29
Solar tracker A solar tracker is a device for orienting a day lighting reflector , solar photovoltaic panel or concentrating solar reflector or lens toward the sun. The sun's position in the sky varies both with the seasons and time of day as the sun moves across the sky. Solar powered equipment works best when pointed at or near the sun, so a solar tracker can increase the effectiveness of such equipment over any fixed position, at the cost of additional system complexity. There are many types of solar trackers, of varying costs, sophistication, and performance. One well- known type of solar tracker is the heliostat , a movable mirror that reflects the moving sun to a fixed location, but many other approaches are used as well.

Solar tracker

Embed Size (px)

Citation preview

Page 1: Solar tracker

Solar tracker

A solar tracker is a device for orienting a day lighting reflector, solar photovoltaic panel or concentrating solar reflector or lens toward the sun. The sun's position in the sky varies both with the seasons and time of day as the sun moves across the sky. Solar powered equipment works best when pointed at or near the sun, so a solar tracker can increase the effectiveness of such equipment over any fixed position, at the cost of additional system complexity. There are many types of solar trackers, of varying costs, sophistication, and performance. One well-known type of solar tracker is the heliostat, a movable mirror that reflects the moving sun to a fixed location, but many other approaches are used as well.

The required accuracy of the solar tracker depends on the application. Concentrators, especially in solar cell applications, require a high degree of accuracy to ensure that the concentrated sunlight is directed precisely to the powered device, which is at (or near) the focal point of the reflector or lens. Typically concentrator systems will not work at all without tracking, so at least single-axis tracking is mandatory. Very large power plants or high temperature materials research facilities using multiple ground-mounted mirrors and an absorber target require very high precision similar to that used for solar telescopes.

Page 2: Solar tracker

Non-concentrating applications require less accuracy, and many work without any tracking at all. However, tracking can substantially improve both the amount of total power produced by a system and that produced during critical system demand periods (typically late afternoon in hot climates) the use of trackers in non-concentrating applications is usually an engineering decision based on economics. Compared to photovoltaics, trackers can be inexpensive. This makes them especially effective for photovoltaic systems using high-efficiency (and thus expensive) panels.

For low-temperature solar thermal applications, trackers are not usually used, owing to the high expense of trackers compared to adding more collector area and the more restricted solar angles required for winter performance, which influence the average year-round system capacity.

Page 3: Solar tracker

Maintenance

Some solar trackers may operate most effectively with seasonal position adjustment and most will need inspection and lubrication on an annual basis. As most trackers are made from mild steel, maintenance of paint is typically required, and may be critical in highly corrosive environments, such as near saltwater or in polluted industrial localities. In regions with extended summer dry seasons the periodic washing of the panels may significantly increase performance at a critical demand time, particularly for grid-tied systems.

Page 4: Solar tracker

Tracker mount typesSolar trackers may be active or passive and may be single axis or dual axis. Single axis trackers have one degree of freedom that acts as an axis of rotation. The axis of rotation of single axis trackers is typically aligned along a true North meridian. It is possible to align them in any cardinal direction with advanced tracking algorithms. Single axis trackers usually use a polar mount for maximum solar efficiency. Single axis trackers will usually have a manual elevation (axis tilt) adjustment on a second axis which is adjusted on regular intervals throughout the year.

Dual axis trackers have two degrees of freedom that act as axes of rotation. These axes are typically normal to one another. The axis that is fixed with respect to the ground can be considered a primary axis. The axis that is referenced to the primary axis can be considered a secondary axis.

Compared to a fixed mount, a single axis tracker increases annual output by approximately 30% and a dual axis tracker an additional 6%. There are two types of dual axis trackers, polar and altitude-azimuth.

Page 5: Solar tracker

Polar :

Single axis Sun Power T20 trackers, with roughly polar orientation, at Nellis Air Force Base, in Nevada, USA. The arrays form part of the Nellis Solar Power Plant and was designed and built by SunPower corporation. Credit: U.S. Air Force photo by Senior Airman Larry E. Reid Jr.

Polar trackers have one axis aligned to be roughly parallel to the axis of rotation of the earth around the north and south poles—hence the name polar. (With telescopes, this is called an equatorial mount.) Single axis tracking is often used when combined with time-of-use metering, since strong afternoon performance is particularly desirable for grid-tied photovoltaic systems, as production at this time will match the peak demand time for summer season air-conditioning. A fixed system oriented to optimize this limited time performance will have a relatively low annual production. The polar axis should be

Page 6: Solar tracker

angled towards due north, and the angle between this axis and the horizontal should be equal to your latitude.

Simple polar trackers with single axis tracking may also have an adjustment along a second axis: the angle of declination. This allows you to angle the panel to face the sun when it is higher in the sky (and further northward) in the summer, and to face it lower in the sky (and further southward) in the winter. It might be set with manual or automated adjustments, depending on your polar-tracking device. If one is not planning on adjusting this angle of declination at all during the year, it is normally set to zero degrees, facing your panel straight out perpendicular to the polar axis, as that is where the mean path of the sun is found. Occasional or continuous adjustments to the declination compensate for the northward and southward shift in the sun's path through the sky as it moves through the seasons (and around the ecliptic) over the course of the year.

When the manual method is used for adjustment of the declination, it should be done at least twice a year: Once at the autumnal equinox to establish the best position for the winter, and a second adjustment on the vernal equinox, to optimize it for the summer. The sun's declination at the spring equinox is 0o. It moves up to 22.5o in the summer, then drifts back down through 0o at fall equinox, and down to -22.5o in the winter. So, for example, you might choose to set the declination at 15o or 20o as a reasonably optimal position for the summer months.

Page 7: Solar tracker

Such trackers may also be referred to as a "single-axis tracker", because only one drive mechanism is needed for daily operation. This reduces the system cost and allows the use of simpler tracking methods, including passive and chronological tracking (described below).

Horizontal axle :

The axis of rotation for Horizontal Single Axis Tracker is horizontal with respect to the ground. The posts at either end of the axis of rotation of a Horizontal Single Axis Tracker can be shared between trackers to lower the installation cost.

Wattsun HZ-Series Linear Axis Tracker in South Korea. These trackers use a horizontal axis.

Page 8: Solar tracker

Several manufacturers can deliver single axis horizontal trackers which may be oriented by either passive or active mechanisms, depending upon manufacturer. In these, a long horizontal tube is supported on bearings mounted upon pylons or frames. The axis of the tube is on a North-South line. Panels are mounted upon the tube, and the tube will rotate on its axis to track the apparent motion of the sun through the day. Since these do not tilt toward the equator they are not especially effective during winter mid day (unless located near the equator), but add a substantial amount of productivity during the spring and summer seasons when the solar path is high in the sky.

These devices are less effective at higher latitudes. The principal advantage is the inherent robustness of the supporting structure and the simplicity of the mechanism. Since the panels are horizontal, they can be compactly placed on the axle tube without danger of self-shading and are also readily accessible for cleaning. For active mechanisms, a single control and motor may be used to actuate multiple rows of panels. Manufacturers include Array Technologies, Inc. Wattsun Solar Trackers (gear driven active), Zomeworks (passive) and Powerlight (active).

Vertical axle :

Page 9: Solar tracker

The axis of rotation for Vertical Single Axis Trackers is vertical with respect to the ground. These trackers rotate from East to West over the course of the day. Such trackers are more effective at high latitudes than are horizontal axis trackers.

Gemini House rotates in its entirety and the solar panels rotate independently, allowing control of the natural heating from the sun.

A single axis tracker may be constructed that pivots only about a vertical axle, with the panels either vertical, at a fixed, adjustable, or tracked elevation angle. Such trackers with fixed or (seasonably) adjustable angles are suitable for high latitudes, where the apparent solar path is not especially high, but which leads to long days in Summer, with the sun traveling through a long arc. This method has been used in the construction of a cylindrical house in Austria (latitude above 45 degrees north) that rotates in its entirety to track the sun, with vertical panels mounted on one side of the building.

Page 10: Solar tracker

Vertical Single Axis Trackers typically have the face of the module oriented at an angle with respect to the axis of rotation. As a module tracks, it sweeps a cone that is rotationally symmetric around the axis of rotation.

Tracker Type Selection

Page 11: Solar tracker

The selection of tracker type is dependent on many factors including installation size, electric rates, government incentives, land constraints, latitude, and local weather.

Horizontal single axis trackers are typically used for large distributed generation projects and utility scale projects. The combination of energy improvement and lower product cost and lower installation complexity results in compelling economics in large deployments. In addition the strong afternoon performance is particularly desirable for large grid-tied photovoltaic systems so that production will match the peak demand time.

Horizontal single axis trackers also add a substantial amount of productivity during the spring and summer seasons when the sun is high in the sky. The inherent robustness of their supporting structure and the simplicity of the mechanism also result in high reliability which keeps maintenance costs low. Since the panels are horizontal, they can be compactly placed on the axle tube without danger of self-shading and are also readily accessible for cleaning.

A vertical axis trackers pivots only about a vertical axle, with the panels either vertical, at a fixed, adjustable, or tracked elevation angle. Such trackers with fixed or (seasonably) adjustable angles are suitable for high latitudes, where the apparent solar path is not especially high, but which leads to long days in summer, with the sun travelling through a long arc.

Page 12: Solar tracker

Dual axis trackers are typically used in smaller residential installations and locations with very high government Feed In Tariffs.

Page 13: Solar tracker
Page 14: Solar tracker

Solar panel

A photovoltaic module or photovoltaic panel is a packaged interconnected assembly of photovoltaic cells, also known as solar cells. The photovoltaic module, known more commonly as the solar panel, is then used as a component in a larger photovoltaic system to offer electricity for commercial and residential applications.

Because a single photovoltaic module can only produce a limited amount of power, many installations contain several modules or panels and this is known as a photovoltaic array. A photovoltaic installation typically includes an array of photovoltaic modules or panels, an inverter, batteries and interconnection wiring.

Photovoltaic systems are used for either on- or off-grid applications, and for solar panels on spacecraft.

Page 15: Solar tracker

Theory and construction

Solar panels use light energy (photons) from the sun to generate electricity through the photovoltaic effect (this is the photo-electric effect). The structural (load carrying) member of a module can either be the top layer (superstrate) or the back layer (substrate). The majority of modules use wafer-based crystalline silicon cells or a thin-film cell based on cadmium telluride or silicon. Crystalline silicon, which is commonly used in the wafer form in photovoltaic (PV) modules, is derived from silicon, a commonly used semi-conductor.

In order to use the cells in practical applications, they must be:

protected from mechanical damage during manufacture, transport, installation and use (in particular against hail impact, wind and snow loads). This is especially important for wafer-based silicon cells which are brittle.

protected from moisture, which corrodes metal contacts and interconnects, (and for thin-film cells the transparent conductive oxide layer) thus decreasing performance and lifetime.

connected electrically to one another and to the rest of the system

Page 16: Solar tracker

Most modules are usually rigid, but there are some flexible modules available, based on thin-film cells. Electrical connections are made in series to achieve a desired output

voltage and/or in parallel to provide a desired amount of current source capability.

Diodes are included to avoid overheating of cells in case of partial shading. Since cell heating reduces the operating efficiency it is desirable to minimize the heating. Very few modules incorporate any design features to decrease temperature, however installers try to provide good ventilation behind the module.

New designs of module include concentrator modules in which the light is concentrated by an array of lenses or mirrors onto an array of small cells. This allows the use of cells with a very high-cost per unit area (such as gallium arsenide) in a cost-competitive way.

Depending on construction, the photovoltaic can cover a range of frequencies of light and can produce electricity from them, but sometimes cannot cover the entire solar spectrum (specifically, ultraviolet, infrared and low or diffused light). Hence much of incident sunlight energy is wasted when used for solar panels, although they can give far higher efficiencies if illuminated with monochromatic light. Another design concept is to split the light into different wavelength ranges and direct the beams onto different cells tuned to the appropriate

Page 17: Solar tracker

wavelength ranges. This is projected to raise efficiency by 50%. Also, the use of infrared photovoltaic cells can increase the efficiencies, producing power at night.

Sunlight conversion rates (module efficiencies) can vary from 5-18% in commercial production (solar panels), that can be lower than cell conversion.

The current market leader in efficient solar energy modules is SunPower, whose solar panels have a conversion ratio of 19.3%, with Sanyo having the most efficient modules at 20.4%. However, a whole range of other companies (HoloSun, Gamma Solar, NanoHorizons) are emerging which are also offering new innovations in photovoltaic modules, with a conversion ratio of around 18%. These new innovations include power generation on the front and back sides and increased outputs; however, most of these companies have not yet produced working systems from their design plans, and are mostly still actively improving the technology. As of August 26, 2009 a world record efficiency level of 41.6% has been reached.

Page 18: Solar tracker

Crystalline silicon modules

Most solar module are currently produced from silicon PV cells. These are typically categorized into either monocrystalline or multicrystalline modules.

Thin-film modules

Third generation solar cells are advanced thin-film cells. They produce high-efficiency conversion at low cost.

Rigid thin-film modules

In rigid thin film modules, the cell and the module are manufactured in the same production line.

The cell is created directly on a glass substrate or superstrate, and the electrical connections are created in situ, a so called "monolithic integration". The substrate or superstrate is laminated with an encapsulant to a front or back sheet, usually another sheet of glass.

Flexible thin-film modules

Flexible thin film cells and modules are created on the same production line by depositing the photoactive layer and other necessary layers on a flexible substrate.

If the substrate is an insulator (e.g. polyester or polyimide film) then monolithic integration can be used.

Page 19: Solar tracker

If it is a conductor then another technique for electrical connection must be used.

The cells are assembled into modules by laminating them to a transparent colourless fluoropolymer on the front side (typically ETFE or FEP) and a polymer suitable for bonding to the final substrate on the other side. The only commercially available (in MW quantities) flexible module uses amorphous silicon triple junction

Module performance and lifetime

Module performance is generally rated under Standard Test Conditions (STC) : irradiance of 1,000 W/m², solar spectrum of AM 1.5 and module temperature at 25°C.

Electrical characteristics include nominal power (PMAX, measured in W), open circuit voltage (VOC), short circuit current (ISC, measured in amperes), maximum power voltage (VMPP), maximum power current (IMPP), peak power, kWp, and module efficiency (%).

Nominal voltage refers to the voltage of the battery that the module is best suited to charge; this is a leftover term from the days when solar panels were used only to charge batteries. The actual voltage output of the panel changes as lighting, temperature and load conditions change, so there is never one specific voltage at which the panel operates. Nominal voltage allows users, at a glance, to make sure the panel is compatible with a given system

Page 20: Solar tracker

The peak power rating, kWp, is the maximum output according to STC (not the maximum possible output).

Solar panels must withstand heat, cold, rain and hail for many years. Many crystalline silicon module manufacturers offer a warranty that guarantees electrical production for 10 years at 90% of rated power output and 25 years at 80%