41
Arthur CHARPENTIER - tails of Archimedean copulas Tails of Archimedean Copulas tail dependence in risk management Arthur Charpentier CREM-Universit´ e Rennes 1 (joint work with Johan Segers, UCLN) http ://perso.univ-rennes1.fr/arthur.charpentier/ Colloque ´ Evaluation et couverture des risques extrˆ emes Universit´ e Paris-Dauphine & Chaire AXA de la Fondation du Risque, Juin 2008 1

Slides dauphine

Embed Size (px)

Citation preview

Page 1: Slides dauphine

Arthur CHARPENTIER - tails of Archimedean copulas

Tails of Archimedean Copulas

tail dependence in risk management

Arthur Charpentier

CREM-Universite Rennes 1

(joint work with Johan Segers, UCLN)

http ://perso.univ-rennes1.fr/arthur.charpentier/

Colloque Evaluation et couverture des risques extremes

Universite Paris-Dauphine & Chaire AXA de la Fondation du Risque, Juin 2008

1

Page 2: Slides dauphine

Arthur CHARPENTIER - tails of Archimedean copulas

Tail behavior and risk management

In reinsurance (XS) pricing, use of Pickands-Balkema-de Haan’s theorem

Theorem 1. F ∈MDA (Gξ) if and only if

limu→xF

sup0<x<xF

{∣∣Pr (X − u ≤ x|X > u)−Hξ,σ(u) (≤ x)∣∣} = 0,

for some positive function σ (·), where Hξ,σ (x) =

1− (1 + ξx/σ)−1/ξ , ξ 6= 0

1− exp (−x/σ) , ξ = 0.

1− F (x) ≈ (1− F (u))[1−Hξ,σ(u) (x− u)

], for all x > u.

So, if u = Xk:n, then

1− F (x) ≈ (1− F (Xk:n))︸ ︷︷ ︸≈1−Fn(Xk:n)=k/n

[1−Hξ,σ(Xk:n) (x−Xk:n)

], for all x > Xk:n,

2

Page 3: Slides dauphine

Arthur CHARPENTIER - tails of Archimedean copulas

Pure premium of XS contract

Recall that πd = E((X − d)+) with d large, thus,

πd =1

P(X > d)

∫ ∞d

1− F (x)dx

≈ k

n

σ

1− ξ

(1 + ξ

d−Xn−k:n

σ

)1− 1ξ

,

i.e.

πd =k

n

σk

1− ξk

(1 + ξk

d−Xn−k:n

σk

)1− 1ξk

(see e.g. Beirlant et al. (2005).

Possible to derive explicit formulas for any tail risk measure (VaR, TVaR...).

3

Page 4: Slides dauphine

Arthur CHARPENTIER - tails of Archimedean copulas

Extending extreme value theory in higher dimension

univariate case bivariate case

limiting distribution dependence structure of

of Xn:n (G.E.V.) componentwise maximum

when n→∞, i.e. Hξ (Xn:n, Yn:n)

(Fisher-Tippet)

dependence structure of

limiting distribution (X,Y ) |X > x, Y > y

of X|X > x (G.P.D.) when x, y →∞when x→∞, i.e. Gξ,σ dependence structure of

(Balkema-de Haan-Pickands) (X,Y ) |X > x

when x→∞

4

Page 5: Slides dauphine

Arthur CHARPENTIER - tails of Archimedean copulas

Tail dependence in risk management

●●

●●

●●

●●

●●●●●●●●●●●●●●●●

●●

●●

●●●

●●

●●

●●

●●●

●●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●

●●●●

●●

●●

●●●

●●●●●●●●

●●●●●●●

●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●

●●●●●●●●●

●●

●●●

●●●●

●●

●●

●●

●●●●

●●

●●●

●●●●●●●●

●●

●●

●●

●●●●●

●●

●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●

●●

●●●●●●●●●●

●●●

●●

●●●

●●●●

●●

●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●

●●●

●●

●●●

●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●

●●●●●●

●●

●●

●●●

●●

●●●●●●●●●●●●●●

●●

●●

●●

●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●

●●

●●

●●●●

●●

●●●

●●

●●

●●

●●●

●●

●●

●●●

●●

●●●

●●●●

●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●

●●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●

●●

●●●●●●●●●●●●●●

●●●

●●

●●

●●

●●

●●

●●

●●●●

●●●●

●●

●●

●●●

●●●

●●●●

●●●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●●●●

●●

●●●●●

●●

●●

●●

●●

●●●

●●

●●●

●●●●●●●●●●●

●●

●●

●●

●●

●●●●●●●●●●●●●

●●●●●

●●

●●●

●●●

●●

●●

●●

●●●

●●

●●

●●

●●●●●

●●

●●

●●●●

●●

● ●

1e+01 1e+03 1e+05

1e

+0

11

e+

02

1e

+0

31

e+

04

1e

+0

5

Loss (log scale)

Allo

cate

d E

xpe

nse

s

●●

●●

●● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

● ●

●●

●●

●●

●●●

● ●

●●

●●

● ● ●●

● ●

● ●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

● ●

●●

● ●

●●

●●

●●

●●

●●

● ●●

●●

●●

●●

● ●●

●●

● ●

● ●

●●

● ●

●●

●●

●●

●●

●●●

●●

●●

● ●

● ●

●●

● ●

●●

●●

●●●

●●

●●

●●

● ●

● ●

● ●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

● ●

1 10 100 1000 100001

e+

00

1e

+0

21

e+

04

1e

+0

6

Car claims (log scale)

Ho

use

ho

ld c

laim

s

Fig. 1 – Multiple risks issues.

5

Page 6: Slides dauphine

Arthur CHARPENTIER - tails of Archimedean copulas

Motivations : dependence and copulas

Definition 2. A copula C is a joint distribution function on [0, 1]d, withuniform margins on [0, 1].

Theorem 3. (Sklar) Let C be a copula, and F1, . . . , Fd be d marginaldistributions, then F (x) = C(F1(x1), . . . , Fd(xd)) is a distribution function, withF ∈ F(F1, . . . , Fd).

Conversely, if F ∈ F(F1, . . . , Fd), there exists C such thatF (x) = C(F1(x1), . . . , Fd(xd)). Further, if the Fi’s are continuous, then C isunique, and given by

C(u) = F (F−11 (u1), . . . , F−1

d (ud)) for all ui ∈ [0, 1]

We will then define the copula of F , or the copula of X.

6

Page 7: Slides dauphine

Arthur CHARPENTIER - tails of Archimedean copulas

XY

Z

Fonction de répartition à marges uniformes

Fig. 2 – Graphical representation of a copula, C(u, v) = P(U ≤ u, V ≤ v).

7

Page 8: Slides dauphine

Arthur CHARPENTIER - tails of Archimedean copulas

xx

z

Densité d’une loi à marges uniformes

Fig. 3 – Density of a copula, c(u, v) =∂2C(u, v)∂u∂v

.

8

Page 9: Slides dauphine

Arthur CHARPENTIER - tails of Archimedean copulas

Strong tail dependence

Joe (1993) defined, in the bivariate case a tail dependence measure.

Definition 4. Let (X,Y ) denote a random pair, the upper and lower taildependence parameters are defined, if the limit exist, as

λL = limu→0

P(X ≤ F−1

X (u) |Y ≤ F−1Y (u)

),

= limu→0

P (U ≤ u|V ≤ u) = limu→0

C(u, u)u

,

and

λU = limu→1

P(X > F−1

X (u) |Y > F−1Y (u)

)= lim

u→0P (U > 1− u|V ≤ 1− u) = lim

u→0

C?(u, u)u

.

9

Page 10: Slides dauphine

Arthur CHARPENTIER - tails of Archimedean copulas

Gaussian copula

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

●●

●●

●●

●●

● ●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

● ●

●●

● ●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

L and R concentration functions

L function (lower tails) R function (upper tails)

GAUSSIAN

Fig. 4 – L and R cumulative curves.

10

Page 11: Slides dauphine

Arthur CHARPENTIER - tails of Archimedean copulas

Gumbel copula

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

● ●

●●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

L and R concentration functions

L function (lower tails) R function (upper tails)

GUMBEL

Fig. 5 – L and R cumulative curves.

11

Page 12: Slides dauphine

Arthur CHARPENTIER - tails of Archimedean copulas

Clayton copula

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

●●

●●

●●

●●

●●

● ●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

● ●

● ●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

L and R concentration functions

L function (lower tails) R function (upper tails)

CLAYTON

Fig. 6 – L and R cumulative curves.

12

Page 13: Slides dauphine

Arthur CHARPENTIER - tails of Archimedean copulas

Student t copula

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

L and R concentration functions

L function (lower tails) R function (upper tails)

STUDENT (df=5)

Fig. 7 – L and R cumulative curves.

13

Page 14: Slides dauphine

Arthur CHARPENTIER - tails of Archimedean copulas

Student t copula

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

●●

●● ●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

● ●

● ●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

● ●

●●

●●

●●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

L and R concentration functions

L function (lower tails) R function (upper tails)

STUDENT (df=3)

Fig. 8 – L and R cumulative curves.

14

Page 15: Slides dauphine

Arthur CHARPENTIER - tails of Archimedean copulas

Weak tail dependence

If X and Y are independent (in tails), for u large enough

P(X > F−1X (u), Y > F−1

Y (u)) = P(X > F−1X (u)) · P(Y > F−1

Y (u)) = (1− u)2,

or equivalently, log P(X > F−1X (u), Y > F−1

Y (u)) = 2 · log(1− u). Further, if Xand Y are comonotonic (in tails), for u large enough

P(X > F−1X (u), Y > F−1

Y (u)) = P(X > F−1X (u)) = (1− u)1,

or equivalently, log P(X > F−1X (u), Y > F−1

Y (u)) = 1 · log(1− u).

=⇒ limit of the ratiolog(1− u)

log P(Z1 > F−11 (u), Z2 > F−1

2 (u)).

15

Page 16: Slides dauphine

Arthur CHARPENTIER - tails of Archimedean copulas

Weak tail dependence

Coles, Heffernan & Tawn (1999) defined

Definition 5. Let (X,Y ) denote a random pair, the upper and lower taildependence parameters are defined, if the limit exist, as

ηL = limu→0

log(u)log P(Z1 ≤ F−1

1 (u), Z2 ≤ F−12 (u))

= limu→0

log(u)logC(u, u)

,

and

ηU = limu→1

log(1− u)log P(Z1 > F−1

1 (u), Z2 > F−12 (u))

= limu→0

log(u)logC?(u, u)

.

16

Page 17: Slides dauphine

Arthur CHARPENTIER - tails of Archimedean copulas

Gaussian copula

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

● ●

●●

●●

●●

● ●

●●

●●

● ●

●●

● ●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

● ●

●●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Chi dependence functions

lower tails upper tails

GAUSSIAN

●●

Fig. 9 – χ functions.

17

Page 18: Slides dauphine

Arthur CHARPENTIER - tails of Archimedean copulas

Gumbel copula

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

●●

● ●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

● ●

●●

●●

●● ●

●●

●●

● ●

●●

● ●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

● ●

● ●

●●

● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Chi dependence functions

lower tails upper tails

GUMBEL

Fig. 10 – χ functions.

18

Page 19: Slides dauphine

Arthur CHARPENTIER - tails of Archimedean copulas

Clayton copula

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

●●

●●

●●

● ●

●●

●●

●●

●●

● ●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

● ●

● ●

●●

●●

● ●

●●

● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Chi dependence functions

lower tails upper tails

CLAYTON

Fig. 11 – χ functions.

19

Page 20: Slides dauphine

Arthur CHARPENTIER - tails of Archimedean copulas

Student t copula

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

● ●

●●

●●

● ●

●●

●●

●●

●●

●●

● ●

●●

●●

● ●

●●

●●

●●

●●

● ●

●●

● ●

●●

●●

●●

● ●

●●

●●

●●

● ●

●●

●●

● ●

●●

●●

● ●

● ●

●●

● ●

●●

● ●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Chi dependence functions

lower tails upper tails

STUDENT (df=3)

Fig. 12 – χ functions.

20

Page 21: Slides dauphine

Arthur CHARPENTIER - tails of Archimedean copulas

Application in risk management : Loss-ALAE

●●

●●

●●

●●●●

●●●

●●●

●●

●●

●●

●●

●●●●●

●●●●●●

●●

●●●●●●

●●

●●●●●

●●

●●

●●●●

●●●●●

●●●●

●●

●●

●●

●●●

●●

●●●

●●

●●

●●

●●●●

●●

●●●●

●●●●

●●

●●●●●●

●●

●●●

●●

●●●●

●●●●●●●●●●

●●●●●●●

●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●

●●●●●●●●●

●●●●●

●●●●

●●●●●

●●

●●

●●

●●

●●

●●

●●●●

●●

●●●●●

●●

●●

●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●●●●●

●●

●●●

●●

●●

●●

●●

●●●●●●●●

●●●

●●

●●●

●●●●●●

●●●●●●●

●●●

●●●

●●●

●●

●●

●●

●●●

●●

●●●●●

●●●

●●●●●●●●●●

●●●

●●●●●●●

●●●●●

●●

●●●●●●

●●●●●●●●●●●●●●

●●●●●

●●●●●●

●●●●●

●●●

●●

●●●

●●

●●●

●●

●●

●●●●

●●

●●

●●

●●●●●

●●●

●●●●●●●●●●

●●

●●●●

●●●●●●●●●●●●●

●●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●●●

●●

●●●●●●●●●●●●

●●

●●●

●●●

●●●

●●

●●

●●

●●

●●●●

●●

●●●

●●●●●

●●●●

●●●●●●●●●●●●●

●●

●●

●●●

●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●

●●

●●

●●

●●

●●●●●●●●●

●●●●●●●●

●●●

●●

●●●

●●

●●●

●●

●●

●●●●

●●●●●

●●

●●●

●●●●●●●●

●●●●

●●

●●

●●●

●●

●●

●●●

●●

●●●●●

●●●

●●

●●●

●●●●

●●

●●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Loss

Allo

cate

d E

xpe

nse

s

Fig. 13 – Losses and allocated expenses.

21

Page 22: Slides dauphine

Arthur CHARPENTIER - tails of Archimedean copulas

Application in risk management : Loss-ALAE

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

L and R concentration functions

L function (lower tails) R function (upper tails)

●●●

●●●

●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●

●●●

Gumbel copula

0.0 0.2 0.4 0.6 0.8 1.00

.00

.20

.40

.60

.81

.0

Chi dependence functions

lower tails upper tails

●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●

Gumbel copula

Fig. 14 – L and R cumulative curves, and χ functions.

22

Page 23: Slides dauphine

Arthur CHARPENTIER - tails of Archimedean copulas

Application in risk management : car-household

● ●

● ●

●●●

●●

●●

●●

●● ●

●●

●●

●●

●●

●●

● ●

● ●

●●●

●●

● ●●

●●

● ●

●●

●●

● ●

●●

● ●

●●

●●

●●

●●

●●

● ●

● ●

●●

● ●

●●

● ●

●●

●●

●●

● ●

●●

● ●

●●

●●

●●

●●

●●

● ●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Car claims

Ho

use

ho

ld c

laim

s

Fig. 15 – Motor and Household claims.

23

Page 24: Slides dauphine

Arthur CHARPENTIER - tails of Archimedean copulas

Application in risk management : car-household

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

L and R concentration functions

L function (lower tails) R function (upper tails)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●

●●●●●●

●●

Gumbel copula

0.0 0.2 0.4 0.6 0.8 1.00

.00

.20

.40

.60

.81

.0

Chi dependence functions

lower tails upper tails

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

Gumbel copula

Fig. 16 – L and R cumulative curves, and χ functions.

24

Page 25: Slides dauphine

Arthur CHARPENTIER - tails of Archimedean copulas

Archimedean copulas

Definition 6. A copula C is called Archimedean if it is of the form

C(u1, · · · , ud) = φ−1 (φ(u1) + · · ·+ φ(ud)) ,

where the generator φ : [0, 1]→ [0,∞] is convex, decreasing and satisfies φ(1) = 0.

A necessary and sufficient condition is that φ−1 is d-monotone.

25

Page 26: Slides dauphine

Arthur CHARPENTIER - tails of Archimedean copulas

Some examples of Archimedean copulas

φ(t) range θ

(1) 1θ

(t−θ − 1) [−1, 0) ∪ (0,∞) Clayton, Clayton (1978)

(2) (1 − t)θ [1,∞)

(3) log 1−θ(1−t)t

[−1, 1) Ali-Mikhail-Haq

(4) (− log t)θ [1,∞) Gumbel, Gumbel (1960), Hougaard (1986)

(5) − log e−θt−1e−θ−1

(−∞, 0) ∪ (0,∞) Frank, Frank (1979), Nelsen (1987)

(6) − log{1 − (1 − t)θ} [1,∞) Joe, Frank (1981), Joe (1993)

(7) − log{θt + (1 − θ)} (0, 1]

(8) 1−t1+(θ−1)t [1,∞)

(9) log(1 − θ log t) (0, 1] Barnett (1980), Gumbel (1960)

(10) log(2t−θ − 1) (0, 1]

(11) log(2 − tθ) (0, 1/2]

(12) ( 1t− 1)θ [1,∞)

(13) (1 − log t)θ − 1 (0,∞)

(14) (t−1/θ − 1)θ [1,∞)

(15) (1 − t1/θ)θ [1,∞) Genest & Ghoudi (1994)

(16) ( θt

+ 1)(1 − t) [0,∞)

26

Page 27: Slides dauphine

Arthur CHARPENTIER - tails of Archimedean copulas

Why Archimedean copulas ?

Assume that X and Y are conditionally independent, given the value of anheterogeneous component Θ. Assume further that

P(X ≤ x|Θ = θ) = (GX(x))θ and P(Y ≤ y|Θ = θ) = (GY (y))θ

for some baseline distribution functions GX and GY . Then

F (x, y) = P(X ≤ x, Y ≤ y) = E(P(X ≤ x, Y ≤ y|Θ = θ))

= E(P(X ≤ x|Θ = θ)× P(Y ≤ y|Θ = θ))

= E((GX(x))Θ × (GY (y))Θ

)= ψ(− logGX(x)− logGY (y))

where ψ denotes the Laplace transform of Θ, i.e. ψ(t) = E(e−tΘ). Since

FX(x) = ψ(− logGX(x)) and FY (y) = ψ(− logGY (y))

and thus, the joint distribution of (X,Y ) satisfies

F (x, y) = ψ(ψ−1(FX(x)) + ψ−1(FY (y))).

27

Page 28: Slides dauphine

Arthur CHARPENTIER - tails of Archimedean copulas

0 5 10 15

05

1015

20

Conditional independence, two classes

!3 !2 !1 0 1 2 3

!3

!2

!1

01

23

Conditional independence, two classes

Fig. 17 – Two classes of risks, (Xi, Yi) and (Φ−1(FX(Xi)),Φ−1(FY (Yi))).

28

Page 29: Slides dauphine

Arthur CHARPENTIER - tails of Archimedean copulas

0 5 10 15 20 25 30

010

2030

40

Conditional independence, three classes

!3 !2 !1 0 1 2 3

!3

!2

!1

01

23

Conditional independence, three classes

Fig. 18 – Three classes of risks, (Xi, Yi) and (Φ−1(FX(Xi)),Φ−1(FY (Yi))).

29

Page 30: Slides dauphine

Arthur CHARPENTIER - tails of Archimedean copulas

0 20 40 60 80 100

020

4060

80100

Conditional independence, continuous risk factor

!3 !2 !1 0 1 2 3

!3

!2

!1

01

23

Conditional independence, continuous risk factor

Fig. 19 – Continuous classes of risks, (Xi, Yi) and (Φ−1(FX(Xi)),Φ−1(FY (Yi))).

30

Page 31: Slides dauphine

Arthur CHARPENTIER - tails of Archimedean copulas

Properties of Archimedean copulas

• the countercomonotonic copula C− is Archimedean, φ(t) = 1− t,• the independent copula C⊥ is Archimedean, φ(t) = − log(t),• the comonotonic copula is not Archimedean (but can be a limit of

Archimedean copulas).

0.2

0.40.6

0.8

u_10.2

0.4

0.6

0.8

u_2

00.

20.

40.

60.

81

Frec

het l

ower

bou

nd

0.2

0.4

0.6

0.8

u_10.2

0.4

0.6

0.8

u_2

00.

20.

40.

60.

81

Inde

pend

ence

cop

ula

0.2

0.40.6

0.8

u_10.2

0.4

0.6

0.8

u_2

00.

20.

40.

60.

81

Frec

het u

pper

bou

nd

0.0 0.2 0.4 0.6 0.8 1.0

0.00.2

0.40.6

0.81.0

Scatterplot, Lower Fréchet!Hoeffding bound

0.0 0.2 0.4 0.6 0.8 1.0

0.00.2

0.40.6

0.81.0

Scatterplot, Indepedent copula random generation

0.0 0.2 0.4 0.6 0.8 1.0

0.00.2

0.40.6

0.81.0

Scatterplot, Upper Fréchet!Hoeffding bound

31

Page 32: Slides dauphine

Arthur CHARPENTIER - tails of Archimedean copulas

Properties of Archimedean copulas

• Frank copula is the only Archimedean such that (U, V ) L= (1− U, 1− V )(stability by symmetry),

• Gumbel copula is the only Archimedean such that (U, V ) has the same copulaas (max{U1, ..., Un},max{V1, ..., Vn}) for all n ≥ 1 (max-stability),

• Clayton copula is the only Archimedean such that (U, V ) has the same copulaas (U, V ) given (U ≤ u, V ≤ v) (stability by truncature).

32

Page 33: Slides dauphine

Arthur CHARPENTIER - tails of Archimedean copulas

Lower tails of Archimedean copulas

Study regular variation property of φ at 0,

lims→0

φ(st)φ(s)

= t−θ0 , t ∈ (0,∞)⇐⇒ θ0 = − lims→0

sφ′(s)φ(s)

.

If θ0 > 0 : asymptotic dependence

Proposition 7. If 0 < θ0 <∞, then for every ∅ 6= I ⊂ {1, . . . , d}, every(xi)i∈I ∈ (0,∞)|I| and every (y1, . . . , yd) ∈ (0,∞)d,

lims↓0

Pr[∀i = 1, . . . , d : Ui ≤ syi | ∀i ∈ I : Ui ≤ sxi]

=(∑

i∈Ic y−θ0i +

∑i∈I(xi ∧ yi)−θ0∑

i∈I x−θ0i

)−1/θ0

This is Clayton’s copula.

33

Page 34: Slides dauphine

Arthur CHARPENTIER - tails of Archimedean copulas

Lower tails of Archimedean copulas

Study regular variation property of φ at 0,

lims→0

φ(st)φ(s)

= t−θ0 , t ∈ (0,∞)⇐⇒ θ0 = − lims→0

sφ′(s)φ(s)

.

If θ0 = 0 : asymptotic independence (dependence in independence) for strictgenerators (φ(0) =∞)Proposition 8. If θ0 = 0 and φ(0) =∞, for every ∅ 6= I ⊂ {1, . . . , d}, every(xi)i∈I ∈ (0,∞)|I| and every (y1, . . . , yd) ∈ (0,∞)d,

lims↓0

Pr[∀i ∈ I : Ui ≤ syi;∀i ∈ Ic : Ui ≤ χs(yi) | ∀i ∈ I : Ui ≤ sxi]

=∏i∈I

(yjxj∧ 1)|I|−κ ∏

i∈Icexp

(−|I|−κy−1

i

),

where χs(·) = φ−1 (−sφ′(s)/·), and κ is the index of regular variation of ψ, withψ(·) = −φ−1(·)φ′(φ−1(·)).

34

Page 35: Slides dauphine

Arthur CHARPENTIER - tails of Archimedean copulas

Upper tails of Archimedean copulas

Study regular variation property of φ at 1,

lims→0

φ(1− st)φ(1− s)

= tθ1 , t ∈ (1,∞)⇐⇒ θ1 = − lims→0

sφ′(1− s)φ(1− s)

.

If θ1 > 1 : asymptotic dependence

Proposition 9. If 1 < θ0 <∞, then for every ∅ 6= I ⊂ {1, . . . , d}, every(xi)i∈I ∈ (0,∞)|I| and every (y1, . . . , yd) ∈ (0,∞)d,

lims↓0

Pr[∀i = 1, . . . , d : Ui ≥ 1− syi | ∀i ∈ I : Ui ≥ 1− sxi] =rd(z1, . . . , zd; θ1)r|I|((xi)i∈I ; θ1)

where zi = xi ∧ yi for i ∈ I and zi = yi for i ∈ Ic and

rk(u1, . . . , uk; θ1) =∑

∅ 6=J⊂{1,...,k}

(−1)|J|−1(∑i∈J

uθ1j)1/θ1

for integer k ≥ 1 and (u1, . . . , uk) ∈ (0,∞)k.

35

Page 36: Slides dauphine

Arthur CHARPENTIER - tails of Archimedean copulas

Upper tails of Archimedean copulas

Study regular variation property of φ at 1,

lims→0

φ(1− st)φ(1− s)

= tθ1 , t ∈ (1,∞)⇐⇒ θ1 = − lims→0

sφ′(1− s)φ(1− s)

.

If θ1 > 1 and φ′(1) < 0 : asymptotic independence, or near independence

Proposition 10. If 1 < θ1 = 1 and φ′(1) < 0, then for all (xi)i∈I ∈ (0,∞)|I| and(y1, . . . , yd) ∈ (0, 1]d ,

lims↓0

Pr[∀i ∈ I : Ui ≥ 1− syi;∀i ∈ Ic : Ui ≤ yi | ∀i ∈ I : Ui ≥ 1− sxi]

=∏i∈I

yj ·(−D)|I|φ−1(

∑i∈Ic φ(yi))

(−D)|I|φ−1(0).

36

Page 37: Slides dauphine

Arthur CHARPENTIER - tails of Archimedean copulas

Upper tails of Archimedean copulas

If θ > 1 and φ′(1) = 0 : asymptotic independence, dependence in independence

Proposition 11. If 1 < θ1 = 1 and φ′(1) = 0, if I ⊂ {1, . . . , d} and |I| ≥ 2, thenfor every (xi)i∈I ∈ (0,∞)|I| and every (y1, . . . , yd) ∈ (0,∞)d,

lims↓0

Pr[∀i = 1, . . . , d : Ui ≥ 1− syi | ∀i ∈ I : Ui ≥ 1− sxi] =rd(z1, . . . , zd)r|I|((xi)i∈I)

where zi = xi ∧ yi for i ∈ I and zi = yi for i ∈ Ic and

rk(u1, . . . , uk) :=∑

∅ 6=J⊂{1,...,k}

(−1)|J|(∑J

uj) log(∑J

uj)

= (k − 2)!∫ u1

0

· · ·∫ uk

0

(t1 + · · ·+ tk)−(k−1)dt1 · · · dtk

for integer k ≥ 2 and (u1, . . . , uk) ∈ (0,∞)k.

37

Page 38: Slides dauphine

Arthur CHARPENTIER - tails of Archimedean copulas

Tails of Archimedean copulas

• upper tail : calculate φ′(1) and θ1 = − lims→0

sφ′(1− s)φ(1− s)

,

◦ φ′(1) < 0 : asymptotic independence

◦ φ′(1) = 0 et θ1 = 1 : dependence in independence

◦ φ′(1) = 0 et θ1 > 1 : asymptotic dependence

• lower tail : calculate φ(0) and θ0 = − lims→0

sφ′(s)φ(s)

,

◦ φ(0) <∞ : asymptotic independence

◦ φ(0) =∞ et θ0 = 0 : dependence in independence

◦ φ(0) =∞ et θ0 > 0 : asymptotic dependence

38

Page 39: Slides dauphine

Arthur CHARPENTIER - tails of Archimedean copulas

upper tail lower tail

φ(t) range θ −φ′(1) θ1 φ(0) θ0 κ

(1) 1θ

(t−θ − 1) [−1,∞) 1 1 1(−θ)∨0 θ ∨ 0 ·

(2) (1 − t)θ [1,∞) 1(θ = 1) θ 1 0 ·

(3) log 1−θ(1−t)t

[−1, 1) 1 − θ 1 ∞ 0 0

(4) (− log t)θ [1,∞) 1(θ = 1) θ ∞ 0 1 − 1θ

(5) − log e−θt−1e−θ−1

θeθ−1

1 ∞ 0 0

(6) − log{1 − (1 − t)θ} [1,∞) 1(θ = 1) θ ∞ 0 0

(7) − log{θt + (1 − θ)} (0, 1] θ 1 − log(1 − θ) 0 ·(8) 1−t

1+(θ−1)t [1,∞) 1θ

1 1 0 ·

(9) log(1 − θ log t) (0, 1] θ 1 ∞ 0 −∞(10) log(2t−θ − 1) (0, 1] 2θ 1 ∞ 0 0

(11) log(2 − tθ) (0, 1/2] θ 1 log 2 0 ·(12) ( 1

t− 1)θ [1,∞) 1(θ = 1) θ ∞ θ ·

(13) (1 − log t)θ − 1 (0,∞) θ 0 ∞ 0 1 − 1θ

(14) (t−1/θ − 1)θ [1,∞) 1(θ = 1) θ ∞ 1 ·(15) (1 − t1/θ)θ [1,∞) 1(θ = 1) θ 1 0 ·(16) ( θ

t+ 1)(1 − t) [0,∞) 1 + θ 1 ∞ 1 ·

(17) − log (1+t)−θ−12−θ−1

θ2(2θ−1)

1 ∞ 0 0

(18) eθ/(t−1) [2,∞) 0 ∞ e−θ 0 ·(19) eθ/t − eθ (0,∞) θeθ 1 ∞ ∞ ·

(20) et−θ− e (0,∞) θe 1 ∞ ∞ ·

(21) 1 − {1 − (1 − t)θ}1/θ [1,∞) 1(θ = 1) θ 1 0 ·(22) arcsin(1 − tθ) (0, 1] θ 1 π/2 0 ·

39

Page 40: Slides dauphine

Arthur CHARPENTIER - tails of Archimedean copulas

How to extend to more general dependence structures ?

• mixtures of generators, since convex sums of generators defines a generator,• the α− β transformations in Nelsen (1999), i.e.

φα(t) = φ(tα) and φβ(t) = [φ(t)]β , where α ∈ (0, 1) and β ∈ (1,∞).

• other transformations, e.g.◦ exp(αφ(t))− 1, α ∈ (0,∞),◦ φ(1− [1− t]α), α ∈ (1,∞),◦ φ(αt)− φ(α), α ∈ (0, 1),

=⇒ can be related to distortion of Archimedean copulas.

40

Page 41: Slides dauphine

Arthur CHARPENTIER - tails of Archimedean copulas

upper tail lower tail

φα(t) range α φ′α(1) θ1(α) φα(0) θ0(α) κ(α)

(1) (φ(t))α (1,∞) 0 αθ1 (φ(0))α αθ0κα

+ 1 − 1α

(2) eαφ(t)−1α

(0,∞) αφ′(1) θ1αφ(0)−1

α∗ ∗

(3) φ(tα) (0, 1) αφ′(1) θ1 φ(0) αθ0 κ

(4) φ(1 − (1 − t)α) (1,∞) 0 αθ1 φ(0) θ0 κ

(5) φ(αt) − φ(α) (0, 1) αφ′(α) 1 φ(0) − φ(α) θ0 κ

41