43
Arthur CHARPENTIER - tails of Archimedean copulas Tails of Archimedean Copulas Arthur Charpentier CREM-Universit´ e Rennes 1 (joint work with Johan Segers, UCLN) http ://blogperso.univ-rennes1.fr/arthur.charpentier/index.php/ Workshop Dynamic and Multivariate Risk measures Institut Henri Poincar´ e, October 2008 1

Slides ihp

Embed Size (px)

DESCRIPTION

 

Citation preview

Page 1: Slides ihp

Arthur CHARPENTIER - tails of Archimedean copulas

Tails of Archimedean Copulas

Arthur Charpentier

CREM-Universite Rennes 1

(joint work with Johan Segers, UCLN)

http ://blogperso.univ-rennes1.fr/arthur.charpentier/index.php/

Workshop Dynamic and Multivariate Risk measures

Institut Henri Poincare, October 2008

1

Page 2: Slides ihp

Arthur CHARPENTIER - tails of Archimedean copulas

Tail behavior and risk management

Pickands-Balkema-de Haan’s theorem describes tail behavior (in dimension 1),

Theorem 1. F ∈MDA (Gξ) if and only if

limu→xF

sup0<x<xF

{∣∣Pr (X − u ≤ x|X > u)−Hξ,σ(u) (≤ x)∣∣} = 0,

for some positive function σ (·), where Hξ,σ (x) =

1− (1 + ξx/σ)−1/ξ , ξ 6= 0

1− exp (−x/σ) , ξ = 0.

Consider a i.i.d. sample {X1, · · · , Xn}, then recall that

1− F (x) ≈ (1− F (u))[1−Hξ,σ(u) (x− u)

], for all x > u.

Hence, if u = Xk:n, then

1− F (x) ≈ (1− F (Xk:n))︸ ︷︷ ︸≈1−Fn(Xk:n)=k/n

[1−Hξ,σ(Xk:n) (x−Xk:n)

], for all x > Xk:n,

2

Page 3: Slides ihp

Arthur CHARPENTIER - tails of Archimedean copulas

Deriving tail approximations for risk measures

If the distribution exceeding u = Xn−k:n can be approximated by a GeneralizedPareto distribution alors

V aR(X, p) ≈ Xn−k:n +σk

ξk

((nk

(1− p))−ξk

− 1

),

and

TV aR(X, p) = E(X|X > V aR(X, p))

≈ V aR(X, p)

[1

1− ξk+

σk − ξkXn−k:n

1− ξkV aR(X, p)

]

3

Page 4: Slides ihp

Arthur CHARPENTIER - tails of Archimedean copulas

Extending extreme value theory in higher dimension

univariate case bivariate case

limiting distribution dependence structure of

of Xn:n (G.E.V.) componentwise maximum

when n→∞, i.e. Hξ (Xn:n, Yn:n)

(Fisher-Tippet)

dependence structure of

limiting distribution (X,Y ) |X > x, Y > y

of X|X > x (G.P.D.) when x, y →∞when x→∞, i.e. Gξ,σ dependence structure of

(Balkema-de Haan-Pickands) (X,Y ) |X > x

when x→∞

4

Page 5: Slides ihp

Arthur CHARPENTIER - tails of Archimedean copulas

Tail dependence in risk management

●●

●●

●●

●●

●●●●●●●●●●●●●●●●

●●

●●

●●●

●●

●●

●●

●●●

●●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●

●●●●

●●

●●

●●●

●●●●●●●●

●●●●●●●

●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●

●●●●●●●●●

●●

●●●

●●●●

●●

●●

●●

●●●●

●●

●●●

●●●●●●●●

●●

●●

●●

●●●●●

●●

●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●

●●

●●●●●●●●●●

●●●

●●

●●●

●●●●

●●

●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●

●●●

●●

●●●

●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●●

●●●●●●

●●

●●

●●●

●●

●●●●●●●●●●●●●●

●●

●●

●●

●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●

●●

●●

●●●●

●●

●●●

●●

●●

●●

●●●

●●

●●

●●●

●●

●●●

●●●●

●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●

●●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●

●●

●●●●●●●●●●●●●●

●●●

●●

●●

●●

●●

●●

●●

●●●●

●●●●

●●

●●

●●●

●●●

●●●●

●●●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●●●●

●●

●●●●●

●●

●●

●●

●●

●●●

●●

●●●

●●●●●●●●●●●

●●

●●

●●

●●

●●●●●●●●●●●●●

●●●●●

●●

●●●

●●●

●●

●●

●●

●●●

●●

●●

●●

●●●●●

●●

●●

●●●●

●●

● ●

1e+01 1e+03 1e+05

1e

+0

11

e+

02

1e

+0

31

e+

04

1e

+0

5

Loss (log scale)

Allo

cate

d E

xpe

nse

s

●●

●●

●● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

● ●

●●

●●

●●

●●●

● ●

●●

●●

● ● ●●

● ●

● ●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

● ●

●●

● ●

●●

●●

●●

●●

●●

● ●●

●●

●●

●●

● ●●

●●

● ●

● ●

●●

● ●

●●

●●

●●

●●

●●●

●●

●●

● ●

● ●

●●

● ●

●●

●●

●●●

●●

●●

●●

● ●

● ●

● ●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

● ●

1 10 100 1000 100001

e+

00

1e

+0

21

e+

04

1e

+0

6

Car claims (log scale)

Ho

use

ho

ld c

laim

s

Fig. 1 – Multiple risks issues.

5

Page 6: Slides ihp

Arthur CHARPENTIER - tails of Archimedean copulas

Motivations : dependence and copulasDefinition 2. A copula C is a joint distribution function on [0, 1]d, withuniform margins on [0, 1].Theorem 3. (Sklar) Let C be a copula, and F1, . . . , Fd be d marginaldistributions, then F (x) = C(F1(x1), . . . , Fd(xd)) is a distribution function, withF ∈ F(F1, . . . , Fd).

Conversely, if F ∈ F(F1, . . . , Fd), there exists C such thatF (x) = C(F1(x1), . . . , Fd(xd)). Further, if the Fi’s are continuous, then C isunique, and given by

C(u) = F (F−11 (u1), . . . , F−1

d (ud)) for all ui ∈ [0, 1]

We will then define the copula of F , or the copula of X.

Let C? denote the survival copula, P(X1 ≤ x1, · · · , Xd ≤ xd) = C(P(X1 ≤ x1), · · · ,P(Xd ≤ xd))P(X1 > x1, · · · , Xd > xd) = C?(P(X1 > x1), · · · ,P(Xd > xd))

6

Page 7: Slides ihp

Arthur CHARPENTIER - tails of Archimedean copulas

XY

Z

Fonction de répartition à marges uniformes

Fig. 2 – Graphical representation of a copula, C(u, v) = P(U ≤ u, V ≤ v).

7

Page 8: Slides ihp

Arthur CHARPENTIER - tails of Archimedean copulas

xx

z

Densité d’une loi à marges uniformes

Fig. 3 – Density of a copula, c(u, v) =∂2C(u, v)∂u∂v

.

8

Page 9: Slides ihp

Arthur CHARPENTIER - tails of Archimedean copulas

Strong tail dependence

Joe (1993) defined, in the bivariate case a tail dependence measure.

Definition 4. Let (X,Y ) denote a random pair, the upper and lower taildependence parameters are defined, if the limit exist, as

λL = limu→0

P(X ≤ F−1

X (u) |Y ≤ F−1Y (u)

),

= limu→0

P (U ≤ u|V ≤ u) = limu→0

C(u, u)u

,

and

λU = limu→1

P(X > F−1

X (u) |Y > F−1Y (u)

)= lim

u→0P (U > 1− u|V ≤ 1− u) = lim

u→0

C?(u, u)u

.

9

Page 10: Slides ihp

Arthur CHARPENTIER - tails of Archimedean copulas

Gaussian copula

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

●●

●●

●●

●●

● ●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

● ●

●●

● ●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

L and R concentration functions

L function (lower tails) R function (upper tails)

GAUSSIAN

Fig. 4 – L and R cumulative curves.

10

Page 11: Slides ihp

Arthur CHARPENTIER - tails of Archimedean copulas

Gumbel copula

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

● ●

●●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

L and R concentration functions

L function (lower tails) R function (upper tails)

GUMBEL

Fig. 5 – L and R cumulative curves.

11

Page 12: Slides ihp

Arthur CHARPENTIER - tails of Archimedean copulas

Clayton copula

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

●●

●●

●●

●●

●●

● ●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

● ●

● ●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

L and R concentration functions

L function (lower tails) R function (upper tails)

CLAYTON

Fig. 6 – L and R cumulative curves.

12

Page 13: Slides ihp

Arthur CHARPENTIER - tails of Archimedean copulas

Student t copula

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

L and R concentration functions

L function (lower tails) R function (upper tails)

STUDENT (df=5)

Fig. 7 – L and R cumulative curves.

13

Page 14: Slides ihp

Arthur CHARPENTIER - tails of Archimedean copulas

Student t copula

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

●●

●● ●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

● ●

● ●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

● ●

●●

●●

●●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

L and R concentration functions

L function (lower tails) R function (upper tails)

STUDENT (df=3)

Fig. 8 – L and R cumulative curves.

14

Page 15: Slides ihp

Arthur CHARPENTIER - tails of Archimedean copulas

Weak tail dependence

If X and Y are independent (in tails), for u large enough

P(X > F−1X (u), Y > F−1

Y (u)) = P(X > F−1X (u)) · P(Y > F−1

Y (u)) = (1− u)2,

or equivalently, log P(X > F−1X (u), Y > F−1

Y (u)) = 2 · log(1− u). Further, if Xand Y are comonotonic (in tails), for u large enough

P(X > F−1X (u), Y > F−1

Y (u)) = P(X > F−1X (u)) = (1− u)1,

or equivalently, log P(X > F−1X (u), Y > F−1

Y (u)) = 1 · log(1− u).

=⇒ limit of the ratiolog(1− u)

log P(Z1 > F−11 (u), Z2 > F−1

2 (u)).

15

Page 16: Slides ihp

Arthur CHARPENTIER - tails of Archimedean copulas

Weak tail dependence

Coles, Heffernan & Tawn (1999) defined

Definition 5. Let (X,Y ) denote a random pair, the upper and lower taildependence parameters are defined, if the limit exist, as

ηL = limu→0

log(u)log P(Z1 ≤ F−1

1 (u), Z2 ≤ F−12 (u))

= limu→0

log(u)logC(u, u)

,

and

ηU = limu→1

log(1− u)log P(Z1 > F−1

1 (u), Z2 > F−12 (u))

= limu→0

log(u)logC?(u, u)

.

16

Page 17: Slides ihp

Arthur CHARPENTIER - tails of Archimedean copulas

Gaussian copula

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

● ●

●●

●●

●●

● ●

●●

●●

● ●

●●

● ●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

● ●

●●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Chi dependence functions

lower tails upper tails

GAUSSIAN

●●

Fig. 9 – χ functions.

17

Page 18: Slides ihp

Arthur CHARPENTIER - tails of Archimedean copulas

Gumbel copula

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

●●

● ●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

● ●

●●

●●

●● ●

●●

●●

● ●

●●

● ●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

● ●

● ●

●●

● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Chi dependence functions

lower tails upper tails

GUMBEL

Fig. 10 – χ functions.

18

Page 19: Slides ihp

Arthur CHARPENTIER - tails of Archimedean copulas

Clayton copula

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

●●

●●

●●

● ●

●●

●●

●●

●●

● ●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

● ●

● ●

●●

●●

● ●

●●

● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Chi dependence functions

lower tails upper tails

CLAYTON

Fig. 11 – χ functions.

19

Page 20: Slides ihp

Arthur CHARPENTIER - tails of Archimedean copulas

Student t copula

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

● ●

●●

●●

● ●

●●

●●

●●

●●

●●

● ●

●●

●●

● ●

●●

●●

●●

●●

● ●

●●

● ●

●●

●●

●●

● ●

●●

●●

●●

● ●

●●

●●

● ●

●●

●●

● ●

● ●

●●

● ●

●●

● ●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Chi dependence functions

lower tails upper tails

STUDENT (df=3)

Fig. 12 – χ functions.

20

Page 21: Slides ihp

Arthur CHARPENTIER - tails of Archimedean copulas

Application in risk management : Loss-ALAE

●●

●●

●●

●●●●

●●●

●●●

●●

●●

●●

●●

●●●●●

●●●●●●

●●

●●●●●●

●●

●●●●●

●●

●●

●●●●

●●●●●

●●●●

●●

●●

●●

●●●

●●

●●●

●●

●●

●●

●●●●

●●

●●●●

●●●●

●●

●●●●●●

●●

●●●

●●

●●●●

●●●●●●●●●●

●●●●●●●

●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●

●●●●●●●●●

●●●●●

●●●●

●●●●●

●●

●●

●●

●●

●●

●●

●●●●

●●

●●●●●

●●

●●

●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●●●●●

●●

●●●

●●

●●

●●

●●

●●●●●●●●

●●●

●●

●●●

●●●●●●

●●●●●●●

●●●

●●●

●●●

●●

●●

●●

●●●

●●

●●●●●

●●●

●●●●●●●●●●

●●●

●●●●●●●

●●●●●

●●

●●●●●●

●●●●●●●●●●●●●●

●●●●●

●●●●●●

●●●●●

●●●

●●

●●●

●●

●●●

●●

●●

●●●●

●●

●●

●●

●●●●●

●●●

●●●●●●●●●●

●●

●●●●

●●●●●●●●●●●●●

●●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●●●

●●

●●●●●●●●●●●●

●●

●●●

●●●

●●●

●●

●●

●●

●●

●●●●

●●

●●●

●●●●●

●●●●

●●●●●●●●●●●●●

●●

●●

●●●

●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●

●●

●●

●●

●●

●●●●●●●●●

●●●●●●●●

●●●

●●

●●●

●●

●●●

●●

●●

●●●●

●●●●●

●●

●●●

●●●●●●●●

●●●●

●●

●●

●●●

●●

●●

●●●

●●

●●●●●

●●●

●●

●●●

●●●●

●●

●●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Loss

Allo

cate

d E

xpe

nse

s

Fig. 13 – Losses and allocated expenses.

21

Page 22: Slides ihp

Arthur CHARPENTIER - tails of Archimedean copulas

Application in risk management : Loss-ALAE

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

L and R concentration functions

L function (lower tails) R function (upper tails)

●●●

●●●

●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●

●●●

Gumbel copula

0.0 0.2 0.4 0.6 0.8 1.00

.00

.20

.40

.60

.81

.0

Chi dependence functions

lower tails upper tails

●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●

Gumbel copula

Fig. 14 – L and R cumulative curves, and χ functions.

22

Page 23: Slides ihp

Arthur CHARPENTIER - tails of Archimedean copulas

Application in risk management : car-household

● ●

● ●

●●●

●●

●●

●●

●● ●

●●

●●

●●

●●

●●

● ●

● ●

●●●

●●

● ●●

●●

● ●

●●

●●

● ●

●●

● ●

●●

●●

●●

●●

●●

● ●

● ●

●●

● ●

●●

● ●

●●

●●

●●

● ●

●●

● ●

●●

●●

●●

●●

●●

● ●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Car claims

Ho

use

ho

ld c

laim

s

Fig. 15 – Motor and Household claims.

23

Page 24: Slides ihp

Arthur CHARPENTIER - tails of Archimedean copulas

Application in risk management : car-household

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

L and R concentration functions

L function (lower tails) R function (upper tails)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●

●●●●●●

●●

Gumbel copula

0.0 0.2 0.4 0.6 0.8 1.00

.00

.20

.40

.60

.81

.0

Chi dependence functions

lower tails upper tails

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

Gumbel copula

Fig. 16 – L and R cumulative curves, and χ functions.

24

Page 25: Slides ihp

Arthur CHARPENTIER - tails of Archimedean copulas

Archimedean copulas

Definition 6. A copula C is called Archimedean if it is of the form

C(u1, · · · , ud) = φ−1 (φ(u1) + · · ·+ φ(ud)) ,

where the generator φ : [0, 1]→ [0,∞] is convex, decreasing and satisfies φ(1) = 0.

A necessary and sufficient condition is that φ−1 is d-monotone.

25

Page 26: Slides ihp

Arthur CHARPENTIER - tails of Archimedean copulas

Some examples of Archimedean copulas

φ(t) range θ

(1) 1θ

(t−θ − 1) [−1, 0) ∪ (0,∞) Clayton, Clayton (1978)

(2) (1 − t)θ [1,∞)

(3) log 1−θ(1−t)t

[−1, 1) Ali-Mikhail-Haq

(4) (− log t)θ [1,∞) Gumbel, Gumbel (1960), Hougaard (1986)

(5) − log e−θt−1e−θ−1

(−∞, 0) ∪ (0,∞) Frank, Frank (1979), Nelsen (1987)

(6) − log{1 − (1 − t)θ} [1,∞) Joe, Frank (1981), Joe (1993)

(7) − log{θt + (1 − θ)} (0, 1]

(8) 1−t1+(θ−1)t [1,∞)

(9) log(1 − θ log t) (0, 1] Barnett (1980), Gumbel (1960)

(10) log(2t−θ − 1) (0, 1]

(11) log(2 − tθ) (0, 1/2]

(12) ( 1t− 1)θ [1,∞)

(13) (1 − log t)θ − 1 (0,∞)

(14) (t−1/θ − 1)θ [1,∞)

(15) (1 − t1/θ)θ [1,∞) Genest & Ghoudi (1994)

(16) ( θt

+ 1)(1 − t) [0,∞)

26

Page 27: Slides ihp

Arthur CHARPENTIER - tails of Archimedean copulas

Why Archimedean copulas ?

Assume that X and Y are conditionally independent, given the value of anheterogeneous component Θ. Assume further that

P(X ≤ x|Θ = θ) = (GX(x))θ and P(Y ≤ y|Θ = θ) = (GY (y))θ

for some baseline distribution functions GX and GY . Then

F (x, y) = P(X ≤ x, Y ≤ y) = E(P(X ≤ x, Y ≤ y|Θ = θ))

= E(P(X ≤ x|Θ = θ)× P(Y ≤ y|Θ = θ))

= E((GX(x))Θ × (GY (y))Θ

)= ψ(− logGX(x)− logGY (y))

where ψ denotes the Laplace transform of Θ, i.e. ψ(t) = E(e−tΘ). Since

FX(x) = ψ(− logGX(x)) and FY (y) = ψ(− logGY (y))

and thus, the joint distribution of (X,Y ) satisfies

F (x, y) = ψ(ψ−1(FX(x)) + ψ−1(FY (y))).

27

Page 28: Slides ihp

Arthur CHARPENTIER - tails of Archimedean copulas

0 5 10 15

05

1015

20

Conditional independence, two classes

!3 !2 !1 0 1 2 3

!3

!2

!1

01

23

Conditional independence, two classes

Fig. 17 – Two classes of risks, (Xi, Yi) and (Φ−1(FX(Xi)),Φ−1(FY (Yi))).

28

Page 29: Slides ihp

Arthur CHARPENTIER - tails of Archimedean copulas

0 5 10 15 20 25 30

010

2030

40

Conditional independence, three classes

!3 !2 !1 0 1 2 3

!3

!2

!1

01

23

Conditional independence, three classes

Fig. 18 – Three classes of risks, (Xi, Yi) and (Φ−1(FX(Xi)),Φ−1(FY (Yi))).

29

Page 30: Slides ihp

Arthur CHARPENTIER - tails of Archimedean copulas

0 20 40 60 80 100

020

4060

80100

Conditional independence, continuous risk factor

!3 !2 !1 0 1 2 3

!3

!2

!1

01

23

Conditional independence, continuous risk factor

Fig. 19 – Continuous classes of risks, (Xi, Yi) and (Φ−1(FX(Xi)),Φ−1(FY (Yi))).

30

Page 31: Slides ihp

Arthur CHARPENTIER - tails of Archimedean copulas

Properties of Archimedean copulas

• the countercomonotonic copula C− is Archimedean, φ(t) = 1− t,• the independent copula C⊥ is Archimedean, φ(t) = − log(t),• the comonotonic copula C+ is not Archimedean (but can be a limit of

Archimedean copulas).

0.2

0.40.6

0.8

u_10.2

0.4

0.6

0.8

u_2

00.

20.

40.

60.

81

Frec

het l

ower

bou

nd

0.2

0.4

0.6

0.8

u_10.2

0.4

0.6

0.8

u_2

00.

20.

40.

60.

81

Inde

pend

ence

cop

ula

0.2

0.40.6

0.8

u_10.2

0.4

0.6

0.8

u_2

00.

20.

40.

60.

81

Frec

het u

pper

bou

nd

0.0 0.2 0.4 0.6 0.8 1.0

0.00.2

0.40.6

0.81.0

Scatterplot, Lower Fréchet!Hoeffding bound

0.0 0.2 0.4 0.6 0.8 1.0

0.00.2

0.40.6

0.81.0

Scatterplot, Indepedent copula random generation

0.0 0.2 0.4 0.6 0.8 1.0

0.00.2

0.40.6

0.81.0

Scatterplot, Upper Fréchet!Hoeffding bound

31

Page 32: Slides ihp

Arthur CHARPENTIER - tails of Archimedean copulas

Properties of Archimedean copulas

• Frank copula is the only Archimedean such that (U, V ) L= (1− U, 1− V )(stability by symmetry),

• Gumbel copula is the only Archimedean such that (U, V ) has the same copulaas (max{U1, ..., Un},max{V1, ..., Vn}) for all n ≥ 1 (max-stability),

• Clayton copula is the only Archimedean such that (U, V ) has the same copulaas (U, V ) given (U ≤ u, V ≤ v) (stability by truncature).

32

Page 33: Slides ihp

Arthur CHARPENTIER - tails of Archimedean copulas

Lower tails of Archimedean copulas

Study regular variation property of φ at 0,

lims→0

φ(st)φ(s)

= t−θ0 , t ∈ (0,∞)⇐⇒ θ0 = − lims→0

sφ′(s)φ(s)

.

If θ0 > 0 : asymptotic dependence

Proposition 7. If 0 < θ0 <∞, then for every ∅ 6= I ⊂ {1, . . . , d}, every(xi)i∈I ∈ (0,∞)|I| and every (y1, . . . , yd) ∈ (0,∞)d,

lims↓0

Pr[∀i = 1, . . . , d : Ui ≤ syi | ∀i ∈ I : Ui ≤ sxi]

=(∑

i∈Ic y−θ0i +

∑i∈I(xi ∧ yi)−θ0∑

i∈I x−θ0i

)−1/θ0

This is Clayton’s copula. Further, λL = 2−1/θ0 .

33

Page 34: Slides ihp

Arthur CHARPENTIER - tails of Archimedean copulas

Lower tails of Archimedean copulas

Study regular variation property of φ at 0,

lims→0

φ(st)φ(s)

= t−θ0 , t ∈ (0,∞)⇐⇒ θ0 = − lims→0

sφ′(s)φ(s)

.

If θ0 = 0 : asymptotic independence for strict generators (φ(0) =∞)Proposition 8. If θ0 = 0 and φ(0) =∞, for every ∅ 6= I ⊂ {1, . . . , d}, every(xi)i∈I ∈ (0,∞)|I| and every (y1, . . . , yd) ∈ (0,∞)d,

lims↓0

Pr[∀i ∈ I : Ui ≤ syi;∀i ∈ Ic : Ui ≤ χs(yi) | ∀i ∈ I : Ui ≤ sxi]

=∏i∈I

(yjxj∧ 1)|I|−κ ∏

i∈Icexp

(−|I|−κy−1

i

),

where χs(·) = φ−1 (−sφ′(s)/·), and κ is the index of regular variation of ψ, withψ(·) = −φ−1(·)φ′(φ−1(·)).

Then ηL = 2κ−1.

34

Page 35: Slides ihp

Arthur CHARPENTIER - tails of Archimedean copulas

Upper tails of Archimedean copulas

Study regular variation property of φ at 1,

lims→0

φ(1− st)φ(1− s)

= tθ1 , t ∈ (1,∞)⇐⇒ θ1 = − lims→0

sφ′(1− s)φ(1− s)

.

If θ1 > 1 : asymptotic dependence, and λU = 2− 21/θ1 ,

Proposition 9. If 1 < θ0 <∞, then for every ∅ 6= I ⊂ {1, . . . , d}, every(xi)i∈I ∈ (0,∞)|I| and every (y1, . . . , yd) ∈ (0,∞)d,

lims↓0

Pr[∀i = 1, . . . , d : Ui ≥ 1− syi | ∀i ∈ I : Ui ≥ 1− sxi] =rd(z1, . . . , zd; θ1)r|I|((xi)i∈I ; θ1)

where zi = xi ∧ yi for i ∈ I and zi = yi for i ∈ Ic and

rk(u1, . . . , uk; θ1) =∑

∅ 6=J⊂{1,...,k}

(−1)|J|−1(∑i∈J

uθ1j)1/θ1

for integer k ≥ 1 and (u1, . . . , uk) ∈ (0,∞)k.

35

Page 36: Slides ihp

Arthur CHARPENTIER - tails of Archimedean copulas

Upper tails of Archimedean copulas

Study regular variation property of φ at 1,

lims→0

φ(1− st)φ(1− s)

= tθ1 , t ∈ (1,∞)⇐⇒ θ1 = − lims→0

sφ′(1− s)φ(1− s)

.

If θ1 = 1 and φ′(1) < 0 : asymptotic independence, or near independence

Proposition 10. If θ1 = 1 and φ′(1) < 0, then for all (xi)i∈I ∈ (0,∞)|I| and(y1, . . . , yd) ∈ (0, 1]d ,

lims↓0

Pr[∀i ∈ I : Ui ≥ 1− syi;∀i ∈ Ic : Ui ≤ yi | ∀i ∈ I : Ui ≥ 1− sxi]

=∏i∈I

yj ·(−D)|I|φ−1(

∑i∈Ic φ(yi))

(−D)|I|φ−1(0).

In that case, ηU = 1/2 (near independence).

36

Page 37: Slides ihp

Arthur CHARPENTIER - tails of Archimedean copulas

Upper tails of Archimedean copulas

If θ = 1 and φ′(1) = 0 : asymptotic independence, dependence in independence

Proposition 11. If θ1 = 1 and φ′(1) = 0, if I ⊂ {1, . . . , d} and |I| ≥ 2, then forevery (xi)i∈I ∈ (0,∞)|I| and every (y1, . . . , yd) ∈ (0,∞)d,

lims↓0

Pr[∀i = 1, . . . , d : Ui ≥ 1− syi | ∀i ∈ I : Ui ≥ 1− sxi] =rd(z1, . . . , zd)r|I|((xi)i∈I)

where zi = xi ∧ yi for i ∈ I and zi = yi for i ∈ Ic and

rk(u1, . . . , uk) :=∑

∅ 6=J⊂{1,...,k}

(−1)|J|(∑J

uj) log(∑J

uj)

= (k − 2)!∫ u1

0

· · ·∫ uk

0

(t1 + · · ·+ tk)−(k−1)dt1 · · · dtk

for integer k ≥ 2 and (u1, . . . , uk) ∈ (0,∞)k.

In that case, ηU = 1 (near asymptotic dependence).

37

Page 38: Slides ihp

Arthur CHARPENTIER - tails of Archimedean copulas

Tails of Archimedean copulas

• upper tail : calculate φ′(1) and θ1 = − lims→0

sφ′(1− s)φ(1− s)

,

◦ φ′(1) < 0 : asymptotic independence

◦ φ′(1) = 0 et θ1 = 1 : dependence in independence

◦ φ′(1) = 0 et θ1 > 1 : asymptotic dependence

• lower tail : calculate φ(0) and θ0 = − lims→0

sφ′(s)φ(s)

,

◦ φ(0) <∞ : asymptotic independence

◦ φ(0) =∞ et θ0 = 0 : dependence in independence

◦ φ(0) =∞ et θ0 > 0 : asymptotic dependence

38

Page 39: Slides ihp

Arthur CHARPENTIER - tails of Archimedean copulas

upper tail lower tail

φ(t) range θ −φ′(1) θ1 φ(0) θ0 κ

(1) 1θ

(t−θ − 1) [−1,∞) 1 1 1(−θ)∨0 θ ∨ 0 ·

(2) (1 − t)θ [1,∞) 1(θ = 1) θ 1 0 ·

(3) log 1−θ(1−t)t

[−1, 1) 1 − θ 1 ∞ 0 0

(4) (− log t)θ [1,∞) 1(θ = 1) θ ∞ 0 1 − 1θ

(5) − log e−θt−1e−θ−1

θeθ−1

1 ∞ 0 0

(6) − log{1 − (1 − t)θ} [1,∞) 1(θ = 1) θ ∞ 0 0

(7) − log{θt + (1 − θ)} (0, 1] θ 1 − log(1 − θ) 0 ·(8) 1−t

1+(θ−1)t [1,∞) 1θ

1 1 0 ·

(9) log(1 − θ log t) (0, 1] θ 1 ∞ 0 −∞(10) log(2t−θ − 1) (0, 1] 2θ 1 ∞ 0 0

(11) log(2 − tθ) (0, 1/2] θ 1 log 2 0 ·(12) ( 1

t− 1)θ [1,∞) 1(θ = 1) θ ∞ θ ·

(13) (1 − log t)θ − 1 (0,∞) θ 0 ∞ 0 1 − 1θ

(14) (t−1/θ − 1)θ [1,∞) 1(θ = 1) θ ∞ 1 ·(15) (1 − t1/θ)θ [1,∞) 1(θ = 1) θ 1 0 ·(16) ( θ

t+ 1)(1 − t) [0,∞) 1 + θ 1 ∞ 1 ·

(17) − log (1+t)−θ−12−θ−1

θ2(2θ−1)

1 ∞ 0 0

(18) eθ/(t−1) [2,∞) 0 ∞ e−θ 0 ·(19) eθ/t − eθ (0,∞) θeθ 1 ∞ ∞ ·

(20) et−θ− e (0,∞) θe 1 ∞ ∞ ·

(21) 1 − {1 − (1 − t)θ}1/θ [1,∞) 1(θ = 1) θ 1 0 ·(22) arcsin(1 − tθ) (0, 1] θ 1 π/2 0 ·

39

Page 40: Slides ihp

Arthur CHARPENTIER - tails of Archimedean copulas

How to extend to more general dependence structures ?

• mixtures of generators, since convex sums of generators defines a generator,• the α− β transformations in Nelsen (1999), i.e.

φα(t) = φ(tα) and φβ(t) = [φ(t)]β , where α ∈ (0, 1) and β ∈ (1,∞).

• other transformations, e.g.◦ exp(αφ(t))− 1, α ∈ (0,∞),◦ φ(1− [1− t]α), α ∈ (1,∞),◦ φ(αt)− φ(α), α ∈ (0, 1),

=⇒ can be related to distortion of Archimedean copulas.

40

Page 41: Slides ihp

Arthur CHARPENTIER - tails of Archimedean copulas

How to extend to more general dependence structures ?

upper tail lower tail

φα(t) range α φ′α(1) θ1(α) φα(0) θ0(α) κ(α)

(1) (φ(t))α (1,∞) 0 αθ1 (φ(0))α αθ0κα

+ 1 − 1α

(2) eαφ(t)−1α

(0,∞) αφ′(1) θ1αφ(0)−1

α∗ ∗

(3) φ(tα) (0, 1) αφ′(1) θ1 φ(0) αθ0 κ

(4) φ(1 − (1 − t)α) (1,∞) 0 αθ1 φ(0) θ0 κ

(5) φ(αt) − φ(α) (0, 1) αφ′(α) 1 φ(0) − φ(α) θ0 κ

see Charpentier & Segers (2006, 2007, 2008) for more details on tailbehavior for Archimedean copulas, and Charpentier & Juri (2006) for someextensions in the general case.

41

Page 42: Slides ihp

Arthur CHARPENTIER - tails of Archimedean copulas

From tails of copulas to tails of sums

Assume that X1, · · · , Xd have identical marginal distributions, with tail index ξ,

limt→∞

P(Xi > xt)P(Xi > t)

= x−α , where α =1ξ.

From Feller (1971),

limt→∞

P(S > t)P(Xi > t)

=P(X1 + · · ·+Xd > t)

P(Xi > t)= d,

when the Xi’s are mutually independent (regularly varying functions aresubexponential, when ξ > 0).

Alink, Lowe & Wuthrich (2004) obtained the expression of the limit,assuming that X has an Archimedean surival copula, where φ is regularlyvarying at 0 (see also Albrecher, Asmussen and Kortschak (2006),Barbe, Fougres and Genest (2006) or Kortschak and Albrecher

(2008) for additional results).

42

Page 43: Slides ihp

Arthur CHARPENTIER - tails of Archimedean copulas

ReferencesAlbrecher, H., Asmussen, S. and Kortschak, D. (2006). Tail asymptotics for the sum of two heavy-tailed dependentrisks. Extremes, 9, 107-130.

Alink, S., Lowe, M. and Wuthrich, M.V. (2004). Diversification of aggregate dependent risks. Insurance : Mathematics and

Economics, 35, 77-95.

Barbe, P., Fougeres, A.-L. and Genest, C. (2006). On the tail behavior of sums of dependent risks. ASTIN Bulletin, 36,361-373.

Coles, S., Heffernan, J.E., and Tawn, J.A. (1999). Dependence measures for extreme value analyses. Extremes, 2,339-365.

Charpentier, A. and Juri, A. (2006). Limiting dependence structures for tail events, with applications to creditderivatives. Journal of Applied Probability, 44, 563-586.

Charpentier, A. and Segers, J. (2007). Lower tail dependence for Archimedean copulas : Characterizations and pitfalls.Insurance : Mathematics and Economics, 40, 525-532.

Charpentier, A. and Segers, J. (2008). Convergence of Archimedean copulas. Proba- bility & Statistical Letters, 78, 412-419.

Charpentier, A. and Segers, J. (2007). Tails of Archimedean copulas. submited.

Joe, H. (1993). Multivariate dependence measures and data analysis. Computational Statistics & Data Analysis, 16, 279-297.

Feller, W. (1971). An introduction to probability theory and its applications, vol. 2. Wiley.

Kortschak, D. and Albrecher, H. (2008). Asymptotic results for the sum of dependent non-identically distributedrandom variables. Methodology and Computing in Applied Probability, to appear.

Nelsen, R. (1999). An introduction to copulas. Springer-Verlag.

Wuthrich, M. (2003). Asymptotic value-at-risk estimates for sums of dependent random variables. ASTIN Bulletin, 33,75-92.

43