23
ACNS 2004 Spin structure and dynamics in Spin structure and dynamics in the half-doped cobaltate the half-doped cobaltate La La 1.5 1.5 Sr Sr 0.5 0.5 CoO CoO 4 4 Collaboration Collaboration J. Tranquada BNL G. Gu BNL R. Erwin NIST CNR S.-H. Lee NIST CNR Y. Moritomo CIRSE Nagoya Univ. Igor A. Zaliznyak Igor A. Zaliznyak Brookhaven National Laboratory Brookhaven National Laboratory

Spin structure and dynamics in the half-doped cobaltate La 1.5 Sr 0.5 CoO 4

  • Upload
    nathan

  • View
    34

  • Download
    0

Embed Size (px)

DESCRIPTION

Spin structure and dynamics in the half-doped cobaltate La 1.5 Sr 0.5 CoO 4. Igor A. Zaliznyak Brookhaven National Laboratory. Collaboration J. Tranquada BNL G. Gu BNL R. Erwin NIST CNR S.-H. Lee NIST CNR Y. Moritomo CIRSE Nagoya Univ. Outline. - PowerPoint PPT Presentation

Citation preview

Page 1: Spin structure and dynamics in the half-doped cobaltate La 1.5 Sr 0.5 CoO 4

ACNS 2004

Spin structure and dynamics in the half-Spin structure and dynamics in the half-doped cobaltate Ladoped cobaltate La1.51.5SrSr0.50.5CoOCoO44

CollaborationCollaboration

• J. Tranquada BNL• G. Gu BNL• R. Erwin NIST CNR• S.-H. Lee NIST CNR• Y. Moritomo CIRSE Nagoya Univ.

Igor A. ZaliznyakIgor A. Zaliznyak

Brookhaven National LaboratoryBrookhaven National Laboratory

Page 2: Spin structure and dynamics in the half-doped cobaltate La 1.5 Sr 0.5 CoO 4

ACNS 2004

OutlineOutline

• Crystal structure of La1.5Sr0.5CoO4 and electronic properties of Co2+/Co3+ ions in it

• Charge and spin order at half-doping– neutron-scattering signatures of charge and spin order– sample dependence of the short-range order

• Spin-freezing transition: critical slowing down of the spin dynamics

• Low-energy excitations in La1.5Sr0.5CoO4 – magnons– RIP:optic phonon, magnetic continuum?

• Summary

Page 3: Spin structure and dynamics in the half-doped cobaltate La 1.5 Sr 0.5 CoO 4

ACNS 2004

Crystal structure of the layered perovskite Crystal structure of the layered perovskite cobaltate around half-dopingcobaltate around half-doping

LaLa1.51.5SrSr0.50.5CoOCoO44 always (at all T)remains in “high-temperature tetragonal” (HTT) phase

Space group I4/mmm, lattice spacings aa≈≈3.833.83 Ǻ, cc≈≈12.512.5 Ǻ

Perfect “checkerboard” superstructure corresponds to a twice larger unit cell

2aax 2aaxcc, with space group F4/mmm.

Page 4: Spin structure and dynamics in the half-doped cobaltate La 1.5 Sr 0.5 CoO 4

ACNS 2004

LaLa1.51.5SrSr0.50.5CoOCoO44: bulk properties.: bulk properties.

Resistivity: activation behavior,Ea ~ 6000 K

Susceptibilivity: anisotropic, spin-glass-like behavior

T~30 KT~30 K

Moritomo et al (1997)

J~250-450 KJ~250-450 KD~400-900 KD~400-900 K

Page 5: Spin structure and dynamics in the half-doped cobaltate La 1.5 Sr 0.5 CoO 4

ACNS 2004

Charge and orbital order at half-dopingCharge and orbital order at half-doping

Possible checkerboard fillings of the eegg levels on a square lattice

In-plane “zig-zag” (3x2-r2) / (3y2-r2)

Out of plane (3z2-r2)

In-plane (x2-y2)

Page 6: Spin structure and dynamics in the half-doped cobaltate La 1.5 Sr 0.5 CoO 4

ACNS 2004

Electronic structure of CoElectronic structure of Co2+2+/Co/Co3+3+ ions in ions in LaLa1.51.5SrSr0.50.5CoOCoO44

CoCo2+2+ (3d7)

S=3/2

eg

t2g

CoCo3+3+ (3d6)

S=0 S=1 S=2

eg

t2g

Page 7: Spin structure and dynamics in the half-doped cobaltate La 1.5 Sr 0.5 CoO 4

ACNS 2004

Charge order in Charge order in LaLa1.51.5SrSr0.50.5CoOCoO44: neutron : neutron

diffuse elastic scatteringdiffuse elastic scattering

Short-range “charge glass” order, I. Zaliznyak, et. al., PRL (2000), PRB (2001)

cc = 0.62(6)cc abab= 3.5(3)a a 2

Al(1

11)

Al(2

00)

c

c

c

c

c

c

c

c

c c

Page 8: Spin structure and dynamics in the half-doped cobaltate La 1.5 Sr 0.5 CoO 4

ACNS 2004

Spin-entropy driven melting of the charge order in Spin-entropy driven melting of the charge order in LaLa1.51.5SrSr0.50.5CoOCoO44: neutron diffuse elastic scattering: neutron diffuse elastic scattering

Melting of the short-range “charge glass” order, I. Zaliznyak, et. al., PRB (2001)

CoCo2+2+ CoCo3+3+

z

x

x=0.011(1) lu, x=0.011(1) lu, z=0.0068(4) luz=0.0068(4) lu

Page 9: Spin structure and dynamics in the half-doped cobaltate La 1.5 Sr 0.5 CoO 4

ACNS 2004

Charge order and a spin systemCharge order and a spin system

CoCo2+2+ form a square-lattice AFM with almost critical frustration, JJ11~2J~2J22

JJ11

JJ22

CoCo2+2+

S=3/2 2D2D

CoCo3+3+

S=1or

S=2 S z = 0

S z = ±1DD

Strong single-ion anisotropy D~500 KD~500 K quenches CoCo3+3+ spin at low T

S z = ±1/2

S z = ±3/2

Page 10: Spin structure and dynamics in the half-doped cobaltate La 1.5 Sr 0.5 CoO 4

ACNS 2004

-2 0 2 4 6l (rlu)

0

200

400

600

800

1000

Neu

tron

cou

nts

mon

itor

=5.

0e+05

Spin order in Spin order in LaLa1.51.5SrSr0.50.5CoOCoO44: magnetic elastic : magnetic elastic

neutron scattering neutron scattering

-0.5 0.0 0.5 1.0 1.5 2.0h (r lu )

0

200

400

600

800

1000

Neu

tron

cou

nts

mon

itor

=5.

0e+

05

1122

33

44

55

66CoCo2+2+

““CoCo3+3+””

88

77

Q=(0.258(1),0,1)Q=(0.258(1),0,1), in I4/mmm abab=14.5(5)a a 2

cc=0.85(5)cc

mm

mm

mm

mm

Q = (h,h,1)

T=10K

Q = (0.258,0.258,l)

T=6K

E

μ

m

μ

mrN

dEdΩ

Ed

B

Bm

el

,1

12

1

12

022

coscosh

sinh

2

coscosh

sinh

2

,

aQq

q

aq

qq

Q

Lattice-Lorentzian scattering functionI. A. Zaliznyak and S.-H. Lee in “Modern Techniques for Characterizing Magnetic Materials”, ed. Y. Zhu (Kluwer)

Page 11: Spin structure and dynamics in the half-doped cobaltate La 1.5 Sr 0.5 CoO 4

ACNS 2004

Magnetic elastic scattering from the frozen Magnetic elastic scattering from the frozen spin structure in spin structure in LaLa1.51.5SrSr0.50.5CoOCoO44..

Lattice-Lorentzian scattering from a damped spin spiral in

the a-ba-b plane gives perfect fit to the measured intensity

Intensity map, calculatedfrom the fit

Al(

111)

Al(

200)

Al(

111)

Al(

200)

T=6 KT=6 K

Page 12: Spin structure and dynamics in the half-doped cobaltate La 1.5 Sr 0.5 CoO 4

ACNS 2004

Universal or sample-dependent?Universal or sample-dependent?

Sample #1, by

Y. Moritomo, m≈0.5g

Sample #2, by

G. Gu, m≈6g

Page 13: Spin structure and dynamics in the half-doped cobaltate La 1.5 Sr 0.5 CoO 4

ACNS 2004

Charge-order scattering from big new Charge-order scattering from big new sample #2sample #2

abab= 3.4(6)a a 2cc = 0.2cc(fixed)

Al(1

11)A

l(200)

x=0.011(1) lu, x=0.011(1) lu, z=0.0068(4) lu, z=0.0068(4) lu,

zzLa/SrLa/Sr=0.0010(1) lu=0.0010(1) lu

Page 14: Spin structure and dynamics in the half-doped cobaltate La 1.5 Sr 0.5 CoO 4

ACNS 2004

2500

2000

1500

1000

500

0

Inte

nsity

(co

unts

in 2

8 s)

0.0 0 .5 1 .0 1 .5h(rlu)

400

300

200

100

0

sam ple #2 = 0.255(1)

Al (

111)

Al (

200)

(a)

Al (

220)

sam ple #1 = 0.258(1)

(b)

,Q = ( ,3)

Magnetic scattering from two samplesMagnetic scattering from two samplesT=8K

T (K)

Q = (0.256,0.256,1)

abab=14.5(5)a a 2

abab=23.0(5)a a 2

Page 15: Spin structure and dynamics in the half-doped cobaltate La 1.5 Sr 0.5 CoO 4

ACNS 2004

Melting of the frozen spin order.Melting of the frozen spin order.

abab15 a a 2

cc0.9cc

abab8 a a 2

cc0.5cc

abab4 a a 2

cc0.2cc

6K6K

38K38K

50K50K

BT2&BT4, Ef=14.7 meV, 60’-20’-20’-100’.

Page 16: Spin structure and dynamics in the half-doped cobaltate La 1.5 Sr 0.5 CoO 4

ACNS 2004

Temperature evolution of the magnetic Temperature evolution of the magnetic scattering: raw data.scattering: raw data.

BT2&BT4, Ef=14.7 meV, 60’-20’-20’-100’. SPINS, Ef=3.7 meV, 40’-60’-60’-240’.

~40K?~40K?

~30K?~30K?

~40K?~40K?

~30K?~30K?

Where is the spin-ordering transition?

Page 17: Spin structure and dynamics in the half-doped cobaltate La 1.5 Sr 0.5 CoO 4

ACNS 2004

Slowing down of the spin fluctuations: is Slowing down of the spin fluctuations: is there a criticality?there a criticality?

EE~(T-T~(T-Tcc))

EE~T~T EE~ ~ 00+T+T

EE~ ~ 00+(T-T+(T-Tcc))

Although the critical behavior EE~(T-T~(T-Tcc)), =3.0(3)=3.0(3) is not ruled out, log(log(EE)) is surprisingly linear in log(T):log(T): EE~T~T with ~8 ~8 (!?).

log(log(EE)~log(T) )~log(T) ?? log(log(EE)~log(T) )~log(T) ??

Page 18: Spin structure and dynamics in the half-doped cobaltate La 1.5 Sr 0.5 CoO 4

ACNS 2004

Spin dynamics: acoustic magnonsSpin dynamics: acoustic magnons

Page 19: Spin structure and dynamics in the half-doped cobaltate La 1.5 Sr 0.5 CoO 4

ACNS 2004

RIP: scattering at higher energy: phonon, RIP: scattering at higher energy: phonon, magnetic continuum?magnetic continuum?

E (m eV )

0

5

10

15

20

Inte

nsit

y (c

ts/m

in)

0 10 20 30

(0.5,0.5,5)

(1.5,1.5,1)

phonon magnetic continuum?

0 100 200 300

5

10

15

Inte

nsi

ty (c

ts/m

in)

0

T (K )

E = 25 m eVQ = (0 ,0 ,5 )

Page 20: Spin structure and dynamics in the half-doped cobaltate La 1.5 Sr 0.5 CoO 4

ACNS 2004

RIP, dynamics in RIP, dynamics in LaLa1.51.5SrSr0.50.5CoOCoO44: acoustic : acoustic

magnons, optic phonon, magnetic continuum?magnons, optic phonon, magnetic continuum?

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.00

5

10

15

20

25

30

h (rlu)

T = 5 K = (h,h,3)Q

v s in(2 (h - ) = 21.2(5), v = 0.244(1)

E (

meV

)

m agnetic scattering

phonon

Page 21: Spin structure and dynamics in the half-doped cobaltate La 1.5 Sr 0.5 CoO 4

ACNS 2004

SummarySummary

• A short-range checkerboard charge order yields a peculiar spin system in La1.5Sr0.5CoO4

• A short-range, incommensurate spin order results from the frustration and the lattice distortion– the incommensurability and the correlation length are slightly

sample dependent

• Static spin ordering: a spin-freezing transition at Ts ≈ 30 K– relaxation rate vanishes– correlation length saturates

• Dynamics at low E is dominated by a well-defined, strong band of acoustic magnons– crosses an optic phonon at 15 meV – interaction?

• Continuum magnetic scattering at 20 meV < E < 30 meV?

Page 22: Spin structure and dynamics in the half-doped cobaltate La 1.5 Sr 0.5 CoO 4

ACNS 2004

Exchange modulation by superlattice Exchange modulation by superlattice distortiondistortion

Heisenberg spin Hamiltonian

Superlattice distortion

Modulated-exchange Hamiltonian

(eg)

++

==

Page 23: Spin structure and dynamics in the half-doped cobaltate La 1.5 Sr 0.5 CoO 4

ACNS 2004

Spin-spiral ground state better adapts to Spin-spiral ground state better adapts to distortiondistortion

Harmonics at nQc are generated in spin distribution,

As a result, the MF ground state energy of a spin spiral is lowered

To the leading order,

In the presence of a superlattice distortion in the crystal antiferromagnetism may loose to a competing near-by spiral state

I. A. Zaliznyak, Phys. Rev. B (2003).