33
Spin & doped ladders Spin & doped ladders Spin liquid & superconducting properties Spin liquid & superconducting properties

Spin & doped ladders

  • Upload
    gravvol

  • View
    228

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Spin & doped ladders

8/3/2019 Spin & doped ladders

http://slidepdf.com/reader/full/spin-doped-ladders 1/33

Spin & doped laddersSpin & doped ladders

Spin liquid

& superconducting properties

Spin liquid

& superconducting properties

Page 2: Spin & doped ladders

8/3/2019 Spin & doped ladders

http://slidepdf.com/reader/full/spin-doped-ladders 2/33

OutlineOutline

• Ladder geometry: some materials &

physical properties of spin ladders

• Doping: microscopic models & fieldtheory (bosonisation), numerical results,

phase diagram, magnetic properties …

• Pairing mechanism & beyond

Page 3: Spin & doped ladders

8/3/2019 Spin & doped ladders

http://slidepdf.com/reader/full/spin-doped-ladders 3/33

Ladder geometryLadder geometry

Two-leg ladders Three-leg ladders

Spin ladders: each site carries a S=1/2 (typically Cu-II atom)

Even & odd-leg ladders have different magnetic properties …

Page 4: Spin & doped ladders

8/3/2019 Spin & doped ladders

http://slidepdf.com/reader/full/spin-doped-ladders 4/33

A typical spin ladder:A typical spin ladder:

Derived from 2D high-Tc cuprate structure

Page 5: Spin & doped ladders

8/3/2019 Spin & doped ladders

http://slidepdf.com/reader/full/spin-doped-ladders 5/33

Copper oxide Mott insulator 

Heisenberg AF super-exchange

Copper oxide Mott insulator 

Heisenberg AF super-exchange

On-site repulsion UAF exchange J

between copper spins

Page 6: Spin & doped ladders

8/3/2019 Spin & doped ladders

http://slidepdf.com/reader/full/spin-doped-ladders 6/33

A ladder with 3D couplingsA ladder with 3D couplings

Page 7: Spin & doped ladders

8/3/2019 Spin & doped ladders

http://slidepdf.com/reader/full/spin-doped-ladders 7/33

Chaboussant et al., 1998

Page 8: Spin & doped ladders

8/3/2019 Spin & doped ladders

http://slidepdf.com/reader/full/spin-doped-ladders 8/33

A few simple theoretical

considerations

From the strong & weak coupling limits…

Page 9: Spin & doped ladders

8/3/2019 Spin & doped ladders

http://slidepdf.com/reader/full/spin-doped-ladders 9/33

A RVB-like spin liquidA RVB-like spin liquid

Resonating Valence Bond= linear superposition of short-range VB configurations

Anderson 87

Page 10: Spin & doped ladders

8/3/2019 Spin & doped ladders

http://slidepdf.com/reader/full/spin-doped-ladders 10/33

Strong coupling limitStrong coupling limit

• For  isolated rungs: cost to excite a triplet• At finite magnon can propagate to gain

kinetic enegy:

  0 0 0 0 0 0 0 0 0 0 0

  0 0 0 0 0 0 0 0 0 0 0

  0 0 0 0 0 0 0 0 0 0 0

  0 0 0 0 0 0 0 0 0 0 0

  0 0 0 0 0 0 0 0 0 0 0

  0 0 0 0 0 0 0 0 0 0 0

  1 1 1 1 1 1 1 1 1 1 1

  1 1 1 1 1 1 1 1 1 1 1

  1 1 1 1 1 1 1 1 1 1 1

  1 1 1 1 1 1 1 1 1 1 1

  1 1 1 1 1 1 1 1 1 1 1

  1 1 1 1 1 1 1 1 1 1 1

π

 E 

2

0

continuum of 2 magnons states

one magnon branch

Exact diag. (G. Roux et al.)

Page 11: Spin & doped ladders

8/3/2019 Spin & doped ladders

http://slidepdf.com/reader/full/spin-doped-ladders 11/33

The spin gap is robust !The spin gap is robust !• For even # of chains

→ finite spin gap

• 2-leg ladder & strong

coupling:

• 2-leg ladder & weak

coupling:

QMC determination of the spin gap

Greven et al., PRL 96

Page 12: Spin & doped ladders

8/3/2019 Spin & doped ladders

http://slidepdf.com/reader/full/spin-doped-ladders 12/33

Spin correlation length vs T

Scaling behavior 

Spin correlation length vs T

Scaling behavior 

Greven et al. (QMC)

Weak coupling result

Page 13: Spin & doped ladders

8/3/2019 Spin & doped ladders

http://slidepdf.com/reader/full/spin-doped-ladders 13/33

Even-odd effects !!Even-odd effects !!• GS (& low-T low-

energy) propertiesdepend on the # of 

legs

• For nc even: finite

gap

• For nc odd: gapless

Scaling of spin gap (DMRG)

White et al. (1994)

Page 14: Spin & doped ladders

8/3/2019 Spin & doped ladders

http://slidepdf.com/reader/full/spin-doped-ladders 14/33

Simple qualitative argumentSimple qualitative argument

(b)

(a)

“spin pairing”

Similar to 1D chain

Page 15: Spin & doped ladders

8/3/2019 Spin & doped ladders

http://slidepdf.com/reader/full/spin-doped-ladders 15/33

Spin gap revealed by

experiments

Spin gap revealed by

experiments

Page 16: Spin & doped ladders

8/3/2019 Spin & doped ladders

http://slidepdf.com/reader/full/spin-doped-ladders 16/33

Susceptibility: 2-leg vs 3-leg laddersSusceptibility: 2-leg vs 3-leg ladders

Azuma et al., PRL 94

Spin gap signature

No spin gap

 I m p u r i t y  P a u

 l i c o n t r i b

 u t i o n

Single magnon branchcontribution (2-leg ladder)

Troyer et al. 96

Page 17: Spin & doped ladders

8/3/2019 Spin & doped ladders

http://slidepdf.com/reader/full/spin-doped-ladders 17/33

Thermodynamic propertiesThermodynamic propertiesExemple of Cu(HpN)Cl (2-leg)

Specific heat vs TComparison with full diagonalizationMagnetization curve

Comparison with LanczosHayward et al., 1996

Calemczuk et al., 1998

Clear signatures of spin gap !

Page 18: Spin & doped ladders

8/3/2019 Spin & doped ladders

http://slidepdf.com/reader/full/spin-doped-ladders 18/33

Page 19: Spin & doped ladders

8/3/2019 Spin & doped ladders

http://slidepdf.com/reader/full/spin-doped-ladders 19/33

The “telephone number” compound:

A superconducting ladder 

The “telephone number” compound:

A superconducting ladder 

   P

   l  a  n  e  s  o   f

  c   h  a   i  n  s

   P   l  a  n

  e  s  o   f   2  -   l  e  g

   l  a   d   d  e  r  s

Page 20: Spin & doped ladders

8/3/2019 Spin & doped ladders

http://slidepdf.com/reader/full/spin-doped-ladders 20/33

Doping the ladders:

Zhang-Rice singlets

Doping the ladders:

Zhang-Rice singlets

Basic model for lightly doped

system:

t-J Hamiltonian(or large-U Hubbard model)

Page 21: Spin & doped ladders

8/3/2019 Spin & doped ladders

http://slidepdf.com/reader/full/spin-doped-ladders 21/33

Conformal Field theoryConformal Field theory

Prediction for long wavelength (low-energy) physics

CnSm phases (Balents & Fisher)

- n =0,1 or 2 charge modes

- m=0,1 or 2 spin modes

Insulating (Mott) spin gap phase: C0S0 phase

If spin gap robust under doping: C1S0 phase:

- Spin correlations:

- Charge correlations:

- Superconducting correlations:

Page 22: Spin & doped ladders

8/3/2019 Spin & doped ladders

http://slidepdf.com/reader/full/spin-doped-ladders 22/33

Weak coupling approachWeak coupling approach

• Anisotropic Hubbardladder & small U

• Weak coupling RG:

C1S0 phase stable

Balents & Fisher 96

   H  a   l   f  -

   f   i   l   l   i  n  g

   (   I  n  s  u   l  a   t   i  n  g

  s  p   i  n

   l   i  q

  u   i   d   )

Single chain physics

Page 23: Spin & doped ladders

8/3/2019 Spin & doped ladders

http://slidepdf.com/reader/full/spin-doped-ladders 23/33

Strong coupling argumentStrong coupling argument

Separated holes

unpaired spins

Rung hole pair 

Spin gap survises

Balance between kinetic & magnetic energies

at large rung coupling:

Page 24: Spin & doped ladders

8/3/2019 Spin & doped ladders

http://slidepdf.com/reader/full/spin-doped-ladders 24/33

Numerical results (t-J)Numerical results (t-J)Correlations vs distance (DMRG) Phase diagram (ED)

Hayward PRL 95

Dominant pairing correlations

C1S1

C1S0 superconductor

Phase separation

Page 25: Spin & doped ladders

8/3/2019 Spin & doped ladders

http://slidepdf.com/reader/full/spin-doped-ladders 25/33

Tunneling density of statesTunneling density of states

-6 -4 -2 0 20

0.1

0.2

0.3

-0.4 -0.2 0 0.2 0.4

0

0.1

0.2

0.3

0.4

0.5

ΔQP

ω

ω

N( )ω

nh=1/8

J=0.4

hole weight nh

elec. weight (1-nh)/2

Ω

Ω

Lower Hubbard band

Superconducting gap

Magnon resonance peak

Poilblanc et al. 2004

(Lanczos)

Low energy triplet excitation of energy

Page 26: Spin & doped ladders

8/3/2019 Spin & doped ladders

http://slidepdf.com/reader/full/spin-doped-ladders 26/33

Getting more insight into thenature of the (spin-fluctuation

driven) pairing interaction ?

Page 27: Spin & doped ladders

8/3/2019 Spin & doped ladders

http://slidepdf.com/reader/full/spin-doped-ladders 27/33

Unconventional d-wave pairingUnconventional d-wave pairing

have opposite signs

Typical of d-wave

Page 28: Spin & doped ladders

8/3/2019 Spin & doped ladders

http://slidepdf.com/reader/full/spin-doped-ladders 28/33

Page 29: Spin & doped ladders

8/3/2019 Spin & doped ladders

http://slidepdf.com/reader/full/spin-doped-ladders 29/33

Superconducting Green function(Lanczos)

Superconducting Green function(Lanczos)

Generalize calculation of dynamical correlation

to grand-canonical ensemble

Page 30: Spin & doped ladders

8/3/2019 Spin & doped ladders

http://slidepdf.com/reader/full/spin-doped-ladders 30/33

Page 31: Spin & doped ladders

8/3/2019 Spin & doped ladders

http://slidepdf.com/reader/full/spin-doped-ladders 31/33

Dynamics of d-wave pairingDynamics of d-wave pairing

-1 -0,5 0 0,5 1 -1 -0,5 0 0,5 1

2π/3

qy=0

5π/6

π

ω

   I  m 

   F   (      q ,

   )

2π/3

π/2

π/3

π/2

ω

qy= π(a) (b)

π/3

π/6

0

    ω

Poilblanc, Scalapino, Capponi, PRL 2003

Change of sign ! => d-wave symmetry

Deviations from BCS

due to retardation

and

opposite signs !

Page 32: Spin & doped ladders

8/3/2019 Spin & doped ladders

http://slidepdf.com/reader/full/spin-doped-ladders 32/33

Page 33: Spin & doped ladders

8/3/2019 Spin & doped ladders

http://slidepdf.com/reader/full/spin-doped-ladders 33/33

Summary/conclusionSummary/conclusion• Ladders exhibit fascinating behaviors

observable experimentally (except fewexperiments on doped ladders, yet)

• Simple system to investigate non-

conventional superconductivity

• Not addressed here: role of disorder,

magnetic field induced QCP, role of spinanisotropy, …