cos   =−+++−   ds f  d dT T T   xθθθ

    0)sin()(sin   =−+++−   ds f  d dT T T   z θθθ

    dsd 

    dx

    ds

    dxd 

    dx   

      

     +=+=

    ρρθθ

    ρθ )cos(,cos

    dsd 

    dz 

    ds

    dz d 

    dz    

      

     +=+=

    ρρθθ

    ρθ )sin(,sin

  • 8/19/2019 Simulation of Tracked Vehicles

    23/30

    arc Automotive Research Center 

    Contact Models

     f  

    -f   z 

    -f   x

    O1( x1,  z 1)

    P ( x,  z )

     x

     z 

    r 1   z - z 1

     x- x1

     z 

     A

     x

    α

    g

     B

     P ( x,z )

    ( xt , z 

    t )

    Terraino  f   z 

     f   x

    Track/Wheel Track/Terrain

    (Janosi & Hanamoto)

    (Bekker)

  • 8/19/2019 Simulation of Tracked Vehicles

    24/30

    arc Automotive Research Center 

    Solution Procedure

    n Re-write BVP in incremental form

    n Discretize by FE

    n (Modified) Newton-Raphson Iteration of nonlinear BVP

  • 8/19/2019 Simulation of Tracked Vehicles

    25/30

    arc Automotive Research Center 

    Example: Case of Zero Sinkage

    Trapezoid Bump

    Round Bump

  • 8/19/2019 Simulation of Tracked Vehicles

    26/30

    arc Automotive Research Center 

    Example: Case of One Inch Sinkage

    Trapezoid Bump

    Round Bump

  • 8/19/2019 Simulation of Tracked Vehicles

    27/30

    arc Automotive Research Center 

    Example: Effect of Ground Stiffness

    K=3.6e4

    K=1.8e4

    K=0.9e4

  • 8/19/2019 Simulation of Tracked Vehicles

    28/30

    arc Automotive Research Center 

    Effect of Track Extensibility

    EA (lbs) Tension (lbs) Fx (lbs) Fz (lbs)

    2.5e6 0.188e6 0.153e6 0.110e6

    2.5e7 0.837e6 0.759e6 0.354e62.5e8 0.154e7 0.148e7 0.428e6

    2.5e9 0.189e7 0.184e7 0.445e6

    5.0e9 0.192e7 0.187e7 0.447e6

    1.0e10 0.194e7 0.189e7 0.447e6

  • 8/19/2019 Simulation of Tracked Vehicles

    29/30

    arc Automotive Research Center 

    Continuous to Multibody Formulation

     Nel Tension (lbs) FX (lbs) FZ (lbs)100 0.188e6 0.153e6 0.110e6

    20 0.188e6 0.152e6 0.130e6

    6 0.208e6 0.138e6 0.442e6

  • 8/19/2019 Simulation of Tracked Vehicles

    30/30

    arc Automotive Research Center 

    Conclusions

    Continuous track model

    n Captures low frequency track vibration in anefficient manner

    n Can be married to multibody track models(track/sprocket contact)

    n

    Can be extended to capture track/wheel/terraininteraction