48
=================================================================================================== Triumphant Institute of Management Education Pvt. Ltd. (T.I.M.E.) HO: 95B, 2 nd Floor, Siddamsetty Complex, Secunderabad – 500 003. Tel : 040–27898194/95 Fax : 040–27847334 email : [email protected] website : www.time4education.com Sol.SMM631101/1 =================================================================================================== SOLUTIONS FOR BASIC STUDY MATERIAL Sol.SMM631101 MATHEMATICS

SMM631101

Embed Size (px)

DESCRIPTION

IIT Preparation

Citation preview

Page 1: SMM631101

===================================================================================================Triumphant Institute of Management Education Pvt. Ltd. (T.I.M.E.) HO: 95B, 2nd Floor, Siddamsetty Complex, Secunderabad – 500 003. Tel : 040–27898194/95 Fax : 040–27847334 email : [email protected] website : www.time4education.com Sol.SMM631101/1 ===================================================================================================

SOLUTIONS FOR

BASIC STUDY MATERIAL

Sol.SMM631101

MATHEMATICS

Page 2: SMM631101

===================================================================================================Triumphant Institute of Management Education Pvt. Ltd. (T.I.M.E.) HO: 95B, 2nd Floor, Siddamsetty Complex, Secunderabad – 500 003. Tel : 040–27898194/95 Fax : 040–27847334 email : [email protected] website : www.time4education.com Sol.SMM631101/2 ===================================================================================================

2nd Floor, 95B, Siddamsetty Complex, Secunderabad – 500 003.

Tel : 040–27898194/95 Fax : 040–27847334 email : [email protected] website : www.time4education.com HINTS/SOLUTIONS for M1101

(Sets)

Classroom Discussion Exercise 1. (c) A = {Ο†, x} Subsets of A are Ο† {Ο†}, {x} and A β‡’ P(A) = { Ο† , {Ο†}, {x}, A} 2. (d) 2m βˆ’ 2n = 96 = 32 Γ— 3 = 25 (4 βˆ’ 1) = 25 (22 – 20) = 27 βˆ’ 25 m = 7 and n = 5 3. (c) e x β‰  x for any x ∈ R So A ∩ B = Ο†. 4. (b) A = {x : x β‰₯ 3}; B = {x : x < 5} Clearly A ∩ B = {x : x ∈ R, 3 ≀ x < 5} 5. (d) X = {3, 5, 7, 9} 6. (d) The curves will intersect when x = 0 ∴ The curves meet at (0, 1) ∴ A ∩ B = {(0, 1)} 7. (c) The points of intersection are given by y2 = 4 β‡’ y = Β± 2 ∴Points of intersection are (1, 2) and (1, –2) 8. (d) A – B = {x / x ∈ A, and x βˆ‰ B} ∴ (A – B) ∩ B = Ο†. 9. (c) n (A) = 76, n (B) = 44, n (A βˆͺB) = 100 n (A ∩ B) = n (A) + n (B) – n (A βˆͺ B) = 76 + 44 – 100 = 20. 10. (a) The required number of subsets = 5C3 = 10 11. (d) All (i) , (ii) and (iii) represent the shaded region 12. (a) A = {7, 14, 21, 28,…,.105} B = {4, 8, 12, 16, …., 60} A ∩ B = {28, 56} ∴ n (A βˆ’ B) = n(A) – 2 = 13. 13. (c) P ∩ (P βˆͺ Q)’ = P ∩ (P’ ∩ Q’) = (P ∩ P’) ∩ (P ∩ Q’) = Ο† ∩ (P ∩ Q’) = Ο†

14. (d) U = {1, 2, 3,…………, 10} A = {3, 4, 5, 6, 7, 8} B = {2, 3, 5, 7} A βˆ’ B = {4, 6, 8} (A βˆ’ B)’ = {1, 2, 3, 5 ,7, 9, 10}

C B

A

C βˆ’βˆ’βˆ’βˆ’ B

B C

A

A βˆ’βˆ’βˆ’βˆ’ C

Page 3: SMM631101

===================================================================================================Triumphant Institute of Management Education Pvt. Ltd. (T.I.M.E.) HO: 95B, 2nd Floor, Siddamsetty Complex, Secunderabad – 500 003. Tel : 040–27898194/95 Fax : 040–27847334 email : [email protected] website : www.time4education.com Sol.SMM631101/3 ===================================================================================================

15. (d)

There is no region common to A βˆ’ C and C βˆ’ B. ∴ (A βˆ’ C) ∩ (C βˆ’ B) = Ο† 16. (a) People who are not teenagers is U – C = C’ People who have their weights less than 40 kg = U – D = D ’ ∴ Required set = C’ ∩ D’ 17. (c) Since k and m are relatively prime, the L.C.M.

of k and m is km. ∴∴∴∴ kN ∩∩∩∩ mN = (mk)N = nN β‡’β‡’β‡’β‡’ mk = n 18. (d) n (A) = 300; n (B) = 500; n (A ∩ B) = 100 n (A βˆͺ B) = 300 + 500 – 100 = 700 n (A’ ∩ B’) = n [(A βˆͺ B)’] = 1000 βˆ’ n (A βˆͺ B) = 1000 –

700 = 300

19. (c) Since A βˆ† B = (A βˆͺ B) – (A ∩ B), therefore A ∩ B = Ο† 20. (c) A βˆͺ B = A βˆͺ C and A ∩ B = A ∩ C β‡’ B = C 21. (a) A – (A βˆͺ B)’ = A 22. (c) )BA(n)B(n)A(n)BA(n βˆ©βˆ’+=βˆͺ

)BA(n)B(n)A(n)BA(n βˆͺβˆ’+=βˆ©β‡’

)BA(n6465)BA(n βˆͺβˆ’+=βˆ©β‡’

But 100)BA(n ≀βˆͺ

1006465)BA(n βˆ’+β‰₯βˆ©β‡’

%29)BA(n β‰₯βˆ©β‡’

)1(............%29x β‰₯β‡’

and)A(n)BA(n β‰€βˆ©

)B(n)BA(n β‰€βˆ©

and%65)BA(n β‰€βˆ©β‡’

%64)BA(n β‰€βˆ©

%64)BA(n β‰€βˆ©β‡’

)2.....(..........%64x ≀⇒ Combining (1) and (2) 29% %64x ≀≀ 23. (c) Let A, B, C denote the set of all families

reading β€œThe Hindu”, β€œHindustan Times” and β€œThe Chronicle” respectively.

n (A) = 10000 Γ— 400010040 =

n (B) = 10000 Γ— 200010020 =

n (C) = 10000 Γ— 100010010 =

n (A ∩ B) = 10000 Γ— 500100

5 =

n (B ∩ C) = 10000 Γ— 300100

3 =

n (A ∩ C) = 10000 Γ— 400100

4 =

n (A ∩ B ∩ C) = 10000 Γ— 200100

2 =

n (A’ ∩ B’ ∩ C’) = 10000 – n (A βˆͺ B βˆͺ C) = 10000 – {n (A) +

n (B) + n (C) – [n (A ∩ B) + n (B ∩ C) ] + n (A ∩ C)] +

n (A ∩ B ∩ C)} i.e., n (A’ ∩ B’ ∩ C’) =10000 – {7000 – 1200 + 200} = 10000 – 6000 = 4000 = 40%.

Page 4: SMM631101

===================================================================================================Triumphant Institute of Management Education Pvt. Ltd. (T.I.M.E.) HO: 95B, 2nd Floor, Siddamsetty Complex, Secunderabad – 500 003. Tel : 040–27898194/95 Fax : 040–27847334 email : [email protected] website : www.time4education.com Sol.SMM631101/4 ===================================================================================================

24. (d) A = { 2 } B = { βˆ’ 2, 1 } A βˆ’ B = { 2 } B βˆ’ A = { βˆ’ 2 , 1 }

[ ] .3)AB()BA(n}1,2,2{)AB()BA(

=βˆ’βˆͺβˆ’βˆ΄βˆ’=βˆ’βˆͺβˆ’

25. (c) )BA(n βˆ†

)BA(n2)B(n)A(n βˆ©βˆ’+= (1)

Now n(A ∩ B) = n(A) βˆ’ n(A βˆ’ B) β‡’ n(A ∩ B) = 5 βˆ’ 4 = 1 Thus (1) gives 12 = 5 + n(B) βˆ’ 2 β‡’ n(B) = 9

Regular Homework Exercise 1. (c) x 2 + 9 = 0 β‡’ x 2 = – 9 β‡’ x is imaginary. 2. (b) All equal sets are equivalent 3. (c) n(X βˆͺ Y) = n(X) + n(Y) βˆ’ n(X ∩ Y) is maximum

if n(X ∩ Y) = 0 ∴ maximum value of n(X ∩ Y) is n(X) + n(Y) = 12 4. (d) n(A∩B) = n(A) = 6 if A βŠ‚ B 5. (c) Number of elements of P(A) = Number of subsets of A = 2n(A)

= 25 6. (c) It represents the elements belonging to

exactly two of the sets A, B, C 7. (c) Let n(A) = m, n(B) = n Given 2m – 2n = 32 β‡’ 2n(2m βˆ’ n βˆ’ 1) = 25 β‡’ n = 5 (Θ 2m βˆ’ n βˆ’ 1 is odd) β‡’ m = 6 8. (a) A ∩ (A βˆͺ B) = (A ∩ A) βˆͺ(A ∩ B) = Aβˆͺ(A ∩ B) = A (since A ∩ B

βŠ‚ A) 9. (c) P{A} = {Ο† , {Ο†} } β‡’ n [P(A)] = 2 10. (a) The number of subsets containing at least one

element = 25 βˆ’ 1 = 31 11. (c) n(A βˆͺ B βˆͺC) = n(A) + n(B ) + n(C) – n(A ∩ B)

– n(B ∩ C) – n (C ∩ A) + n(A ∩ B ∩ C).

12. (b) )CA()BA()CB(A βˆͺ∩βˆͺ=∩βˆͺ 13. (b)

)ZX()YX()ZY(X βˆ’βˆͺβˆ’=βˆ©βˆ’ 14. (a) x β‰₯ 100 – (20 + 15 + 30) = 35 β‡’ minimum value of x = 35 15. (d) A = {5, 6, 7} , B = {1, 3, 5, 7} β‡’ A βˆͺ B = {1, 3, 5, 6, 7} β‡’ A’ ∩ B’ = (A βˆͺ B)’ = {2, 4, 8} 16. (b) A βŠ† B β‡’ (A βˆͺ B) = B ∴ n(A βˆͺ B) = n(B) = 7 17. (b) Let A, B and C be the set of basketball players,

cricket players and general athletics players respectively.

n (A) = 21; n (B) = 26; n (C) = 29

n (A ∩ B) = 14; n (B ∩ C) = 15; n (A ∩ C) = 12; n (A ∩ B ∩ C) = 8 n (A βˆͺ B βˆͺ C) = n (A) + n (B) + n (C) – n (A ∩ B) – n (B

∩ C) – n (A ∩ C) + n (A

∩ B ∩ C) = 21 + 26 + 29 – 14

– 15 – 12 + 8 = 43. 18. (d) .}..........,24,12,8,4{N4 =

.....},.........24,18,12,6{N6 =

..}..........,36,24,12{NN 64 =∩∴

= N12 19. (c) Number of students who like at least one juice

=125 + 118 + 117 βˆ’ (60 + 60) + 20 = 260 ∴ total number of students = 260 + 70 = 330 20. (c) Clearly the shaded region represents B βˆ’ (A βˆͺ C)

Assignment Exercise 1. (d) A = {18, 45, 108, …………} B = {18, 27, 36, 45,……….} ∴ B A βŠ‚

2. (a) n (A – B) + n (A ∩ B) = n (A). 3. (b)

A B

X

Y Z

A βˆ’ B

A B A∩B

Page 5: SMM631101

===================================================================================================Triumphant Institute of Management Education Pvt. Ltd. (T.I.M.E.) HO: 95B, 2nd Floor, Siddamsetty Complex, Secunderabad – 500 003. Tel : 040–27898194/95 Fax : 040–27847334 email : [email protected] website : www.time4education.com Sol.SMM631101/5 ===================================================================================================

We observe that A – (A – B) = A ∩ B. 4. (b) A βˆ† B = {5, 6}. So, number of subsets of A βˆ† B = 2 2 = 4.

5. (b) We have ex = .........!2

x!1

x1

2

+++ where x is real.

Hence, ex β‰  x for any real x. ∴ A ∩ B = Ο† 6. (c)

n (B – M) = n (M’)

= 40 βˆ’ 30 = 10 7. (a) n (Aβ€™βˆ©B’) = n (AβˆͺB)’ (By De Morgan’s Law ) = n (U) – n (AβˆͺB) = n (U) βˆ’

[ ])BA(n)B(n)A(n βˆ©βˆ’+

= 1000 – (400 + 300 βˆ’ 100) = 400 8. (c) A βŠ‚ B β‡’ A’ βŠƒ B’ β‡’ A’ ∩ B’ = B’.

9. (b) B only = 900500010018 =Γ—

10. (b) Total number of subsets of two sets are 2m and 2n

324822 4nm Γ—==βˆ’βˆ΄

024n4m 22322 βˆ’==βˆ’β‡’ βˆ’βˆ’

04nand24m =βˆ’=βˆ’β‡’

4nand6m ==β‡’ 11. (c) Since )BA(x βˆͺβˆ‰ ,

∴ x βˆ‰ A and x βˆ‰ B Option (c) is wrong. 12. (c) One half of the men belong to club A β‡’ 6 belong to club A One third of the men belong to club B β‡’ 4 belong to club B One forth of the men belong to both clubs β‡’ 3 belong to club A and club B β‡’ n (AβˆͺB)=7 Thus 12 βˆ’ 7 = 5 belong to neither clubs. 13. (b) n (A) = 4 and n ( B ) = 7 Minimum of n ( 7)B(n)BA ==βˆͺ when A βŠ† B 14. (c) The shaded region represents A. C)BA(C =βˆͺ∩∴ . 15. (d) A = BC'BC βˆ’=∩ The shaded region represents A Ο†=∩∴ BA

A B

3

7

18

C

2

3 3 1

n(A)=6 n(B)=4 U = 12

5 M

B

8 22

Page 6: SMM631101

===================================================================================================Triumphant Institute of Management Education Pvt. Ltd. (T.I.M.E.) HO: 95B, 2nd Floor, Siddamsetty Complex, Secunderabad – 500 003. Tel : 040–27898194/95 Fax : 040–27847334 email : [email protected] website : www.time4education.com Sol.SMM631101/6 ===================================================================================================

Additional Practice Exercise 1. (d) By definition. 2. (c) )BA(n2)B(n)A(n)BA(n Ξ™βˆ’+=βˆ†

= 250 + 350 βˆ’ 200 = 400 3. (d) n(A βˆͺ B) = n(A) + n(B) – n(A ∩ B) = 100 + 50 – 25 = 125. ∴ n(A’ ∩ B’) = 75. 4. (c) Obviously the smallest set is A = {1, 2, 5}.

5. (b) BA)BA(A ∩=βˆ’βˆ’

= )B'A(A βˆͺ∩

6. (a) Let m be the number of elements in S. Then 9m = 3 Γ— 45 β‡’ m = 15 Again 5n = 10m = 10 Γ— 15 n = 30 7. (b) Let the number of news papers be x

Then the number of subscriptions = 30x

Every body subscribes 6 newspapers

∴ Number of people = 6

x30

β‡’ 6

x30 = 240 β‡’ x = 48

8. (d) BA βˆ† = )AB()BA( βˆ’βˆͺβˆ’

= )BA()BA( βˆ©βˆ’βˆͺ

)BA(n βˆ† = )BA(n)BA(n βˆ©βˆ’βˆͺ

= )BA(n2)B(n)A(n βˆ©βˆ’+ 9. (d) All of them are correct 10. (c) A = { x / x∈R, βˆ’2 < x < 2} B = { x / x∈R, 2 ≀ |x βˆ’ 2|} = {x / x∈R, x∈(βˆ’βˆž, βˆ’2] βˆͺ[4, ∞)} A βˆͺ B = (βˆ’βˆž, 2) βˆͺ [4, ∞) = R βˆ’ {x/x ∈ R, 2 ≀ x < 4} 11. (c) {a, b} ∈ P({a, b} ) 12. (d) Number of students who passed with

distinction = 240 Γ— 4810020 =

∴ By the given condition, number of girls who

passed with a distinction = 24248 =

∴ Percentage of girls who passed with

distinction = 10016024 Γ— = 15%.

13. (a)

Number of persons belonging to at least two clubs = 53

14. (b) Aβˆ’B, A∩B and Bβˆ’A are mutually disjoint. 15. (b) (A ∩ B) βˆ’ C = (A βˆ’ C) ∩ (B βˆ’ C) 16. (c) C βˆ’D = (A βˆ’ B) βˆ’ (B βˆ’ A)

But there is no region common to both (A βˆ’ B) and (B βˆ’ A)

A βˆ’ B B βˆ’ A ∴ ( A βˆ’ B) βˆ’ (B βˆ’ A) = (A βˆ’ B) = C 17. (d) A βˆͺ B = C βˆͺ B and A ∩ B = C ∩ B β‡’ A = C 18. (b) n (m) = 120, n (p) = 90, n (c) = 70, n (m ∩ p) = 40, n (p ∩ c) = 30, n (m ∩ c) = 50, n (m’ ∩ p’ ∩ c’) = 20 n(m βˆͺ p ∩ c) = 200 – 20 = 180 ie n(m) + n(p) + n(c) – n (m ∩ p) – n (m ∩ c) – n(p ∩c) + n (m ∩ p ∩ c) = 180 β‡’ 120 + 90 + 70 – (40 + 30 + 50) + n(m ∩ p ∩ c) =

180 β‡’ n (m ∩ p ∩ c) = 20 19. (b) Delete both a and s from X. Then the resulting set

has 3 elements. Number of subsets of this set is 8. Now put β€œa” to each of these 8 sets. Thus there are 8 subsets of X containing β€œa” but not β€œs”.

20. (c) )CB(A βˆ©βˆ’ )CA()BA( βˆ’βˆͺβˆ’=

A

C B

24 12 12

6

11

15

B A

20

C

A B

2 βˆ’2 0 4

Page 7: SMM631101

===================================================================================================Triumphant Institute of Management Education Pvt. Ltd. (T.I.M.E.) HO: 95B, 2nd Floor, Siddamsetty Complex, Secunderabad – 500 003. Tel : 040–27898194/95 Fax : 040–27847334 email : [email protected] website : www.time4education.com Sol.SMM631101/7 ===================================================================================================

21. (b) BABA ∩=βˆ’ is an identity. 22. (c) Aβ€™βˆ’ (A ∩ B) = A’ β‰  A’ (since A ∩ B βŠ‚ A) 23. (c) B and A βˆ’ B are disjoint sets Ο†=βˆ’βˆ©βˆ΄ )BA(B

24. (c) The shaded region represents A βˆ† B .BA)BA(A ∩=βˆ†βˆ’βˆ΄ 25. (c) Two sets A and B are said to be

equivalent if n (A) = n ( B ) 26. (d) A βˆ’ (A ∩ B)C = A ∩ (A ∩ B) (Θ A βˆ’ B = A ∩ BC) = A ∩ B 27. (d) n (m ) = 60 % n ( p) = 65 % n ( m βˆͺ p) = 100 βˆ’ 20 = 80% Given that 80% of the students = 16

∴ Total number of students = 2080

10016 =Γ—

∴ only 3.

Page 8: SMM631101

===================================================================================================Triumphant Institute of Management Education Pvt. Ltd. (T.I.M.E.) HO: 95B, 2nd Floor, Siddamsetty Complex, Secunderabad – 500 003. Tel : 040–27898194/95 Fax : 040–27847334 email : [email protected] website : www.time4education.com Sol.SMM631101/8 ===================================================================================================

28. (b) A ∩ B = B βˆ’ A’ 29. (c)

The shaded region represents P = (Aβˆ†B)’ Also Q = BA ∩ and R = BA βˆͺ

'RQP βˆͺ=∴ 30. (c)

HINTS/SOLUTIONS for M1102 (Relation & Functions)

Classroom Discussion Exercise 1. (a) (x, x + y) = (3, 7) β‡’ x = 3, y = 4

2. (c) n(B) = ( )

( ) 514

70

An

BAn==

Γ—

3. (b) Since (B ∩ C) = Ο†, ∴ (A Γ— B) ∩ (A Γ— C) = Ο†. 4. (a) (A Γ— B) ∩ (C Γ— D) = (A ∩C) Γ— (B ∩ D). 5. (d) Since AΓ—B contains 18 elements, there are 218 relations from A to B 6. (d) Domain = {βˆ’1, 3, 4, 6} 7. (d) The relation β€œis perpendicular to” is not

reflexive and transitive. A line cannot be

perpendicular to itself and line l1 βŠ₯ to l2 and l2 βŠ₯ l3 does not imply that l1 βŠ₯ l3.

8. (b) Symmetric property is not satisfied. 9. (d) Total number of functions from A to B is (n(B))n(A) ∴ Number of functions on A is 33 = 27 10. (a) In choice (a), 3 it is related to more than one

element and hence is not a function. 11. (d) f1 = {(1, 1), (2, 3), (3, 5), (4, 7), (5, 9)} But 7,

9 βˆ‰ A. f2 = {(1, 5), (2, 4), (2, 5), ….}, which is not a

function. f3 = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)} But 6

βˆ‰ A. f4 = {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)} which

is a function from A to A.

12. (c) ( ) ( )yxfyxf βˆ’+

[ ] [ ]yxyxyxyx 3321

3321 +βˆ’βˆ’βˆ’βˆ’+ ++=

[ ]x2y2y2x2 333341 βˆ’βˆ’ +++=

= ( ) ( )[ ]y2y2x2x2 333341 βˆ’βˆ’ +++

= [ ])y2(f)x2(f21 +

13. (c) The graph shows that for all the positive

as well as negative values of x, y takes only positive

values. Hence the graph represents y = |x|. 14. (d) Rf = {βˆ’1, 0, 1}. 15. (a) x βˆ’ [x] = {x}, the fractional part function

whose range is [0, 1) 16. (a) Range of cosx is [βˆ’1, 1] 17. (c) [x] is an integer

∴ The values of ]x[2

sinΟ€ are βˆ’ 1, 0 and 1.

18. (c) [Ο€] = [3.14] = 3 and = [– Ο€] = – 4 Θ f(x) = cos 3x – sin4x

∴∴∴∴ 23

134

sincos3

f +βˆ’=Ο€βˆ’Ο€=

Ο€

= 2

23 βˆ’

19. (b) Since the function is real, we have 49 – x2 > 0 β‡’ x ∈ (βˆ’7, 7)

20. (c) The domain of ( )( ),

xbax

1

βˆ’βˆ’ with a < b is

(a, b)

21. (a) Let y = 2x1

x

+β‡’ yx2 βˆ’ x + y = 0

b2 βˆ’ 4ac β‰₯ 0 β‡’ 1 βˆ’ 4y2 β‰₯ 0

β‡’ 21

y21 β‰€β‰€βˆ’

B A

Page 9: SMM631101

===================================================================================================Triumphant Institute of Management Education Pvt. Ltd. (T.I.M.E.) HO: 95B, 2nd Floor, Siddamsetty Complex, Secunderabad – 500 003. Tel : 040–27898194/95 Fax : 040–27847334 email : [email protected] website : www.time4education.com Sol.SMM631101/7 ===================================================================================================

22. (a) f (x) = |x| + | x+ 4|

Minimum value of f(x) is 4 and it has no maximum.

∴ Range = [4,∞)

23. (d) f (x) + g (x) = 2

ee xx βˆ’+β‰₯ 1 for all real x.

∴ Range of (f + g) (x) = [1, ∞) 24. (d) ( ) ( ) ( )yfxfyxf β‹…=+

( ) ( ) ( ) ( ) 23331f1f11f2f =Γ—=β‹…=+=

( ) ( ) ( ) 32 3331f2f3f =Γ—=β‹…=

( ) ( ) ( ) 43 3331f3f4f =Γ—=β‹…= . 25. (a) f (x) = 5x βˆ’ |x| f (2x) = 10x βˆ’2 | x| f (βˆ’x) = βˆ’ 5x βˆ’ |βˆ’x| = βˆ’ 5x βˆ’ |x| f (2x)βˆ’ f (βˆ’x) = 10x βˆ’ 2 |x| + 5x + |x| = 15x βˆ’ |x| = f(x) + 10x ∴ f(2x) βˆ’ f(βˆ’x) βˆ’ 10x = f(x)

Regular Homework Exercise

1. (b) n(AΓ—B) = n(A) . n(B) = 0 2. (a) By definition of equality of ordered pairs, (A Γ— B) ∩ (B Γ— A) = Ο†. 3. (d) A Γ— (B βˆͺ C) = (A Γ— B)βˆͺ (A Γ— C). 4. (a) Co-domain is a superset of range Range = {6, 7, 8, 9} 5. (c) The first coordinate of the ordered pair

should be from B and second coordinate should be from A.

6. (d) Since R is reflexive (a, a)∈R βˆ€ a ∈ A, where

n is the given set having R elements. Since n(A) = n, R having at least n ordered pair. ∴ n(R) β‰₯ n

7. (a) By definition. 8. (d) By definition.

9. (a) f(x) + 2f x21x3x =

βˆ’+ ______(1)

let 1x3x

yβˆ’+= , β‡’

1y3y

xβˆ’+=

∴

βˆ’+=+

βˆ’+

1y3y

2)y(f21y3y

f

replacing y by x

( ))1x(3x2

)x(f21x3x

fβˆ’+=+

βˆ’+ _____(2)

2 Γ— (2) βˆ’ (1) β‡’ x2)1x()3x(4

)x(f3 βˆ’βˆ’+=

=

)1x(x2x212x4 2

βˆ’+βˆ’+

3f(x) = ( )1xx212x6 2

βˆ’βˆ’+

∴ )1x(3

x212x6)x(f

2

βˆ’βˆ’+=

10. (a) 2x

1x

x

1x

x

1xf

2

22 +

βˆ’=+=

βˆ’

∴ f (z) = z 2 + 2 β‡’ f (x) = x 2 + 2. 11. (b) There is only one element in the range of a

constant junction. 12. (d) The possible values of signum function are

Β±1 and 0. Hence range will contain 3 elements.

Page 10: SMM631101

===================================================================================================Triumphant Institute of Management Education Pvt. Ltd. (T.I.M.E.) HO: 95B, 2nd Floor, Siddamsetty Complex, Secunderabad – 500 003. Tel : 040–27898194/95 Fax : 040–27847334 email : [email protected] website : www.time4education.com Sol.SMM631101/8 ===================================================================================================

13. (b) βˆ’1 ≀ cos 3x ≀ 1 3 β‰₯ 2 βˆ’ cosx β‰₯ 1

β‡’ 1x3cos2

131 ≀

βˆ’β‰€

∴ Range of f (x) =

1,

31

14. (a) f (x) is not defined when 16 – x 2 < 0 β‡’ 16 < x 2 or when x < –4 and x > 4 ∴ x ∈ [–4, 4]. 15. (c) By definition of f(x), f(x) is many–one, into. 16. (b) 0x1 2 >βˆ’

( ) 0x11 2 β‰₯βˆ’βˆ’

so 1βˆ’ 0x11 2 β‰₯βˆ’βˆ’ All these hold when 0x1 2 β‰₯βˆ’ β‡’ x2 ≀ 1 ∴ The domain of f is [βˆ’1,1]

17. (d) The domain of bxax

βˆ’βˆ’ when a < b is

( ] ( )∞βˆͺβˆ’βˆž ,ba,

18. (c) Since 2x is +ve the least value of 2

2

x2

x

+

is 0

also 1x2

xx2x

2

222 <

+∴+<

∴The range is [ )1,0 19. (d) By definition, 4x2 β‰  0 β‡’ x2 β‰  0β‡’ x β‰  0 ∴ x = R βˆ’ {0}

20. (c) f (x) =5x

11x

βˆ’+βˆ’

x βˆ’ 1 β‰₯ 0 β‡’ x β‰₯ 1, x βˆ’5 β‰  0 β‡’ x β‰  5 ∴ Domain is x β‰₯1, x β‰  5

Assignment Exercise

1. (a) Number of subsets = 60125 22 =Γ— 2. (a) A = {2, 4, 8}, B = {5, 6}. 3. (c) ( ) ( )ba2,54,2a +=+ ba24and52a +==+β‡’ 2band3a βˆ’== . 4. (d) The number of relations from A to B = the number

subsets of A Γ— B = 224

5. (b) By definition R is reflexive. 6. (d) By definition. 7. (d) R = {(1, 5), (2, 6), (3, 7), (4, 8), (5, 9), (6, 10)}

8. (d) ( )x1

xxf +=

( )[ ] ( )33 xfxf βˆ’

+βˆ’+++=3

33

3

x

1x

x

1x3

x3x

+=x1

x3 .

( )

==x1

f3xf3

9. (c) Obviously, the range is {1, –1}.

10. (c) Domain is R and range is [0, ∞)

11. (a) a x β‰  0 and a x > 0 βˆ€ x ∈ R.

12. (c) 0x7 2 β‰₯βˆ’

β‡’ x ∈ [ ]7,7βˆ’ 13. (b) The domain of ( )( )xbaxlog βˆ’βˆ’ for a < b is (a,

b). log(x βˆ’ 2) (5 βˆ’ x) = log(x βˆ’ 2) + log(5 βˆ’ x) β‡’ x > 2 and x < 5

14. (d) Let y = 9x5x

x2 +βˆ’

β‡’ ( ) 0y91y5xyx2 =++βˆ’

0ac4b2 β‰₯βˆ’ (as x is real)

β‡’ ( ) ( )( ) 0y9y41y5 2 β‰₯βˆ’+

β‡’ βˆ’ 01y10y11 2 β‰₯++

01y10y11 2 β‰€βˆ’βˆ’β‡’

β‡’ y ∈

βˆ’1,

111

∴ Range of the given function is

βˆ’1,

111

15. (d) The range of ( )7x45x3

xfβˆ’+= is same as the

domain of ( )3x45x7

xf 1

βˆ’+=βˆ’ which is given by x

∈ R; x β‰  43

Page 11: SMM631101

===================================================================================================Triumphant Institute of Management Education Pvt. Ltd. (T.I.M.E.) HO: 95B, 2nd Floor, Siddamsetty Complex, Secunderabad – 500 003. Tel : 040–27898194/95 Fax : 040–27847334 email : [email protected] website : www.time4education.com Sol.SMM631101/9 ===================================================================================================

Additional Practice Exercise

1. (c) If A βŠ† B, then A Γ— C βŠ† B Γ— C. 2. (a) A ∩ B = Ο† β‡’ (A ∩ B) ∩ (A βˆͺ B) = Ο† β‡’ [(A ∩ B) ∩ (A βˆͺ B)] Γ— A = Ο† 3. (c) n[(A Γ— B) ∩ (B Γ— A)] = 52 = 25 4. (b) A βˆͺ C = C ∴ (A βˆͺ C) Γ— B contains 4 Γ— 2 = 8 elements. 5. (c) n[(A Γ— B)∩ (B Γ— A)] = n[(A∩B) Γ— (B ∩ A)] = n [(A ∩B) Γ— (A ∩ B)] = n(A ∩ B) Γ— n(A ∩ B) = 3 Γ— 3 = 9. 6. (c) Domain = {x: | x | ≀ 4, x∈Z} = { βˆ’4, βˆ’3, βˆ’2, βˆ’1, 0, 1, 2, 3, 4} 7. (d) Clearly (a, b) βˆ— (a, b) and (a, b) βˆ— (c, d) β‡’ (c, d) βˆ— (a, b) Let (a, b) βˆ— (c, d) and (c, d) βˆ— (e, f) β‡’ ad = bc & cf = de

β‡’ cfbc

dead =

β‡’ af = be β‡’ (a, b) βˆ— (e, f) ∴ βˆ— is transitive also. 8. (c) 2 1 = 2. 9. (d) Number of possible relations is a subset of A

Γ— B A Γ— B has p q elements ∴ number of subsets for A Γ— B = 2pq. 10. (d) By definition, (a, b) βŠ‚ [a, b] 11. (d) R = { } }Nx;x,x ∈

xx β‰  for all x ∈ N except for x = 1 ∴(x, x) ∈ R βˆ€ x ∈ N (x, y) ∈ R β‡’ y = x β‡’ (y, x) βˆ‰ R since x β‰ 

y

(x, y) ∈ R and (y, z) ∈ R β‡’ y2 = x and z2 = y β‡’ x = z4 β‡’ (x, z) βˆ‰ R 12. (b) 2mn = 4096 = 212 where n (A) = m and n (B) = n β‡’ 26n = 212 β‡’ n = 2 ∴ B has 2 elements. 13. (c) n4 = 625 β‡’ n = 5 ∴∴∴∴ B has 5 elements. 14. (a) 25.n(B) = 1024 = 210

β‡’ n(B) = 2 15. (c) 2mn 16. (c) Since n(B) < n(A), there is no one-one

function from A to B 17. (c) R = {(1,1) (1,2) (1,3) ,(2,1),

(2,2),(2,3),(3,1),(3,2)} 18. (d) By definition of f + g, f βˆ’ g, Ξ±f and fg, all the

given statements in (a), (b), (c) are true. 19. (b) Either 11 βˆ’ |x| β‰₯ 0 and 12 βˆ’ |x| > 0 or 11 βˆ’ |x| ≀ 0 and 12 βˆ’ |x| < 0 β‡’ either |x| ≀ 11 or |x| > 12 β‡’ x ∈ (βˆ’βˆž, βˆ’12) βˆͺ [βˆ’11, 11] βˆͺ (12, ∞)

20. (b) 02x3x;2x3x

x 2

2>+βˆ’

+βˆ’

(x βˆ’ 1) (x βˆ’ 2) > 0 β‡’ x βˆ‰ (1, 2) or x ∈ ( βˆ’βˆž, 1) βˆͺ (2, ∞)

21. (a) ( )

x1x

x1xx1x

x1x

x2

βˆ’βˆ’=

βˆ’βˆ’βˆ’=

βˆ’βˆ’

For 1x0x1,0x1

x2

>β‡’<βˆ’β‰₯

βˆ’βˆ’

and x = 0

∴∴∴∴ x ∈ (1, ∞) βˆͺ {0}

22. (b) 2222 baxcosbxsinaba +≀+≀+βˆ’

β‡’ 2x3sinx3cos2 ≀+β‰€βˆ’

222x3sinx3cos0 +≀++≀⇒ 23. (a) Substitute x = βˆ’ 1 and x = 3, image is (8, 72) 24. (c) f(x) is not defined when sin2 x = 0 β‡’ when x = nΟ€; n ∈ I.

25. (a) f (x) = 2

2

x1

x

+

2x0 ≀ < 1+ x2

β‡’ 0 ≀ ( ) )1,0[xf1x1

x2

2

βˆˆβ‡’<+

∴ Range is [0, 1) 26. (d) ∴ 10 – x β‰₯ 0 and 4 + x β‰₯ 0 10 β‰₯ x and x β‰₯ – 4 x ≀ 10 and –4 ≀ x – 4 ≀ x ≀ 10 D (f) = –4 ≀ x ≀ 10

Page 12: SMM631101

===================================================================================================Triumphant Institute of Management Education Pvt. Ltd. (T.I.M.E.) HO: 95B, 2nd Floor, Siddamsetty Complex, Secunderabad – 500 003. Tel : 040–27898194/95 Fax : 040–27847334 email : [email protected] website : www.time4education.com Sol.SMM631101/10 ===================================================================================================

27. (d) g (x) = log

βˆ’+

x1x1

g(x1) + g (x2)

= log

βˆ’+

1

1

x1x1 + log

βˆ’+

2

2

x1x1

= log ( )

++βˆ’+++

2121

2121

xxxx1xxxx1

= log ( )( )

+βˆ’++++

2121

2121

xxxx1xxxx1

=

++βˆ’

+++

21

21

21

21

xx1xx

1

xx1xx

1log =

++

21

21

xx1xx

g

28. (c) Any polynomial satisfying the equation. f(x) .f(1/x) = f(x) + f(1/x) is of the form

1xn + or -xn +1 f(4) = 65 = 64 + 1 = 43 + 1 ∴ f(x) = x3 +1 f(3) = 33 +1 = 28

29. (d) 555 yx =+

β‡’ xy 555 βˆ’=

β‡’ y= ( )x5 55log βˆ’

∴ 1x055 x <β‡’>βˆ’

30. (c) 2101x

x βˆ’<+

β‡’ 100

11x

x100

1 <

+<βˆ’

βˆ’ 100 > 100x

1x >+

βˆ’ 100 > 1 + 100x1 >

i.e., βˆ’ 101 > 99x1 >

991

x101

1 <<βˆ’

HINTS/SOLUTIONS for M1103 (Trigonometric Functions)

Classroom Discussion Exercise 1. (a) lr2P +=

ΞΈ= 2r21

A

ΞΈ+= rr2P

2r

A2.rr2P +=

A2r2Pr 2 +=

i.e., 0A2Prr2 2 =+βˆ’ 2. (d) The ratio of the radii is the ratio of the angles in

radian measures. Hence required ratio is 5: 4. 3. (c) For 45Β°< x < 90Β°, cosx < sinx Hence y < 0

4. (d) tan ΞΈ = 1, cot ΞΈ = 1

==+ 1xiff2x1

xΘ

∴∴∴∴ tan3 ΞΈ + cot3 ΞΈ = 2 5. (a) m2 βˆ’ n2 = (m + n) ( m βˆ’ n) = 4 sinxtanx 6. (a) Let x = sec Ξ± + tan Ξ±

x1∴ = sec Ξ± – tan Ξ±

x1

x +∴ = 2 sec α

= 2a + a21

∴ x = 2a or a21

7. (c) sinx = cos2x ………….. (1) cos12x + 3 cos10x + 3 cos8x + cos6x = (cos4x + cos2x)3 = (sin2x + cos2x)3 = 1 by (1).

8. (a) A + B = C2

βˆ’Ο€

tan (A + B) = tan

βˆ’Ο€C

2

1Btan.AtanCtan.BtanCtan.Atan

Ctan1

CcotBtan.Atan1

BtanAtan

=++β‡’

==βˆ’

+

9. (a)

+βˆ’=

+βˆ’

0

0

00

00

21tan1

21tan1

21sin21cos

21sin21cos

00

00

21tan45tan

21tan45tan

+βˆ’=

( )00 2145tan βˆ’= 024tan=

r

r

l ΞΈ

Page 13: SMM631101

===================================================================================================Triumphant Institute of Management Education Pvt. Ltd. (T.I.M.E.) HO: 95B, 2nd Floor, Siddamsetty Complex, Secunderabad – 500 003. Tel : 040–27898194/95 Fax : 040–27847334 email : [email protected] website : www.time4education.com Sol.SMM631101/11 ===================================================================================================

10. (d) log tan 10 + log tan 20 + … + log tan 890 = log [tan 10 . tan 20 … tan 890] = log [tan 10 . tan 20 … tan 450 . cot 440

cot 2 0 . cot 1 0] = log 1 = 0. 11. (b) sin210 + sin220 + cos220 + cos210 = 2

12. (d) 4

B2

CA Ο€==+

2

CAΟ€=+

tan(A +C) =CtanAtan1CtanAtan

βˆ’+

CtanAtan1CtanAtan

2tan

βˆ’+=Ο€βˆ΄

tanA tanC = 1

But tan B = tan 4

Ο€= 1

∴ tanA tanB tanC = 1 13. (a) tanA – tanB = x

yAtan

1Btan

1 =βˆ’

yx

Btan.Atan =β‡’

cot(A – B) = BtanAtanBtan.Atan1

βˆ’+

=x

yx

1

+

y1

x1

xyyx +=+=

14. (a) xsin2x2sin

x2cos22βˆ’

=( )

xsin2xcosxsin2

xsinxcos22

22

βˆ’βˆ’

=( )( )

( )xsinxcosxsin2xsinxcosxsinxcos2

βˆ’βˆ’+

=1 + cotx. 15. (c) x2 + y2 = 1 Let x = cos ΞΈ, y = sin ΞΈ ∴∴∴∴ (4 cos3 ΞΈ βˆ’ 3 cos ΞΈ)2 + (4 sin3 ΞΈ βˆ’ 3 sin ΞΈ)2 = (cos 3ΞΈ)2 + (βˆ’ sin 3 ΞΈ)2 = 1

16. (a) sin ΞΈ . cos ΞΈ = 2

2sin ΞΈ

Minimum of sin 2ΞΈ = –1

Minimum value = ( ) .2

11

2

1 βˆ’=βˆ’

17. (c) ( )Ξ²Ξ±βˆ’

Ξ²+Ξ±=Ξ²+Ξ±

tantan1tantan

tan

Ξ²βˆ’

Ξ²

=Ξ²

2tan1

2tan2

tan2

34

4

11

21

.2=

βˆ’=

∴∴∴∴ ( ) 3

3

4.

3

11

3

4

3

1

tan =βˆ’

+=Ξ²+Ξ±

18. (d) sin ΞΈ [sin 2 60 – sin 2 ΞΈ]

=

ΞΈβˆ’ΞΈ 2sin43

sin

4

sin4sin3 3 ΞΈβˆ’ΞΈ= ΞΈ= 3sin41

19. (b) cos20 cos40 cos80

= 20sin2

80cos40cos20cos20sin2

= 20sin4

80cos40cos40sin2

= 20sin8

160sin20sin8

80cos80sin2 = =81

20. (b) ΞΈ+ΞΈ=ΞΈ+ΞΈ 2sin8sin4sin6sin β‡’β‡’β‡’β‡’ 2sin5 ΞΈΞΈ=ΞΈΞΈ 3cos5sin2cos

( ) 03coscos5sin =ΞΈβˆ’ΞΈΞΈ

β‡’ sin5 0sin.2sin2. =ΞΈΞΈΞΈ

β‡’ sin5 0sinor02sinor0 =ΞΈ=ΞΈ=ΞΈ

β‡’ Ο€=ΞΈΟ€=ΞΈΟ€=ΞΈ nor2

nor

5n

21. (d) 02sin3sin2 2 =βˆ’ΞΈ+ΞΈ

( ) ( ) 02sin1sin2 =+ΞΈβˆ’ΞΈ

2sinor2

1sin βˆ’=ΞΈ=ΞΈ ( not possible )

6

sin21

sinΟ€==ΞΈ

∴∴∴∴ ( )6

1n n Ο€βˆ’+Ο€=ΞΈ .

22. (a) 1sin2

3cos

2

1 =ΞΈ+ΞΈ

1sin3

sincos3

cos =ΞΈΟ€+ΞΈΟ€

13

cos =

Ο€βˆ’ΞΈ

Ο€=Ο€βˆ’ΞΈ n23

3

n2Ο€+Ο€=ΞΈ

In the interval [0, 2 Ο€ ], 3Ο€=ΞΈ only

Page 14: SMM631101

===================================================================================================Triumphant Institute of Management Education Pvt. Ltd. (T.I.M.E.) HO: 95B, 2nd Floor, Siddamsetty Complex, Secunderabad – 500 003. Tel : 040–27898194/95 Fax : 040–27847334 email : [email protected] website : www.time4education.com Sol.SMM631101/12 ===================================================================================================

23. (d) tan3x . tan7x = -1

tan7x = x3tan

1βˆ’

= βˆ’ cot3x

=

+Ο€x3

2tan

x32

nx7 +Ο€+Ο€=∴

Ο€

+=∴2

1n2x4

Ο€

+=β‡’8

1n2x .

24. (b) The given equation is

( )222 xcosxsin +

xcosxsinxcosxsin2 22 =βˆ’

i.e. xcosxsinxcosxsin21 22 =βˆ’

i.e. 2

x2sin2

x2sin1

2

=βˆ’

i.e. x2sinx2sin2 2 =βˆ’

sin22x + sin2x βˆ’ 2 = 0

sin2x = 2

811 +Β±βˆ’ =

2

31Β±βˆ’= βˆ’2, 1

1x2sin =∴

2

n2x2Ο€+Ο€=

4

nxΟ€+Ο€=∴ ( )1n4

4+Ο€= .

25. (d) The given equation is

ΞΈ+ΞΈ 2tantan )2tantan1(3 ΞΈΞΈβˆ’=

i.e; 32tantan1

2tantan =ΞΈΞΈβˆ’

ΞΈ+ΞΈ

β‡’β‡’β‡’β‡’ 33tan =ΞΈ

3

n3Ο€+Ο€=ΞΈ

∴∴∴∴ ( )1n3993

n +Ο€=Ο€+Ο€=ΞΈ .

Regular Homework Exercise

1. (b) We know that Ξ» = rΞΈ

β‡’ 4

.r2

Ο€=Ο€

β‡’ r = 2 cm 2. (c) Since the value of sinΞΈ lies between βˆ’1 and 1, we

get sinΞΈ1 = sinΞΈ2 = sinΞΈ3 = βˆ’1

β‡’ ΞΈ1 = ΞΈ2 = ΞΈ3 = 2

3Ο€

∴ cosθ1 + cosθ2 + cosθ3 = 0

3. (c) sec A + tan A = 23

β‡’ sec A – tan A = 32

∴ 2 sec A = 23

+ 32

β‡’ sec A = 1213

cos A = 1312

β‡’ sin A = .135

4. (d) sin25 + sin210 +…+ sin290 = (sin25 + sin285) + (sin210 + sin280) +….+ sin245

+ sin290

= 8 + 21

+ 1 (since sin285 = sin2(90 βˆ’ 5) = cos25)

= 921

5. (b) 37

cos6

sinΟ€+Ο€

= 121

21 =+

6. (c)

Ο€βˆ’Ο€+Ο€+Ο€8

3cos

83

cos8

cos 222

Ο€βˆ’Ο€+8

cos2

= +

Ο€+Ο€8

sin8

cos 22

Ο€+Ο€8

3sin

83

cos 22 = 2

7. (d) cos36Β° = sin(90 βˆ’ 36)Β° = sin54Β° and cos72Β° = sin(90 βˆ’ 72) = sin18Β° ∴ sin18Β°.sin54Β° βˆ’ cos36Β°.cos72Β° = 0 8. (d) Given expression = 3 (sin4 Ξ± + cos4 Ξ±)

– 2 (sin6 Ξ± + cos6 Ξ±) = 3 (1 – 2 sin2 Ξ±

cos2 Ξ±)

– 2(1 – 3 sin2 Ξ± cos2 Ξ±) = 1.

9. (c) Given expression =

Ο€+Ο€4

3cos

4cos2 44 = 1

10. (b) sin(18 + ΞΈ)cos(72 βˆ’ ΞΈ) + cos(18 + ΞΈ)sin(72 βˆ’ ΞΈ) = sin[(18 + ΞΈ) + (72 βˆ’ ΞΈ)] = sin90 = 1

11. (b) Given expression = +βˆ’BsinAsin

BsinAcosBcosAsin

AsinCsinAsinCcosAcosCsin

CsinBsin

CsinBcosCcosBsin

βˆ’+

βˆ’

= cot B – cotA + cot C – cot B + cot A – cot C = 0

12. (a) Bcot

2

CAsin

2

CAsin2

2

CAsin

2

CAcos2

=

βˆ’

+

βˆ’

+

Page 15: SMM631101

===================================================================================================Triumphant Institute of Management Education Pvt. Ltd. (T.I.M.E.) HO: 95B, 2nd Floor, Siddamsetty Complex, Secunderabad – 500 003. Tel : 040–27898194/95 Fax : 040–27847334 email : [email protected] website : www.time4education.com Sol.SMM631101/13 ===================================================================================================

B2CA

Bcot2

CAcot

=+β‡’

=

+β‡’

β‡’ A, B, C are in A.P.

13. (d) 34cos

11sin11cos +

= 34cos

79cos11cos +

= 34cos

34cos45cos2 = 2

14. (b) ( )A16cos12222 ++++

= A8cos2222 +++

= A4cos222 ++ = A2cos22 +

= ( )A2cos12 +

= Acos.2.2 = 2 cos A

15. (c) cos4ΞΈ + sin4ΞΈ =1 βˆ’ ΞΈ2sin21 2 which is maximum

when ΞΈ = 4Ο€

or βˆ’4Ο€

16. (b) 32Ο€=ΞΈ ∴ General solution is

32

n2Ο€+Ο€=ΞΈ .

17. (d) tanx (tan2x – 3) = 0

tanx = 0 or tanx = 3Β±

∴ x = nΟ€ or 3

nxπ±π=

18. (a) 2sincos =ΞΈ+ΞΈ

1sin2

1cos

2

1 =ΞΈ+ΞΈ

1sin4

sincos4

cos =ΞΈΟ€+ΞΈΟ€

cos 0cos4

=

Ο€βˆ’ΞΈ

0n24

Β±Ο€=Ο€βˆ’ΞΈ

4

n2Ο€+Ο€=ΞΈ

19. (c) tanx = Β± 1 and cot x = Β± 1

x = 4

nΟ€+Ο€ .

20. (c) Multiplying by cos x and solving for sinx we

get ΞΈ = 10

)1(n n Ο€βˆ’+Ο€ .

Assignment Exercise

1. (c) 6264

l ×π×= = 8Ο€.

2. (a) Angle covered in 1second = 270 Γ— 2Ο€ radians

Time taken to turn 6210Ο€ radians = ππ

5406210

= 11.5 sec.

3. (d) 2

2

2

2

2

2

c

z

b

y

a

x ++

= ΞΈ+φθ+φθ 22222222 cosrcossinrsinsinr

= r2 sin2 ΞΈ (sin2 Ο† + cos2 Ο† ) + r2 cos2 ΞΈ

Page 16: SMM631101

===================================================================================================Triumphant Institute of Management Education Pvt. Ltd. (T.I.M.E.) HO: 95B, 2nd Floor, Siddamsetty Complex, Secunderabad – 500 003. Tel : 040–27898194/95 Fax : 040–27847334 email : [email protected] website : www.time4education.com Sol.SMM631101/14 ===================================================================================================

= r2 (sin2 ΞΈ + cos2 ΞΈ ) = r2

4. (b)

Ο€+Ο€+

Ο€+Ο€8

sin8

5sin

8sin

Ο€+Ο€+8

5sin

=8

5sin

8sin

85

sin8

sinΟ€βˆ’Ο€βˆ’Ο€+Ο€

= 0

5. (c) cos (x + y) = cosx cosy – sinx siny = 25

1βˆ’

6. (a) 1m

BsinAcosBcosAsin

1m

BtanAtan =β‡’=

Applying compendo dividendo, we get

1m1m

BsinAcosBcosAsinBsinAcosBcosAsin

+βˆ’=

+βˆ’

β‡’ ( )( ) 1m

1mBAsinBAsin

+βˆ’=

+βˆ’

7. (a) 33

BcosAcosBsinAsin

BsinAsinBcosAcos

βˆ’++

βˆ’+

=

3

2BA

sin2

BAcos2

2BA

cos2

BAcos2

βˆ’+

βˆ’+

+

3

2BA

sin2

BAsin2

2BA

cos2

BAsin2

βˆ’+βˆ’

βˆ’+

= 3

3

2BA

cot2

BAcot

βˆ’βˆ’+βˆ’ = 0.

8. (d) tan (A+B+C) = 0

β‡’ AtanCtanCtanBtanBtanAtan1CtanBtanAtanCtanBtanAtan

βˆ’βˆ’βˆ’βˆ’++

= 0

∴ tanA + tanB + tanC = tanAtanBtanC 9. (d) cosxcos2xcos4xcos8x

= xsin2

12sinxcosxcos2xcos4xcos8x

= xsin2

1sin2xcos2xcos4xcos8x

= xsin2

12

sin4xcos4xcos8x

= xsin2

13

sin8xcos8x

= xsin2

14

sin16x

10. (c) 13tan.2tan =ΞΈΞΈ

13cos2cos3sin2sin =

ΞΈΞΈΞΈΞΈ

i.e, 03sin2sin3cos2cos =ΞΈΞΈβˆ’ΞΈΞΈ

i.e, cos ( ) 032 =ΞΈ+ΞΈ

2

cos05cosΟ€==ΞΈ

β‡’β‡’β‡’β‡’ 2

n25π±π=ΞΈ

∴∴∴∴ 10

n52 π±π=ΞΈ .

11. (c) 0coteccos =ΞΈ+ΞΈ

0sincos

sin1 =

ΞΈΞΈ+

ΞΈ

1 + cosΞΈ = 0 β‡’ cosΞΈ = βˆ’1 β‡’ ΞΈ = Ο€ 12. (d) Since sinx, sin2x, sin3x lies in the interval [-1,1],

the given equation is true only if sinx = 1, sin2x = 1 and sin3x = 1 which is impossible.

13. (b) x is in the third quadrant.

Particular solution is x = 4

5Ο€

∴ General solution is x = 24

5n

Ο€+Ο€ .

14. (b) secΞΈ + tan ΞΈ = 3

secΞΈ βˆ’ tan ΞΈ = 3

1

Solving, secΞΈ = 21

3

13

+ =

3

2

∴∴∴∴ θ = 6

n2Ο€+Ο€ .

15. (d) Dividing by 2, we get ΞΈ = 3Ο€

or 6Ο€

Additional Practice Exercise

1. (c)

Arc length = r ΞΈ = Ο€=π× 53

15

2. (d) Secant increases in the second quadrant and sine and cosine increases in the fourth quadrant

3. (b) cos(βˆ’ 765Β°) = cos 765Β° = cos (720 + 45)Β°

= cos 45Β° =2

1

4. (a) tanΞΈ being an increasing function, the value of

tanΞΈ increases as ΞΈ increases 5. (b) secΞΈ + tan ΞΈ = x

1

1

13Ο€

Page 17: SMM631101

===================================================================================================Triumphant Institute of Management Education Pvt. Ltd. (T.I.M.E.) HO: 95B, 2nd Floor, Siddamsetty Complex, Secunderabad – 500 003. Tel : 040–27898194/95 Fax : 040–27847334 email : [email protected] website : www.time4education.com Sol.SMM631101/15 ===================================================================================================

secΞΈ βˆ’ tan ΞΈ = x1

Solving, secΞΈ = x2

1x2 +

β‡’ cosΞΈ = 1x

x22 +

∴ sinΞΈ = xcos1 2βˆ’ = 1x

1x2

2

+βˆ’

6. (a) )yxcos(22ba 22 βˆ’+=+ a2 – b2 = cos 2x + cos 2y + 2 cos (x + y) =

)yxcos(2)yxcos()yxcos(2 ++βˆ’+

= 2cos(x + y)[cos(x βˆ’ y) + 1] = cos(x + y)(a2 + b2)

β‡’ cos(x + y) = 22

22

ba

ba

+βˆ’

∴ sin (x + y) = 22 ba

ab2

+.

7. (d) )xsin()x(eccos

1βˆ’Ο€=

βˆ’Ο€=sinx

8. (b)

Ο€βˆ’Ο€

Ο€βˆ’Ο€Ο€Ο€5

sin.52

sin.52

sin.5

sin

= 5

sin.52

sin.52

sin.5

sinππππ

= 52

sin.5

sin 22 ππ

= sin236 Γ— sin272

=

+

βˆ’16

521016

5210=

165

16

201002

=βˆ’

9. (c) cos x = 2p 2 – 1 = 2 cos 2 200 – 1 β‡’ cosx = cos40Β° = cos(360 βˆ’ 40) = cos320Β° 10. (b) sin(45 + x) βˆ’ cos(45 βˆ’ x) = sin45cosx + cos45sinx βˆ’ [cos45cosx +

sin45sinx]

= 2

1(cosx + sinx βˆ’ cosx βˆ’ sinx)

= 0 11. (c) (sinΞΈ + cosΞΈ)2 = 1 + 2sinΞΈ cosΞΈ

β‡’ ac

21ab

2

+=

βˆ’

β‡’ a2 βˆ’ b2 + 2ac = 0

12. (c)

ΞΈβˆ’Ο€

ΞΈ+Ο€4

sec4

sec

=

ΞΈβˆ’Ο€

ΞΈ+Ο€4

cos4

cos

1

= ΞΈβˆ’Ο€ 22 sin

4cos

1

= ΞΈβˆ’ 2sin21

2

= 2sec2θ 13. (b) sin(α+ 2β) = sin(α+ β) cosβ + cos(α+ β)sinβ = cosβ. 14. (c) Since A + B = 225, ∴ cot(A + b) = cot(225) = 1

β‡’ BcotAcot1Bcotcot

+βˆ’

= 1

β‡’ cotAcotB βˆ’ 1 = cotA + cotB β‡’ cotAcotB = 1 + cotA + cotB β‡’ 2cotAcotB = (1 + cotA)(1 + cotB) (by adding cotAcotB to both LHS and

RHS)

β‡’ 21

Bcot1Bcot

.Acot1

Acot =++

15. (a) cos74

cos.7

2cos.7

πππ

=

7sin8

78

sin

Ο€

Ο€

= 81βˆ’

16. (c) 4 sin 230 sin 370 sin 830 = 2 sin 230 (2sin 830 sin 370 ) = 2 sin 230 (βˆ’ cos 1200 + cos 460) = sin 230 + 2 cos 460 sin 230 = sin 230 + sin 690 – sin 230 = sin 690 = cos 210

17. (c) cosA + cosB =

2C

sin4 2

2

Csin4

2

BAcos.

2

BAcos2 2=

βˆ’

+β‡’

2C

sin22

BAcos =

βˆ’β‡’

=

+2C

sin2

BAcoscesin

2C

cos.2

Csin.2.2

2C

cos.2

BAcos2 =

βˆ’

Csin22

BAsin

2BA

cos2 =

+

βˆ’

Csin2BsinAsin =+β‡’ .

18. (d)

8cos

8sin

8tan

Ο€

Ο€

=Ο€

Page 18: SMM631101

===================================================================================================Triumphant Institute of Management Education Pvt. Ltd. (T.I.M.E.) HO: 95B, 2nd Floor, Siddamsetty Complex, Secunderabad – 500 003. Tel : 040–27898194/95 Fax : 040–27847334 email : [email protected] website : www.time4education.com Sol.SMM631101/16 ===================================================================================================

=

8cos2

8cos

8sin2

2 Ο€

ππ

=

2

11

2

1

4cos1

4sin

+

=Ο€+

Ο€

= 1212

1 βˆ’=+

19. (d) 2524

491149

11

tan1

tan12cos

2

2=

+

βˆ’=

ΞΈ+ΞΈβˆ’=ΞΈ

sinφ = 10

1 and cosφ =

10

3

∴ 4sinΟ† β‰  2524

2sin2Ο† = 2524

56 β‰ 

sin3Ο† β‰  2524

sin4Ο† = 2sin2Ο•cos2Ο•

= 2524

Ο†+Ο†βˆ’=Ο†

Ο†+Ο†=Ο†

2

2

2

tan1

tan12cos

tan1

tan22sin

20. (a) sin2A + sin2B + sin2C = 2sin(A + B)cos(A βˆ’ B) + sin2C = 2sinCcos(A βˆ’ B) + 2sinCcosC = 2sinC[cos(A βˆ’ B) + cosC] =

2sinC

βˆ’βˆ’+βˆ’2

CBAcos

2CBA

cos2

= 2sinC.2sinB.sinA = 4sinAsinBsinC

21. (a) x2sinx2cos

x2sinx6sin22 βˆ’

βˆ’ =

4x cos2x sinx 4 2cos

= 2sin2x. 22. (a) cos6Ξ± + sin6Ξ± = 1 + msin22Ξ±(cos2Ξ± + sin2Ξ±)3 βˆ’

3cos2Ξ±sin2Ξ±(cos2Ξ± + sin2Ξ±) = 1 + msin22Ξ± i.e; 1 βˆ’ 3sin2Ξ±cos2Ξ± = 1 + msin22Ξ±

∴ 4

3(sin2Ξ±cos2Ξ±) = msin22Ξ±

∴ m = βˆ’4

3

23. (a) tanA

βˆ’

+

+

βˆ’

Atan31

Atan3

Atan31

Atan3

=

βˆ’βˆ’

Atan31

Atan3Atan

2

2

= A3tanAtan31

AtanAtan32

3

=

βˆ’βˆ’

.

24. (a) cos4x = cos2x ∴ 4x = x2n2 Β±Ο€ β‡’ 6x = 2nΟ€ or 2x = 2nΟ€

β‡’ x = nΟ€ or 3

nΟ€

∴ 3n

xΟ€= which includes x = nΟ€ also

25. (d) The given equation is 2sin4 ΞΈ cos3 ΞΈ + sin4 ΞΈ = 0 i.e;sin4 ΞΈ (2 cos3 ΞΈ +1) = 0

i.e; sin4 ΞΈ = 0 or cos 3 ΞΈ = 21βˆ’

sin4 ΞΈ = 0 β‡’ 0, 2

,4

ππ

cos3 ΞΈ = βˆ’2

1 β‡’ ΞΈ =

9

4,

9

2 ππ

26. (a) 06cos4cos2cos =ΞΈ+ΞΈβˆ’ΞΈ

β‡’ [ ] 04cos6cos2cos =ΞΈβˆ’ΞΈ+ΞΈ

04cos2cos4cos2 =ΞΈβˆ’ΞΈΞΈ

i.e; ( ) 012cos24cos =βˆ’ΞΈΞΈ

β‡’ cos4 ΞΈ=ΞΈ 2cos2or0 =1

3

n22or2

n24π±π=θπ±π=θ∴

6

nor82

n π±π=θπ±π=θ∴ .

27. (c) sin3x + sinxcosx + cos3x = 1 ∴ sin3x + cos3x βˆ’ (1 βˆ’ sinxcosx) = 0 (sinx + cosx)(sin2x + cos2x βˆ’ sinxcosx)

βˆ’ (1 βˆ’ sinxcosx) = 0 i.e; (1 βˆ’ sinxcosx)(sinx + cosx βˆ’ 1) = 0 i.e; sinxcosx = 1 (1) or sinx + cosx = 1 (2) (1) implies sin2x = 2 which is not possible From (2)

2

1xcos

2

1xsin

2

1 =+

2

1

4xcos =

Ο€βˆ’

4

n24

xπ±π=Ο€βˆ’βˆ΄

2

n2orn2xΟ€+ππ=∴ .

28. (b) Solving, cos x = 21

or cos x = 23

cosx = 2

1 β‡’ x =

35

,3

ππ

cosx = 2

3 is not possible

29. (d) Solving we get

Page 19: SMM631101

===================================================================================================Triumphant Institute of Management Education Pvt. Ltd. (T.I.M.E.) HO: 95B, 2nd Floor, Siddamsetty Complex, Secunderabad – 500 003. Tel : 040–27898194/95 Fax : 040–27847334 email : [email protected] website : www.time4education.com Sol.SMM631101/17 ===================================================================================================

tanx = 3

1β‡’ x =

6n

Ο€+Ο€ .

30. (d) Both 2Ο€

and 4Ο€

does not satisfy the given

equation. Hence choice (d).

HINTS/SOLUTIONS for M1104 (Straight Lines)

Classroom Discussion Exercise 1. (d) Let the third vertex be (x, y). Then

23

12x =++ and 2

321y =+βˆ’

5y,3x ==∴ (3, 5) is the third vertex. 2. (a) Given (x βˆ’ a1)

2 + (y βˆ’ b1)2 = (x βˆ’ a2)

2 + (y βˆ’ b2)2

β‡’ x2 + a12 βˆ’ 2a1x + y2 + b1

2 βˆ’ 2b1y = x2 + a2

2 βˆ’ 2a2x + y2 + b22 βˆ’

2b2y β‡’ 2(a1 βˆ’ a2)x + 2(b1 βˆ’ b2)y + a2

2 + b2

2 βˆ’ a1

2 βˆ’ b12 = 0

β‡’ (a1 βˆ’ a2)x + (b1 βˆ’ b2)y

+ ( ) 0baba21 2

121

22

22 =βˆ’βˆ’+

3. (a) Since y = mx + c passes through (3, βˆ’5) and

(2, 4), therefore βˆ’5 = 3m + c and 4 = 2m + c Solving m = βˆ’9, c = 22

4. (c) A(1, -2) and Q (2, -1) are points on QS

∴ 21

2y121x

+βˆ’+=

βˆ’βˆ’

β‡’ x βˆ’ y βˆ’ 3 = 0

5. (a) Required equation is 2qy

px =+

β‡’ 3y

2x + = 2

β‡’ 3x + 2y βˆ’ 12 = 0 6. (d) By the intercept form, equation is 5x + 7y + 35 = 0 7. (c) 3x + 4y – 5 – k(x + 2y – 3) = 0 β‡’ x(3 – k) + y(4 – 2k) + (3k – 5) = 0 This is parallel to x–axis. β‡’ Slope is zero

i.e; k24k3

βˆ’βˆ’

= 0 β‡’ k = 3

8. (a) If the required ratio is K:1, the point of division is

given by

++

+βˆ’

1K

1K8,

1K

1K7This being a point on

5yx2 =+ , gives 17

6K =

Thus the required ratio is 6 : 17 is 6 : 17. 9. (b) k2 + 13k + 5 + k2 + 1 + 14 = 0 β‡’ 2k2 + 13k + 20 = 0

β‡’ k = 2

5βˆ’, βˆ’4

10. (a) The midpoint of the diagonal is (3, 2) which lie on

the line y = 2x + a Hence the value of a is – 4. 11. (b) The given line is

( ) ( ) 0b4a5y3x2by2xa =+βˆ’βˆ’++

i.e., a(x + 2y – 5) + b(2x βˆ’ 3y + 4) = 0 This represents the family of lines through the

point of intersection of x + 2y – 5 = 0 and 2x βˆ’ 3y + 4 = 0

Solving these two equations we get x = 1, y = 2. 12. (b) Equation of AB is y – 1 = βˆ’1 (x – 4) i.e., x + y – 5 = 0. B is the point of intersection of this line with

y = 3x.

∴ B is

415

,45

∴ AB2 = 22

14

1545

4

βˆ’+

βˆ’ = 22

411

411

+

2

411

2

Γ—=

∴ AB = 4

211

13. (c) Point of intersection of 4x + 3y = 1 and y = x + 5 is

(–2, 3) Substituting this in 5y + bx + 3 = 0 we get, b = 9.

14. (d) 2

cab

+=

0cy2

caax =+

++∴

ie ( ) ( ) 02ycyx2a =+++ This represents a family of lines passing through

the point of intersection of the lines 2x + y = 0 and y + 2 = 0.

A (4, 1)

135Β°

y = 3x

Page 20: SMM631101

===================================================================================================Triumphant Institute of Management Education Pvt. Ltd. (T.I.M.E.) HO: 95B, 2nd Floor, Siddamsetty Complex, Secunderabad – 500 003. Tel : 040–27898194/95 Fax : 040–27847334 email : [email protected] website : www.time4education.com Sol.SMM631101/17 ===================================================================================================

15. (c) The equation of the required line is of the form 2x + y + 6 + Ξ» (x – 2y+3) = 0. Since this passes through the origin, we get Ξ» = βˆ’ 2.

Substituting, the required line is y = 0. 16. (a) a 1 a 2 + b 1 b 2 = 0 ∴∴∴∴ ΞΈ = 900 17. (d) The lines 3x - 4y + 14 = 0 and 4x + 3y – 23 = 0 are perpendicular ∴ the orthocenter is the point of intersection of

these lines. Solving we get x = 2, y = 5. 18. (c) For parallel lines slopes are same. Hence k = 4.

19. (d) Dividing throughout with 211 =+ , we get

2

6y

2

1x

2

1 =βˆ’

β‡’ cos Ξ± = 2

1; sin Ξ± =

2

1βˆ’

β‡’ Ξ± = 315 0 = 4

7Ο€

20. (d) The points (x1, y1) and (x2, y2) are on the same

side of the line ax + by + c = 0 if cbyaxcbyax

22

11

++++

is

positive

781

7+βˆ’βˆ’

< 0

(βˆ’7, 0) is a point on the line

761

7++

> 0

∴ (0, 0) and (1, 3) are on the same side of x + 2y + 7 = 0

21. (c) 13c1394

c0302=β‡’=

+

+Γ—+Γ—

22. (a) The image (x2, y2) of the point (x1, y1) in the line

ax + by + c = 0 is given by

22111211

ba

)cbyax(2b

yya

xx

+++βˆ’=βˆ’=βˆ’

( )

( ) ( ).4,1y,x91

724323

8y1

3x

22

22

βˆ’βˆ’=β‡’+

βˆ’+βˆ’=βˆ’=βˆ’β‡’

23. (c) Distance = 22 43

205

+

+ = 5

24. (b) ( ) 2222 512

2y5x12

43

7y4x3

+

βˆ’+βˆ’=βˆ’+

+βˆ’

13

2y5x125

7y4x3 βˆ’+βˆ’=+βˆ’

39x – 52y + 91 = βˆ’60x – 25y + 10 99x – 27y + 81 = 0 11x – 3y + 9 = 0. 25. (c) Let the origin be shifted to (h ,k). Then the new equation is

( ) ( ) ( ) 02hx8ky4ky 2 =βˆ’+++++

Coefficient of y = 0 β‡’ 2k+ 4 = 0 β‡’ k = -2

Constant term = 0 β‡’ 02h8k4k2 =βˆ’++

β‡’ 4 βˆ’ 8 + 8h βˆ’ 2 = 0 β‡’ 4

3h =

Regular Homework Exercise

1. (c)

+++βˆ’3

903,

3

512 = (2, 4)

2. (a) Let the point be P(x, y) (x + a)2 + y2 + (x βˆ’ a)2 + y2 = (2a)2 β‡’ x2 + y2 = 2a2 3. (c) Slope of AB is 1 ∴AC is vertical where C is the new position of B

2222AB 22 =+=

∴ The required point is ( )22,2

4. (c) Given slope = 43 and c = –2

Equation of the line is y = mx + c

β‡’ y = 43

x – 2

β‡’ 3x – 4y – 8 = 0. 5. (c) Required equation is 1byax =+

6. (c) Let the line be by

ax + = 1

It passes through (1, 3) β‡’ 1b3

a1 =+

(1, 3) is the midpoint

β‡’ 2a

= 1 and 2b

= 3

β‡’ a = 2 and b = 6

∴ Required line is 6y

2x + = 1

β‡’ 3x + y βˆ’ 6 = 0

7. (a) Since a, b, c are in A.P, therefore b = 2

ca +

∴ ax + by + c = 0 β‡’ 2a

(2x + y) + 2c

(y + 2) = 0,

which always passed through (1, βˆ’2)

450

A (2, 0)

B (4, 2) C

Page 21: SMM631101

===================================================================================================Triumphant Institute of Management Education Pvt. Ltd. (T.I.M.E.) HO: 95B, 2nd Floor, Siddamsetty Complex, Secunderabad – 500 003. Tel : 040–27898194/95 Fax : 040–27847334 email : [email protected] website : www.time4education.com Sol.SMM631101/18 ===================================================================================================

D

B

A

C

x + y – 6 = 0

x - 3y – 2 = 0

5x - 3y + 2 = 0

8. (c) Since the lines are concurrent,

312

32a

143

βˆ’βˆ’βˆ’ = 0

β‡’ a = 5 9. (a) Equation of the line is (4x + 3y – 7) + Ξ» (8x + 5y – 1) = 0 (4 + 8Ξ») x + (3 + 5Ξ») y – 7 – Ξ» = 0

Slope = 23βˆ’β‡’

23

5384 βˆ’=

Ξ»+Ξ»+βˆ’

8 + 16Ξ» = 9 + 15Ξ» i.e., Ξ» = 1. ∴ Equation of the line is (12x + 8y – 8 = 0) i.e., 3x + 2y – 2 = 0.

10. (d) 0

bac

acb

cba

=

i.e., a3 + b3 + c3 – 3abc = 0 11. (d) Equation of a line parallel to 4x + 10y βˆ’ 8 = 0 is

0Ky10x4 =++ . It passes through ( )2,2 βˆ’ .

Hence 12K0K21024 =β‡’=+βˆ’Γ—+Γ— 01210y4xisequationrequired =++∴ 12. (a) 3m1 =

1m2 =

21

12

mm1

mmtan

+βˆ’

=α∴ 21

312 =+

=

113

m,32

m 43 ==

31132

1

113

32

tan

Γ—Γ—+

βˆ’=Ξ² =

31

633922 =

+βˆ’

( )61

1

31

21

tanβˆ’

+=β+α∴ =1

4Ο€=Ξ²+α∴ .

13. (d)

By solving the equations 5x – 3y + 2 = 0 and

x + y – 6 = 0 we get the point A (2, 4) Altitude AD is 3x + y + k = 0 It passes through (2, 4) β‡’ k = βˆ’10 ∴ equation of the altitude is 3x + y = 10.

14. (b) Any line perpendicular to the given line is x – 2y + k = 0. Since it passes through (1, 2), we get k = 3

Hence the required line is x – 2y + 3 = 0.

15. (b) Let the required ratio be Ξ» : 1.

Then P is

+Ξ»+Ξ»

+Ξ»+Ξ»βˆ’

134

,12

Page 22: SMM631101

===================================================================================================Triumphant Institute of Management Education Pvt. Ltd. (T.I.M.E.) HO: 95B, 2nd Floor, Siddamsetty Complex, Secunderabad – 500 003. Tel : 040–27898194/95 Fax : 040–27847334 email : [email protected] website : www.time4education.com Sol.SMM631101/19 ===================================================================================================

P lies on x + y + 1 = 0

∴ Ξ» = βˆ’23

16. (d) With the given sides, the vertices are A(0, 0),

B(βˆ’1, 3), C(2, βˆ’1) Equation of the line through (βˆ’1, 3) and

perpendicular to x + 2y = 0 is 2x βˆ’ y + 5 = 0 ……..(1) Equation of the line through (0, 0) and perpendicular to 4x + 3y = 5 is 3x βˆ’ 4y = 0…………(2)

Point of intersection of (1) and (2) is the orthocentre

∴ Orthocentre is (βˆ’4, βˆ’3) 17. (a) The lines 3x – 4y – 2 = 0 and 4x + 3y – 11 = 0 are

perpendicular ∴ The orthocentre is the point of intersection of

these two lines. 3x – 4y – 2 = 0 4x + 3y – 11 = 0

169

1338

y644

x+

=+βˆ’

=+

β‡’ x = 2, y = 1.

18. (a) If (x, y) is the image of (x1, y1) in the line ax + by + c = 0, then

( )

221111

ba

cbyaxb

yya

xx

+++βˆ’=βˆ’=βˆ’

( )

169520

45y

30x

+βˆ’βˆ’βˆ’=

βˆ’βˆ’=βˆ’

β‡’ x = 3, y = 1 19. (c) If P (h, k) is the image of A (4,βˆ’13) in the lines

5x + y + 6 = 0, then

113k

54h +=βˆ’

1125

613202 βˆ’=

++βˆ’Γ—βˆ’=

14k,1h βˆ’=βˆ’=∴ .

20. (b) 103

16a

125

2=

+

βˆ’

β‡’ 103

16a2

252

=+

βˆ’

β‡’ 516a2 =+

β‡’ a2 + 16 = 25 β‡’ a2 = 9 ∴ a = Β± 3.

Assignment Exercise

1. (c) [ ] [ ]22 )ab(y)ba(x βˆ’βˆ’++βˆ’

= [ ] [ ]22 )ba(y)ba(x +βˆ’+βˆ’βˆ’

bx βˆ’ ay = 0 2. (b) P (h, k) lies on 3x + 2y βˆ’ 13 = 0 β‡’ 3h + 2k βˆ’ 13 = 0 Q (k, h) lies on 4x βˆ’ y βˆ’ 5 = 0 β‡’ 4k βˆ’ h βˆ’ 5 = 0 Solving them, we get h = 3, k = 2 ∴ Equation of PQ is y βˆ’ 2 = βˆ’1 (x βˆ’ 3) β‡’ x + y βˆ’ 5 = 0

3. (b) The equation of the line is 1by

ax =+

where 2a = 3b

This passes through (3, βˆ’1) β‡’ 1b1

a3 =βˆ’

1a23

a3 =βˆ’β‡’ β‡’

23

a =

∴ b = 1

∴ Required line 1y

23x =+

β‡’ 2x + 3 y – 3 = 0.

4. (b) ax + by + 13 = 0 passes through (2, 5) and (βˆ’3, βˆ’ 0)

β‡’ 013b5a2 =++ and 013ba3 =+βˆ’βˆ’

Solving, a = 6, b = βˆ’ 5

5. (d) c = 2

ba +

∴ ax + by + c = 0 β‡’ ,021

yb21

xa =

++

+

which always passes through

βˆ’βˆ’21

,21

6. (a) The equations of the sides are

Area = ( )

1221

2121

baba)dd(cc

βˆ’βˆ’βˆ’

= 28912 =

βˆ’Γ—

7. (c) 0

bac

acb

cba

=

i.e; a3 + b3 + c3 βˆ’ 3abc = 0

β‡’ ( )( ) 0bcacabcbacba 222 =βˆ’βˆ’βˆ’++++

β‡’ a + b + c = 0 (since a β‰  b β‰  c, ∴ a2 + b2 + c2 βˆ’ ab βˆ’ bc βˆ’ ca β‰  0) 8. (b) Solving the first and the second equations, the

point of intersection is (-1, 1). This lies on the third line. Substituting, we get k = 4

9. (c) 4x + 3y – 7 = 0 8x + 5y – 1 = 0 Solving, the point of intersection is (-8, 13).

∴ The required equation is ( )8x23

13y +βˆ’=βˆ’

β‡’ 2y – 26 = βˆ’ 3x – 24 β‡’ 3x + 2y – 2 = 0. 10. (b) x – y = 0 or x = y This line is equally inclined to the x and y axes ∴ The angle it makes with y = 0 (x – axis) is 450. 11. (c) The midpoint of (1, 1) and (3, 5) is (2, 3). Slope of the line joining (1, 1) and (3, 5) is 2

∴ Slope of its perpendicular is 21βˆ’

∴ Equation of the right bisector is

Page 23: SMM631101

===================================================================================================Triumphant Institute of Management Education Pvt. Ltd. (T.I.M.E.) HO: 95B, 2nd Floor, Siddamsetty Complex, Secunderabad – 500 003. Tel : 040–27898194/95 Fax : 040–27847334 email : [email protected] website : www.time4education.com Sol.SMM631101/20 ===================================================================================================

y βˆ’ 3 = ( )2x21 βˆ’βˆ’

β‡’ x + 2y βˆ’ 8 = 0 12. (b) The lines x = 7 and y = 5 are perpendicular ∴ the circumcentre lies on the third line 5x + 7y – 35 = 0. 13. (b) The required line can be taken as

kya

secx

btan =ΞΈ+ΞΈ

It passes through ( )ΞΈΞΈ tanb,seca

ka

sectanbb

tanseca =θθ+θθ∴

θθ+=∴ tansecab

bak

22

Equation becomes

ΞΈΞΈ+=ΞΈ+ΞΈ tansecab

basec

ay

tanbx 22

ie; 22 batanby

secax +=

ΞΈ+

ΞΈ

ie; 22 bacotbycosax +=ΞΈ+ΞΈ . 14. (a) Slopes of the three lines are

m1 = βˆ’ 1, m2 = βˆ’ 3, m3 = 31βˆ’

Angle between the lines x + y = 0 and 3x + y βˆ’ 4 = 0 is given by

Ξ± =

++βˆ’βˆ’

3131

tan 1 =

βˆ’

21

tan 1

Angle between the lines x + y = 0 and x + 3y βˆ’ 6 = 0 is given by

Ξ² =

+

+βˆ’βˆ’

31

1

131

tan 1 =

βˆ’

21

tan 1

Angle between the lines 3x + y βˆ’ 4 = 0 and x + 3y βˆ’ 6 = 0 is given by

Ξ³ =

βˆ’=

+

+βˆ’βˆ’βˆ’

34

tan113

13

tan 11

∴ The triangle is isosceles with the line x + y = 0 as the base.

15. (a) The lines are parallel.

Distance between the lines is 22 125

2

1725

+

βˆ’

26

33=

5233

radius =∴

Page 24: SMM631101

===================================================================================================Triumphant Institute of Management Education Pvt. Ltd. (T.I.M.E.) HO: 95B, 2nd Floor, Siddamsetty Complex, Secunderabad – 500 003. Tel : 040–27898194/95 Fax : 040–27847334 email : [email protected] website : www.time4education.com Sol.SMM631101/21 ===================================================================================================

Additional Practice Exercise

1. (c) Area = ba1ac1cb1

21

= cbba0cabc0

cb1

21

βˆ’βˆ’βˆ’βˆ’

= [ ])ca()ba()cb()bc(21 βˆ’βˆ’βˆ’βˆ’βˆ’

=

[ ])bcabaca(bcbcbc21 222 +βˆ’βˆ’βˆ’+βˆ’βˆ’

= [ ]abcabccba21 222 βˆ’βˆ’βˆ’++βˆ’

=

[ ]ab2ca2bc2c2b2a241 222 βˆ’βˆ’βˆ’++βˆ’

= [ ]222 )ba()ac()cb(41 βˆ’+βˆ’+βˆ’βˆ’

2. (a) Required area is 4

49ab2c2

= .

3. (d) Area of triangle formed by the straight line

0cbyax =++ with the coordinate axes is

ab2c2

If a, c, b are in G.P; abc 2 =

β‡’ Area of the triangle is 21

units.

4. (a) Solving the equations (0, -1) is the point of

intersection. 5. (d)

Orthocenter is O (0, 0) and circumcenter C is the

midpoint of AB. ie;

=23

,2C

49

4OC +=∴ =4

25=

25

= 2.5

6. (d) Solving 4x + 5y = 0 and 11x + 7y = 9 we get

βˆ’34

,35

solving 7x + 2y = 0 and 11x + 7y = 9 we

get

βˆ’34

,35

midpoint is

21

,21

.

The other diagonal should pass through (0, 0) and

21

,21

. Hence its equation is y = x

Aliter:

The given sides pass through the origin, while the given diagonal does not. Hence, the required

diagonal must pass through the origin. Thus, the only correct choice is (d).

7. (b) Consider P(a, b), Q(a, c), R(d, c)

Slope of PQ = 0

bc βˆ’

Slope of RQ = ad

0βˆ’

∴ PQ is perpendicular to QR ∴ Q(a, c) is the orthocentre. 8. (b) Equation of any line through ( )2,3 is

( )1...m3x2y =

βˆ’βˆ’

Now, slope of the line 21

is3y2x =βˆ’

12m

1m2

2

m1

2

1m

45tan Β±=+βˆ’

β‡’

+

βˆ’=

31

mor3mβˆ’==∴

Thus from (1) the required equations are 09y3x,07yx3 =βˆ’+=βˆ’βˆ’

9. (a) Any line perpendicular to 03yx3 =βˆ’+ is

0Ky3x =+βˆ’ .

It passes through (2, 2) β‡’ k = 4. ∴ equation of the line is 04y3x =+βˆ’ Putting x = 0, we get the intercept.

y = 3

4

10. (c) The sides are given by 5x + 2y + 5 = 0,

5x + 2y βˆ’ 5 = 0, 5x βˆ’ 2y + 5 = 0, 5x βˆ’ 2y βˆ’ 5 = 0. These lines form a rhombus.

Area = units.sq525

552 =Γ—

Γ—Γ—

11. (d) Slope of AC = 12

34

βˆ’βˆ’+

=37βˆ’

∴ slope of BD = 7

3

Midpoint of AC is

βˆ’21

,,2

1which is (the midpoint

of BD also) ∴ equation of BD is

+=βˆ’21

x73

21

y

ie; 6x βˆ’ 14y + 10 = 0. ie; 3x βˆ’ 7y + 5 = 0

12. (c) The angle ΞΈ is given by 1

23

1

21

3tan =

+

+βˆ’=ΞΈ

O A(4, 0)

B(0, 3)

23

,2C

Page 25: SMM631101

===================================================================================================Triumphant Institute of Management Education Pvt. Ltd. (T.I.M.E.) HO: 95B, 2nd Floor, Siddamsetty Complex, Secunderabad – 500 003. Tel : 040–27898194/95 Fax : 040–27847334 email : [email protected] website : www.time4education.com Sol.SMM631101/22 ===================================================================================================

β‡’ ΞΈ = 4Ο€

13. (b) The triangle is right angled. So the circumcentre is the midpoint of the hypotenuse, Hence circumcentre is (3, 3). 14. (a) Equation of the line is 4x + 2y + c = 0

y-intercept = 2cβˆ’ = 5

β‡’ c = -10 ∴ equation is 4x + 2y – 10 = 0 i.e., 2x + y – 5 = 0.

15. (a) Any line perpendicular to 1sinby

cosax =ΞΈ+ΞΈ is

kcosay

sinbx =ΞΈβˆ’ΞΈ

This passes through ( a cosΞΈ, b sinΞΈ)

∴ k = ab

ba 22 βˆ’sinΞΈ cosΞΈ

∴ required line is

ΞΈΞΈβˆ’=ΞΈβˆ’ΞΈ cossinab

bacos

a4

sinbx 22

β‡’ ax secΞΈ βˆ’ by cosec ΞΈ = a2 βˆ’ b2

16. (a) Slope of PR = 25

Slope of PQ = m

tan ΞΈ = 1 1

2m5

1

m2

5

=+

βˆ’

m25

1m25 +=βˆ’ or

2m5

1m25 +=+βˆ’

m = 73

of 37βˆ’

When m = 7

3, PQ is ( )3x

7

34y βˆ’=βˆ’

i.e., 7y – 28 = 3x – 9 β‡’ 3x – 7y + 19 = 0. 17. (c) The equation in normal form is

a60siny60cosx =+ ΞΏΞΏ

a2

y32x =+β‡’

a2y3x =+β‡’ 18. (b) 1 + 1 βˆ’ 4 < 0

041a3a2 2 <βˆ’βˆ’+βˆ’βˆ΄

i.e. 08a2a2 <βˆ’+

ie; (a + 4) (a βˆ’ 2) < 0 ∴ a lies in the interval (βˆ’ 4, 2)

19. (b) ΞΈ+ΞΈ

=22 eccossec

ap

ΞΈ+

ΞΈ

=

22

22

sin

1

cos

1a

p

ΞΈΞΈ= 222 cossina

β‡’ ΞΈ= 2sinap4 222 (1)

Also ΞΈ+ΞΈ

ΞΈ=22 sincos

2cosap2

ΞΈ= 2cosap4 222 (2)

(1) + (2) β†’ 22 ap8 =

β‡’ 8a

p2

2 = .

20. (d) b

siny

a

cosx ΞΈ+ΞΈ = 1 β‡’ bxcosΞΈ + aysinΞΈ βˆ’ ab = 0

Let Ξ± = 22 ba βˆ’ ∴ Point is (Ξ±, 0) and (βˆ’Ξ±, 0)

∴ perpendicular distance from (α, 0) is

P1 = ΞΈ+ΞΈ

βˆ’ΞΈΞ±2222 cosbsina

abcosb and

P2 = ΞΈ+ΞΈ

βˆ’ΞΈΞ±βˆ’2222 cosbsina

abcosb

∴ P1P2 = ΞΈ+ΞΈΞΈΞ±βˆ’

2222

22222

cosbsina

cosbba

= ( )

ΞΈ+ΞΈΞΈβˆ’βˆ’

2222

222222

cosbsina

cosbabba

= [ ]

ΞΈ+ΞΈΞΈ+ΞΈβˆ’

2222

222222

cosbsina

cosbcosaab

= ( )

ΞΈ+ΞΈΞΈ+ΞΈ

2222

22222

cosbsina

cosbsinab = b2

21. (b) p = ΞΈ+ΞΈ 22 eccossec

a

β‡’ p2 =

ΞΈ+

ΞΈ 22

2

sin

1

cos

1a

= a2 sin2 ΞΈ cos2 ΞΈ

β‡’ 4p2 = a2 sin2 2ΞΈ Similarly q2 = a2 cos2 2ΞΈ ∴ 4p2 + q2 = a2. 22. (c) The lines are 6x + 8y – 10 = 0 and 6x + 8y – 45 = 0 Distance between them

= 5.310

35

6436

4510

ba

cc

22

12 ==+

+βˆ’=

+

βˆ’

23. (d) Using

+

++βˆ’=

βˆ’=

βˆ’22

1111

ba

cbyax2

b

yy

a

xx

1

8y

1

6x

βˆ’βˆ’=βˆ’

( ) ( )6,8y,x2

862 =β‡’

βˆ’βˆ’=

24. (c) The side of the square is equal to the distance between the parallel lines which is equal to

P (3, 4)

R (1, -1)

Q

S

O

ΞΈ

Page 26: SMM631101

===================================================================================================Triumphant Institute of Management Education Pvt. Ltd. (T.I.M.E.) HO: 95B, 2nd Floor, Siddamsetty Complex, Secunderabad – 500 003. Tel : 040–27898194/95 Fax : 040–27847334 email : [email protected] website : www.time4education.com Sol.SMM631101/23 ===================================================================================================

= 2019

86

257

22=

+

+

∴ diameter of the circle is 20

219

∴ area =

2

202219

4

Γ—Ο€

=800361Ο€

25. (a) Distance between the lines = 25

86

629

22=

+

βˆ’βˆ’

26. (a) Let the image be (h, k). Then

( )

191143

21

4k3

1h+

βˆ’+βˆ’βˆ’=βˆ’=+

β‡’ h = 5 , k = 6 27. (b) Line joining (βˆ’1, 2) and (5, 4) is x βˆ’ 3y + 7 = 0. If (h, k) is the foot of the perpendicular, then

( )

917031

130y

11h

++Γ—βˆ’βˆ’=

βˆ’βˆ’=βˆ’

β‡’ h = 5

12k,

51 =

28. (b) 2x + y = 7 passes through (2, 3) but it is parallel to

the given lines, so it will not make any intercepts with them. Point of intersection of x βˆ’ 2 = 0 with 2x + y βˆ’ 3 = 0 and 2x + y βˆ’ 5 = 0 are (2, βˆ’1) and (2, 1) respectively. ∴ The intercepts made by x βˆ’ 2 = 0 with them is 2 unit. x βˆ’ 2y + 4 = 0 passes through (2, 3) but perpendicular to the given parallel lines

∴ The required intercept is the distance between

the parallel lines is 5

2

14

53 =+βˆ’βˆ’ βˆ’

β‰  2

Finally, 2x + 3y βˆ’ 4 = 0 does not pass through (2, 3)

∴ choice (b)

29. (b) Locus of P(x, y) such that PA = PB is the required equation

( ) ( ) ( ) ( )2222 3y2x1y1x βˆ’+βˆ’=βˆ’+βˆ’βˆ΄

011y4x2 =βˆ’+β‡’ 30. (a) The other bisector is perpendicular to x + y – 2 = 0 Hence the equation is x – y + k = 0 This passes through (1, 1) β‡’ k = 0 ∴ Equation of the other bisector is x – y = 0

HINTS/SOLUTIONS for M1105 (Complex numbers and Quadratic Equations)

Classroom Discussion Exercise 1. (a) 5i.

2. (d) Let ibai247 +=βˆ’ β‡’ 7 βˆ’ 24i = a2 βˆ’ b2 + 2iab. Equating the real and imaginary parts, we get

a2βˆ’ b2 = 7 and ab = βˆ’12.

Now a2 + b2 = ( ) 22222 ba4ba +βˆ’

= 25 β‡’ 2a2 = 32 β‡’ a = Β± 4 When a = 4, b = βˆ’3 When a = βˆ’4, b = 3.

∴ ( )i34i247 βˆ’Β±=βˆ’ 3. (d) 5i5 + 4i4 – 3i3 + 2i2 – i = 5i + 4 + 3i – 2 – I = 2 + 7i

4. (d) tanβˆ’1

+

βˆ’

rs

tanqp 1

=

βˆ’

+βˆ’

rs

pq

1

rs

pq

tan 1 =

βˆ’+βˆ’

qsprpsqr

tan 1

= ( )4

n1tan 1 Ο€+Ο€=βˆ’

5. (d) (x + 1 + i) (x + 1 – i) (x – 1 + i) (x – 1 – i) =(x2 + 2x + 1 + 1) (x2 – 2x + 1 + 1) =[ (x2 + 2) + 2x ] [(x2 + 2) –2x] =(x2 + 2)2 – 4x2 = x4 + 4. 6. (c) The given equation is (1 + i) (3 – i) x – 2i (3 – i) +

Page 27: SMM631101

===================================================================================================Triumphant Institute of Management Education Pvt. Ltd. (T.I.M.E.) HO: 95B, 2nd Floor, Siddamsetty Complex, Secunderabad – 500 003. Tel : 040–27898194/95 Fax : 040–27847334 email : [email protected] website : www.time4education.com Sol.SMM631101/24 ===================================================================================================

(2 – 3i) (3 + i) y + i (3 + i) = i (3 + i) (3 – i) β‡’ (4 + 2i) x – 6i – 2 + (9 – 7i) y + 3i – 1 = 10i β‡’ (4x + 9y – 3) + (2x – 7y) = 13i Equating real and imaginary parts, 4x + 9y – 3 = 0 2x – 7y = 13 Solving, we get x = 3, y = -1.

7. (c) 3423175675

5473322115

iiiii

iiiii

βˆ’+βˆ’βˆ’+βˆ’+βˆ’

( )32211554732

5473322115

iiiiii

iiiii

+βˆ’++βˆ’βˆ’+βˆ’+βˆ’

= 1i

12

=βˆ’

Aliter : Zkwhere

ii

1i

ii

1i

3k4

2k4

1k4

k4

∈

βˆ’=βˆ’=

==

+

+

+

Substituting for each term in the numerator and denominator, we get the answer.

8. (b) (5 + 2i) 2 = 21 + 20i ∴ Conjugate of (5 + 2i)2 is 21 – 20i.

9. (b) iyxyx 22 +=+

= 1i2i2 =

βˆ’+

10. (d) Complex conjugate of Ο€+Ο€cosi

2sin

Ο€βˆ’Ο€= cosi2

sin

2

sini2cosΟ€+Ο€=

11. (c) ( ) ( ) ( )

( )i1i1i23i2

βˆ’+βˆ’βˆ’

= i1

i1i23i2

βˆ’+βˆ’βˆ’

=

.652

2135=

12. (a) Given 40 Γ— (x 2 + y 2) Γ— 25 Γ— 10 = 2500

β‡’ 41

yx 22 =+ .

13. (d) The given expression is

Ο€+Ο€

Ο€+Ο€

Ο€+Ο€

3sini

3cos

6sini

6cos

4sini

4cos

= sini364

cos +

Ο€βˆ’Ο€+Ο€

Ο€βˆ’Ο€+Ο€364

= 12

sini12

cosΟ€+Ο€

14. (d) =βˆ’+

1z1z

2

2

k3ik1

k3ik3

βˆ’++

βˆ’++

= ( )( ) 22

22

k3k1

k3k3

βˆ’++βˆ’++

=

3k24k612 =

++

15. (a) AB = BC = CD = DA = 13 Also AC2 = | 17 – 7 i | = 338 AB2 + BC2 = 169 + 169 = 338 = AC2

βˆ΄βˆ† ABC is right angle ∴ABCD is a square.

16. (b) ( ) iba3i25 3940+=+

β‡’ iba3i25 3940

+=+

β‡’ 223940 ba.33 +=

β‡’ 3ba 22 =+ β‡’ a2 + b2 =9. 17. (b) z = sinΞΈ + icosΞΈ

ΞΈβˆ’Ο€+

ΞΈβˆ’Ο€=2

sini2

cos

∴ z2 = cos (Ο€ βˆ’ 2ΞΈ) + i sin (Ο€ βˆ’ 2ΞΈ)

and 2z

1= cos(Ο€ βˆ’ 2ΞΈ) βˆ’ isin (Ο€ βˆ’ 2ΞΈ)

( )ΞΈβˆ’Ο€=+∴ 2cos2z

1z

22

18. (a) The point P can be obtained by rotating the

complex number i3 + in anticlockwise and clockwise direction. Hence P can be either

( ) ( )i3iori3i +βˆ’+ 19. (d) ΞΈ+ΞΈ= sinicosxLet

ΞΈβˆ’ΞΈ= sinicosx1

ΞΈ+ΞΈ= 6sini6cosx6

ΞΈβˆ’ΞΈ= 6sini6cosx

16

ΞΈ=βˆ’ 6sini2x

1x

66

20. (a) Putting x = 23βˆ’ in the given equation,

2 x 49

- 23

p – 6 = 0

β‡’ p = βˆ’1

21. (c) =Ξ± 10

i3i3

1 βˆ’=+

10

i3

+=Ξ²

106=Ξ²+Ξ± and

101

Ξ±Ξ² =

Required equation is 0101

x1062x =+βˆ’

ie; 10x2 – 6x + 1 = 0 ∴ a = 10, b = βˆ’6 and c = 1

Page 28: SMM631101

===================================================================================================Triumphant Institute of Management Education Pvt. Ltd. (T.I.M.E.) HO: 95B, 2nd Floor, Siddamsetty Complex, Secunderabad – 500 003. Tel : 040–27898194/95 Fax : 040–27847334 email : [email protected] website : www.time4education.com Sol.SMM631101/25 ===================================================================================================

22. (d) Since Ξ±, Ξ² satisfy x3 βˆ’ 1 = 0 Ξ±3 = 1 and Ξ²3 = 1, Ξ±2 + Ξ± + 1 = 0 Ξ²2 + Ξ² + 1 = 0 ∴ (Ξ±2 βˆ’ Ξ²2) + (Ξ± βˆ’ Ξ²) = 0 Ξ± + Ξ² + 1 = 0, β‡’ Θ Ξ± β‰  Ξ² β‡’ Ξ± + Ξ² = βˆ’1 ∴ (Ξ± + Ξ²)27 + (Ξ±100 + Ξ²100)27 = Ξ± + Ξ² = βˆ’1 = (Ξ± + Ξ²)27 + (Ξ± + Ξ²)27 Θ Ξ±100 = Ξ±, Ξ²100 =

Ξ² = (βˆ’1)27 + (βˆ’1)27 = βˆ’2

23. (a) 01x2x4 2 =βˆ’+

∴41

- and21 =Ξ²Ξ±βˆ’=Ξ²+Ξ±

Since Ξ± is a root, therefore Ξ±+Ξ± 24 2 βˆ’ 1 = 0

β‡’ 24Ξ± = 1 βˆ’ 2 Ξ±

β‡’ 34Ξ± = 22 Ξ±βˆ’Ξ±

= 2

)21( Ξ±βˆ’βˆ’Ξ±

= 2

14 βˆ’Ξ±

21

2614

34 3 βˆ’Ξ±βˆ’=Ξ±βˆ’βˆ’Ξ±=Ξ±βˆ’Ξ± = Ξ².

24. (a) Ξ±

βˆ’=+Ξ±β‡’=+Ξ±+Ξ± rqp 0rqp 2 and

Ξ²

βˆ’=+Ξ²β‡’=+Ξ²+Ξ² rqp 0rqp 2

∴ rrqpqp

Ξ±Ξ²βˆ’Ξ±Ξ²βˆ’=+Ξ²

Ξ±++Ξ±

Ξ²

pr

xr2βˆ’=

=p2βˆ’

25. (d) |z1 + z2| β‰₯β‰₯β‰₯β‰₯ |z1| + |z2|.

Regular Homework Exercise

1. (b) Let z = i2i2

+βˆ’

z = i2i2

βˆ’+

= ( )

( ) ( )i2i2i2 2

+βˆ’+

5

i43 += .

2. (a) Let ibai6011 +=+βˆ’

β‡’ βˆ’11 + 60i = a2 βˆ’ b2 + 2iab β‡’ a2 βˆ’ b2 = βˆ’11 and ab = 30

∴ a2 + b2 = ( ) 22222 ba4ba +βˆ’ = 61

β‡’ 2a2 = 50 β‡’ a = Β± 5 When a = 5, b = 6 When a = βˆ’5, b = βˆ’6

∴ ( )i65i6011 +Β±=+βˆ’ .

3. (c) ( )( )( )( )i2i2

i23i2i23i2

+βˆ’+βˆ’=

βˆ’βˆ’

2

2

i4

i36i2i4

βˆ’βˆ’βˆ’+= i

51

58 +βˆ’= .

4. (a) 3x + i(4x – 6y) = 2 – i Equating the real and imaginary parts, we get

3x = 2 and 4x βˆ’ 6y = βˆ’1.

∴ x = 32

Thus 4x βˆ’ 6y = βˆ’1 β‡’ y = 1811

5. ( ) ( )22i484i484 βˆ’βˆ’++βˆ’ = ( ) ( )

+βˆ’22 i4842

= βˆ’ 64

6. (d) Modulus is a non-negative real number.

7. (c) 2

zz.z = = 130.

8. (c) 0z0z0zz2 =β‡’=β‡’=

9. (b) Complex conjugate of Ο€βˆ’Ο€cosi

2sin

Ο€+Ο€= cosi2

sin

2

sini2cosΟ€βˆ’Ο€=

10. (d) We cannot compare two complex numbers since there is no ordering in the set of complex numbers. [Note that the comparisons in (a), (b) and (c) are in R, the set of real numbers]

11. (b) Argument = 1243Ο€=Ο€βˆ’Ο€

12. (b) 2.5.10 …… ( 1 + n2) = |1 + i| |1 + 2i| ….|1+ ni| = x2 + y2

13. (c) xx5858 = which is true only

when x = 0. Thus number of solutions = 1. 14. (d) The given complex number has modulus 1 and

argument

ΞΈβˆ’Ο€2

.

15. (b) [ ]20

1010

2i3

3iyx3

+=+

Now 2020

6sini

6cos

2i

23

Ο€+Ο€=

+

620

sini6

20cos

Ο€+Ο€=

21

xβˆ’=β‡’ and

23

yβˆ’=

Page 29: SMM631101

===================================================================================================Triumphant Institute of Management Education Pvt. Ltd. (T.I.M.E.) HO: 95B, 2nd Floor, Siddamsetty Complex, Secunderabad – 500 003. Tel : 040–27898194/95 Fax : 040–27847334 email : [email protected] website : www.time4education.com Sol.SMM631101/26 ===================================================================================================

21

431

yx 22 βˆ’=βˆ’=βˆ’

16. (d) Given that 91

1k5 2

=βˆ’

β‡’ k2 = 2 Now, discriminant = 4k2βˆ’ 4(5k2 βˆ’ 1) = 8 βˆ’ 4 (10 βˆ’ 1) < 0 ∴ The roots are imaginary. 17. (c) Interchanging the constant term and the

coefficient of x we get the required equation as qx2 βˆ’ px + 1 = 0

18. (c) If 3i2 + is a root then 3i2 βˆ’ also a root.

Sum of the roots = 22 Product of the roots = 5

∴∴∴∴ Required equation is 05x22x2 =+βˆ’

19. (c) x2 + x + 1 = 01x,1x1x3

β‰ βˆ’βˆ’βˆ’

∴α, β are the roots of x2 + x + 1 = 0

β‡’ 01

13

=βˆ’Ξ±βˆ’Ξ±

Ξ± β‰  1 β‡’ Ξ±3 = 1

11011 3

3

=Ξ²β‡’β‰ Ξ²β‡’=βˆ’Ξ²βˆ’Ξ²

Ξ±400 = (Ξ±399. Ξ±) = Ξ±

Ξ²400 = (Ξ²399 . Ξ²) = Ξ² Again Ξ±2 + Ξ± + 1 = 0 and Ξ²2 + Ξ² + 1 = 0 β‡’ Ξ± + Ξ² = βˆ’1 ∴ Ξ±400 + Ξ²400 = Ξ± + Ξ² = βˆ’1 20. (c) We have

( )

23

i21

41i323

313i

3i

3i2

+=βˆ’+=+

+=+βˆ’

+

= cos3

sini3

Ο€+Ο€

3

200sini

3200

cos3i

3ii200

Ο€+Ο€=

+βˆ’+

Similarly 3

200sini

3200

cos3i

3i200

Ο€βˆ’Ο€=

+βˆ’

∴

200200

3i

3i

3i

3i

+βˆ’+

βˆ’+

121

23

200cos2 βˆ’=βˆ’Γ—=Ο€=

= (βˆ’Ο‰2)200 + Ο‰200 = Ο‰400 + Ο‰200 = βˆ’1

Assignment Exercise

1. (b) i 6 + i7 + i8 + i9 = –1 – i + 1 + i = 0.

2. (c) i21i21

+βˆ’

= ( )

5i21 2βˆ’

∴ Square root = ( )i215

1 βˆ’Β± .

3. (b) ( )

( ) ( ) i11

1i21i1i1

i1i1i1 2

=+

βˆ’+=βˆ’+

+=βˆ’+

which lies on

y–axis. 4. (d) –3 + ix2 y & x2 + y – 4i are conjugates β‡’ x2 + y = –3, x2 y = – 4. Solving, we get x = Β± 1, y = βˆ’4

5. (a) (cos t + i sin t) (cos t – i sin t) = cos 2 t + sin 2 t =

1. 6. (d) |z1| + |z2| = |1 + 2i| + |2 + 3i|

= 9441 +++ = 135 +

7. (a) Modulus, r = 213 =+

tan ΞΈΞΈΞΈΞΈ =3

1β‡’β‡’β‡’β‡’ ΞΈΞΈΞΈΞΈ =

6Ο€

+=+

2i

23

2i3

= 2

Ο€+Ο€6

sini6

cos

8. (a) Equating modulus on both sides, we get

ibaix1ix1 βˆ’=

+βˆ’

β‡’ 1 = 22 ba + β‡’ 1ba 22 =+ 9. (a) Let z = x + iy.

∴ ( ) ( )2222 1yx1yx1iziz ++=βˆ’+β‡’=

+βˆ’

β‡’ y = 0, which represents the x - axis

10. (c) arg ( )3

3i1Ο€=+

arg ( )6

i3Ο€=+

∴663i3

3i1arg

Ο€=Ο€βˆ’Ο€=

+

+

11. (d)

+=+ i

23

21

2i31 =

Ο€+Ο€3

sini3

cos2

∴ ( )

Ο€+Ο€=+3

5sini

35

cos2i31 55

and ( )

Ο€βˆ’Ο€=βˆ’35

sini3

5cos23i1 55

Thus, ( ) ( )553i13i1 βˆ’++ = 26 cos

35Ο€

Page 30: SMM631101

===================================================================================================Triumphant Institute of Management Education Pvt. Ltd. (T.I.M.E.) HO: 95B, 2nd Floor, Siddamsetty Complex, Secunderabad – 500 003. Tel : 040–27898194/95 Fax : 040–27847334 email : [email protected] website : www.time4education.com Sol.SMM631101/27 ===================================================================================================

= 25 = 32

12. (c) We have 2121 zzzz +≀+

∴∴∴∴ 2z2z +≀+

≀ 4 ( )4z β‰€Ξ˜

13. (b) Sita’s equation is (x - 2) (x - 5) = 0 i.e. x2 – 7x + 10 = 0 Mamata’s equation is (x + 6) (x + 1) = 0 i.e. x2 + 7x + 6 = 0 ∴ Correct equation is x2 – 7x + 6 = 0 β‡’ x = 1 or 6. 14. (b) Sum of the roots = βˆ’ 6i β‡’ the other root = βˆ’3 βˆ’ 10i Product of the roots = k

β‡’ k = 31 βˆ’ 42i

15. (c) ( )1003i1iyx βˆ’=+

= ( )1003i1+βˆ’

=2100

100

23

i21

+βˆ’

=2100

+βˆ’

23

i21

Ο‰=Ο‰=

+ 100

100

23

i1cesin

∴ x = βˆ’299, y = 299 3

Additional Practice Exercise

1. (c) The co-ordinates of the vertices of the triang le

are ( ) ( ) ( )37,3,7,,7,3,,3,7 +βˆ’βˆ’

Area = ( )( ))yy(x)yy(xyyx21

213132321 βˆ’+βˆ’+βˆ’

= ( )( ) ( )[ 3373377721 βˆ’+++βˆ’βˆ’

( )( )]7337 +βˆ’+

= [ ] 553721217721 =βˆ’=βˆ’++βˆ’βˆ’βˆ’

2. (b) =βˆ’+

i31i32 ( )( )

( )( )i31i31i31i32

+βˆ’++

= 10

i97 +βˆ’

∴∴∴∴ Im 109

i31i32 =

βˆ’+

3. (b) i32i21

+βˆ’

= ( ) ( )( ) ( )i32i32

i32i21

βˆ’+βˆ’βˆ’

= 13

i7

13

4

94

6i72 βˆ’βˆ’=+

βˆ’βˆ’.

4. (d) i 4 + i8 = 1 + 1 = 2.

5. (a) ( )( )iba

ibaz

βˆ’+=

( ) ( )( ) ( )ibaiba

ibaiba

+βˆ’++= =

22

22

ba

biba2a

+βˆ’+

Im z = 22 ba

ab2

+.

6. (c) z = ( ) ( )i1i1

i1

i1

1

βˆ’+βˆ’=

+ =

2

i1βˆ’

Re z = 2

1.

7. (c) The point 4i lies on positive y – axis.

8. (c) Multiplicative inverse of a + ib = iba

1

+

= 22 ba

iba

+βˆ’

9. (a) ( ) ( )2222 5yx5yx1i5z

i5z ++=βˆ’+β‡’=+βˆ’

β‡’ y = 0

10. (a) ( ) ( ) 01izi1izz2 =+++ (Θ i2 = βˆ’1)

( )( ) 01iziz2 =++β‡’i1

zoriz2 βˆ’=βˆ’=β‡’

In both cases |z| = 1

11. (c) The given points form a rectangle.

12. (a) (b + ia)5 = ( )[ ]5ibai βˆ’

= ( ) ( )Ξ²βˆ’Ξ±=βˆ’ iiibai 55 = Ξ²+Ξ±i .

13. (b) ( ) qipyix 31

+=+

( )3iqpyix +=+β‡’ = p3 – 3pq2 + i (3p2 q – q3) β‡’ x = p3 – 3pq2 and y = 3p2 q – q3

2222 qp3q3pqy

px βˆ’+βˆ’=+∴

= 4 (p2 – q2).

14. (a) Let iyxi125 +=βˆ’

∴ 5 βˆ’ 12i = x2 βˆ’ y2 + 2ixy β‡’ x2 βˆ’ y2 = 5 and xy = βˆ’ 6

Now x2 + y2 = ( ) 22222 yx4yx +βˆ’

(βˆ’5, 2) (5, 2)

(5, –2) (βˆ’5, βˆ’2)

Page 31: SMM631101

===================================================================================================Triumphant Institute of Management Education Pvt. Ltd. (T.I.M.E.) HO: 95B, 2nd Floor, Siddamsetty Complex, Secunderabad – 500 003. Tel : 040–27898194/95 Fax : 040–27847334 email : [email protected] website : www.time4education.com Sol.SMM631101/28 ===================================================================================================

= 13 ∴ 2x2 = 18 β‡’ x = Β± 3 When x = 3, y = βˆ’2 When x = βˆ’3, y = 2

∴ ( )i23i125 βˆ’Β±=βˆ’

15. (b) 1z7 βˆ’=

28917586 zzz ++

( ) ( ) ( ) 24172572127 zzzzz β‹…++β‹…=

( ) ( ) ( ) 24125212 z.11z1 βˆ’+βˆ’+β‹…βˆ’=

1z1z 22 βˆ’=βˆ’βˆ’= .

16. (c) x + 2 = 7i

β‡’ x2 + 4 + 4x = βˆ’49

β‡’ x2 + 4x + 53 = 0

∴ x3 + 4x2 + 53x + 5 = 5

17. (a) ( ) 2ttit1iyx 2 +++βˆ’=+

)t1(x βˆ’= 2tty 2 ++=

( ) ( ) 2x1x12tty 222 +βˆ’+βˆ’β‡’++=

4x3x2 +βˆ’=

βˆ’+

βˆ’=49

423

x2

β‡’

βˆ’βˆ’

47

23

x

47y

2

2

= 1, a hyperbola

18. (d) 212

1

2

1 zzzz

zz βˆ’β‰ =

19. (b) We have 6Z9

Z =+

∴ |Z| = Z9

Z9

Z βˆ’+

≀ Z9

Z9

Z ++

≀ |Z|

96 +

β‡’ |Z|2 βˆ’ 6 |Z| + 9 ≀ 18

(|Z| βˆ’ 3)2 ≀ 18 β‡’ |Z| βˆ’ 3 ≀ 18

β‡’ |Z| ≀ 3 + 18

So maximum value of |Z| is 3 + 18

20. (d) 1 +

Ο€+Ο€=3

sini3

cos23i

∴ ( ) 33

3sini

3cos83i1

Ο€+Ο€=+

= 8 (cos Ο€ + i sin Ο€) = – 8.

21. (c) ( )

i2

i1i1i1 2

=+=βˆ’+

∴arg

βˆ’+

i1i1

= 2Ο€

22. (d) ( ) ( )

βˆ’=βˆ’βˆ’zz

argzargzarg

= arg (-1) = Ο€.

23. (a) 2iz1iz =βˆ’+βˆ’

β‡’ 2iziiz 2 =βˆ’++

β‡’ ( ) 2izizi =βˆ’++

β‡’ 2iziz =βˆ’++ , which represents a line

segment [Note: [|z βˆ’ z1| + |z βˆ’ z2| = k represent (i) a straight line if |z1 βˆ’ z2| = k (ii) an ellipse if |z1 βˆ’ z2| > k ]

24. (c) ( ) ( ) ( )4192i413i41322

βˆ’=βˆ’++

=βˆ’ 64.

25. (b) 1 – sin Ξ± + i cos Ξ±

=

Ξ±βˆ’Ο€+

Ξ±βˆ’Ο€βˆ’2

sini2

cos1

=

Ξ±βˆ’Ο€

Ξ±βˆ’Ο€+

Ξ±βˆ’Ο€24

cos24

sin2i24

sin2 2

=

Ξ±βˆ’Ο€+

Ξ±βˆ’Ο€

Ξ±βˆ’Ο€24

cosi24

sin24

sin2

=

Ξ±+Ο€+

Ξ±+Ο€

Ξ±βˆ’Ο€24

sini24

cos24

sin2

β‡’ argument = 24Ξ±+Ο€

.

26. (d) |Ο‰| = 1

β‡’ 1

2i3

z

z =βˆ’

β‡’ 1

2i3

z

|z| =βˆ’

β‡’ |z| = i23

z βˆ’

β‡’ x2 + y2 = x2 + 2

23

y

βˆ’ (where z = x + iy)

β‡’ y = 43

, a straight line.

27. (b) Let z = x + iy

( )( )i54z

i23zzzzz

2

1

+βˆ’+βˆ’=

βˆ’βˆ’

Page 32: SMM631101

===================================================================================================Triumphant Institute of Management Education Pvt. Ltd. (T.I.M.E.) HO: 95B, 2nd Floor, Siddamsetty Complex, Secunderabad – 500 003. Tel : 040–27898194/95 Fax : 040–27847334 email : [email protected] website : www.time4education.com Sol.SMM631101/29 ===================================================================================================

( ) ( )( ) ( )5yi4x

2yi3xβˆ’+βˆ’βˆ’+βˆ’=

( ) ( )[ ] ( ) ( )[ ]

( ) ( )22 5y4x

5yi4x2yi3x

βˆ’+βˆ’βˆ’βˆ’βˆ’βˆ’+βˆ’=

( )( ) ( )( )

( ) ( )22 5y4x

5y2y4x3x

βˆ’+βˆ’βˆ’βˆ’+βˆ’βˆ’=

( )( ) ( )( )

( ) ( )22 5y4x

5y3x4x2yi

βˆ’+βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’+

( ) ( )22

22

5y4x

22y7yx7x

βˆ’+βˆ’+βˆ’+βˆ’=

( ) ( )22 5y4x

7yx3i

βˆ’+βˆ’βˆ’βˆ’+

arg 4zz

zz

2

1 Ο€=

βˆ’βˆ’

122y7yx7x

7yx322

=+βˆ’+βˆ’

βˆ’βˆ’β‡’

β‡’ x2 βˆ’ 10x + y2 βˆ’ 6y + 29 = 0 β‡’ (x βˆ’ 5)2 + (y βˆ’ 3)2 = 5 β‡’ |(x βˆ’ 5) + i (y βˆ’ 3)|2 = 5

β‡’ | (x + iy) βˆ’ (5 + 3i) |2 = 5

β‡’ | z βˆ’ (5 + 3i) | = 5

28. (b) In a parallelogram diagonals bisect each other.

∴∴∴∴ 2

zz2

zz 4231 +=+

β‡’ z1 + z3 = z2 + z4 29. (a) In a square, lengths of the diagonals are equal. ∴∴∴∴ |z1 βˆ’ z3| = |z2 βˆ’ z4|

30. (b)

Ο€+Ο€=+6

sini6

cos2i3

6sini

6cos

2i3 Ο€+Ο€=+

β‡’ 6x

sini6x

cos2

i3x

Ο€+Ο€=

+

So from the given equation, we get

16

xsini

6

xcos =

Ο€+

Ο€

β‡’ cos6xΟ€

= 1 and sin6xΟ€

= 0

sin6xΟ€

= 0 β‡’ 6xΟ€

= nΟ€; n ∈ Ξ™

β‡’ x = 6n

Now cos6xΟ€

= 1 β‡’ cosnΟ€ = 1

β‡’ n is a multiple

of 2

β‡’ x = 12,

24,………

HINTS/SOLUTIONS for M1106 (PMI, Sequence and Series)

Classroom Discussion Exercise

1. (b) t1 = 252; tn = 798; d = 7

n = 1d

tt 1n +βˆ’ = 17

252798 +βˆ’ = 79

2. (b) a = 5 , d = 5

t20 = a + 19d = 5 +19 5 = 520

3. (c) cb

1,

ac1

,ba

1+++

are in A.P

β‡’ba

1

ac

1

ac

1

cb

1

+βˆ’

+=

+βˆ’

+

β‡’ bacb

cbba

+βˆ’=

+βˆ’

β‡’ 2222 cbba βˆ’=βˆ’

β‡’ 222 b2ca =+

β‡’ 222 c,b,a are in A.P

4. (b) a + 17d = 108 and a + 107d = 18 β‡’ d = βˆ’1 and a = 125 ∴ 126th term = 125 + (126 βˆ’ 1) x – 1 = 0

5. (a) 1bc

)cb(a ++ , 1ca

)ac(b ++ , 1ab

)ba(c ++

are in A.P.

bc

cabcab ++ ,ca

cabcab ++ ,ab

cabcab ++ are in

A.P.

P.Ainareab1

,ca1

,bc1

β‡’ abc

bc1 , abc

ca1 , abc

ab1 are in A.P.

β‡’ a, b, c are in A.P. 6. (d) x2 = x1 + d d = 12 xx βˆ’ = ( ) ( )1212 xxxx βˆ’+

Page 33: SMM631101

===================================================================================================Triumphant Institute of Management Education Pvt. Ltd. (T.I.M.E.) HO: 95B, 2nd Floor, Siddamsetty Complex, Secunderabad – 500 003. Tel : 040–27898194/95 Fax : 040–27847334 email : [email protected] website : www.time4education.com Sol.SMM631101/30 ===================================================================================================

β‡’ d

xx

xx

1 12

12

βˆ’=

+

Similarly, d

xx

xx

1 23

23

βˆ’=

+

d

xx

xx

1 34

34

βˆ’=

+

d

xx

xx

1 1nn

n1n

βˆ’

βˆ’

βˆ’=

+

n1n3221 xx

1.......

xx

1

xx

1

+++

++

+∴

βˆ’

= d

xx 1n βˆ’

But x n = x1 + (n βˆ’βˆ’βˆ’βˆ’ 1)d

(n βˆ’βˆ’βˆ’βˆ’ 1)d = xn – x1 = ( ) ( )1n1n xxxx βˆ’+

β‡’β‡’β‡’β‡’

+βˆ’=

βˆ’

1n

1n

xx

1nd

xx

n1n3221 xx

1.....

xx

1

xx

1

+++

++

+∴

βˆ’

=

1n xx

)1n(

+βˆ’

7. (d) a = 1; tn = 101; d = 2; n = 51

S = [ ]1011251 + = 2601

210251 =Γ—

8. (b) 2nd term = S2 βˆ’ S1 = 30 – 9 = 21 9. (b) a + 2d = 5 a + 6d = 3 (a + 2d) + 6 β‡’ a = βˆ’3 and d = 4 ∴ S32 = 16 [βˆ’ 6 + 31 x 4] = 1888 10. (c) a + (n – 1) d = 164

( )[ ] n5n3d1na2.2n 2 +=βˆ’+

a + 164 = 3n + 5 Now, a = 3 Γ— 1 + 5 Γ— 1 = 8 Thus 3n + 5 = 86 β‡’ n = 27

11. (d) [ ]2

)1m(m1x)1m(2

2m

S1+=βˆ’+=

S2 = ( )[ ] ( )2

1m3m31m4

2m +=Γ—βˆ’+

[ ])1p2)(1m(p22m

Sp βˆ’βˆ’+=

= [ ]1mp2pm2p22m +βˆ’βˆ’+

= [ ]1)1p2(m2m +βˆ’

∴∴∴∴2

mS.....SSS p321 =+++ [ ]{ }1)1p2(m +βˆ’βˆ‘

= [ ]pp.m2m 2 +

)1mp(2

mp +=

12. (d) 2b = a + c ∴ 72b = 7a + c β‡’ (7b)2 = 7a. 7c

13. (d) ar4 = 2 a . ar . ar2 … ar8 = a9 . r36 = (ar4)9 = 29 = 512 14. (b) Let the numbers be a, ar, ar2. Given a + ar + ar2 = 21 β‡’ a ( r + r + r2) = 21

β‡’ a . 21r1r1 3

=βˆ’

βˆ’

(1) Also given a2 + (ar)2 + (ar2)2 = 189 β‡’ a2 (1 + r2 + r4) = 189

β‡’ a2 189r1

r1 6

=βˆ’

βˆ’ (2)

Solving these two equations, we get a and r. Aliter: The only numbers in the given choices

whose sum is 21 are 3, 6, 12 15. (d) 434 214 34 21

digitsndigitsn

2 )5...555()3...333( +

= (3 + 30 + 300 + ……..+ n terms )2 + (5 + 50 + 500 + ………+ n terms )

= ( )( )

( )110

1105

110

1103 n2n

βˆ’βˆ’+

βˆ’βˆ’

= ( )

+βˆ’βˆ’

59

11039

110 nn

= ( ) ( )

271410110 nn +βˆ’

16. (a) Let the terms be ra , a,ar.

a3 =21

a81 =β‡’

( )16

21ar

r

aaraa

r

a =

Γ—+Γ—+

Γ—

1621

arar

a 222

=++

1621

r1

r141 =

++

4

21

r

1r1 =++

( ) r211rr4 2 =++

Page 34: SMM631101

===================================================================================================Triumphant Institute of Management Education Pvt. Ltd. (T.I.M.E.) HO: 95B, 2nd Floor, Siddamsetty Complex, Secunderabad – 500 003. Tel : 040–27898194/95 Fax : 040–27847334 email : [email protected] website : www.time4education.com Sol.SMM631101/31 ===================================================================================================

04r17r4 2 =+βˆ’

41

or4r =

Numbers are 81

,21

,2or2,21

,81 .

17. (b) Given arn – 1 = arn + arn + 1

β‡’ rrrrr nnn

β‹…+=

r2 + r βˆ’ 1 = 0

β‡’ r = 2

51Β±βˆ’

But r is positive

∴ r = 018sin22

15 =βˆ’.

18. (c) (2k + 3) – (k + 2) = (4k βˆ’ 1) – (2k + 3) β‡’ k = 5

19. (b) Given ( ) 21

nn

1n1n

abba

ba =++ ++

21

n21

21

21

n1n1n b.ab.aba

++++ +=+β‡’

( ) ( )babbaa 2

1n

2

1n

βˆ’=βˆ’β‡’++

β‡’ 1ba 2

1n

=

+

or 21

n021

nβˆ’=β‡’=+

. 20. (d) b 2 = ac gives x = – 4 so that the numbers

are – 4, – 6, – 9

∴ 4th term = 227βˆ’

21. (d) a = 12; ar5 = 384

r5 = 3212384 =

∴ r = 2

22. (c) n th term nn

n

2

11

2

12 βˆ’=βˆ’=

Sum to n terms = βˆ‘βˆ’

βˆ’n

1n

n

21

n

=

βˆ’

βˆ’

βˆ’

21

1

21

121

n

n

= n21n βˆ’+βˆ’ .

23. (d) ( ) ( )( )6

1n21nn71

21nn ++Γ—=+

β‡’ 2n + 1 = 21 or n = 10

24. (d) tn = 2

1nn

n +=βˆ‘

∴ Sn = ( )2

1nβˆ‘ +

=

( )

2

n2

1nn ++

= ( )4

3nn +

25. (d) (12 βˆ’ 22) + (32 βˆ’ 42) + … + (492 βˆ’ 502) + 512

= βˆ’1(3 + 7 + 11 + … + 99) + 512 = 1326

Page 35: SMM631101

===================================================================================================Triumphant Institute of Management Education Pvt. Ltd. (T.I.M.E.) HO: 95B, 2nd Floor, Siddamsetty Complex, Secunderabad – 500 003. Tel : 040–27898194/95 Fax : 040–27847334 email : [email protected] website : www.time4education.com Sol.SMM631101/32 ===================================================================================================

Regular Homework Exercise

1. (d) 7 Γ— t7 = 11 Γ— t11 7 [a + 6d] = 11 [a + 10d] 7a + 42d = 11a + 110d 4a + 68d = 0 or a + 17d = 0 ∴ t`18 = 0 2. (b) Tn = a+(n-1)d 60th term = 3+59 Γ— 5 = 298 3. (a) a = 20; d = 1; tn = 99

S = 2n (a + tn)

n = 11

2099 +βˆ’ = 80

∴ S = ( ) =+ 99202

80 40 Γ— 119 = 4760

4. (a) Tn = a + (n–1) d = 4 – 3i + (n – 1) (i – 2) = 6 – 2n + i (n – 4) Equating the imaginary part equal to

zero, we get n = 4. ∴ The 4th term of the sequence is purely real

. 4th term = T4

= – 2.

5. (c) n = 9, 61

dβˆ’= ;

2

1a =

( )23

61

1921

229

S9βˆ’=

βˆ’βˆ’+Γ—=

6. (d) 6

2561

)1n(61 =βˆ’+ β‡’ n = 25

7. (a) a = 11, d = 2, a n = 99, an = 11 + (n – 1) 2 99 = 9 + 2n or n = 45. S = 2475. 8. (c) Let the numbers be a-d, a, a+d a = 5 5(5 βˆ’ d) + 5(5 + d) + (52 βˆ’ d2) = 71 d2 = 75 βˆ’ 71 = 4 i.e. d = Β± 2 The numbers are 3, 5, 7 9. (d) a = 1,x = t n = a + (n – 1) d where d = 5

β‡’ 5

4xn

+=

∴ ( )[ ] 148d1na22n =βˆ’+ gives

( ) 148x110

4x =+

+

β‡’ x = – 41, 36

But, the given A.P is increasing, and hence x = 36.

10. (d) 4k

4

4k2

4k

βˆ’=

+βˆ’ Solving k = 16

11. (d) a =4; r = 3 ; tn = 36 Γ— 34 arn – 1 = 36 Γ— 34

( ) 61n3434 Γ—=Γ—

βˆ’

62

1n

33 =βˆ’

β‡’ 62

1n =βˆ’ β‡’ n = 13

12. (d) a = 3, arn-1=192, Sn = 381 rn-1 = 64 i.e. rn = 64r

3811r

)1r(3 n

=βˆ’

βˆ’

i.e. rn – 1 = 127 (r-1) 64r – 1 = 127r-127 r = 2 2n-1 = 64 = 26 i.e. n = 7 13. (b) ar2 = 32 product of 1st 5 terms a.ar.ar2.ar3.ar4 = a5.r10 = (ar2) 5 = (32)5.

14. (d) 43

a = , r=2, nth term = 384

384)2(43 1n =βˆ’ i.e 2n-1 = 384 x

34

= 29 n = 10

Sn = =βˆ’

βˆ’

12

)12(43 10

43069

1023x43 =

15. (b) x2 – 5x + 6 = 0 (x – 3).(x – 2) = 0 x = 3 or 2 ∴ roots are 3 and 2. Ξ± = 3 and Ξ² = 2 G.M. = 632 =Γ—=Ξ±Ξ² .

16. (c) There are now n + 2 terms in the A.P.

2 + 2d = 21 (7 – 2d). Solving, d =

21 .

Also, 2 + (n + 1)d = 7. Solving, n = 9. 17. (d) T1 = 2; T2 = 3 = 2+12 T3 = 7 = 2+12+22, --------- Tn = 2+12+22+--------+(n-1)2

Page 36: SMM631101

===================================================================================================Triumphant Institute of Management Education Pvt. Ltd. (T.I.M.E.) HO: 95B, 2nd Floor, Siddamsetty Complex, Secunderabad – 500 003. Tel : 040–27898194/95 Fax : 040–27847334 email : [email protected] website : www.time4education.com Sol.SMM631101/33 ===================================================================================================

= 6

)1n2(n)1n(2

βˆ’βˆ’+

= 6

12)1n2)(1n(n +βˆ’βˆ’

18. (d) ( ) ( ) ( )nn.....2211 222 ++++++

βˆ‘ βˆ‘= =

+=n

1i

n

1i

2 ii = ( )( ) ( )2

1nn6

1n21nn ++++

= ( )( ) ( )6

1nn31n21nn ++++

= ( ) ( )6

2n21nn ++ = ( )( )3

2n1nn ++ .

19. (c) 552

)1n(nn...321 =+=++++

( )

+=++++4

1nnn....321

233333

. = 55 Γ— 55 = 3025

20. (b) n .1 + (n +1)2 +(n +2)3 +-----+ ( )n1nn βˆ’+ = [ n +2n +3n +---+n.n]+1Γ— 2+2Γ—3+---+(nβˆ’1)n = n (1+1+3+----+n) + ( )n1n βˆ’βˆ‘

= ( )nn

2

1nnn 2 βˆ‘βˆ’βˆ‘+

+

= n ( ) ( )( ) ( )2

1nn

6

1n21nn

2

1nn +βˆ’+++

+

= (nβˆ’1) ( ) ( )3

1n2

2

1nn

2

1nn +Γ—++

+

= ( )

++βˆ’+3

1n23n3

2

1nn

= ( )( )6

2n51nn βˆ’+ .

Assignment Exercise

1. (d) b1

c1

a1

b1 βˆ’=βˆ’

bc

cbab

ba βˆ’=βˆ’

ac

abbc

bacb ==

βˆ’βˆ’

2. (d) 2b = a + c

b2 – ac = ac2

ca2

βˆ’

+

4 (b2 – ac) = (a – c)2 3. (d) Ξ± , Ξ± + d, Ξ± + 2d be the angles Ξ± + Ξ± + d + Ξ± + 2d = 180 3Ξ± + 3d = 1800 Given Ξ± + 2d = 2Ξ± 2d = Ξ±

d = 2Ξ±

3Ξ± + 2

3Ξ± =1800

2

3Ξ± = 600

α = 400 ∴ largest angle is 800 4. (d) Sn = 16200, a = 100, d=20

[ ] 1620020)1n(2002n =βˆ’+

n(10+n-1) = 1620 n2 + 9n – 1620 = 0 (n + 45) (n-36) = 0 n = -45 or 36

5. (d) a + (p βˆ’ 1) d = q and a + (p + q βˆ’ 1) d = 0 a + ( p βˆ’ 1) d + qd = 0 q + qd = 0 β‡’ d = βˆ’1 a + (p + q βˆ’ 1) d = 0 a + (q βˆ’ 1) d + pd = 0 ∴ a + (q βˆ’ 1)d βˆ’ p βˆ’ 1 = 0 a + (q βˆ’ 1) d = p 6. (d) 6a + 69d = 267 β‡’ 2a + 23d = 89

( ) 10688912d23a22

24ni

24

1

=Γ—=+=βˆ‘

7. (c) G1 = {3}, n(G1) = 1 β‡’ Ist term of G1 = t1 of

A.P. G2 = {7, 11}, n (G2) = 2 β‡’ Ist term of G2 = t2

of A.P G3 = {15, 19, 23, 29} n (G3) = 4 = 22 ∴ Ist term of G3 = ( ) 15P.Aoft 22

=

G4 = {31, ….}, n(G4) = 8 = 23 ∴ Ist term of G4 = ( ) APoft 32

∴ n(G8) = 28βˆ’1 = 27 ∴ Ist term of G8 = ( ) P.Aoft 72

is t128 = 3 + (127) 4 = 511

8. (d) ( )[ ]

[ ] 3419410

111n182n

=Γ—+

βˆ’+

n[11n +7] = (60)(84) This has no positive integral solution.

Thus n does not exist.

Page 37: SMM631101

===================================================================================================Triumphant Institute of Management Education Pvt. Ltd. (T.I.M.E.) HO: 95B, 2nd Floor, Siddamsetty Complex, Secunderabad – 500 003. Tel : 040–27898194/95 Fax : 040–27847334 email : [email protected] website : www.time4education.com Sol.SMM631101/34 ===================================================================================================

9. (b) nth term of the first A.P. = βˆ’4 + (n βˆ’ 1)7 = 7n βˆ’ 11 nth term of the second A.P. = 61+(n-1)2 = 2n+59 ∴ 7n-11 = 2n + 59 5n = 70 i.e. n = 14 10. (a) βˆ’βˆ’+++ 777777

= [ ]terms n to99999997 βˆ’βˆ’+++

= [ ]βˆ’βˆ’βˆ’βˆ’+βˆ’+βˆ’+βˆ’ )11000()1100()110(97

= ( )[ ]n10......101097 n2 βˆ’+++

= ( )10n910817 1n βˆ’βˆ’+ .

11. (a) 51n 3243)3.(3 ==βˆ’ β‡’ n=10 12. (a) ar 2 = 8 a . ar . ar 2 . ar 3 . ar 4 = a 5 . r 10 = (ar 2) 5 = 8 5

13. (a) Let the numbers be ra , a, ar

6a216ar,a,ra =β‡’=

22

r3636r

36 ++ =364

91r99r

9 22

=++

09r82r9 24 =+βˆ’

i.e. 0)9r()1r9( 22 =βˆ’βˆ’

r = 3 or 31 (+ve Nos.)

The numbers are 2, 6, 18

14. (a) c, a, b, d are in A.P. a – c = b – a = d – b

2

cbca

βˆ’=βˆ’β‡’

15. (d) 1 + 8 + 27 + 64 + …. n terms

= ( )

4

1nnn...........321

223333 +=++++ .

Additional Practice Exercise

1. (d) It is only a sequence. 2. (c) p[a+(p-1)d] = q[a+(q-1)d] a(p-q) + [(p2-q2) – (p-q)]d = 0 i.e. a+(p+q-1)d = 0, Θ p β‰  q (p + q)th term = 0 3. (c) Let there be 2n terms in the A.P ∴ a + (a + 2d) +…… + [a + (2n – 2) d] = 72

β‡’ ( ) 72]d21na2[2

n =βˆ’+

β‡’ n [a + nd – d] = 72 (1) (a + d) + (a + 3d) + …… + (a+(2n–1)d) =

90

]d2)1n()da(2[2n βˆ’++ = 90

n [a+ (n – 1)d + d] = 90 i.e., n(a + (n βˆ’ 1)d) + nd = 90 i.e., 72 + nd = 90, using (1) ∴ nd = 18 Moreover, [a+ (2n – 1)d] – a = 30 ∴ (2n βˆ’ 1) d = 30 2nd βˆ’ d = 30 2 Γ— 18 βˆ’ d = 30 ∴ d = 6 ∴ n = 3

Page 38: SMM631101

===================================================================================================Triumphant Institute of Management Education Pvt. Ltd. (T.I.M.E.) HO: 95B, 2nd Floor, Siddamsetty Complex, Secunderabad – 500 003. Tel : 040–27898194/95 Fax : 040–27847334 email : [email protected] website : www.time4education.com Sol.SMM631101/35 ===================================================================================================

4. (c) a+(m-1)d = n1 and a+(n-1) =

m1

Solving, d = mn1 and a=

mn1

thmn term = a+(mn-1)d

= 1min

1mnmn1 =βˆ’+

5. (b) [ ]

[ ]D)1n(A22n

d)1n(a22

n

1n51n3

βˆ’+

βˆ’+=

+βˆ’

D

21n

A

d2

1na

βˆ’+

βˆ’+=

Since we are looking for the ratio of

the 4 th term, 32

1n =βˆ’ i.e. n = 7

∴ Required ratio

= 95

3620

17x517x3 ==

+βˆ’

.

6. (c) A, B, C are in A.P β‡’ B = 60

2

3CsinBsin

2

3cb =β‡’=

∴ sinC =

75A45C2

160sin

3

2 =∴=β‡’=

7. (d) tp = 9p + 2 t1 = 9 + 2 = 11 tn = 9n + 2

∴ ( ) ( )2n9112n

tt2n

S n1n ++=+= = [ ]13n92n +

8. (c) Tn = a . rn-1 (G.P)

8th term = 3.729128

32

7

=

9. (a) 26r.a 24 = and 36.2r.a 511 =

737 )6(3.6.2r ==∴

i.e. 6r = and 2a =

∴ 3rd term = a . r2 = 26 10. (c) q – p, r – q, p are in G.P β‡’ (r – q)2 = p (q – p) (1) Since p, q, r are in A.P, r – q = q – p = d, the common difference. ∴ (1) β‡’ d2 = p.d β‡’ d = p, Θ d β‰  0 ∴ q = p + d = 2p r = p+2d = 3p

∴ p : q : r = 1 : 2 : 3. 11. (d) r > 1 a + arn–1 = 516 2048arar 2n =Γ— βˆ’

β‡’ 1n2ra βˆ’ = 2048

β‡’ 02048a516a2 =+βˆ’ β‡’ a = 512 or 4

β‡’ ( ) 22

1n

4

2048or

512

2048r =βˆ’

β‡’ 12816

2048r1r 1n ==∴> βˆ’ and a = 4

Also given that ( )( )1r

1ra n

βˆ’βˆ’ =1020

β‡’ ( )1r

1r128a

βˆ’βˆ’ = 1020

β‡’ ( )1020

1r

1r1284 =βˆ’

βˆ’

β‡’ 128r – 1 = 127r = 254 β‡’ r = 2. rn–1 = 128 β‡’ 2n–1 = 27 β‡’ n – 1 = 7 β‡’ n = 8.

12. (a) Let ar,a,r

a be the numbers in G.P.

∴∴∴∴ .P.areinAar,a2,r

a

∴ ( ) 01r4rrr1

aa22 2 =+βˆ’β‡’

+=

32r Β±=β‡’ Given G.P is increasing.

32r +=∴ .

13. (d) a2 = 49

1

21

2

14

3=Γ—

a = 71

14. (d) ar8 = 256 ar6 = 64 r2 = 4 r = Β± 2 Since 9th term is > 7th term, r = +2 15. (b) t n = 2n(2n + 2) and n = 20 gives t 20 = 1680 16. (c) ar 9 = 9 ……….. (1) ar 3 = 4 …………(2)

Dividing (1) by (2); r 6 = 49 or r 3

= Β± 23

β‡’ a = Β± 38 β‡’ t 7 = a r 6 = Β± 6

49

38 Β±=Γ— .

17. (c) arp + q βˆ’1. arp βˆ’ q βˆ’ 1 = m n

Page 39: SMM631101

===================================================================================================Triumphant Institute of Management Education Pvt. Ltd. (T.I.M.E.) HO: 95B, 2nd Floor, Siddamsetty Complex, Secunderabad – 500 003. Tel : 040–27898194/95 Fax : 040–27847334 email : [email protected] website : www.time4education.com Sol.SMM631101/36 ===================================================================================================

∴ a2. r2p βˆ’ 2 = m n (arp βˆ’ 1)2 = m n arp βˆ’ 1 = mn 18. (b) ar4 = x; ar7 = y; ar10 = z i.e. x.z = a.r4.a.r10 = (a.r7)2 = y2 19. (c) 2p = a + b β†’ (1) 2q = b + c β†’ (2)

from (1) and (2); p + q = 2

cb2

ba +++

= 2

cb2a ++

and 4pq = (a + b) (b + c) = ab + b2 + ac + bc = ab + 2b2 + bc = b (a + 2b + c)

2pq = ( )cb2a2b ++

β‡’=+

bqp

pq2 p, b, q are in H.P.

20. (c) r1

aS

βˆ’=∞

2

21

1

1S1 =

βˆ’= , 3

23

x2

31

1

2S2 ==

βˆ’=

βˆ’βˆ’βˆ’βˆ’==βˆ’

= 434

x3

41

1

3S3

1pp

1pxp

1p1

1

pSp +=+=

+βˆ’

=

p321 SSSS βˆ’βˆ’βˆ’βˆ’+++∴

=2+3+4+------+p+(p+1)

= 2

22p3p1

2)2p()1p( 2 βˆ’++=βˆ’++

= )3p(p21 +

21. (a) ar 2 = 6

a . ar . ar 2 . ar 3 . ar 4 = a 5 . r 10 = (ar 2) 5 = 6 5 22. (d) a, ar, ar2, -----, arnβˆ’1,---------

∴ =βˆ‘=

1000

1nn2a ar +ar3 +-------1000 terms

β‡’ ar1

=Ξ±βˆ’

Ξ± ( 1+r2 +-----+r1998) ---(1)

βˆ‘=

βˆ’

1000

1n1n2a = a +ar2 +------1000 terms

β‡’ =Ξ±+

Ξ±1

a ( 1+r2 +-----+r1998)----(2)

(1) Γ· (2) β‡’ r11 =

Ξ±βˆ’Ξ±+

β‡’ 1 +Ξ± = rβˆ’rΞ± β‡’ Ξ± +rΞ± = rβˆ’1

β‡’ Ξ± = 1r

1r

+βˆ’ .

23. (c) xy22

yx =+

12

xy2

yx =+

13

xy2yx

xy2yx=

βˆ’+

++ β‡’

( )( ) 1

3

yx

yx2

2

=βˆ’

+

β‡’ 13

yx

yx=

βˆ’

+ β‡’

13

13

y

x

βˆ’+=

β‡’ 32

32yx

βˆ’+=

24. (a) From the data given, we have a, b, b + 3, b

+ 6 are the numbers so that a = b + 6 ∴ b + 6, b, b + 3, b + 6 are the numbers ∴ b2 = (b + 6) ( b + 3) b2 = b2 + 9b + 18 β‡’ b = βˆ’ 2 ∴ numbers are 4, βˆ’ 2, 1, 4 25. (c) a, x, b are in A.P i.e. 2x = a+b a, y, z, b are in GP y2 = az and z2 = by y3+z3 = yz (a+b) = 2xyz

26. (d) Ξ± + Ξ² = a

bβˆ’ Ξ± Ξ² =

a

c

2b = a + c β‡’ 2 a

c1

a

b +=

∴ 2βˆ’ (Ξ± + Ξ²) = 1 + Ξ± Ξ²

is 1 + Ξ± Ξ² + 2Ξ± + 2 Ξ² = 0

1 + 2 Ξ± = βˆ’Ξ² ( Ξ± + 2)

Ξ²2 βˆ’

+Ξ±Ξ±+2

21

27. (a) 4, a1, a2, ------a7, 52 are in A.P. ∴ 52 = 4+ (9βˆ’1) d 48 = 8d 6 = d ∴ a6 βˆ’ a5 = d = 6 a1 + a7 = 4 + 52 = 56 (a2 + a6 = a3 + a5…..)

28. (c) S = 361002

20192

=

Γ—

29. (a) S = sum of squares of first 20 numbers

Page 40: SMM631101

===================================================================================================Triumphant Institute of Management Education Pvt. Ltd. (T.I.M.E.) HO: 95B, 2nd Floor, Siddamsetty Complex, Secunderabad – 500 003. Tel : 040–27898194/95 Fax : 040–27847334 email : [email protected] website : www.time4education.com Sol.SMM631101/37 ===================================================================================================

Sn = ( ) ( )6

1n21nn ++

S20 = 6

412120 Γ—Γ— = 2870

30. (b) Ξ± + Ξ² = abβˆ’ Ξ±Ξ² =

ac

ab11

22βˆ’=

Ξ²+

Ξ±

∴ ( ) a

b2

22βˆ’=

Ξ±Ξ²Ξ²+Ξ±

i.e., ( )

( ) ab2

2

2

βˆ’=Ξ±Ξ²

Ξ±Ξ²βˆ’Ξ²+Ξ±

i.e., 2

2

2

2

a

cab

ac

2a

b βˆ’=βˆ’

ac2

a

bc

a

b3

2

2

2

=+

Multiply by bca2

∴∴∴∴ ba

2ac

cb =+

∴ ac

andba

,cb

are in A.P

∴ bc

,ab

,ca

are in H.P.

HINTS/SOLUTIONS for M1107 (Limits & Derivatives)

Classroom Discussion Exercise

1. (a) [ ]

1x1x

lim1x +

+βˆ’β†’

=[ ]

1h11h1

lim0h +βˆ’

+βˆ’β†’

=

[ ]h2h2

lim0h βˆ’

βˆ’β†’

= 21

h21

lim0h

=βˆ’β†’

2. (c) 3xx3

lim3x

|3x|lim

3x3x βˆ’βˆ’

=βˆ’βˆ’

βˆ’βˆ’ β†’β†’= βˆ’1

3. (d) ( )xflim1x βˆ’β†’

= 53x2lim1x

=+β†’

( ) ( ) 61x3limxflim1x1x

=+β†’β†’ +

β‡’ ( ) ( )xflimxflim1x1x +β†’β†’

β‰ 

⇒ ( )xflim1x→

does not exist

4. (a) 7xlim2x

14x5xlim

2x

2

2x+=

βˆ’βˆ’+

β†’β†’= 9

5. (c) x31x

2xlim

2x βˆ’βˆ’βˆ’βˆ’

β†’

=( ) ( )

βˆ’βˆ’βˆ’

βˆ’βˆ’βˆ’β†’ x31x

x31x21

lim2x

= ( )x31xlim21

2xβˆ’+βˆ’

β†’= 1

6. (d) LHL = ( ) ( )

]x[x5x4x

lim5x βˆ’

βˆ’βˆ’βˆ’β†’

( ) ( )4x

5x4xlim

5x βˆ’βˆ’βˆ’

β†’

= ( ) 05xlim5x

=βˆ’β†’

RHL = ( ) ( )5x

5x4xlim

5x βˆ’βˆ’βˆ’

+β†’

= ( ) 14xlim5x

=βˆ’β†’

LHL β‰  RHL ∴ Limit does not exist.

7. (a)

βˆ’

βˆ’=

βˆ’βˆ’

β†’βˆ’β†’

25

x

25

xlim

52x2

5x2lim

nn

25x1nn

nnn

25x

1n

25

nβˆ’

=

Page 41: SMM631101

===================================================================================================Triumphant Institute of Management Education Pvt. Ltd. (T.I.M.E.) HO: 95B, 2nd Floor, Siddamsetty Complex, Secunderabad – 500 003. Tel : 040–27898194/95 Fax : 040–27847334 email : [email protected] website : www.time4education.com Sol.SMM631101/37 ===================================================================================================

8. (b)

22sin

lim

180x180

x2lim

limx

x2limlim

00x0x=

ΞΈΞΈ=

Ο€

Ο€

=β†’ΞΈβ†’Β°

Β°

β†’

9. (a)

4x

cos

2xlim

2x Ο€βˆ’

β†’

=

Ο€+Ο€β†’

4t

2cos

tlim

0t(put xβˆ’2 = t)

=

4t

sin

tlim

0t Ο€βˆ’β†’ =

Ο€βˆ’4

10. (d) ( ) ( )

xx10sinx10sin

lim0x

βˆ’βˆ’+β†’

=x

xsin10cos2lim

0x→

= 2 cos10

11. (a) ( )( )2

2

x x

2/xsinsinlim

βˆ’Ο€Ο€

Ο€β†’, put t = Ο€ βˆ’ x

= 2

2

0t t

2t

2sinsin

lim

βˆ’Ο€Ο€

β†’

= ( )

2

2

0t t

2/tcossinlim

Ο€β†’

=( )

2

2

0t t

2/tsinsinlim

Ο€βˆ’Ο€β†’

=( )

2

2

0t t

2/tsinsinlim

Ο€β†’

=

( )( ) 22

22

0t t2/tsin

2/tsin2/tsinsinlim

ππ×π

β†’=

4Ο€

12. (c) Put ΞΈ = x βˆ’ 3Ο€

when x β†’ 0,3

β†’ΞΈΟ€

∴

Ο€+ΞΈβˆ’

ΞΈβ†’ΞΈ

3cos21

sin2lim

0

= ΞΈ+ΞΈβˆ’

ΞΈβ†’ΞΈ sin3cos1

sin2lim

0

=

2cos

2sin32

2sin2

2cos

2sin4

lim20 ΞΈΞΈ+ΞΈ

ΞΈΞΈ

β†’ΞΈ

=

ΞΈ+ΞΈ

ΞΈ

β†’ΞΈ

2cos3

2sin

2cos2

lim0

= 3

2

13. (a) [ ] 1x,0x1For βˆ’=<<βˆ’

[ ][ ]

[ ] 010sin

xx1sinLt

0x =βˆ’

=+∴ βˆ’β†’

14. (b) (2x+3)2 = 4x2 + 12x + 9

β‡’ f’(x) = 8x + 12

15. (b) y = x+x1

2x

11

dxdy βˆ’=

dxdy

= 0 at x = 1

16. (d) f(x) = sin (Ο€+x)

β‡’ f(x) = βˆ’sinx

β‡’ f’(x) = βˆ’cosx β‡’ f’

Ο€3

= 2

1βˆ’

17. (a) LHL =( ) ( )

h

3fh3flim

0h

βˆ’+β†’

=

h

0|3h3|lim

0h

βˆ’βˆ’+β†’

=1

RHL=( ) ( )

h

3fh3flim

0h βˆ’βˆ’βˆ’

β†’ =

h

0|3h3|lim

0h βˆ’βˆ’βˆ’βˆ’

β†’= βˆ’1

β‡’ f’(3) does not exist

18. (a)

βˆ’βˆ’βˆ’=

βˆ’βˆ’

β†’β†’ 2xx95

lim2x

)x(f)2(flim

2

2x2x

=

βˆ’+βˆ’

+βˆ’β†’ 2

2

2xx95)2x(

x95lim

=

βˆ’+βˆ’

βˆ’+β†’ 22x

x95)2x(

)2x()2x(lim

Page 42: SMM631101

===================================================================================================Triumphant Institute of Management Education Pvt. Ltd. (T.I.M.E.) HO: 95B, 2nd Floor, Siddamsetty Complex, Secunderabad – 500 003. Tel : 040–27898194/95 Fax : 040–27847334 email : [email protected] website : www.time4education.com Sol.SMM631101/38 ===================================================================================================

= 5

2

55

4 =+

.

19. (a) ( )1xsecxcosdxdy

xcos 222 +=

= 1 + cos2 x = 1 + (1 βˆ’ sin2x)

= 2 βˆ’ sin2x.

20. (b) ( ) ( )

2xxf22xf

lim2x βˆ’

βˆ’β†’

= ( ) ( ) ( ) ( )( )

2xxf22f22f22xf

lim2x βˆ’

βˆ’+βˆ’β†’

=( ) ( ) ( ) ( )( )

βˆ’βˆ’+βˆ’

β†’ 2xxf2f22f2x

lim2x

= f(2) βˆ’ ( ) ( )

βˆ’βˆ’

β†’ 2x2fxf

2lim2x

= f(2) βˆ’2 f’(2)

21. (d) f’(x) =

xsinx

dxd

= xsin

xcosxxsin2

βˆ’

= cosecxβˆ’ x cotx cosecx

22. (a) f(x) = xsin1

xcos2

+

= xsin1xsin1 2

+βˆ’

= 1βˆ’ sinx

β‡’ f’(x) = βˆ’cosx

β‡’ f’ 02

=

Ο€

23. (c) f(x) = ( )

xsin1xcos3 2 βˆ’

= βˆ’3 sinx

f’(x) = βˆ’3 cosx

24. (b) xy = x+y

β‡’ y = 1x

xβˆ’

β‡’ ( )

( )21x

x1xdxdy

βˆ’βˆ’βˆ’=

= ( )21x

1

βˆ’βˆ’

25. (c) xy = c2 β‡’ y = x

c2

β‡’ 2

2

x

cdxdy βˆ’=

Regular Homework Exercise

1. (c) 21

11111

1x1xx

lim37

1x=

βˆ’βˆ’+βˆ’βˆ’=

βˆ’++

βˆ’β†’

=

21

h21

lim0n

=βˆ’β†’

2. (a) ( ) 31xlimxflim 2

2x2x=βˆ’=

β†’β†’ +

3. (c) xx

xlim

0x βˆ’β†’

= 1x

1lim

0x βˆ’β†’

= βˆ’1

4. (c) 21x

1xlim

2

2

1x βˆ’+

βˆ’β†’

= 21xlim 2

1x++

β†’ = 22

5. (d) RHL = 4h4

4h4

0h

lim

βˆ’+βˆ’+

β†’

1h

h0h

lim=

β†’=

LHL 4h4

4h4

0h

lim

βˆ’βˆ’βˆ’βˆ’

β†’=

=h

h

0h

lim

βˆ’βˆ’

β†’

Page 43: SMM631101

===================================================================================================Triumphant Institute of Management Education Pvt. Ltd. (T.I.M.E.) HO: 95B, 2nd Floor, Siddamsetty Complex, Secunderabad – 500 003. Tel : 040–27898194/95 Fax : 040–27847334 email : [email protected] website : www.time4education.com Sol.SMM631101/39 ===================================================================================================

= 1h

h0h

limβˆ’=

βˆ’β†’

β‡’ RHL β‰  LHL β‡’ the limit does not exist.

6. (c) xbb|x|

limbx βˆ’

βˆ’βˆ’β†’

= 0xxbbx

limbx

>βˆ’βˆ’βˆ’

βˆ’β†’Ξ˜

= βˆ’1

7. (a) ( ) Ξ»+=βˆ’β†’

6xflim2x

( ) 4xflim2x

=+β†’

β‡’ Ξ» = βˆ’2

8. (d) 216xx

8xlim

22

8x βˆ’βˆ’βˆ’

β†’

=2/32/3

22

8x 8x

8x8x8x

limβˆ’βˆ’Γ—

βˆ’βˆ’βˆ’

β†’

= βˆ’16Γ—2/18

23

1

Γ— =

328βˆ’

9. (a) ( )t

tsinlim

xxsin

lim0tx

βˆ’Ο€=βˆ’Ο€ β†’Ο€β†’

(put Ο€βˆ’x = t)

= 1t

tsinlim

0t=

β†’

10. (a) ( )xx2sinxsin2

limx βˆ’Ο€

βˆ’Ο€β†’

= ( ) ( )

tt2sintsin2

lim0t

βˆ’Ο€βˆ’βˆ’Ο€β†’

(Put t = Ο€ βˆ’x)

= t

t2sintsin2lim

0t

+β†’

= t

t2sinlim

ttsin2

lim0x0t β†’β†’

+

= 4

11. (d) 5cos2x

xsin5cos2lim

0x=β‹…

β†’.

12. (d) ( )2x x

2x2cos1lim

+Ο€++

Ο€βˆ’β†’

= ( )( )2x x

1xcos2lim

+Ο€+

Ο€βˆ’β†’

= ( )( )

20x t

1tcos2lim

+Ο€βˆ’β†’

= ( )

20x t

tcos12lim

βˆ’β†’

=

44t

2t

sin22lim

2

2

0xΓ—

Γ—β†’

= 2

1

13. (c) 1

xxsin

xcoslim

0x=

β†’

14. (d) ( ) 5xflim

1x=

+β†’ so (a) is true

( ) 7xflim2x

=βˆ’β†’

( ) 7xflim2x

=+β†’

β‡’ 2x

lim→

exists. So (b) is true

The domain of the function is [1, 3]

so that (d) is also true

15. (d) f(x) = x

2

f’(x) = 2x

2βˆ’

β‡’ f’(βˆ’1) = βˆ’2

16. (a) f(x) = sina cosx + cosa sinx

β‡’ f’(x) = βˆ’sina sinx + cosa cosx

= cos(x+a)

β‡’ f’(βˆ’a) = 1

17. (d) Let f(x) = [x]

Left f’(0) = ( ) ( )

h

0fh0flim

0h βˆ’βˆ’βˆ’

β†’

β‡’ Left f’(0) = h1

lim0h βˆ’

βˆ’=β†’

β‡’ the left limit does not exist

Page 44: SMM631101

===================================================================================================Triumphant Institute of Management Education Pvt. Ltd. (T.I.M.E.) HO: 95B, 2nd Floor, Siddamsetty Complex, Secunderabad – 500 003. Tel : 040–27898194/95 Fax : 040–27847334 email : [email protected] website : www.time4education.com Sol.SMM631101/40 ===================================================================================================

β‡’ f’(0) here does not exist

18. (d) f(x) = tan2x, f’(x) = 2 tanx . sec2x

( )

hatanhatan

lim22

0h

βˆ’+β†’

= ( ) ( )

hafhaf

lim0h

βˆ’+β†’

= f’(a)

= 2 tan a sec2a

19. (c) Left Limit = h

)0(f)h0(flim

0h βˆ’βˆ’βˆ’

β†’

=

βˆ’βˆ’+

β†’ h0h1

lim3

0h= ∞

∴∴∴∴ f’(0) does not exist

∴∴∴∴ f(x) is not differentiable at x = 0

20. (d) f(x) = sin 2x = 2 sinx cosx

f’(x) = 2(cosx cosx βˆ’ sinx sinx)

= 2(cos2x βˆ’ sin2x)= 2 cos2x

Page 45: SMM631101

===================================================================================================Triumphant Institute of Management Education Pvt. Ltd. (T.I.M.E.) HO: 95B, 2nd Floor, Siddamsetty Complex, Secunderabad – 500 003. Tel : 040–27898194/95 Fax : 040–27847334 email : [email protected] website : www.time4education.com Sol.SMM631101/41 ===================================================================================================

Assignment Exercise

1. (a) 32

39

1x

3xlim

2

3x=βˆ’=

βˆ’βˆ’

β†’

2. (d) 412x

4xlim

4x βˆ’+βˆ’

β†’

= 412x

1612xlim

4x βˆ’+βˆ’+

β†’ =

412xlim4x

++β†’

= 8

3. (d) 0x

lim→

( ) ( )

x

ax1ax1 βˆ’βˆ’+

=( ) ( )

( )

βˆ’++βˆ’βˆ’+

β†’ ax1ax1x

ax1ax10x

lim22

2

a20x

lim

β†’= = a

4. (c) LHL = ] 0xx2 = = 0,

RHL= ] 0xx2 = = 0

β‡’ lim = 0.

5. (d) x

xlim

0x→ does not exist

6. (c) ( )

x11x

lim8

0x

βˆ’+β†’

( )

( ) 11x11x

lim88

11x βˆ’+βˆ’+

β†’+= 8

7. (a) 20x x

x5cosx3coslim

βˆ’β†’

=

20x x

xsinx4sin2lim→

= 8

8. (d) 0x

lim→ 3x

xcos.xsin2xsin2 βˆ’

= ( )

30x x

xcos1xsin2lim

βˆ’β†’

= 3

2

0x x2

xsin2.xsin2

lim→

=

2

0x x2x

sin.

xxsin

4lim

β†’

= 4.1. 121

2

=

9. (c)

βˆ’Ο€

β†’ xcosxsin1

lim

2x

= 020

xsin1xcos

lim

2n

==

+Ο€β†’

10. (a) f(x) = x9 βˆ’93

f’(x) = 9x8

β‡’ f’ (1) = 9

11. (d) Standard result.

12. (b) 0100sin

1x

xsinlim

2

2

2

0x=

βˆ’=

βˆ’β†’

13. (a) f(x) = 2cosx+1

β‡’ f’(x) = βˆ’2 sinx

14. (a) 3. 23

x.4

xsin22

2

β†’ 2

xxsin

= 23

1.23 2 =

15. (c) 1x

lim

β†’

( )

++

++

βˆ’

βˆ’+

23x

23xx

1x

23x

2

22

= ( )( )

++βˆ’

βˆ’

23x1x

1x

2

2

23x

1x2 ++

+= =2

1

4

2 =

Additional Practice Exercise

1. (d) xa

x2lim

ax +β†’ is = 1

2. (c) 2222

2x22x

lim2x

==βˆ’

+β†’

Page 46: SMM631101

===================================================================================================Triumphant Institute of Management Education Pvt. Ltd. (T.I.M.E.) HO: 95B, 2nd Floor, Siddamsetty Complex, Secunderabad – 500 003. Tel : 040–27898194/95 Fax : 040–27847334 email : [email protected] website : www.time4education.com Sol.SMM631101/42 ===================================================================================================

3. (a) [ ]xxlim1x

βˆ’βˆ’β†’

is

= [ ]xlimxlim1x1x βˆ’βˆ’ β†’β†’

βˆ’

= 1 βˆ’ 0 = 1

4. (b) [ ] 1xlim4x

+βˆ’β†’

β‡’ 4.

5. (d) By definition

6. (b) ( )

( )x3x33x

lim

31

x1

3xlim

3x3x βˆ’βˆ’=

βˆ’

βˆ’β†’β†’

= βˆ’9

7. (b) 1xsin

xlimecxcosxlim

0x0x==

β†’β†’

8. (b) x

xsin2lim

xx2cos1

lim0x0x β†’β†’

=βˆ’= 2

9. (b) ( )x2cos1x

xcos1lim

20x +βˆ’

β†’

=

x2cos11

limx

2x

sin2lim

0x2

2

0x +Γ—

β†’β†’

= 241

4x

2x

sin2lim

2

2

0xΓ—Γ—

β†’

= 41

10. (a) 30x x

xsin3x3sinlim

βˆ’βˆ’

β†’ =

3

3

0x x

xsin4lim

βˆ’βˆ’

β†’

= 4

11. (d) x

x8sinx5tanlim

0x

βˆ’β†’

= βˆ’3

12. (c) ( )

6xx

2xsinlim

22x βˆ’+βˆ’

β†’

=( )

( )( )3x2x2xsin

lim2x +βˆ’

βˆ’β†’

= 51

13. (a) x3sinx5x3x5tan

lim0x βˆ’

βˆ’β†’

13535

x

x3sin5

3x

x5tan

lim0x

=βˆ’βˆ’=

βˆ’

βˆ’

β†’

Since mxmxsin

lim0x

=β†’

and

mxmxtan

lim0x

=β†’

14. (b) xcos1

xsinxlim

0x Ξ»βˆ’β†’=

2x

sin2

xsinxlim

20x Ξ»β†’

= 2

1β‡’ Ξ»

= 2

15. (c) xtan1

1xsin2lim

4x +

+Ο€βˆ’β†’

= ( )( )xtan1xsin21

xsin21lim

2

4x +βˆ’

βˆ’Ο€βˆ’β†’

= ( )( )xtan1xsin21

x2coslim

4x +βˆ’Ο€βˆ’

β†’

= ( )

( )( )xtan1xsin21

xtan1

xtan1

lim2

2

4x +βˆ’

+βˆ’

Ο€βˆ’β†’

=

( )( )xsin21xtan1

xtan1lim

2

4x βˆ’+

βˆ’Ο€βˆ’

β†’

=

( )

βˆ’βˆ’+

βˆ’βˆ’

2

1.2111

11 =

21

2.22 =

16. (b) 2x

.x

xsin

x

x

x2

xsin =

β‡’ 1.0 = 0 as x β†’ 0

Page 47: SMM631101

===================================================================================================Triumphant Institute of Management Education Pvt. Ltd. (T.I.M.E.) HO: 95B, 2nd Floor, Siddamsetty Complex, Secunderabad – 500 003. Tel : 040–27898194/95 Fax : 040–27847334 email : [email protected] website : www.time4education.com Sol.SMM631101/43 ===================================================================================================

17. (c) 111

x18

x18

sinlim

1

xsin

xlim

0x

0

0

0x==

Ο€

Ο€=

β†’

β†’

18. (b) 0

lim→θ θθ

ΞΈΞΈ.3.2

sin.3sin2 . 3 = 3.

19. (a) 1x

lim→

( )( )x

2cos

x1x1Ο€

βˆ’+=

1x

lim

β†’( )( )

( )2

2

x12

sin

x1x1Ο€

Ο€

βˆ’Ο€βˆ’+

1x

lim→

( )

( )( ) 1xas

42.22x1.

x12

sin

x12 β†’

Ο€=

Ο€β†’

Ο€+

βˆ’Ο€

βˆ’Ο€

20. (b) 1x1x

lim2

1x βˆ’βˆ’

+β†’

( ) ( )

( )1x1x1x

lim1x βˆ’

βˆ’++β†’

β†’β†’+=

0h1x

h1x

( ) ( )

( )1h11h11h1

lim0h βˆ’+

βˆ’+++β†’

= 2.

21. (a)

ΞΈβˆ’ΞΈΞΈβˆ’ΞΈ

=β†’ΞΈ 2cos1

2cos2sin

2sinlimitlim

0

= ( )ΞΈβˆ’

ΞΈβˆ’ΞΈΞΈ

β†’ΞΈ 2cos12cos

12cos2sin

lim0

= 010

2cos2sin

lim0

=βˆ’=ΞΈΞΈβˆ’

β†’ΞΈ

22. (d)

+Ο€β†’ 0

0x2cos1

x3coslim

2x

= x2sin2

x3sinlim

2x βˆ’

βˆ’Ο€

β†’ (L–Hospitals’ rule)

x2sinx3sin

Lim23

2x

Ο€β†’=

βˆ’βˆž=

=Ο€βˆ’=Ο€0

22sin,1

23

sinΘ

23. (b)

2

limΟ€

β†’ΞΈ ΞΈβˆ’Ο€ΞΈ

2

cot

11eccos

lim2

2

=βˆ’

ΞΈβˆ’Ο€

β†’ΞΈ.

24. (c) ( )xtan

nxlimxcotnxlim

nxnx Ο€βˆ’=Ο€βˆ’

β†’β†’

( ) Ο€=

ππ→

1

xsec

1lim

2nx

25. (a) ( ) ( )( ) ( ) 3

1323

1

31

3231

xx8x8

xx8x8

++βˆ’+

βˆ’+βˆ’+

= 3

1323

1

31

3231

8xx

128x

12

8xx

128x

12

++βˆ’

+

βˆ’+βˆ’

+

(Expand using binomial series and neglect higher powers)

=

++βˆ’+

βˆ’+βˆ’+

24xx

124x

1

24xx

124x

1

32

32

=

24x

24x

24x

24x

24x

24x

32

32

βˆ’βˆ’

+βˆ’=

2

2

xx1

xx1

βˆ’βˆ’+βˆ’

∴ Limit = 1.

26. (d) ( ) ( )

( )

βˆ’βˆ’+++βˆ’

=+

β†’ 00

x12x2nnx1n1 1nn2

Lt1x

( ) ( )( )

( ) ( )( )

( ) ( )[ ]

( ).

21nn

21n2n1nn

21n2nn1nn

2x1n2nnx1nn1

2

n1n2Lt

1x

+=

+βˆ’++=

++++βˆ’=

++++βˆ’=βˆ’

β†’

Page 48: SMM631101

===================================================================================================Triumphant Institute of Management Education Pvt. Ltd. (T.I.M.E.) HO: 95B, 2nd Floor, Siddamsetty Complex, Secunderabad – 500 003. Tel : 040–27898194/95 Fax : 040–27847334 email : [email protected] website : www.time4education.com Sol.SMM631101/44 ===================================================================================================

27. (b) f(x) =

( )1x

n1x1x

xn

βˆ’

βˆ’βˆ’βˆ’

= ( ) ( )( )2

n

1x

1xn1xx

βˆ’βˆ’βˆ’βˆ’

= ( )2

1n

1x

nxnxx

βˆ’+βˆ’βˆ’+

Use L’ Hospital’s rule two times, Required limit

= ( )

( )1x21nx1n

limn

1x βˆ’βˆ’βˆ’+

β†’

= ( )

2x1nn

lim1n

1x

βˆ’

β†’

+

= ( )2

1nn + .

28. (d)

0xlim→

x log sin x =

0x

lim→

20x

x

1

xcos.xsin

1

lim

x

1xsinlog

βˆ’=

β†’

0xsec

x2lim

xtanx

lim20x

2

0x=βˆ’=

βˆ’=β†’β†’

By L Hospitals’ rule.

29. (d) f(x) = x2cos1+

= 2 cosx

β‡’ fβ€˜(x) = βˆ’ 2 sinx

β‡’ f’

Ο€βˆ’2

= + 2

30. (b) f(x) = x2sin1+

= ( ) 2/122 xcossin2xsinxcos ++

= (cosx + sinx)

β‡’ f’(x) = βˆ’sinx+cosx

β‡’ f’(0) = 1