Solidification son dagıt(28.04.2013)

Embed Size (px)

Citation preview

  • 7/30/2019 Solidification son dagt(28.04.2013)

    1/68

    1

    Mid-term exam -1 : %20

    Mid-term exam -2 : %20

    Final exam : %60

    %100

    SOLIDIFICATION

    Prof. Dr. . Aydn ATASOY

    Department of Metallurgical and

    Materials Engineering

    Technical University of stanbul

  • 7/30/2019 Solidification son dagt(28.04.2013)

    2/68

  • 7/30/2019 Solidification son dagt(28.04.2013)

    3/68

    3

    141

    GIBBS FREE ENERGY

    For reactions at constant temperature andpressure

    the relative stability of a system is determined by its Gibbs free energy:

    H : enthalpy (heat content) of the system

    T : absolute temperature (Kelvin)

    E : internal energy of the system (kinetic energy from atomic vibrations +

    potential energy from bonds between the atoms)

    p : pressure

    v : volume

    S : entropy (measure of the randomness of the system; degree of disorder)

    T S : mixing energy

    p v : For condensed systems (i.e. solids and liquids) p v is relatively small

    T = constant

    p = constantSTHG vpEH

    STEG EH

    Liquid - Solid Phase Transformation 141-0

    Liquid Solid For T = T , G = GT

    L s

    ,

    G

    T

    GGL

    Temperature

    G = G GLs

    G = E

    T S

    = 0

    T TFor

    G = E TT

    Undercooling

    T = (T T) 0

    E 0 G 0

    Solidification Nucleation + Growth

    v

    v v v

    m

    m

    m

    vm

    S = ETm

    vv

    v v

    v

    s m

    T

    T

    T = T TTT

    Solid grains

    TimeTemperature

    0

    141-1

    Cooling Curve and Nucleation

    m nm

    n

    Liquid

    Liquid + First nuclei

    n

  • 7/30/2019 Solidification son dagt(28.04.2013)

    4/68

    4

    141b

    r

    A Spherical solidparticle called embryo forms homogeneously

    from the liquid

    Liquid atoms

    Embryo/liquid interfacial

    area :

    A= 4 r2

    Volume of a spherical

    embryo of radius r :

    34 r3

    V=

    DEFINITION OF THE VOLUME FREE ENERGY CHANGE

    Solid (s)

    Liquid ()

    : volume of l iquid phase : volume of solid phase

    Free energy of the system : Free energy of the system:

    Total free energy change of the system after the solidification of a solid phase

    Volume free

    energy change =

    free energy change

    per unit volume

    : free energy per unit

    volume of liquid phase

    : free energy per unit

    volume of solid phase

    141aa

    : Solid-liquid interfacial area

    : Solid-liquid interfacial free energy

    Liquid ()

    G v

    Gsv)vv( s

    v

    v s

    ss

    s

    vsvs2AGvGvvG )(

    GvAGvG)vv(GGG vsssvsvs12

    A s

    s

    GGG vsvv

    ssvsssvsvs AGvA)GG(v

    )v(

    GvGv1

    Tn

    1 2

    Homogeneous NUCLEATION in Liquids 141

    Liquid Solid For T =T G = E T Sv = 0r* = critical size For T T G =(E Tn) / T

    undercooling

    G

    G

    r*r (radius of particle)

    (4/3) rGV

    4 rssurfacefree energychange

    volume free energy change

    Total free energy change

    a r r* embryor r* stable nucleus (GT / r) = 0

    0

    For r = r*

    T m

    m

    m

    *

    mv

    v v

    vTTT nmn

    : Latent heat of solidification0LE mv

    (GT)

    s

    2v

    3T r4Gr)3/4(G

    TE

    T2r

    nv

    ms*

    TE3

    )T16(G

    2n

    2v

    2m

    3s*

    a0

  • 7/30/2019 Solidification son dagt(28.04.2013)

    5/68

    5

    141 aaa

    of radius r*Stable embryo( nucleus)

    of radius (r* + r)1 atom

    from the liquid ][ ] [

    +

    G 0T

    Unstable embryo+[ ]

    141a

    The number of critical nuclei per unit volume of liquid , n*,

    at any temperature is given by

    n* = N exp(G*k T

    )

    N : the number of atoms per unit volume of liquid

    (The number of sites available for nuclei formation in the liquid)

    L

    L

    Two-dimensional representation of an

    instantaneouspicture of the liquid

    structure. Many close-packed

    crystal-like embryos(coloured) are

    present

    B

  • 7/30/2019 Solidification son dagt(28.04.2013)

    6/68

    6

    141eHomogeneous Nucleation Rate in Liquids

    N

    = N L exp(G*

    k T

    GD

    k T) exp( )

    NL

    :Number ofavailable nucleation sites ( here; each atom)

    in the unit volume of the liquid.(The number of atoms per

    unit volume of the liquid.)

    : Thermal vibration frequency of the atoms in the liquidG

    D

    : Activation free energy for the diffusion of atoms in the

    liquid

    The addition ofone more atom to each of the critical-sized embryos

    will convert them into stable nuclei :

    hom.

    hom. B B

    0 K Tm

    n*

    N

    n*

    N

    T

    T4 3 2 1

    TTT

    T

    T : For small undercoolings G* is largebut the rate of diffusion is rapid

    and hence number of critical nuclei (n*)

    is small. (Large grains)

    1

    T3 : For large undercoolings G* is small

    but the rate of diffusion is very slow

    and hence the nucleation rate is again

    low.

    T

    4

    : At intermediate undercoolings, diffusion

    rate is fairly rapid and G* is not too largeand there is a maximum in the nucleation

    rate. (Small grains)

    T :

    2

    For very large undercoolings,

    the diffusion rate and G* areextremely small and hence no embryo

    can reach the crystal unit cell size (r* a )(Amorphous solid)

    141d

    0

  • 7/30/2019 Solidification son dagt(28.04.2013)

    7/68

    7

  • 7/30/2019 Solidification son dagt(28.04.2013)

    8/68

    8

    100 m

    Hyper-eutectic Al-wt%15Si alloy

    Primary dendrites of Al

    Primary dendrites of Si

    Fine eutectic

    microstructure

    grows onprimary

    dendrites of Al

  • 7/30/2019 Solidification son dagt(28.04.2013)

    9/68

    9

  • 7/30/2019 Solidification son dagt(28.04.2013)

    10/68

    10

  • 7/30/2019 Solidification son dagt(28.04.2013)

    11/68

  • 7/30/2019 Solidification son dagt(28.04.2013)

    12/68

    12

    141m

    = N exp( ) exp( )

    Heterogeneous Nucleation Rate in Liquids

    het. s

    D

    D

    G*k T

    Gk T

    N :Number of sites available for heterogeneous nuclei

    formation per unit volume of the liquids

    : Thermal vibration frequency of the atoms in the liquidG : Activation free energy for the diffusion of atoms in the

    liquid

    Nhet.

    BB

    =0r (excellent wetting)

    G* = 0

    0180(partial wetting)

    G* G*het. hom.

    = 180(no wetting)

    G* = G*het. hom.

    141k

    0

    N

    T

    het.

    hom.

  • 7/30/2019 Solidification son dagt(28.04.2013)

    13/68

    13

    T

    Water

    V

    WaterWaterMet

    allicsubstrate

    (c

    hill)

    a b

    Heater

    Cooler

    Heatinsulator

    z

    T IT E

    V

    T

    0(t)V f

    TqLiquid

    Liquid

    0

    0

    TssT fs

    Water

    G

    G

    CC E1

    )t(TI f

    0

    x

    0(t)T

    Gq

    f

    0.onstCGz

    TG

    0z

    q

    0C .onstVV pot .ConstTI

    Vpot

    Vcon

    Tft Tct

    )t(V f

    Liquid

    cru.

    Vcru

    Basic Techniques of Directional Solidification

    Bridgman technique Directional casting technique

    : System coordinates

    : Coordinate system moving with the solid-liquid interfaceyx

    V : Rate of interface movement

    Tq : Temperature imposed by the temperature gradient (G) arising fromthe heat flow occurring in the casting.

  • 7/30/2019 Solidification son dagt(28.04.2013)

    14/68

    14

  • 7/30/2019 Solidification son dagt(28.04.2013)

    15/68

    15

    b

    TT kk TT kk

    5nm

    2)Tk(/ IB 10)Tk(/ IB 12)Tk/(L IBf

  • 7/30/2019 Solidification son dagt(28.04.2013)

    16/68

    16

    141

    At equilibrium the free energy reaches an absolute minimum

    and the entropy reaches the maximum value that the system can exhibit.

    Free energy change for the reaction:

    T= constant

    Gl

    E

    Gs

    E

    S S

    G = G G =s l

    E = E E =S = S S =

    All spontaneous reactions occur when the system can lower its free energy

    l s

    Free energy change

    Activation energy

    Entropy change

    In an isolated system:

    For condensed systems (i.e. solids and liquids) v is relatively small

    H H H = H H = Entalpy change

    EvpEH

    l

    l

    l

    s

    s

    s

    s

    s

    s

    l

    l

    l

    0STESTHGGGs

    l

    141t

    REACTION RATE (How fast does a reaction occur?)

    1 2 3

    An atom is vibrating about the position 1

    To lower the free energy the atom

    must move into position 3 (free energy

    change : G)But it must first overcome the energybarrier which is called as

    activation free energy barrier

    Activation free energy to overcome the energy barrier can be supplied to

    the atom as thermal energy in the form of atomic vibrations.

    Ga

    Ga

    Arrangement of atoms

    a

    2

    3

    Stable

    solid

    Unstable

    Gs

    Gl

    G*

    Gibbsfreeenergy

    1 0)GG(G*

    a

    l

    T > 0

    0GGG s l

    TTI

    GMeta-stable

    Liquid Solid

    G

    0

  • 7/30/2019 Solidification son dagt(28.04.2013)

    17/68

    17

    141u

    Statistical Thermodynamics

    Probability that atom has sufficient thermal energy to overcome

    the barrier of G :

    R= molar gas constant = 8.314 J/(mol K) = 1.98 cal/(mol

    K)

    k = Boltzmanns constant =

    N = number of AvogadroA

    Here, the particle is an atom!

    Joule106.1eV118

    )Kparticle/(J1038.1N/R23

    A

    )Kparticle/(cal103.324

    mol/particles1002.623

    TkIB

    GaexpP

    a

    141

    : vibration frequency of an atom in a system (number ofattemptsper unit time to overcome the energy barrier;typically

    The rate at which the atoms overcome the barrier (number of

    successfuljumps per unit time):

    s10113

    Tkr

    IB

    a

    )hkl()s(

    Gexpf

    l

    Tkr

    IB

    a

    )hkl()(s

    GGexpf

    l

    s

    f)hkl(

    : Crystallographic factor; the ratio of the number of

    growth sites occupied by the liquid atoms to the number

    of sites available in the solid at interface.

  • 7/30/2019 Solidification son dagt(28.04.2013)

    18/68

    18

    TkTkrr

    IBIB

    a

    )hkl(s

    Gexp1

    Gexpa)(aV f

    lsl

    a

    D

    Tk

    Gexp

    2I

    IB

    a

    I

    TkTkIB

    DIB

    I

    )hkl(

    Gexp1V

    Gexp1

    a

    DV f

    a

    Df

    a

    D

    a

    DV

    0

    I)hkl(

    0

    II

    D

    Continuous growth

  • 7/30/2019 Solidification son dagt(28.04.2013)

    19/68

    19

  • 7/30/2019 Solidification son dagt(28.04.2013)

    20/68

    20

  • 7/30/2019 Solidification son dagt(28.04.2013)

    21/68

    21

  • 7/30/2019 Solidification son dagt(28.04.2013)

    22/68

    22

  • 7/30/2019 Solidification son dagt(28.04.2013)

    23/68

    23

  • 7/30/2019 Solidification son dagt(28.04.2013)

    24/68

    24

    1.5

    TkN

    G

    ABs

    C

    f )hkl(

    5

    3

    25.11

    a

    0

    2

    1

    0.5

    0.5

    10

    0.20 0.4 0.6 0.8 1.0

    0

    = 10 = 5

    = 3

    = 1b

    f )hkl(

    )TkN(/GABsC

  • 7/30/2019 Solidification son dagt(28.04.2013)

    25/68

    25

  • 7/30/2019 Solidification son dagt(28.04.2013)

    26/68

    26

  • 7/30/2019 Solidification son dagt(28.04.2013)

    27/68

    27

    a-4

    7

    c

    )0110(

    )0001(

    141

    (0001)

    c

    (0001)

    a2

    1

    a-1

    b

    brC y0V

    b-1 b-2

    123

    4

    5

    6

    a-2

    a-3

    b

    b

    141

    141

    219

    219

    (111)

    kiz dzlemleri

    BA

    A211 A121

    A112

    B211

    (111)A

    (111)B

    B

    )111(

    211

    121

    112

    211

    121

    112

    Twin planes

    Repeatable growth defects in faceted crystals : Screw dislocation with a spiral ramp,

    twinning with re-entrant corner, and twist boundary with steps. Depending upon

    the type of defect present, the faceted crystal can exhibit various morphologies:needles in the case of screw dislocations, or plates in the case of twinnings (Si in Al-Si)

    or twist boundaries (graphite in cast iron).

  • 7/30/2019 Solidification son dagt(28.04.2013)

    28/68

    28

  • 7/30/2019 Solidification son dagt(28.04.2013)

    29/68

  • 7/30/2019 Solidification son dagt(28.04.2013)

    30/68

    30

  • 7/30/2019 Solidification son dagt(28.04.2013)

    31/68

    31

  • 7/30/2019 Solidification son dagt(28.04.2013)

    32/68

    32

  • 7/30/2019 Solidification son dagt(28.04.2013)

    33/68

    33

  • 7/30/2019 Solidification son dagt(28.04.2013)

    34/68

    34

  • 7/30/2019 Solidification son dagt(28.04.2013)

    35/68

    35

  • 7/30/2019 Solidification son dagt(28.04.2013)

    36/68

  • 7/30/2019 Solidification son dagt(28.04.2013)

    37/68

    37

  • 7/30/2019 Solidification son dagt(28.04.2013)

    38/68

    38

  • 7/30/2019 Solidification son dagt(28.04.2013)

    39/68

    39

  • 7/30/2019 Solidification son dagt(28.04.2013)

    40/68

    40

  • 7/30/2019 Solidification son dagt(28.04.2013)

    41/68

    41

  • 7/30/2019 Solidification son dagt(28.04.2013)

    42/68

    42

  • 7/30/2019 Solidification son dagt(28.04.2013)

    43/68

    43

  • 7/30/2019 Solidification son dagt(28.04.2013)

    44/68

    44

  • 7/30/2019 Solidification son dagt(28.04.2013)

    45/68

    45

  • 7/30/2019 Solidification son dagt(28.04.2013)

    46/68

    46

  • 7/30/2019 Solidification son dagt(28.04.2013)

    47/68

    47

  • 7/30/2019 Solidification son dagt(28.04.2013)

    48/68

  • 7/30/2019 Solidification son dagt(28.04.2013)

    49/68

    49

  • 7/30/2019 Solidification son dagt(28.04.2013)

    50/68

    50

  • 7/30/2019 Solidification son dagt(28.04.2013)

    51/68

    51

  • 7/30/2019 Solidification son dagt(28.04.2013)

    52/68

    52

  • 7/30/2019 Solidification son dagt(28.04.2013)

    53/68

    53

  • 7/30/2019 Solidification son dagt(28.04.2013)

    54/68

    54

  • 7/30/2019 Solidification son dagt(28.04.2013)

    55/68

    55

  • 7/30/2019 Solidification son dagt(28.04.2013)

    56/68

    56

  • 7/30/2019 Solidification son dagt(28.04.2013)

    57/68

    57

  • 7/30/2019 Solidification son dagt(28.04.2013)

    58/68

    58

  • 7/30/2019 Solidification son dagt(28.04.2013)

    59/68

    59

  • 7/30/2019 Solidification son dagt(28.04.2013)

    60/68

  • 7/30/2019 Solidification son dagt(28.04.2013)

    61/68

    61

  • 7/30/2019 Solidification son dagt(28.04.2013)

    62/68

    62

  • 7/30/2019 Solidification son dagt(28.04.2013)

    63/68

    63

  • 7/30/2019 Solidification son dagt(28.04.2013)

    64/68

    64

  • 7/30/2019 Solidification son dagt(28.04.2013)

    65/68

    65

  • 7/30/2019 Solidification son dagt(28.04.2013)

    66/68

    66

  • 7/30/2019 Solidification son dagt(28.04.2013)

    67/68

    67

  • 7/30/2019 Solidification son dagt(28.04.2013)

    68/68