40
Won Jong Kim, Ph.D Department of Chemistry POSTECH Smart nanoparticles for drug, gene and nitric oxide delivery

Smart nanoparticles for drug, gene and nitric oxide delivery · 2018-07-13 · 15 Size Dependent Biological Barriers in Drug Delivery System J. Kim et al. J. Control.Release 2016,

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Smart nanoparticles for drug, gene and nitric oxide delivery · 2018-07-13 · 15 Size Dependent Biological Barriers in Drug Delivery System J. Kim et al. J. Control.Release 2016,

Won Jong Kim, Ph.D

Department of Chemistry

POSTECH

Smart nanoparticles for drug, gene and nitric oxide delivery

Page 2: Smart nanoparticles for drug, gene and nitric oxide delivery · 2018-07-13 · 15 Size Dependent Biological Barriers in Drug Delivery System J. Kim et al. J. Control.Release 2016,

2 BioMedical Polymer Laboratory

Drug Delivery System

Nanoparticle-based Delivery System

Various Drug Delivery Systems

Unfavorable side effects - Nonspecific distribution - Hair loss and immunodeficiency

Low efficiency - Poor solubility and stability - Renal/hepatic clearance

Multidrug resistance

- Active efflux of drugs

Limitations of small molecular drugs

Ref: Nat. Biotech. 2015, 33, 941-951.

Doxorubicin (DOX) Paclitaxel (PTX)

Nanomedicine (Targeted, Programmed)

Page 3: Smart nanoparticles for drug, gene and nitric oxide delivery · 2018-07-13 · 15 Size Dependent Biological Barriers in Drug Delivery System J. Kim et al. J. Control.Release 2016,

3 BioMedical Polymer Laboratory

Self-assembly is a simple and useful mechanism for preparing nanostructure

in a complex biological system.

Tumor

Leaky vessel wall

Chemotherapeutic drug delivery system to target site

Nanostructures

Polymeric Micelles

Nanoparticles

Nanoconstruct DNA Hybridization

Host-Guest binding

Hydrophobic interacion

Self-assembled Nanostructures

Page 4: Smart nanoparticles for drug, gene and nitric oxide delivery · 2018-07-13 · 15 Size Dependent Biological Barriers in Drug Delivery System J. Kim et al. J. Control.Release 2016,

4 BioMedical Polymer Laboratory

Biological Barriers of Self-assembled Nanomedicine

Renal clearance by glomerular filtration

MPS or RES by immune cells

such as macrophage

Extracellular Barriers Intracellular Barriers

Cellular Internalization by endocytosis

Endosomal escape

Cargo release

Embolization of capillaries

To overcome various biological barriers, stimuli-regulated intelligent delivery system is required

Page 5: Smart nanoparticles for drug, gene and nitric oxide delivery · 2018-07-13 · 15 Size Dependent Biological Barriers in Drug Delivery System J. Kim et al. J. Control.Release 2016,

5 BioMedical Polymer Laboratory

Intelligent Drug Carrier: Stimuli-responsive

Stimuli-responsive intelligent system

• High accumulation on target site

• Site-specific release for low side-effect and high efficacy

Endogenous specific stimuli

pH Redox potential

Small molecule

Exogenous stimuli

> Tm

+

Temperature

Light

Ultrasound HIFU

Target stimulus

Target stimulus

Page 6: Smart nanoparticles for drug, gene and nitric oxide delivery · 2018-07-13 · 15 Size Dependent Biological Barriers in Drug Delivery System J. Kim et al. J. Control.Release 2016,

6 BioMedical Polymer Laboratory

1. Drug delivery by active and passive tumor targeting

EPR effect (Tumor) Enzyme-responsive drug release

Page 7: Smart nanoparticles for drug, gene and nitric oxide delivery · 2018-07-13 · 15 Size Dependent Biological Barriers in Drug Delivery System J. Kim et al. J. Control.Release 2016,

7 BioMedical Polymer Laboratory

Tumor targeting by EPR effect

Tumor

Blood vessel

Tum

or

Norm

al Tis

sue

• Most solid tumors show a “leaky” vascular structure in blood vessels due to rapid angiogenesis

• Nanomedicines can be delivered to tumor site by

abnormal molecular and fluid transport dynamics.

Ref: Cancer Res. 1986, 46, 6387-6392. EPR : Enhanced Permeability and Retention

Page 8: Smart nanoparticles for drug, gene and nitric oxide delivery · 2018-07-13 · 15 Size Dependent Biological Barriers in Drug Delivery System J. Kim et al. J. Control.Release 2016,

8 BioMedical Polymer Laboratory

Paclitaxel (PTX) (or Taxol)

Natural chemotherapeutic drug

– Isolated from Taxus brevifolia (pacific yew) in 1971

Mitotic inhibitor

– Act by interfering in the normal microtubule growth during cell division

– Arrest cell at the G2-M phase of cell cycle

– Induce apoptotic death

Use in treatment of breast, ovarian, lung, head, neck cancer

Limitation: Poor water solubility

Ref: J. Med. Chem. 2006, 49, 7253-7269.

Paclitaxel

Page 9: Smart nanoparticles for drug, gene and nitric oxide delivery · 2018-07-13 · 15 Size Dependent Biological Barriers in Drug Delivery System J. Kim et al. J. Control.Release 2016,

9 BioMedical Polymer Laboratory

Cyclodextrin (CD)

Cyclic oligosaccharides

– α-D-1,4-glucopyranose linked

– Produced from starch by means of enzymatic conversion

β-Cyclodextrin

Cyclodextrin Number of

glucose ring Height (nm)

Diameter of cavity (nm)

Diameter of exterior (nm)

α-cyclodextrin (α-CD) 6 0.79 ± 0.01 0.47-0.53 1.46 ± 0.04

β-cyclodextrin (β-CD) 7 0.79 ± 0.01 0.60-0.65 1.54 ± 0.04

γ-cyclodextrin(γ-CD) 8 0.79 ± 0.01 0.75-0.83 1.75 ± 0.04

Hydrophobic cavity

Hydrophilic exterior

Page 10: Smart nanoparticles for drug, gene and nitric oxide delivery · 2018-07-13 · 15 Size Dependent Biological Barriers in Drug Delivery System J. Kim et al. J. Control.Release 2016,

10 BioMedical Polymer Laboratory

CD-PTX inclusion complex

Driving force

: Hydrophobic interaction

between the aromatic ring of PTX and the cavity of CD

Enhance the water-solubility of PTX

However ,

there is need further advance on it for intelligent drug delivery.

β-CD CD::PTX Inclusion complex

PTX

R. Namgung et al., Nat. Commun. 2014, 5, 3702.

Page 11: Smart nanoparticles for drug, gene and nitric oxide delivery · 2018-07-13 · 15 Size Dependent Biological Barriers in Drug Delivery System J. Kim et al. J. Control.Release 2016,

11 BioMedical Polymer Laboratory

Poly(Maleic Anhydride)

Copolymer of maleic anhydride with another monomer

Contain active succinic anhydride groups in each repeating units

Graft molecules having hydroxyl group on the polymer

→ form degradable ester bond

→ render carboxylic acid group on polymer backbone by ring-opening

CD-OH or

PTX-OH

Poly(Maleic Anhydride) Poly-CDa or Poly-PTXb

X= CD or PTX

Ester bond

Polymer for Conjugating CDs and PTXs

R. Namgung et al., Nat. Commun. 2014, 5, 3702.

Page 12: Smart nanoparticles for drug, gene and nitric oxide delivery · 2018-07-13 · 15 Size Dependent Biological Barriers in Drug Delivery System J. Kim et al. J. Control.Release 2016,

12 BioMedical Polymer Laboratory

Overall scheme

‘Conjugation’ plus ‘Inclusion-Complexation’

pCD pPTX pCD::pPTX

Nanoassembly

Released PTX

Hydrolysis of ester bond

Dissociation of inclusion

In collaboration with Prof. A. Hoffman (U of Washington) R. Namgung et al., Nat. Commun. 2014, 5, 3702.

Page 13: Smart nanoparticles for drug, gene and nitric oxide delivery · 2018-07-13 · 15 Size Dependent Biological Barriers in Drug Delivery System J. Kim et al. J. Control.Release 2016,

13 BioMedical Polymer Laboratory

AP-1-targeting ligand-modified carrier

AP-1/pCD::pPTX Saline polyPTX Taxol pCD::pPTX AP-1/polyPTX

P<0.001

pPTX micelle: fast drug release,

but short-term effect

AP-1-pCD::pPTX: higher

stabilitysustained drug

releaselong-term effect

R. Namgung et al., Nat. Commun. 2014, 5, 3702.

Page 14: Smart nanoparticles for drug, gene and nitric oxide delivery · 2018-07-13 · 15 Size Dependent Biological Barriers in Drug Delivery System J. Kim et al. J. Control.Release 2016,

14

BioMedical Polymer Laboratory

Programmed nanoparticle loaded nanoparticle for

deep penetrating three-dimensional cancer therapy

Won Jong Kim, Ph. D.

POSTECH

Page 15: Smart nanoparticles for drug, gene and nitric oxide delivery · 2018-07-13 · 15 Size Dependent Biological Barriers in Drug Delivery System J. Kim et al. J. Control.Release 2016,

15

Size Dependent Biological Barriers in Drug Delivery System

J. Kim et al. J. Control. Release 2016, in press.

Kidney

Liver & spleen

Tumor tissue-specific accumulation

Normal cell

Ref. Clin. Cancer Res. 2012, 18, 3229-3241.

Cancer cell

Appropriate Size and Site-Specific Release for Efficient Delivery of Drugs

Stimuli-responsive drug release

Size control of nanoparticles

Small size ( < 15 nm)

Appropriate size ( 50 - 200 nm)

Non-specific cellular uptake

& Fast clearance

Page 16: Smart nanoparticles for drug, gene and nitric oxide delivery · 2018-07-13 · 15 Size Dependent Biological Barriers in Drug Delivery System J. Kim et al. J. Control.Release 2016,

16

Overcoming Low Penetration into Tumor Tissue

Endothelial cell

Blood vessel

Small-sized nanoparticle (<15 nm)

- Fast cellular uptake

- Non-specific cellular uptake

Appropriate sized nanoparticle (100-200 nm)

- Tumor-specific uptake

- Low penetration ability

Limitation of deep penetration

Deep penetration of small nanoparticles

Introducing the concept of “Tumor-vector (100-200 nm)”

to carry bundles of small nanoparticles (<15 nm) with drugs

1st Stimuli

2nd Stimuli

Cellular uptake & drug release

Page 17: Smart nanoparticles for drug, gene and nitric oxide delivery · 2018-07-13 · 15 Size Dependent Biological Barriers in Drug Delivery System J. Kim et al. J. Control.Release 2016,

17

“DNA-Driven Drug Delivery Carrier”

Tumor-vector equipped with three-stage propulsion motioned by DNA and LPMSN

Deep Penetration Drug Release

Cellular uptake

DNA transition

EPR Effect

Tumor tissue

DNA transition

DNA-AuNPs pH-responsive DNAs DOX Large pore MSNs (LPMSNs)

MSN : mesoporous silica nanoparticle

Page 18: Smart nanoparticles for drug, gene and nitric oxide delivery · 2018-07-13 · 15 Size Dependent Biological Barriers in Drug Delivery System J. Kim et al. J. Control.Release 2016,

18

Strategy

Page 19: Smart nanoparticles for drug, gene and nitric oxide delivery · 2018-07-13 · 15 Size Dependent Biological Barriers in Drug Delivery System J. Kim et al. J. Control.Release 2016,

19

Characterization of Tumor-vector

TEM image

Tumor-vector (via DNA hybridization)

5 0 n m5 0 n m

Si map O map Au map Si + Au map BF

Successful formation of tumor-vector via DNA hybridization

J. Kim et al. Advanced Materials, in press.

SEM image

Page 20: Smart nanoparticles for drug, gene and nitric oxide delivery · 2018-07-13 · 15 Size Dependent Biological Barriers in Drug Delivery System J. Kim et al. J. Control.Release 2016,

20

pH-Responsive AuNP and Drug Release

0 2 4 6 8 10 12

0

20

40

60

80

100

pH= 6.5

pH= 7.4

Re

lea

se

d A

u-D

NA

(%

)

Time (h)

Centrifugation at 4000 rpm, 5 min Absorbance of supernatant

Au release at tumor microenvironmental pH

pH=6.5

Tumor tissue pH (6.5)

Neutral pH (7.4)

0 10 20 30 40 50

0

20

40

60

80

100

pH= 5.0

pH= 6.5

pH= 7.4

Cu

mu

lative

re

lea

se

(%

)

Time (h)

Centrifugation at 13200 rpm, 20 min Fluorescence of supernatant (ex 495, em 555)

DOX release intracellular endosomal pH

pH=5.0

Neutral pH (7.4)

Tumor tissue pH (6.5)

Intracellular endosomal pH (5.0)

Approximately 49 AuNPs in 1 MSN (in TEM image) The amount of loaded AuNPs and DOX was calculated by back-titration of the supernatant

J. Kim et al. Advanced Materials, in press.

Page 21: Smart nanoparticles for drug, gene and nitric oxide delivery · 2018-07-13 · 15 Size Dependent Biological Barriers in Drug Delivery System J. Kim et al. J. Control.Release 2016,

21

In Vivo Antitumor Effect and Deep Penetration MDA-MB-231 cell xenograft i.v. injection (5 mg/kg DOX) n =6

The highest anticancer effect (EPR, deep penetration, pH-sensitive drug release)

0 5 1 0 1 5 2 0 2 5 3 0

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

D a ys a fte r in je c tio n (d )

Tu

mo

r v

olu

me

(m

m3)

S aline

F ree D O X

T r i- i-D O X

c T ri- i-D O X

T r i-c i-D O X

T r i- i

c T r i- i

***

**

**

Tumor growth inhibition

Dual-pH responsive

Without DOX

Single pH-responsive Free DOX

** P<0.01, *** P<0.001 J. Kim et al. Advanced Materials, in press.

Page 22: Smart nanoparticles for drug, gene and nitric oxide delivery · 2018-07-13 · 15 Size Dependent Biological Barriers in Drug Delivery System J. Kim et al. J. Control.Release 2016,

22 BioMedical Polymer Laboratory

“Nitric Oxide Delivery System”

Stimuli-responsive NO delivery system

NO-responsive transforming hydrogel for biomedical applications

Page 23: Smart nanoparticles for drug, gene and nitric oxide delivery · 2018-07-13 · 15 Size Dependent Biological Barriers in Drug Delivery System J. Kim et al. J. Control.Release 2016,

23 BioMedical Polymer Laboratory

NO in vivo

NO

Ref. Clin. Science 2000, 98, 507-520.

J. Kim. et al., J. Mater. Chem. B 2014, 2, 341-356.

In vivo production of NO via L-Arginine

NOS

L-Arginine N-Hydroxy-L-Arginine L-Citrulline

Highly reactive free radical molecule (t1/2<6s) Produced by a NOS (Nitric Oxide Synthase) in vivo.

Page 24: Smart nanoparticles for drug, gene and nitric oxide delivery · 2018-07-13 · 15 Size Dependent Biological Barriers in Drug Delivery System J. Kim et al. J. Control.Release 2016,

24 BioMedical Polymer Laboratory

Biological Function of Nitric Oxide (NO)

Antibacterial activity

O2-

ONOO-

(peroxidation)

vasodilation

Smooth muscle cell relation

Cell proliferation

Neuro-transmission

Presynaptic

terminal

Postsynaptic terminal

NMDAR

Ca2+

CaM

NOS

NO

sGC

PKG

NO cGMP

EGFR

Ras

MAPK

Ref. Cell 1994, 79, 915-918.

NO is pathophysiological modulator of vasodilation,

cell proliferation, antibacterial activity, neurotransmission

Page 25: Smart nanoparticles for drug, gene and nitric oxide delivery · 2018-07-13 · 15 Size Dependent Biological Barriers in Drug Delivery System J. Kim et al. J. Control.Release 2016,

25 BioMedical Polymer Laboratory

Platforms for Local NO delivery

Substrates

Surface coating

Monomer in PBS

(pH 8.5)

Biomedical

application

Thin layer NO installation

NO 80 psi

(NaOME/MeOH)

NO release

aq. sol.

(pH 7.0, 37℃)

1. NO-releasing hydrogels

2. Localized NO delivery Easy coating

Kim, J. et al., Bioconjug.Chem. 2011, 22, 1031-1038.

Kim, J. et al., Angew Chem Int Ed. 2013, 52, 9187-9191.

Page 26: Smart nanoparticles for drug, gene and nitric oxide delivery · 2018-07-13 · 15 Size Dependent Biological Barriers in Drug Delivery System J. Kim et al. J. Control.Release 2016,

26 BioMedical Polymer Laboratory

Light-triggered NO delivery system

H+

1. Light irradiation

4. NO release

3. Degradation of coating layers

2. H+ generation

o-NBA

Diazeniumdiolates

NO

Light

irradiation Acid

generation

Acid-

mediated

degradation

NO

release

H+ o-NBA NO-donor NO Coating layers

Page 27: Smart nanoparticles for drug, gene and nitric oxide delivery · 2018-07-13 · 15 Size Dependent Biological Barriers in Drug Delivery System J. Kim et al. J. Control.Release 2016,

27 BioMedical Polymer Laboratory

Corneal wound healing effects

Page 28: Smart nanoparticles for drug, gene and nitric oxide delivery · 2018-07-13 · 15 Size Dependent Biological Barriers in Drug Delivery System J. Kim et al. J. Control.Release 2016,

28 BioMedical Polymer Laboratory

Corneal wound healing effects

0h 12h 36h 48h0

20

40

60

80

100

120

Siz

e o

f ep

ith

elial d

efe

cts

(%

)

PBS

pH@MSN-CaP

pH@MSN-CaP-NO

48 h 36 h 12 h 0 h

Siz

e o

f ep

ith

elia

l d

efec

ts (

%)

0

20

40

60

80

100

120 PBS pH@MSN-CaP

pH@MSN-CaP-NO

*

0h 12h 36h 48h0

20

40

60

80

100

120

Siz

e o

f ep

ith

elial d

efe

cts

(%

)

PBS

pH@MSN-CaP

pH@MSN-CaP-NO

Accelerated wound healing effects on the cornea at day 2 compared to that of other control groups

Collaboration with Kim, J. H. group in SNU.

C57BL/6 mice

Wound model: created by scraping corneal epithelium with a surgical blade

5 µL of 1mg/mL, 10 min light exposure, 4 times a day

Detection: 0.5% fluorescein sodium solution

Kim, J. et all. ACS Nano, 2016

Page 29: Smart nanoparticles for drug, gene and nitric oxide delivery · 2018-07-13 · 15 Size Dependent Biological Barriers in Drug Delivery System J. Kim et al. J. Control.Release 2016,

29 BioMedical Polymer Laboratory

Nitric Oxide in Rheumatoid Arthritis

Ref. Nat. Rev. Rheumatol. 2009, 5, 543-548.

• NO may affect the pathogenesis of rheumatoid arthritis

• NO-responsive materials can target cell and eliminate over-expressed NO

Rheumatoid Arthritis Normal bone homeostasis Bone destruction in RA

Bone resorption

Bone formation

Osteoblasts

Osteoclasts

Bone resorption

TNF

IL-1β

IL-6

NO

Inflammation

NO Inflammation

Cartilage

damage

Up-

regulation

Macrophage

Page 30: Smart nanoparticles for drug, gene and nitric oxide delivery · 2018-07-13 · 15 Size Dependent Biological Barriers in Drug Delivery System J. Kim et al. J. Control.Release 2016,

30 BioMedical Polymer Laboratory

NO-Responsive Hydrogel

NOCCL : NO-cleavable crosslinker

N,N’-(2-amino-1,4-phenylene)diacrylamide J. Park et al. Advanced Materials, in press.

Page 31: Smart nanoparticles for drug, gene and nitric oxide delivery · 2018-07-13 · 15 Size Dependent Biological Barriers in Drug Delivery System J. Kim et al. J. Control.Release 2016,

31 BioMedical Polymer Laboratory

Synthesis of NOCCL

NOCCL was successfully synthesized and confirmed by 1H NMR

J. Park et al. Advanced Materials, in press.

Page 32: Smart nanoparticles for drug, gene and nitric oxide delivery · 2018-07-13 · 15 Size Dependent Biological Barriers in Drug Delivery System J. Kim et al. J. Control.Release 2016,

32 BioMedical Polymer Laboratory

Swelling Test in NO Solution

40% Acrylamide 0.0625% NOCCL 40% Acrylamide 0.0625% BIS

After 24h

0 20 40

1

2

3

4

5

1570 M

157 M

15.7 M

1.57 M

0 MRela

tive s

well

ing

rati

o

Time (h)

0 20 40

1

2

3

4

5

Rela

tive s

well

ing

rati

o

Time (h)

1570 M

157 M

15.7 M

1.57 M

0 M

1 2 3 4 5 1 2 3 4 5

1 cm 1 cm

NO-responsive hydrogel swelled gradually by the cleavage of NOCCL

N,N’methylenebisacrylamide (BIS)

J. Park et al. Advanced Materials, in press.

Page 33: Smart nanoparticles for drug, gene and nitric oxide delivery · 2018-07-13 · 15 Size Dependent Biological Barriers in Drug Delivery System J. Kim et al. J. Control.Release 2016,

33 BioMedical Polymer Laboratory

Hydrogel Deformation by NO Gas

NO-responsive hydrogel deformed by NO gas

CTL

gel

2 min 4 min 6 min

8 min 10 min 12 min

14 min 16 min 18 min Injection of

NO or Ar gas

control

gel

NO-r

gel

0 min

control

gel

NO-r

gel

J. Park et al. Advanced Materials, in press.

Commercial plastic bucket (10cm x 13cm x 5 cm)

0.4 cm holes that allowed gas to enter and exit

Page 34: Smart nanoparticles for drug, gene and nitric oxide delivery · 2018-07-13 · 15 Size Dependent Biological Barriers in Drug Delivery System J. Kim et al. J. Control.Release 2016,

34 BioMedical Polymer Laboratory

Hydrogel Deformation by NO Gas

Commercial plastic bucket (10cm x 13cm x 5 cm)

0.4 cm holes that allowed gas to enter and exit

A movie demonstrating the deformation of NO-responsive gel

J. Park et al. Advanced Materials, in press.

Control gel NO-r gel

Page 35: Smart nanoparticles for drug, gene and nitric oxide delivery · 2018-07-13 · 15 Size Dependent Biological Barriers in Drug Delivery System J. Kim et al. J. Control.Release 2016,

35 BioMedical Polymer Laboratory

Enzyme-responsive gel transformation

Enzyme-responsive

NO donor

Encapsulation

NO-responsive gel

Swelling

Enzyme

Page 36: Smart nanoparticles for drug, gene and nitric oxide delivery · 2018-07-13 · 15 Size Dependent Biological Barriers in Drug Delivery System J. Kim et al. J. Control.Release 2016,

36 BioMedical Polymer Laboratory

Swelling Test using NO Donor

β-gal

β-gal-pyNO( ) β-galactose

+ 2NO NO release

β-gal

pyNO

β-gal-pyNO-

trapped hydrogel NO generation

and gel swelling

NO donor : β-gal-pyNO

0 3 6 90

50

100

-gal

Esterase

Cu

mu

lati

ve

re

lea

se

Time (h)

0 3 6 90

200

400

600

800

1000

-gal

EsteraseNO

(p

mo

lm

g-1

s-1

)

Time (h)

NO releasing profile

Total 2.71 umol in 1mg

β-gal-pyNO can supply a sufficient amount of NO for cleavage of crosslinker J. Park et al. Advanced Materials, in press.

Page 37: Smart nanoparticles for drug, gene and nitric oxide delivery · 2018-07-13 · 15 Size Dependent Biological Barriers in Drug Delivery System J. Kim et al. J. Control.Release 2016,

37 BioMedical Polymer Laboratory

Swelling Test using NO Donor

Enzyme-responsive hydrogel was successfully

obtained by encapsulation of enzyme-triggered NO

donor

0 20 400

1

2

3

4

5

Re

lati

ve

sw

ell

ing

ra

tio

Time (h)

-gal-pyNO 0.00 mg

-gal-pyNO 0.13 mg

-gal-pyNO 0.25 mg

-gal-pyNO 0.50 mg

-gal-pyNO 1.00 mg

NO-res. gel, β-gal+

0 20 40

1

2

3

4

5

6

Re

lati

ve

sw

ell

ing

ra

tio

Time (h)

gal-pyNO 0.00 mg

gal-pyNO 0.13 mg

gal-pyNO 0.25 mg

gal-pyNO 0.50 mg

gal-pyNO 1.00 mg

NO-res. gel, Esterase+

0 20 40

1

2

3

4

5

6 gal-pyNO 0.00 mg

gal-pyNO 0.13 mg

gal-pyNO 0.25 mg

gal-pyNO 0.50 mg

gal-pyNO 1.00 mg

Re

lati

ve

sw

ell

ing

ra

tio

Time (h)

control gel, β-gal+

NO-responsive

gel

control

gel

β-gal

Esterase

β-gal-pyNO

- + + - + + - - - + - - - + - + - +

J. Park et al. Advanced Materials, in press.

Page 38: Smart nanoparticles for drug, gene and nitric oxide delivery · 2018-07-13 · 15 Size Dependent Biological Barriers in Drug Delivery System J. Kim et al. J. Control.Release 2016,

38 BioMedical Polymer Laboratory

Swelling Test in Macrophage Cells

-LPS +LPS -LPS +LPS

0

5

10

15

20

NO-responsive gel control gel

R

ela

tive

sw

ellin

g r

ati

o (

%)

RAW264.7

NIH/3T3

a

c

RAW 264.7 cells NO production

LPS

hydrogel

Gel swelling

NO NO

b

d NO-responsive

gel

control

gel

Cells

LPS - + + - + +

- - + - - +

NIH/3T3

RAW 264.7

**

NIH/3T3 RAW 264.7

0

20

40

NO

pro

du

cti

on

(M

)

LPS-

LPS+

**

400,000 cells

6 well plate

J. Park et al. Advanced Materials, in press.

Page 39: Smart nanoparticles for drug, gene and nitric oxide delivery · 2018-07-13 · 15 Size Dependent Biological Barriers in Drug Delivery System J. Kim et al. J. Control.Release 2016,

39 BioMedical Polymer Laboratory

Swelling Test in Macrophage Cells

RAW 264.7 cells NO production

LPS

hydrogel

Gel swelling

NO NO

NO-responsive

gel

control

gel

Cells

LPS - + + - + +

- - + - - +

NIH/3T3

RAW 264.7

J. Park et al. Advanced Materials, 2017, 29, 1702859.

Page 40: Smart nanoparticles for drug, gene and nitric oxide delivery · 2018-07-13 · 15 Size Dependent Biological Barriers in Drug Delivery System J. Kim et al. J. Control.Release 2016,

40 BioMedical Polymer Laboratory

Acknowledgements

Dr. Yeong Mi Lee

Dr. Gurusamy

Saravanakumar

Dr. Swapan Pramanick

Prof. Won Jong Kim Prof. S. K. Yoon (Catholic Unv.)

Prof. S. W. Kim (University of Utah)

Prof. J. H. Kim (SNU Medical School)

Prof. S. B. Jo (The Univ. of Mississippi)

Prof. I-K. Park (Chonnam Nat. Univ.)

Prof. C. Y. Heo (SNU Medical School)

Prof. H. Lee (KAIST)

Prof. B. H. Lee (KNU)

Prof. I. K. Kwon (Kyunghee University)

Dr. Jinhwan Kim

Junghong Park

Youngnam Kang

Dongsik Park

Donghyun Jang

Hyeongmok Park

Sooseok Im

Seonil Kim

Seokhee Jo

Sungjin Jung

Jaeryong Jo

Lab members

Co-workers

Jiwon Yeo

Kunho Kim

Jaehyun Park

Hyori Lee

Tae Jeong Kim

BioMedical Polymer Laboratory