47
This document is copyrighted © by the AAFS Standards Board, LLC. 2017 All rights are reserved. 4200 Wisconsin Avenue, NW, Suite 106310, Washington, DC 200162143, asb.aafs.org. ASB Standard 036, First Edition 2017 Standard Practices for Method Validation in Forensic Toxicology

Standard Practices for Method Validation Forensic Toxicology · PDF fileDarcie Wallace‐Duckworth, Ph.D.; Aegis Sciences Corporation; Nashville, Tennessee Jeff Walterscheid, Ph.D.,

Embed Size (px)

Citation preview

Page 1: Standard Practices for Method Validation Forensic Toxicology · PDF fileDarcie Wallace‐Duckworth, Ph.D.; Aegis Sciences Corporation; Nashville, Tennessee Jeff Walterscheid, Ph.D.,

Thisdocumentiscopyrighted©bytheAAFSStandardsBoard,LLC.2017Allrightsarereserved.4200WisconsinAvenue,NW,Suite106‐310,Washington,DC20016‐2143,asb.aafs.org.

ASBStandard036,FirstEdition2017

StandardPracticesforMethodValidationinForensicToxicology

Page 2: Standard Practices for Method Validation Forensic Toxicology · PDF fileDarcie Wallace‐Duckworth, Ph.D.; Aegis Sciences Corporation; Nashville, Tennessee Jeff Walterscheid, Ph.D.,

ASBStandard036,1stEd.‐2017

StandardPracticesforMethodValidationinForensicToxicology

ASBApprovedXxxxx2017

ANSIApprovedXxxxx2017

AcademyStandardsBoard4200WisconsinAvenue,NW

Suite106‐310Washington,DC20016‐2143

Thisdocumentmaybedownloadedforfreeat:http://asb.aafs.org/

ThisdocumentisprovidedbytheAAFSStandardsBoardforfree.Youarepermittedtoprintanddownloadthedocumentandextractsfromthedocumentforyourownuse,providedthat:

youdonotmodifythisdocumentoritsrelatedgraphicsinanyway; youdonotuseanyillustrationsoranygraphicsseparatelyfromanyaccompanyingtext;and, youincludeanacknowledgementalongsidethecopiedmaterialnotingtheAAFSStandardsBoard

asthecopyrightholderandpublisher.

Youexpresslyagreenottoreproduce,duplicate,copy,sell,resell,orexploitforanycommercialpurposes,thisdocumentoranyportionofit.Youmaycreateahyperlinktohttp://asb.aafs.orgtoallowpersonstodownloadtheirindividual,freecopyofthisdocument.YourhyperlinkmustnotportrayAAFS,theAAFSStandardsBoard,thisdocument,ouragents,associatesandaffiliatesinanoffensivemanner,orbemisleadingorfalse.Youmaynotuseourtrademarksaspartofyourlinkwithoutourwrittenagreementforyoutodoso.

TheAAFSStandardsBoardretainsthesolerighttosubmitthisdocumenttoanyotherforumforanypurpose.

Certaincommercialentities,equipmentormaterialsmaybeidentifiedinthisdocumenttodescribeaprocedureorconceptadequately.SuchidentificationisnotintendedtoimplyrecommendationsorendorsementbytheAAFSortheAAFSStandardsBoard,norisitintendedtoimplythattheentities,materials,orequipmentarenecessarilythebestavailableforthepurpose.

Thisdocumentiscopyrighted©bytheAAFSStandardsBoard,LLC.2017Allrightsarereserved.4200WisconsinAvenue,NW,Suite106‐310,Washington,DC20016‐2143,asb.aafs.org.

Page 3: Standard Practices for Method Validation Forensic Toxicology · PDF fileDarcie Wallace‐Duckworth, Ph.D.; Aegis Sciences Corporation; Nashville, Tennessee Jeff Walterscheid, Ph.D.,

ASBStandard036,1stEd.‐2017

Foreword

Validationistheprocessofperformingasetofexperimentstoestablishobjectiveevidencethatamethodisfitforpurpose,andtoidentifythemethod'slimitationsundernormaloperatingconditions.Thisstandardwasdevelopedtoprovideguidanceonminimumrequirementsforvalidatinganalyticalmethodsinforensictoxicologylaboratories.

Thisdocumentwasrevised,preparedandfinalizedasastandardbytheToxicologyConsensusBodyoftheAAFSASB.ThedocumentwasoriginallydraftedbytheScientificWorkingGrouponForensicToxicology(SWGTOX).WhenSWGTOXdisbandedin2014,itpassedownershipofallofitsdocumentstotheToxicologySubcommitteeoftheOrganizationofScientificAreaCommittees(OSAC)whointurnupdatedandapprovedthedraftdocument.Allhyperlinksandwebaddressesshowninthisdocumentarecurrentasofthepublicationdateofthisstandard.

Keywords:Validation,ForensicToxicology

Abstract:Thisstandardwasdevelopedtoprovideguidanceonminimumrequirementsforvalidatingmethodsinforensictoxicologylaboratories.Propermethodvalidationensuresthatalaboratoryestablishesobjectiveevidencethatamethodisfitforpurposeandthethemethod’slimitationsundernormaloperatingconditionsareunderstood.

Page 4: Standard Practices for Method Validation Forensic Toxicology · PDF fileDarcie Wallace‐Duckworth, Ph.D.; Aegis Sciences Corporation; Nashville, Tennessee Jeff Walterscheid, Ph.D.,

ASBStandard036,1stEd.‐2017

Acknowledgements

BaseDraftDevelopedbytheOrganizationofScientificAreaCommittees(OSAC)ToxicologySubcommittee:

Editor: MarcA.LeBeau,PhDF‐ABFT;FederalBureauofInvestigation;LaboratoryDivision;Quantico,Virginia

WorkingGroup: NicholeBynum,MS;RTIInternational;ResearchTrianglePark,NorthCarolina

ConnieM.Borror,PhD;ArizonaStateUniversity;NewCollegeofInterdisciplinaryArtsandSciences;Phoenix,Arizona

SimonElliott,PhD;ROARForensics;Worcestershire,UnitedKingdom

MarilynA.Huestis,PhD;HuestisandSmithToxicology,SevernaPark,Maryland

MatthewP.Juhascik,PhDF‐ABFT;MontgomeryCountyCoroner’sOffice;Dayton,Ohio

JamesC.Kraner,PhD,F‐ABFT;OfficeoftheChiefMedicalExaminer;Charleston,WestVirginia

LoralieJ.Langman,PhD,F‐ABFT,DABCC;MayoClinic;Rochester,Minnesota

JenniferLimoges,MS,DABC;NewYorkStatePolice‐Forensics;Albany,NewYork

ChristineMoore,PhD,DABCC;ImmunalysisCorporation;Pomona,California

StephenL.Morgan,PhD;UniversityofSouthCarolina;DepartmentofChemistryandBiochemistry;Columbia,SouthCarolina

RobertJ.Osiewicz,PhDF‐ABFT;ErieCountyMedicalExaminer’sOffice(Retired);Buffalo,NewYork

JuliaPearson,PhDF‐ABFT;HillsboroughCountyMedicalExaminer’sOffice;Tampa,Florida

FrankT.Peters,PhD;InstitutfuerRechtsmedizin;UniversitaetsklinkumJena;JenaGermany

SumandeepRana,PhD;RedwoodToxicologyLaboratory;SantaRosa,California

MatthewSlawson,PhD;UtahDepartmentofHealth;Taylorsville,Utah

ElizabethSpratt,MSF‐ABFT;WestchesterCountyDepartmentofLaboratories;Valhalla,NewYork

ScientificWorkingGrouponForensicToxicology(SWGTOX)

ToxicologySubcommitteeoftheOrganizationofScientificAreaCommittees(OSAC)

FinalStandardPreparedandFinalizedbytheASBToxicologyConsensusBody:

Members: WendyAdams,Ph.D.,F‐ABFT;NMSLabs;WillowGrove,Pennsylvania

SabraBotch‐Jones,M.S.M.A.D‐ABFT‐FT;BostonUniversitySchoolofMedicine,BiomedicalForensicSciences;Boston,Massachusetts

Page 5: Standard Practices for Method Validation Forensic Toxicology · PDF fileDarcie Wallace‐Duckworth, Ph.D.; Aegis Sciences Corporation; Nashville, Tennessee Jeff Walterscheid, Ph.D.,

ASBStandard036,1stEd.‐2017

RandalClouette,M.S.F.S.,D‐ABFT‐FD;QuestDiagnostics,Inc;Lenexa,Kansas

FionaCouper,Ph.D.,WashingtonStatePatrol;Seattle,Washington

KennethFerslew,Ph.D.,F‐ABFT;EastTennesseeStateUniversity;JohnsonCity,Tennessee

DeanFritch,Ph.D.,F‐ABFT;OraSureTechnologies,Inc;Bethlehem,Pennsylvania

ShannonGeorge,B.S.;IllinoisStatePolice;Springfield,Illinois

MicheleGlinn,Ph.D.,F‐ABFT;EssentialTestingLLC/Avertest;Collinsville,Illinois

JamesHutchison,Jr.,M.S.,D‐ABFT‐FT;MontanaForensicToxicologyServices,LLC;Lolo,Montana

MatthewJuhascik,Ph.D.,F‐ABFT;MontgomeryCountyCoroner’sOffice;Dayton,Ohio

PhilipKemp,Ph.D.,F‐ABFT;CivilAerospaceMedicalInstitute(FAA);OklahomaCity,Oklahoma

MelissaKennedy,M.S.,D‐ABFT‐FA;ANSI‐ASQNationalAccreditationBoard;Garner,NorthCarolina

MarcLeBeau,Ph.D.,F‐ABFT;FederalBureauofInvestigation;Quantico,Virginia

AdamNegrusz,Ph.D.,F‐ABFT;UnitedStatesDrugTestingLaboratories,Inc.;DesPlaines,Illinois

DouglasRohde,M.S.;LakeCountyCrimeLaboratory;Painesville,Ohio

RobertSears,M.S.,F‐ABFT;SouthCarolinaLawEnforcementDivision;Columbia,SouthCarolina

MichaelStypa,M.S.,D‐ABFT‐FT;LasVegasMetropolitanPoliceDepartment;LasVegas,Nevada

TedVosk,J.D.;Kirkland,Washington

FrankWallace,B.A.;AmeritoxLLC;HighPoint,NorthCarolina

DarcieWallace‐Duckworth,Ph.D.;AegisSciencesCorporation;Nashville,Tennessee

JeffWalterscheid,Ph.D.,F‐ABFT;ArmedForcesMedicalExaminerSystem;DoverAFB,Delaware

RuthWinecker,Ph.D.,F‐ABFT;OfficeoftheChiefMedicalExaminer;Raleigh,NorthCarolina

DustinTateYeatman,M.S.F‐ABFT,F‐ABC;PalmBeachCountySheriff’sOfficeCrimeLaboratory;WestPalmBeach,Florida

Page 6: Standard Practices for Method Validation Forensic Toxicology · PDF fileDarcie Wallace‐Duckworth, Ph.D.; Aegis Sciences Corporation; Nashville, Tennessee Jeff Walterscheid, Ph.D.,

ASBStandard036,1stEd.‐2017

TableofContents 1. Scope.................................................................................................................................................................................1

2. NormativeReference..................................................................................................................................................1

3. TermsandDefinitions...............................................................................................................................................1

4. WhentoValidateMethods.......................................................................................................................................3

5. MethodDevelopmentandOptimization............................................................................................................3

6. EstablishingaValidationPlan................................................................................................................................4

7. RequiredValidationParametersBasedonScopeoftheMethod............................................................4

8. SpecificRequirementsforConductingMethodValidationExperiments.............................................5

8.1. BiasandPrecision..............................................................................................................................................6

8.2. CalibrationModel...............................................................................................................................................8

8.3. Carryover.............................................................................................................................................................10

8.4. InterferenceStudies........................................................................................................................................10

8.5. IonizationSuppression/Enhancement...................................................................................................11

8.6. LimitofDetection.............................................................................................................................................12

8.7. LowerLimitofQuantitation........................................................................................................................14

9. AdditionalValidationParameters.......................................................................................................................15

9.1 General..................................................................................................................................................................16

9.2 DilutionIntegrityStability............................................................................................................................16

9.3 Stability................................................................................................................................................................16

10. RequiredRevalidationofPreviouslyValidatedMethods.........................................................................17

11. DocumentationRequirementsforMethodValidation...............................................................................17

12. EfficiencywithValidation.......................................................................................................................................18

ANNEXA:QuantitationofDrugXinBloodValidationExample......................................................................19

ANNEXB:ImmunoassayScreenofBenzodiazepinesinUrineValidationExample................................32

ANNEXC:ExampleFlowchartofMethodValidationExperiments................................................................35

ANNEXD:TableofExampleExperimentsforValidationofQualitativeConfirmation/IdentificationMethods...................................................................................................................................................................................36

ANNEXE:TableofExampleExperimentsforValidationofQuantitativeMethods.................................37

ANNEXF:Bibliography.....................................................................................................................................................38

Page 7: Standard Practices for Method Validation Forensic Toxicology · PDF fileDarcie Wallace‐Duckworth, Ph.D.; Aegis Sciences Corporation; Nashville, Tennessee Jeff Walterscheid, Ph.D.,

ASBStandard036,1stEd.‐2017

1

StandardPracticesforMethodValidationinForensicToxicology

1. Scope

Thisdocumentdelineatesminimumstandardsofpracticeforvalidatinganalyticalmethodsinthefieldofforensictoxicology.Thefundamentalreasonforperformingmethodvalidationistoensureconfidenceandreliabilityinforensictoxicologicaltestresultsbydemonstratingthemethodisfitforitsintendeduse.

2. NormativeReferences

Therearenonormativereferences.AnnexG,Bibliography,containsinformativereferences.

3. TermsandDefinitions

Forpurposesofthisdocument,thefollowingdefinitionsapply.

3.1. biasAnestimateofsystematicmeasurementerror,calculatedasthedifferencebetweenthemeanofseveralmeasurementsunderidenticalconditions,toaknown“true”value.Itisoftenreportedasapercentdifference.

3.2. biologicalfluidsAnyliquidbiologicalspecimenthatistypicallypipettedforanalysis(e.g.,blood,urine,bile,serum,vitreoushumor,oralfluid).

3.3. blankmatrixsampleAbiologicalfluidortissue(orsyntheticsubstitute)withouttargetanalyteorinternalstandard.

3.4. calibrationmodelThemathematicalmodelthatdemonstratestherelationshipbetweentheconcentrationofanalyteandthecorrespondinginstrumentresponse.

3.5. carryoverTheappearanceofunintendedanalytesignalinsamplesaftertheanalysisofapositivesample.

3.6. decisionpointAnadministrativelydefinedcutofforconcentrationthatisatorabovethemethod’slimitofdetectionorlimitofquantitationandisusedtodiscriminatebetweenpositiveandnegativeresults.

3.7. fortifiedmatrixsampleAblankmatrixsamplespikedwithtargetanalyteand/orinternalstandardusingreferencematerials.

Page 8: Standard Practices for Method Validation Forensic Toxicology · PDF fileDarcie Wallace‐Duckworth, Ph.D.; Aegis Sciences Corporation; Nashville, Tennessee Jeff Walterscheid, Ph.D.,

ASBStandard036,1stEd.‐2017

2

3.8. interferencesNon‐targetedanalytes(i.e.,matrixcomponents,otherdrugsandmetabolites,internalstandard,impurities)whichmayimpacttheabilitytodetect,identify,orquantitateatargetedanalyte.

3.9. ionizationsuppression/enhancementDirectorindirectalterationorinterferenceintheinstrumentresponseduetothepresenceofco‐elutingcompounds.

3.10. limitofdetectionAnestimateofthelowestconcentrationofananalyteinasamplethatcanbereliablydifferentiatedfromblankmatrixandidentifiedbytheanalyticalmethod.

3.11. lowerlimitofquantitationAnestimateofthelowestconcentrationofananalyteinasamplethatcanbereliablymeasuredwithacceptablebiasandprecision.

3.12. precisionThemeasureoftheclosenessofagreementbetweenaseriesofmeasurementsobtainedfrommultiplesamplingsofthesamehomogenoussample.Itisexpressednumericallyasimprecision.

3.13. referencematerialMaterial,sufficientlyhomogenousandstablewithreferencetospecifiedproperties,whichhavebeenestablishedtobefitforitsintendeduseinameasurementorinexaminationofnominalproperties.

3.14. stabilityAnanalyte’sresistancetochemicalchangeinamatrixunderspecificconditionsforgiventimeintervals.

3.15. tissuesAnysolidbiologicalspecimenthatisgenerallyweighedforanalysis(e.g.,brain,liver,muscle,hair,meconium).

3.16. workingrangeTherangeofconcentrationthatcanbeadequatelydeterminedbyaninstrument,wheretheinstrumentprovidesausefulsignalthatcanberelatedtotheconcentrationoftheanalyte.

Page 9: Standard Practices for Method Validation Forensic Toxicology · PDF fileDarcie Wallace‐Duckworth, Ph.D.; Aegis Sciences Corporation; Nashville, Tennessee Jeff Walterscheid, Ph.D.,

ASBStandard036,1stEd.‐2017

3

4. WhentoValidateMethods

Methodsshallbevalidatedtoverifyamethod'sperformanceparametersarefitforuseforaparticularanalysis.Commonexamplesinclude:

a) newanalyticalmethod;

b) modificationsofanestablishedanalyticalmethodtoimproveperformanceorextenditsusebeyondthatforwhichitwasoriginallyvalidated(e.g.,additionofnewcompoundstothemethod’sscope);

c) todemonstrateequivalencebetweenanestablishedmethod/instrumentandanewmethod/instrument;

d) existinganalyticalmethodsthatdonotcurrentlymeettherequirementsofthisdocument.

Theparameterstobeevaluatedforvalidationofmethodswilldependuponthecircumstancesinwhichthemethodistobeused.Likewise,itisrecognizedthataftervalidationhasoccurred,methodsmayberevised.Theextentandfrequencyofrevalidationofpreviouslyvalidatedmethodswilldependuponthenatureoftheintendedchangesorlaboratorypolicy.SeeSection10forfurtherguidanceonrevalidationofpreviouslyvalidatedmethods.

Laboratoriesusingmethodsthatwerevalidatedpriortothepromulgationoftheseminimumstandardsshalldemonstrateanddocumentthatthesemethodsarefitforpurposeunderthesestandards.Thesemethodswilllikelyhavesufficienthistoricalcalibrationandcontroldata,aswellaspreviouslyanalyzedcaseworksampleresults,thatcanbeusedtoaddressanumberoftherequiredvalidationparameters.Whensufficientdataareabsenttofulfilltheseminimumstandards,appropriatestudiesshallbeconductedtoensurecompliancewiththisdocument.

5. MethodDevelopmentandOptimization

5.1. General

Forpurposesofthisdocument,methoddevelopmentwillbeconsideredintwophases:1)instrumentalanddataacquisition/processingparametersand2)samplepreparation.Itisessentialthatvalidationisconductedwiththesameanalyticalconditionsandtechniquesasthefinalmethod.

Theprinciplesofgoodlaboratorypracticeandrecordkeepingshallbeappliedtotheconceptsofthisdocument.Thisincludesdocumentationofparametersthatwereevaluatedduringmethoddevelopment,yetdidnotprovideacceptableresults.

5.2. DevelopmentandOptimizationofInstrumentalandDataProcessingParameters

Instrumentalanddataprocessingparametersaredefinedandoptimizedthroughanalysisofreferencematerialsoftheanalyte(s)ofinteresttoachievetherequiredperformanceoftheinstrument.

5.3. DevelopmentandOptimizationofSamplePreparationTechniques

Thesamplepreparationtechniqueshallbeevaluatedandoptimizedusingreferencematerialsoftheanalyte(s)ofinterest.Theprimarygoalistodemonstratethatthesamplepreparationsteps

Page 10: Standard Practices for Method Validation Forensic Toxicology · PDF fileDarcie Wallace‐Duckworth, Ph.D.; Aegis Sciences Corporation; Nashville, Tennessee Jeff Walterscheid, Ph.D.,

ASBStandard036,1stEd.‐2017

4

allowforadequateextraction,detection,identification,and/orquantitationoftheanalyte(s).Samplepreparationshallbeevaluatedwithfortifiedmatrixsamples.

6. EstablishingaValidationPlan

Thelaboratoryisresponsibleforensuringitsmethodsareadequatelyvalidated.Avalidationplanshallbeinplacepriortostartinganyvalidationexperiments.Thevalidationplanisseparatefromalaboratory’sstandardoperatingprocedure(SOP)formethodvalidation.Theplanshallincludetheinstrumentalmethod(s)andsamplepreparationtechnique(s)tobeusedforaspecificmethod.Further,itshalldocumentthevalidationrequirementsofthemethod,aswellasthelimitsofthemethodthatwillallowittobefitforuse.Thevalidationplanprovidesdirectionfortheexperimentsthatwillbeperformedandacceptancecriteriaforeachparameter.AnnexBandAnnexCprovideexamplesofvalidationplans.

7. RequiredValidationParametersBasedonScopeoftheMethod

7.1. Thescopeofforensictoxicologymethodsistypicallycategorizedasscreeningmethods,qualitativeconfirmation/identificationmethods,orquantitativemethods.Assuchthefollowingvalidationparametersshallbeevaluated.

7.2. Screening(Immunoassay‐based):

a) limitofdetection;

b) precision(atthedecisionpoint);

c) dilutionintegrity(ifapplicable);

d) stability(ifapplicable).

7.3. Screening(allothers):

a) interferencestudies;

b) limitofdetection;

c) ionizationsuppression/enhancement(forapplicabletechniques,suchasLC/MS);

d) dilutionintegrity(ifapplicable);

e) stability(ifapplicable).

7.4. Qualitativeconfirmation/identification:

a) carryover;

b) interferencestudies;

c) ionizationsuppression/enhancement[forapplicabletechniques,suchasliquidchromatography/massspectrometry(LC/MS)];

Page 11: Standard Practices for Method Validation Forensic Toxicology · PDF fileDarcie Wallace‐Duckworth, Ph.D.; Aegis Sciences Corporation; Nashville, Tennessee Jeff Walterscheid, Ph.D.,

ASBStandard036,1stEd.‐2017

5

d) limitofdetection;

e) dilutionintegrity(ifapplicable);

f) stability(ifapplicable).

7.5. Quantitativeanalysis:

a) bias;

b) calibrationmodel;

c) carryover;

d) interferencestudies;

e) ionizationsuppression/enhancement(forapplicabletechniques,suchasLC/MS);

f) limitofdetection;

g) limitofquantitation;

h) precision;

i) dilutionintegrity(ifapplicable);

j) stability(ifapplicable).

8. SpecificRequirementsforConductingMethodValidationExperiments

8.1. General

Allvalidationexperimentsshallbeconductedusingfortifiedsamplesofthematrixforwhichthemethodisintended,unlessotherwisenoted.Insomeinstances(e.g.,immunoassayscreens),itmaybemoreappropriatetoanalyzepreviouslycharacterizedhumansamplesinsteadoffortifiedsamplesforselectedmethodvalidationstudies.

Validationstudiesshallbeconductedinamannersimilartocasework.Thismayincludeconductingvalidationstudiesondifferentdays,bydifferentanalysts,onallidenticalinstrumentstobeutilizedfortheassay,andensuringthattheinstrumentsmeetthesamedailyperformancerequirementsasforcasework.

Wheneverpossible,fortifiedmatrixsamplesshallbepreparedfromreferencematerialsthatarefromadifferentsource(e.g.,supplierorlotnumber)thanusedtopreparecalibrationsamples.Ininstanceswherethesamesourceshallbeutilized,separateweighingsorsolutionsshallbeusedtopreparethesesamples.

Thefollowingrequirementsaretheminimumforassessingthelistedvalidationparametersinforensictoxicologymethods.Theyarelistedalphabeticallyandnotnecessarilyinproceduralorder.SomeofthevalidationexperimentsaredemonstratedinAnnexBandAnnexC.Section11providesguidanceonhowtoefficientlyperformvalidationexperiments.

Page 12: Standard Practices for Method Validation Forensic Toxicology · PDF fileDarcie Wallace‐Duckworth, Ph.D.; Aegis Sciences Corporation; Nashville, Tennessee Jeff Walterscheid, Ph.D.,

ASBStandard036,1stEd.‐2017

6

8.2. BiasandPrecision1

8.2.1. Bias

Biasstudiesshallbecarriedoutforallquantitativemethods.Thesecanbeconductedconcurrentlywithprecisionstudies.Biasshallbemeasuredinpooledfortifiedmatrixsamplesusingaminimumofthreeseparatesamplesperconcentrationatthreedifferentconcentrationpools(low,mediumandhigh2)overfivedifferentruns.Thebiasshallbecalculatedforeachconcentrationusingthefollowingformula:

%

Themaximumacceptablebiasis±20%ateachconcentration.Forsomeanalyseswherelessbiasisrequired(e.g.,ethanol),abiasof±10%orbetterisexpected.Itisrecommendedthatthesamedatausedinbiasstudiesalsobeusedforprecisioncalculations.

8.2.2. Precision

8.2.2.1. General

Precisionstudiesshallbecarriedoutforallquantitativemethods,aswellasatthedecisionpointforimmunoassays.Thesestudiescanbecarriedoutconcurrentlywithbiasstudies,ifrequiredinthevalidationplan.

Precisionisexpressedasthecoefficientofvariation(%CV).Themeanandstandarddeviation(s)oftheresponseiscalculatedforeachconcentrationtodeterminethe%CV.

%

8.2.2.2. PrecisionofImmunoassaysatDecisionPoint

Forimmunoassaysthatcross‐reactwithabroadclassofcompounds(e.g.,benzodiazepines,opiates,amphetamines),ifalaboratorydeclarestotheircustomersthattheyareabletodetectanalyteswithlowcross‐reactivity(lessthanorequaltothetargetanalyte)usingtheimmunoassay,itisessentialtoverifytheirabilitytodetectthesecompounds.Forexample,abenzodiazepineimmunoassaytargetedforoxazepamtypicallyhaslowcross‐reactivitiestootherbenzodiazepinessuchaslorazepam.Ifthelaboratoryusesthisimmunoassaykittoscreenforlorazepam,theyarerequiredtoevaluatetheassay’sabilitytoreliablydetectlorazepam,inadditiontooxazepam.Incontrast,ifalprazolamhasgreatercross‐reactivitythanoxazepam,thereisnorequirementtoevaluatetheabilitytodetectalprazolamprovidedthatthedecisionconcentrationforalprazolamisnotlowerthanthedecisionconcentrationforoxazepam.Thisevaluationmayrequireanadjustment

1Anaccuratemeasurementisonewithacceptablebiasandprecision.2Forpurposesofthisdocument,lowconcentrationsshallbenomorethanapproximately3timesthelowestendoftheworkingrangeofthemethodandhighconcentrationsshallbewithinapproximately80%(ormore)ofthehighestendoftheworkingrangeofthemethod,unlessotherwisenoted.Mediumconcentrationsshallbenearthemidpointofthelowandhighconcentrations. 

Page 13: Standard Practices for Method Validation Forensic Toxicology · PDF fileDarcie Wallace‐Duckworth, Ph.D.; Aegis Sciences Corporation; Nashville, Tennessee Jeff Walterscheid, Ph.D.,

ASBStandard036,1stEd.‐2017

7

orreevaluationofthedecisionpointorthetargetcompounddependingontheneedsandmissionofthelaboratory.

Ataminimum,precisionatthedecisionpointshallbeassessedusingthreeseparatesamplesfromthreedifferentconcentrationpoolsoverfivedifferentruns:

a) generallynomorethan50%belowdecisionpoint,

b) atdecisionpoint,and

c) generallynomorethan50%forurineand100%forallothermatricesabovedecisionpoint.

Immunoassaysarematrixdependentandtheconcentrationrangearoundthedecisionpointmaybewiderformorecomplexmatricesincomparisontourine.

EnzymeLinkedImmunosorbentAssays(ELISA):Thedifferencebetweentheabsorbanceofanegativesample(Bo)andtheabsorbanceofaspecimen(B)shouldbemeasuredasapercentage:[B/Bo]x100andnotanabsolutevalue.

Liquidreagentassays(e.g.enzymemultipliedimmunoassaytechnique[EMIT],clonedenzymedonorimmunoassay[CEDIA®3],etc.):Theabsorbancevaluecanbeuseddirectly.

a) Runeachconcentration3timesinfiveseparateruns.

b) Calculatethegrandmean(n=15)andrelatedgrandstandarddeviationateachconcentration.

c) The%CVshallnotexceed20%ateachconcentrationusingall15sampleresultsperconcentration.

d) Thegrandmeanplusorminustwostandarddeviations(stddev)foreachconcentrationshallnotoverlapforthedecisionpointtobevalid.

ItshouldbenotedthatthedataobtainedfromthesestudiesarealsousedtoestimatetheLODforimmunoassays.

8.2.2.3. PrecisionofQuantitativeProcedures

8.2.2.3.1. General

Forquantitativeprocedures,twodifferenttypesofprecisionstudiesshallbeassessedduringmethodvalidation:within‐runprecisionandbetween‐runprecision.Ataminimum,precisionshallbeassessedusingthreedifferentsamplesperconcentrationatthreedifferentconcentrationpools(low,mediumandhigh)overfivedifferentruns.Thedifferentrunsusedtoevaluateprecisionmaybeperformedwithinthesameday,providedadifferentcalibrationcurveisusedforeachrun.

The%CVshallnotexceed20%ateachconcentration.Itisnotedthatcertainanalyticalmethods(e.g.,bloodalcoholanalysis)mayrequireamuchlowercoefficientofvariation(≤10%CV).

3Thistermisusedasanexampleonly,anddoesnotconstituteanendorsementofthisproductbytheAAFSStandardsBoard.

Page 14: Standard Practices for Method Validation Forensic Toxicology · PDF fileDarcie Wallace‐Duckworth, Ph.D.; Aegis Sciences Corporation; Nashville, Tennessee Jeff Walterscheid, Ph.D.,

ASBStandard036,1stEd.‐2017

8

8.2.2.3.2. Within‐RunPrecisionCalculations

Within‐runprecisionsarecalculatedforeachconcentrationseparatelyforeachofthefiveruns.Within‐runprecisionmaybecalculatedusingthedatafromeachrun’striplicateanalysesateachconcentrationas:

%stddeviation

100

Thelargestcalculatedwithin‐run%CVforeachconcentrationwillbeusedtoassesswithin‐runprecisionacceptability.

8.2.2.3.3. Between‐RunPrecisionCalculations

Between‐runprecisioniscalculatedforeachconcentrationoverthefiveruns.Thismaybedonebyusingthecombineddatafromallreplicatesofeachconcentrationas:

%

100

8.2.2.3.4. One‐WayAnalysisofVariance(ANOVA)ApproachtoCalculateCombinedWithin‐RunandBetween‐RunPrecision

Bothwithin‐runandbetween‐runprecisionsmaybecalculatedusingtheone‐wayANOVAapproachwiththevariedfactor(runnumber)asthegroupingvariable.TheANOVAcalculationscanbeeasilyperformedusingaspreadsheetorastatisticalsoftwareprogram.

Usingthisapproach,within‐runprecisionsarecalculatedforeachconcentrationas:

%

100

whereMSwgisthemeansquarewithingroupsobtainedfromtheANOVAtable.

Likewise,between‐runprecisionsarecalculatedas:

%

1 ∗

100

whereMSbgisthemeansquarebetweengroupsobtainedfromtheANOVAtableandnisthenumberofobservationsineachgroup(e.g.,n=3ifdoingtriplicateanalyses).AnnexBprovidesanexampleofhowtheANOVAapproachmaybeusedtocalculatewithin‐runandbetween‐runprecision.

8.3. CalibrationModel

Thecalibrationmodelshallbedeterminedforallquantitativemethods.Thisisaccomplishedbyfirstdeterminingtherangeofanalyteconcentrationsoverwhichthemethodshallbeused,

Page 15: Standard Practices for Method Validation Forensic Toxicology · PDF fileDarcie Wallace‐Duckworth, Ph.D.; Aegis Sciences Corporation; Nashville, Tennessee Jeff Walterscheid, Ph.D.,

ASBStandard036,1stEd.‐2017

9

sometimescalledtheworkingrange.Withinthisrange,therewillbeacorrelationbetweensignalresponse(e.g.,peakarearatioofanalyteandinternalstandard)andanalyteconcentrationinthesample.Thecalibrationmodelisthemathematicalmodelthatdescribesthiscorrelation.Thechoiceofanappropriatemodel(i.e.,linearorquadratic)isnecessaryforaccurateandreliablequantitativeresults.

Calibratorsamplesareanalyzedtoestablishthecalibrationmodel.Theuseofmatrix‐matchedcalibratorsamplesisencouraged,butnotrequired.Regardlessofthematrixusedtopreparecalibratorsamples,alaboratoryshalldemonstrateacceptablebiasandprecisionwithcontrolsamplespreparedinallmatricesintendedtobeanalyzedbythemethod(seeSection7.2).Forexample,bloodalcoholmethodsmaydemonstrateacceptablebiasandprecisioninwholebloodcontrolsusingaqueouscalibratorsamples.Likewise,acceptablebiasandprecisionmaybedemonstratedusingcalibratorsamplespreparedinwholebloodbutusedtoquantitateanalytesindifferentmatrices(e.g.,postmortemtissues,serum,urine).

Thecalibratorsamplesshallspantherangeofconcentrationsexpected.Atleastsixdifferentnon‐zeroconcentrationsshallbeusedtoestablishthecalibrationmodel.Theconcentrationsshallbeappropriatelyspacedacrossthecalibrationrangetoestablishthemostappropriatecalibrationmodel.Aminimumoffivereplicatesperconcentrationisrequired.Thereplicatestoestablishthecalibrationmodelshallbeinseparateruns.Alldatapointsfromthefiverunsshallbeplottedtogether(usingastatisticalsoftwarepackage)toestablishthecalibrationmodel.Theoriginshallnotbeincludedasacalibrationpoint.

Themostoftenusedcalibrationmodelisthesimplelinearregressionmodelusingtheleastsquaresmethod.However,thismodelisonlyapplicablewhenthereisconstantvarianceovertheentireconcentrationrange.Whenthereisanotabledifferencebetweenvariancesatthelowestandhighestconcentrations,aweightedleastsquaresmodelorotherappropriatenon‐linearmodelshallbeapplied.4Thisisgenerallythecasewhentheconcentrationrangeexceedsoneorderofmagnitude.Ultimately,thebestapproachistousethesimplestcalibrationmodelthatbestfitstheconcentration‐responserelationship.

Althoughithasbecomewidespreadpractice,itisemphasizedthatacalibrationmodelcannotbeevaluatedsimplyviaitscorrelationcoefficient(r).Instead,acalibrationmodelshallbevisuallyevaluatedusingstandardizedresidualplots.Theseallowonetocheckforoutliersthatshallbeeliminatediffoundtobestatisticallysignificant(e.g.,outside±3standarddeviations).Further,residualplotsallowonetodetermineifthevariancesappeartobeequalacrossthecalibrationrangewithasimilardegreeofscatterateachconcentration.Theyalsogiveanindicationifthechosenmodeladequatelyfitsthedata.Forexample,randomdistributionofindividualresidualsaroundthezeroline(homoscedasticity)suggeststhatalinearmodelisappropriate.

Finally,thereareotherappropriatealternativestoevaluatecalibrationmodels(i.e.,ANOVAlack‐of‐fittestforunweightedlinearmodels,checkingforsignificanceofthesecondorderterminquadraticmodels,assessmentofcoefficientofdeterminationforlinearmodels).

Ifalinearcalibrationmodelhasbeenestablished,fewercalibrationsamples(i.e.,fewerlevelsorsingle/fewerreplicates)maybeusedforroutineanalysis.However,iffewercalibrationsamplesarechosen,thesamecalibrators(e.g.,number,replicates,andconcentrationlevel)shallbeusedtoconstructthecalibrationcurvesusedforthebiasandprecisionstudies.Furtherthecalibrationdata

4Ingeneral,non‐linearmodelsmayrequireadditionalcalibratorstoaccuratelycharacterizethecurve.

Page 16: Standard Practices for Method Validation Forensic Toxicology · PDF fileDarcie Wallace‐Duckworth, Ph.D.; Aegis Sciences Corporation; Nashville, Tennessee Jeff Walterscheid, Ph.D.,

ASBStandard036,1stEd.‐2017

10

shallincludethelowestandhighestcalibrationlevelsusedtoestablishthemodel,aswellasincludenofewerthanfournon‐zerocalibrationpoints.

Additionally,oncethecalibrationmodelisestablishedforavalidatedmethod,itshallnotbearbitrarilychangedtoachieveacceptableresultsduringagivenanalyticalrun.Forexample,oneshallnotswitchfromanunweightedlinearmodeltoaweightedlinearmodelinordertoadjustforchangesininstrumentperformance.

8.4. Carryover

Analytecarryoverintoasubsequentsamplemayleadtoaninaccuratequalitativeorquantitativeresultwhenusinginstrumentalmethods.Carryovershallbeevaluatedduringmethodvalidationintendedforconfirmationand/orquantitation,unlessalaboratoryisconstantlyaddressingcarryoverintheirqualityassurance(QA)/qualitycontrol(QC)practices.

Toevaluatecarryoveraspartofmethodvalidation,blankmatrixsamplesareanalyzedimmediatelyafterahighconcentrationsampleorreferencematerial.Thehighestfortifiedconcentrationatwhichnoanalytecarryoverisobserved(abovethemethod'sLOD)intheblankmatrixsampleisdeterminedtobetheconcentrationatwhichthemethodisfreefromcarryover.Thiscarryoverconcentrationforeachanalyteinthemethodshallbeconfirmedusingtriplicateanalyses.Itisacceptabletolimitthecarryoverstudytothehighestpointofyourcalibrationcurveinquantitativeassays.

Ifpossible,theanalyticalprocedurewillbemodifiedtoremoveanycarryover.Incaseswhenitisnotpossibletoeliminatethecarryover,theSOPshalladdresshowcarryoverwillbemanaged.

8.5. InterferenceStudies

8.5.1. General

Interferingsubstancesfromcommonsourcesshallbeevaluatedinallscreening(exceptimmunoassays),qualitativeidentification,andquantitativemethods.

8.5.2. EvaluatingMatrixInterferences

Wheneverpossible,blankmatrixsamplesfromaminimumoftendifferentsourceswithouttheadditionofaninternalstandard(whenusedinthemethod)shallbeanalyzedtodemonstratetheabsenceofcommoninterferencesfromthematrix.Whilethisapproachmaydetectthemorecommonmatrixinterferences,itisrecognizedthatlesscommoninterferencesmaynotbedetected.

8.5.3. EvaluatingInterferencesfromStable‐IsotopeInternalStandards

Formethodsemployingstableisotopeinternalstandards,theisotopically‐labeledcompoundsmaycontainthenon‐labeledcompoundasanimpurity.Additionally,themassspectraofthelabeledanalogsmaycontainfragmentionswiththesamemass‐to‐chargeratiosasthesignificantionsofthetargetanalyte.Inbothinstances,analyteidentificationorquantitationcouldbeimpacted.

Stable‐isotopeinternalstandardinterferencesshallbeassessedbyanalyzingablankmatrixsamplefortifiedwiththeinternalstandardandmonitoringthesignaloftheanalyte(s)ofinterest.InterferencesbelowtheLODoftheassaymaybeinsignificantdependingonthelaboratory’smission.

Page 17: Standard Practices for Method Validation Forensic Toxicology · PDF fileDarcie Wallace‐Duckworth, Ph.D.; Aegis Sciences Corporation; Nashville, Tennessee Jeff Walterscheid, Ph.D.,

ASBStandard036,1stEd.‐2017

11

Likewise,ablankmatrixsamplefortifiedwiththeanalyte(s)attheupperlimitofthecalibrationrangeshallbeanalyzedwithoutinternalstandardtoevaluatewhetherrelevantamountsoftheunlabeledanalyteionsappearasisotopically‐labeledcompoundfragmentswhichcouldimpactquantitation.

8.5.4. EvaluatingInterferencesfromOtherCommonlyEncounteredAnalytes

Forallmethodsotherthanimmunoassays,itisnecessarytoevaluateotheranalyteswhichmaybeexpectedtobepresentincasesamplesfortheirpotentialtointerferewiththemethod’sanalytes.Forexample,amethoddevelopedtoanalyzebloodforcocaineshallevaluatewhetherothercommondrugsofabuse,metabolites,andstructurally‐similarcompoundsinterferewiththeassay.Likewise,aheadspacegaschromatograph‐flameionizationdetection(GC‐FID)methoddevelopedforethanolshallevaluatewhetherothercommonvolatileorganiccompoundsinterferewiththeassay.

Thisevaluationisaccomplishedbyanalyzingfortifiedmatrixsamples,previouslyanalyzedcasesamples,orneatreferencematerialsofthepotentialinterference(s)athightherapeuticorlethalconcentrations,dependingontheanalyte,thematrix,andthelaboratory’smission.Themostcommondrugs/metabolitesencounteredinthelaboratoryshallbeincludedintheevaluationtogetherwithothercommondrugswithintheclassification,whereappropriate.

8.6. IonizationSuppression/Enhancement

8.6.1. General

Theenhancementorsuppressionofanalyteionizationresultingfromthepresenceofco‐elutingcompoundsisaphenomenoncommonlyencounteredinliquidchromatography/massspectrometry(LC‐MS)applications.

Whenaveragesuppressionorenhancementoftheanalyte’stargetionoriontransitionandqualifyingions,ifapplicable,exceeds±25%orthe%CVofthesuppressionorenhancementexceeds20%,alaboratoryshalldemonstratethatthereisnoimpactonothercriticalvalidationparameters.Forexample,suppressionorenhancementofionizationismostlikelytoimpactthelimitofdetectionofaqualitativemethod.Likewise,thelimitofdetection,thelimitofquantitation,andbiasmaybeaffectedbyionizationsuppressionorenhancementinquantitativemethods.Theinfluenceontheaboveparametersshallbeassessedbyincreasingthenumberofdifferentsourcesofblankmatricesusedintheirevaluation.Forexample,iftheaveragesuppressionorenhancementexceeds±25%,theLODdeterminationshallbeperformedinmorethanthreeblankmatrices.

Laboratoriesshallalsoassesstheimpactofionizationsuppressionorenhancementonthemethod’sinternalstandards.

Ionizationsuppression/enhancementshallbeevaluatedusingeitheroftheapproachesthatfollow.

8.6.2. Post‐columnInfusiontoAssessIonizationSuppression/Enhancement

Thisapproachprovidesinformationonretentiontimeswhereionizationsuppression/enhancementoccurs.Itisusefulformethoddevelopment,aswellastoassesstheamountofionizationsuppressionorenhancementforLC‐MSbasedconfirmationmethods.Solutionsatbothlowandhighconcentrationsoftheanalyteareindividuallyinfusedwithasyringepumpintotheeluentfromthecolumnviaapost‐column“T”‐connectorandaconstantbaseline

Page 18: Standard Practices for Method Validation Forensic Toxicology · PDF fileDarcie Wallace‐Duckworth, Ph.D.; Aegis Sciences Corporation; Nashville, Tennessee Jeff Walterscheid, Ph.D.,

ASBStandard036,1stEd.‐2017

12

signalfortheanalyteofinterestismonitored.Wheneverpossible,aminimumoftendifferentprocessedblankmatrixsamplesthatarerepresentativeofthequalityofsamplestypicallyencounteredincaseworkareinjectedintotheLC‐MSduringinfusionofthesolutions.5Ifthereisanyconsiderablesuppressionorenhancement(>25%)oftheinfusedanalytesignalattheretentiontimeoftheanalyte,thenmodificationofthechromatographicsystemorthesamplepreparationmayberequiredtominimizetheeffectofionizationsuppressionorenhancement.

8.6.3. Post‐ExtractionAdditionApproachtoAssessIonizationSuppression/Enhancement

Thisapproachyieldsaquantitativeestimationofionizationsuppression/enhancement.ItisusefulforassessingtheamountofionizationsuppressionorenhancementforLC‐MSbasedquantitativemethods.Twodifferentsetsofsamplesarepreparedandtheanalytepeakareasofneatstandardsarecomparedtomatrixsamplesfortifiedwithneatstandardsafterextractionorprocessing.

Setoneconsistsofneatstandardspreparedattwoconcentrations–onelowandonehigh.Eachoftheseneatstandardsisinjectedaminimumofsixtimestoestablishameanpeakareaforeachconcentration.

Settwoconsistsofaminimumoftendifferentmatrixsources,wheneverpossible.6Eachmatrixsourceisextractedinduplicate.Aftertheextractioniscomplete,eachmatrixsampleisthenreconstituted/fortifiedwitheithertheloworhighconcentrationneatstandard.

Theaverageareaofeachset(X )isusedtoestimatethesuppression/enhancementeffectateachconcentrationasfollows:

%X 2

X 11 100

Twoionizationsuppressionorenhancementpercentageswillbeestablished–oneatthelowconcentrationandoneatthehighconcentration.

8.7. LimitofDetection

8.7.1. General

Limitofdetection(LOD)studiesshallbecarriedoutforallmethods.ThereareanumberofdifferentapproachesfordeterminingtheLOD.Selecttheapproachthatprovidesthemostreasonableestimationofthedetectionlimitgiventheanalyticalinstrumentation(orlackthereof)utilizedinthemethod.

Amethod'sLODincorporatesinstrumentalperformance,aswellasthesamplematrixandinherentprocedurallimitations.Therefore,theLODshallbeassessedovermultiplerunsusingfortifiedmatrixsamplesfromatleastthree(3)differentsourcesofblankmatrix,unlessotherwiseindicatedbelow.Further,whenpossible,itisnecessarytoensurethedefinedLODstillsatisfiesthenecessary

5Additionalmatrixsamplesmayberequiredinpostmortemtoxicologygiventhevarietyofsampleconditionstypicallyencounteredinthiswork.6Additionalmatrixsamplesmayberequiredinpostmortemtoxicologygiventhevarietyofsampleconditionstypicallyencounteredinthiswork.

Page 19: Standard Practices for Method Validation Forensic Toxicology · PDF fileDarcie Wallace‐Duckworth, Ph.D.; Aegis Sciences Corporation; Nashville, Tennessee Jeff Walterscheid, Ph.D.,

ASBStandard036,1stEd.‐2017

13

parametersforidentification.Forexample,matchingofamassspectrumtoareferencespectrumwithinanacceptablematchfactorcanonlybeachievedbyexperimentaldeterminationofLODratherthantheoreticalcalculation.

TheLODshallbedeterminedbyoneofthefollowingapproaches.

8.7.2. EstimatingLODforaNon‐InstrumentalMethod

Thisapproachismostoftenusedwhenscreeningforthepresenceorabsenceofaspecifiedanalyteorclassofanalytes(e.g.,colortests).ToestimatetheLODforavisual,non‐instrumentalmethod,samplesfortifiedwithdecreasingconcentrationsofanalyteareanalyzedoveraminimumofthreeruns.Whenpossible,multipleanalystsshouldbeinvolvedinestimatingtheLODusingthisapproach.ThelowestconcentrationofanalytethatyieldsapositiveresultonallrunsisconsideredtheLOD.

8.7.3. UsingtheLowestNon‐ZeroCalibratorastheLOD

Thistechniqueisusefulforquantitativemethods.Insomeinstances,itmaybesufficienttodefinetheLODasthevalueofthelowestnon‐zerocalibrator.Aminimumofthreesamplesperrunofthelowestcalibratorshalleachbeanalyzedoverthreerunstodemonstratethatalldetectionandidentificationcriteriaaremet.Ifdesired,itisacceptabletousethesamecalibratorreplicatesusedtoestablishthecalibrationmodel(Section8.3)forsomeofthesamplesusedforthismethod,butadditionalsamples/replicateswillbeneededtomeettheminimumofninedatapoints.

8.7.4. UsingtheDecisionPointConcentrationastheLOD

Thistechniqueisusefulforqualitativeandquantitativemethods.Insomeinstances,itmaybesufficienttodefinetheLODasthevalueofanadministratively‐defineddecisionpoint.Forexample,alaboratorymaychoosetodefineamethod’sLODforethanolas0.02g/dLforbloodbasedonthelaboratory’sadministrativelydefineddecisionpointforreportingthisanalyte,eventhoughalowerLODisanalyticallyachievable.Likewiseforanimmunoassay,alaboratorymaychoosetousethedecisionpointconcentration[thathasdemonstratedappropriateprecision(Section8.2.2.2)]astheassay’sLOD.Aminimumofthreesamplesperrunofafortifiedmatrixsampleattheconcentrationofthedecisionpointshallbeanalyzedoverthreerunstodemonstratethatalldetectionandidentificationcriteriaaremet.ThedatageneratedfortheprecisionatthedecisionpointconcentrationinimmunoassayswillsufficeforthisLODrequirement.

8.7.5. EstimatingLODUsingBackgroundNoise

8.7.5.1. General

TheseapproachesfordeterminingLODareonlyusefulforinstrumentalmethodsthatdemonstratebackgroundnoise.Aminimumofthreedifferentblanksourcematricesshallbeused.Forexample,iftheassayistobeusedforpostmortembloodsamples,threeindependentrepresentativepostmortembloodsourcesareneeded.

8.7.5.2. EstimatingLODUsingReferenceMaterials

Three(ormore)sourcesofblankmatrixsamplesfortifiedatdecreasingconcentrationsareanalyzedinduplicate(twoseparatesamples)foratleastthreeruns.TheLODisconsideredthelowestconcentrationthat1)yieldsareproducibleinstrumentresponsegreaterthanorequalto3.3

Page 20: Standard Practices for Method Validation Forensic Toxicology · PDF fileDarcie Wallace‐Duckworth, Ph.D.; Aegis Sciences Corporation; Nashville, Tennessee Jeff Walterscheid, Ph.D.,

ASBStandard036,1stEd.‐2017

14

times7thenoiselevelofthebackgroundsignalfromthenegativesamples,and2)achievesacceptablepredefineddetectionandidentificationcriteria(e.g.,retentiontime,peakshape,massspectralionratios).

Whileitmaybepossibletovisuallyassessthesignaltonoiseratio,suchanapproachissubjective.Thereforecalculatethesignal‐to‐noiseratiooruseinstrumentationsoftwaretodeterminetheratio.Ifmanuallycalculated,thesignalisdefinedastheheightresponseoftheanalytepeakandthenoiseisdefinedastheamplitudebetweenthehighestandlowestpointofthebaselineinanareaaroundtheanalytepeak.Eachreplicateshallbeindependentlyevaluated.

‐ ‐

8.7.5.3. EstimatingLODUsingStatisticalAnalysisofBackground

TodeterminetheLODusingthisapproach,aminimumofthreesourcesofblankmatrixareanalyzedinduplicate(twoseparatesamples)overatleastthreeruns.Theaverageandstandarddeviation(sblank)ofthesignal(e.g.,integratedareaofsignalattheanalyte’sretentiontime)fromallblankmatrixsamplesiscalculated.Likewise,fortifiedmatrixsamplesofdecreasingconcentrationareanalyzedinduplicateoverthecourseofatleastthreeruns.Thelowestconcentrationofafortifiedmatrixsamplethatconsistentlyyieldsasignalgreaterthantheaveragesignaloftheblank

matrixsamples(X blank)plus3.3timesthestandarddeviationisidentifiedastheLOD:

LOD=X blank+3.3sblank

8.7.6. EstimatingLODUsingaLinearCalibrationCurve

Thistechniqueisusefulforanyquantitativemethodthatfollowsalinearcalibrationmodel.Aminimumofthreeindependentcalibrationcurvesareconstructedacrosstheworkingrangeoftheanalyticalmethodoverdifferentruns.TheLODcanbeestimatedfromthestandarddeviationoftheyintercept(sy)andtheaverageslope(Avgm)as:

LOD=(3.3sy)/Avgm

8.8. LowerLimitofQuantitation

8.8.1. General

Lowerlimitofquantitation(LLOQ)studiesshallbecarriedoutforallquantitativemethods.Thereareanumberofdifferentapproachesfordeterminingamethod'sLLOQ.Selecttheapproachthatprovidesthemostreasonableestimationofthequantitationlimitgiventheanalyticalinstrumentationutilizedinthemethod.Amethod'sLLOQincorporatesinstrumentalperformance,aswellasthesamplematrixandinherentprocedurallimitations.TheLLOQshallbeassessedovermultiplerunsusingfortified,blankmatrixsamplesfromatleastthreedifferentsourcesofblankmatrix,unlessotherwiseindicatedbelow.

7Useof3.3intheLODcalculationprovidesafalsepositiveerrorrateof0.0005%.(seeBoyd,RobertK.,CeciliaBasic,andRobertA.Bethem.TraceQuantitativeAnalysisbyMassSpectrometry.Hoboken,N.J.:JohnWiley(2008).

Page 21: Standard Practices for Method Validation Forensic Toxicology · PDF fileDarcie Wallace‐Duckworth, Ph.D.; Aegis Sciences Corporation; Nashville, Tennessee Jeff Walterscheid, Ph.D.,

ASBStandard036,1stEd.‐2017

15

8.8.2. UsingtheLowestNon‐ZeroCalibratorastheLLOQ

Insomeinstances,itmaybesufficienttodefinetheLLOQasthevalueofthelowestnon‐zerocalibrator.Aminimumofthreesamplesperrunofthelowestcalibratorshallbeanalyzedoverthreerunstodemonstratethatalldetection,identification,bias,andprecisioncriteriaaremet.Ifdesired,itisacceptabletousethesamecalibratorreplicatesusedtoestablishthecalibrationmodel(Section8.3)forsomeofthesamplesusedforthismethod,butadditionalsamples/replicateswillbeneededtomeettheminimumofninedatapoints.

8.8.3. UsingDecisionPointConcentrationastheLLOQ

Insomeinstances,itmaybesufficienttodefinetheLLOQasthevalueofanadministratively‐defineddecisionpoint.Forexample,alaboratorymaychoosetodefineamethod’sLLOQforGHBas5mg/Lforantemortembloodbasedonthelaboratory’sadministrativelydefineddecisionpointforreportingthisanalyte,eventhoughalowerLLOQisanalyticallyachievable.Theconcentrationsusedforthisapproachshallremainwithinthepreviouslyestablishedcalibrationcurve.Aminimumofthreesamplesperrunofafortifiedmatrixsampleattheconcentrationofthedecisionpointshallbeanalyzedoverthreerunstodemonstratethatalldetection,identification,bias,andprecisioncriteriaaremet.

8.8.4. EstimatingLLOQUsingReferenceMaterials

Three(ormore)sourcesofblankmatrixsamplesfortifiedatdecreasingconcentrationsareanalyzedinduplicate(twoseparatesamples)overaminimumofthreeruns.Theconcentrationsusedforthisapproachmaybelowerthanthepreviouslyestablishedcalibrationcurve,ifyoudesiretoreportquantitativevaluesunderthelowestpointofyourcalibrationcurve.Inthiscase,biasandprecisionbelowthelowestcalibratorshallbeestablishedwithqualitycontrolsampleswithineachanalyticalbatch.Thelowestconcentrationthatiscapableofachievingacceptabledetection,identification,bias,andprecisioncriteriainallthreefortifiedsamplesisconsideredtheestimatedLLOQ.

9. AdditionalValidationParameters

9.1. General

Incertaininstances,itisimportanttoevaluateadditionalvalidationparameters,ifapplicable.Theseincludeanalytestabilitywhenthematrixisfrozenandthawed,processedsamplestabilityandtheeffectofsampledilutiononbiasandprecision.Alaboratoryshallincludetheseparametersintheirvalidationplan,anddetermineiftheyareapplicabletotheanalyticalmethodoriftheyarealreadyaddressedthroughothermeans(i.e.,qualityassurancepractices,publishedreferences).Thelaboratoryvalidationplanshallincludedocumentationofthisevaluation.

9.2. DilutionIntegrity

Theeffectofsampledilutionshallbedeterminedduringvalidationofquantitativemethodsifthisisaroutinepracticewithinthelaboratory.Attimes,thismaybeduetolowspecimenvolumerequiringthesampleorassaytobeadjustedappropriately.Inotherinstances,excessivelyhighconcentrationsmaybeencounteredthatareabovetheestablishedcalibrationrange.Tobringtheanalyteconcentrationwithinthevalidatedconcentrationrange,thelaboratoryproceduremayallowforreanalysisafterdilutionofthesample.

Page 22: Standard Practices for Method Validation Forensic Toxicology · PDF fileDarcie Wallace‐Duckworth, Ph.D.; Aegis Sciences Corporation; Nashville, Tennessee Jeff Walterscheid, Ph.D.,

ASBStandard036,1stEd.‐2017

16

Ifdilutionofasampleisallowedbecauseofhighanalyteconcentrationorlowsamplevolume,thenthelaboratoryshallevaluatetheeffectofdilutiononthemethod'sbiasandprecision.Thisisaccomplishedbyrepeatingbiasandwithin‐runprecisionstudiesatcommondilutionratios(e.g.,1:2,1:10,1:50)utilizedbythelaboratoryanddeterminingifperformancecriteriaarestillmet.

9.3. Stability

9.3.1. General

Analytestabilitymaybeaffectedbyanumberofvariablesincludingstorageconditionsandsampleprocessing.Stabilityexperimentsshallbedesignedandcarriedouttoaddresssituationsnormallyencounteredinlaboratoryoperations,unlessanalytestabilityisalreadyaddressedthroughothermeans(i.e.,qualityassurancepractices,publishedreferences).Allstabilitydeterminationsshallincludeasetofsamplespreparedfromreferencematerials.Thereferencematerialsareusedtopreparefortifiedsamplesoftheanalyte(s)atbothlowandhighconcentrationsineachmatrixthatwillbeanalyzedinthemethod.Itisimportantthatalargeenoughvolumeofeachofthesefortifiedsamplesispreparedinordertocompletethestudiesusedinthesectionsbelow.Thesefortifiedsamplesshallinitiallybeanalyzedintriplicatetoestablishtimezeroresponses.Theaveragetimezeroresponseforeachsetofsamplesiscomparedtotheaveragesignalsfromeachofthefollowingstabilitystudies.Linearregressionoftheaveragesignal(e.g.,peakareas8orratiosofpeakareaofanalytetointernalstandard)versustimewillallowforanassessmentoftrends.Alternatively,concentrationsateachtimeintervalcouldbemonitoredprovidedtheconcentrationdeterminationisbasedonthetimezerocalibrationcurve.

9.3.2. Stability–Freeze/Thaw9

Ifitispartofalaboratory’sstandardpracticetofreezesamplespriortoanalysisandtherearenopublisheddatatorelyupon,analytestabilityshallbedeterminedafterthreefreezeandthawcycles.Theabovefortifiedsamples(Section8.3)arealiquotedintoaminimumofthreeseparatestoragecontainersperconcentrationandthenfrozenattheintendedstoragetemperaturefor24hours.Thisisfollowedbyanunassistedthawatroomtemperature.Whencompletelythawed,thefirstsetofsamplesshallbeanalyzedintriplicate,whiletheothersarerefrozenfor12to24hoursunderthesameconditions.Thefreeze/thawcycleandanalysisshallberepeatedtwomoretimes.Theanalyteshallbeconsideredasstableuntiltheaveragesignal(e.g.,peakareaorratiosofpeakareaofanalytetointernalstandard)comparedtothetimezeroaveragesignalfallsoutsideofthemethod’sacceptablebias.Forexample,ifthemethodbiasis±10%andthetimezeroaveragesignalis100,000,theanalyteisconsideredstableuntiltheaveragesignalfallsoutsideofthe90,000–110,000range.

9.3.3. Stability–ProcessedSample

Circumstancesmayariseinwhichsamplesthathaveundergoneroutinepreparationforinstrumentalanalysiscannotbeimmediatelyanalyzed.Itmaybenecessarytorunthesamplethefollowingdayorlater.Intheseinstances,itisimportanttoevaluatethelengthoftimeaprocessed

8Whenmonitoringpeakareas,theinstrument’sresponseshouldbeconstantoverseveraldaysforreliableinterpretationofthedata.9Itisrecognizedthatfreeze/thawandstoragestabilitystudiesinsolidsamples(e.g.,hair,tissues,foodproducts)maynotbepossiblebyfortificationduetothenatureofthesematrices.Cautionshouldbeemployedininterpretingresultsofsolidsampleswhenstabilityinformationisnotavailable. 

Page 23: Standard Practices for Method Validation Forensic Toxicology · PDF fileDarcie Wallace‐Duckworth, Ph.D.; Aegis Sciences Corporation; Nashville, Tennessee Jeff Walterscheid, Ph.D.,

ASBStandard036,1stEd.‐2017

17

samplecanbemaintainedbeforeitundergoesunacceptablechanges,preventingreliableanalytedetection,identification,orquantitation.

TypicallyprocessedsamplesfortifiedperSection8.4arecombinedperconcentrationandthendividedintodifferentautosamplervials.Asindicatedabove,thefirstvialsofeachconcentrationareimmediatelyanalyzedintriplicatetoestablishthetimezeroresponses.Allremainingvialsarestoredinamannerthattheywouldtypicallybestoredduringroutineanalysis(e.g.,refrigerated,atroomtemperatureonautosampler).Theremainingvialsarethenanalyzedintriplicateatdifferenttimeintervals.Averageresponsesateachtimeintervalarecomparedtothetimezeroresponses.Theanalytewillbeconsideredstableuntiltheaveragesignal(e.g.,peakareaorratiosofpeakareaofanalytetointernalstandard)comparedtothetimezeroaveragesignalfallsoutsideofthemethod’sacceptablebias.Forexample,amethod’sbiaslimitis±15%andthetimezeroaveragesignalis100,000.Processedsamplesindifferentautosamplervialsareanalyzedrepeatedlyupto72hours.Theprocessedsample’sanalyteisconsideredstableuntiltheaveragesignalfallsoutsideofthe85,000–115,000range.

10. RequiredRevalidationofPreviouslyValidatedMethods

Modificationstoavalidatedmethodrequireevaluationtoconfirmthatthechangesdonothaveanadverseeffectonthemethod’sperformance.Thedecisionregardingwhichperformancecharacteristicsrequireadditionalvalidationisbasedonconsiderationofthespecificparameterslikelytobeaffectedbythechange(s).Thesechangesmayinclude,butarenotlimitedto:

a) analyticalconditions,

b) instrumentation,

c) sampleprocessing,

d) datasoftware.

Forexample,changesofextractionsolventorbuffermayaffectlinearity,interferences,LLOQ,precision,andbias.Achangeoftheanalyticalcolumnstationaryphaseorachangeinmobilephasecompositionmayaffectlinearityandinterferences.Further,considerationshouldbegiventoconductingparallelstudieswithknownorproficiencysamplesutilizingbothapreviouslyvalidatedmethodandthemodifiedmethodtoevaluatetheeffectsofthechanges.Thegoalistodemonstratetheimpactthechangeshaveontheperformanceofthepreviouslyvalidatedprocedure.

11. DocumentationRequirementsforMethodValidation

Recordkeepingisanessentialpartoflaboratoryoperatingproceduresandisakeycomponentofmethodvalidation.Thedatageneratedduringmethodvalidationstudiesshallbemaintainedandavailableforaudits,reviews,orinspections.Theserecordsshallbeorganizedforeasyretrievalandreview.

Methodvalidationrecordsshallincludeasummaryofthevalidationstudiesconductedandtheirresults.Theformatofthissummaryreportmaybeabriefbulletedreportortablesummaryformattofacilitateaswiftreviewofvalidationstudies.Thesummaryshallminimallyincludethefollowing:

a) scope;

Page 24: Standard Practices for Method Validation Forensic Toxicology · PDF fileDarcie Wallace‐Duckworth, Ph.D.; Aegis Sciences Corporation; Nashville, Tennessee Jeff Walterscheid, Ph.D.,

ASBStandard036,1stEd.‐2017

18

b) validationplan;

c) descriptionofalltheparametersevaluated,ifanyoftheparameterswerenotevaluated,thenthereasonshallbestatedorjustified;

d) samplepreparationstepstoincludeconcentrationsandmatrices;

e) rawdataorreferencetowheretherawdataarestored;

f) resultsandcalculations;

g) conclusions;

h) references;

i) documentationofmanagementreviewandapproval.

Itisimportantthatthevalidationrecordscontainspecificdetailsregardingthestudiesconducted,including:

a) individualsinvolvedinthemethodvalidation,

b) specificinstrumentation,

c) dates.

Methodvalidationdocumentationshallalsoincludeacopyofthenewlydevelopedanalyticalmethodorareferencetoitslocation.Further,validationdocumentationshouldberetainedforaminimumof10yearsafterthemethodisretired.

12. EfficiencywithValidation

Keepinmindthatsomevalidationexperimentsmaybeconductedconcurrentlywiththesamefortifiedsamples.AnnexD,E,andFpresentexampleapproachestoassistinstreamliningvalidationexperiments.

Page 25: Standard Practices for Method Validation Forensic Toxicology · PDF fileDarcie Wallace‐Duckworth, Ph.D.; Aegis Sciences Corporation; Nashville, Tennessee Jeff Walterscheid, Ph.D.,

ASBStandard036,1stEd.‐2017

19

AnnexA(informative)

FoundationalPrinciples

Customersofforensicscienceserviceprovidersrequirethatthemethodsusedtoanalyzeevidenceisfit forpurpose. Further,customersneedtoknowthatthemethod'slimitationsareunderstoodwhen used under normal operating conditions. This is one ofmany steps toward ensuring thatqualityresultsareprovidedinlegalmatters.

Page 26: Standard Practices for Method Validation Forensic Toxicology · PDF fileDarcie Wallace‐Duckworth, Ph.D.; Aegis Sciences Corporation; Nashville, Tennessee Jeff Walterscheid, Ph.D.,

ASBStandard036,1stEd.‐2017

20

AnnexB(informative)

QuantitationofDrugXinBloodValidationExample

Thefollowingisanexampleofsomeofthevalidationstepsoutlinedinthisdocument.Itisnotintendedtoprovidespecificguidanceforanyparticularmethod.

Inthisexample,assumealaboratoryvalidatedaLC/MS/MSmethodforanewopiate,DrugX,inwholeblood.

CreateValidationPlan(Section6)

Beforestartingthevalidationexperiments,thelaboratorypreparedthevalidationplan.Intheplan,theyspecifiedthatanexistingSPEprocedure,alreadyusedfortheextractionofotheropiates,wouldberelieduponforextractingDrugX(Section5).Further,instrumentconditionswerepreviouslyoptimized(Section5),sothoseconditionswerealsolistedintheplan(notshown).Asthisisaquantitativeprocedure,thevalidationparameterslistedinTableB.1—ValidationParameterstobeAssessedwereassessedagainstthelaboratory’spre‐definedacceptancecriteria.

InterferenceStudies(Section8.5)

Ten(10)independentsourcesofblankwholebloodweresecuredfrompreviouslyanalyzedcasestoevaluatematrixinterferences(Section8.5.2).Theblankmatrixsampleswereextractedwithouttheadditionofinternalstandard(d3‐DrugX)andanalyzedusingthenewlydevelopedmethod.NointerferencesattheretentiontimeforDrugXwerenotedafteranalysisoftheblankwholebloodsamples.

Thelaboratoryrandomlyselectedoneoftheblankmatrixsamples,addedd3‐DrugXtothesample(250ng/mL),extractedthesample,andanalyzedit.ThiswastodemonstratethattheinternalstandardwouldnotinterferewiththesignalforDrugX(Section8.5.3).Likewise,anotherrandomblankmatrixsamplewasfortifiedwithDrugXat2000ng/mLandanalyzedwithoutinternalstandard.Thiswastoevaluatewhethertheunlabeledanalyteionsinterferewiththesignalford3‐DrugX.Theresultsdemonstratednointerferencesbetweentheanalyteandinternalstandard.

Page 27: Standard Practices for Method Validation Forensic Toxicology · PDF fileDarcie Wallace‐Duckworth, Ph.D.; Aegis Sciences Corporation; Nashville, Tennessee Jeff Walterscheid, Ph.D.,

ASBStandard036,1stEd.‐2017

21

TableB.1—ValidationParameterstobeAssessed

Parameter: AcceptanceCriteria:

Bias Shallnotexceed±20%

CalibrationModel 10–1000ng/mL(linearmodeldesired)

Carryover Carryoverafterhighestcalibratordoesnotexceed10%ofsignaloflowestcalibrator

InterferenceStudies Nointerferingsignalfrommatrix,internalstandard,commondrugsofabuse(includingothercommonopiates/metabolites),OTCdrugs,andprescriptionmedications

IonizationSuppression/Enhancement

<25%suppressionorenhancementand<15%CVduetomatrix(ifnot,evaluateimpactonLOD,LLOQ,andBias)

LimitofDetection Shallbe10ng/mLorlower

LowerLimitofQuantitation Shallbe10ng/mLorlower

Precision %CVshallnotexceed20%

DilutionIntegrity Biasandprecisioncriteriashallbemetwithdilutionofsamples.Dilutionratiosevaluatedwilldependonlinearrangeoffinalcalibrationcurve.

ProcessedSampleStability Evaluatelengthoftimethatanalyteinextractedsamplesstoredatroomtemperatureonautosamplerremainsstable

Lastly,toevaluateinterferencesfromothercommonlyencounteredanalytes(Section8.5.4),thelaboratoryinjectedneatsolutionsdilutedinmobilephasetoaconcentrationof5000ng/mL(orhigher)ofallcommonopiatesandmetabolitesobservedintheircasework,othercommonrecreationaldrugsofabuseandtheirmetabolites,othercommonprescriptionmedicationsandtheirmetabolites,andcommonover‐the‐countermedicationsandtheirmetabolites.TableB.2showshowthelaboratoryefficientlypreparedthesesolutionsintofourinjectionstandards.ThelaboratoryobservednointerferenceforthesignalofDrugXord3‐DrugXfromanyofthesecompounds.

Page 28: Standard Practices for Method Validation Forensic Toxicology · PDF fileDarcie Wallace‐Duckworth, Ph.D.; Aegis Sciences Corporation; Nashville, Tennessee Jeff Walterscheid, Ph.D.,

ASBStandard036,1stEd.‐2017

22

TableB.2—ExampleDrugs/MetabolitesUsedinInterferenceStudy

InjectionMix IncludedDrugs/Metabolites(5000ng/mLunlessnotedotherwise)

OpiatesandRelated codeine,morphine,heroin,6‐acetylmorphine,hydrocodone,hydromorphone,oxycodone,oxymorphone,levorphanol,meperidine,methadone,tramadol,fentanyl

DrugsofAbuse amphetamine,cocaine,benzoylecgonine,ecgoninemethylester,methamphetamine,PCP,MDA,MDMA,THC,THC‐COOH

PrescriptionDrugs antidepressants(amitriptyline,imipramine,doxepin,amoxapine,trazodone,bupropion,fluoxetine,sertraline,citalopram),benzodiazepines(alprazolam,chlordiazepoxide,clonazepam,clorazepate,diazepam),antiarrhythmics(verapamil,diltiazem,lidocaine),barbituratesat500,000ng/mL(amobarbital,butalbital,pentobarbital,phenobarbital),otherCNSdepressants(zopiclone,buspirone,zolpidem)

OTCDrugs antihistamines(diphenhydramine,doxylamine,chlorpheniramine),analgesicsat500,000ng/mL(acetaminophen,ibuprofen),antitussive(dextromethorphan)

CalibrationModel(Section8.3)andCarryover(Section8.4)

Thelaboratoryindicatedadesireforthemethod’scalibrationmodeltobelinearandincludetherangeof10–1000ng/mL.However,toevaluateifthemethodcouldexceedthisrange,thecalibrationsampleswerepreparedinblankbloodattheconcentrationsof10,20,50,100,250,500,1000,1500,and2000ng/mL.Eachcalibratorwasanalyzedonceperruninfiveseparateruns(TableB.3).Anextractedmatrixblankwasanalyzedaftereachcalibratortoevaluatecarryoverateachconcentration.Thedataofallrunswerecombinedintoasinglecalibrationcurve.ItwasnotedthatcarryoverwasnotpresentforDrugXortheinternalstandardinanyoftheextractedblankmatrixsamplesthatfollowedthecalibratorsintherangeof10–1500ng/mL;however,asmallamountofcarryoverforDrugXwasobservedintwoofthefiveblankmatrixsamplesthatfollowedthe2000ng/mLcalibrator.TheintegratedareasofDrugXinthesetwosampleswerelessthan10%ofthesmallestareaofthelowest(10ng/mL)calibrator,sothecarryoverfromthe2000ng/mLcalibratorwasdeemedacceptable.

Thefirstevaluationofthesedatasuggestedthatlinearitymaybreakoffabove1000ng/mL(TableB.3andFigureB.1).Aresidualplotwasusedtofurtherevaluatethesedata(FigureB.2).

TableB.3—CalibrationCurveData

Page 29: Standard Practices for Method Validation Forensic Toxicology · PDF fileDarcie Wallace‐Duckworth, Ph.D.; Aegis Sciences Corporation; Nashville, Tennessee Jeff Walterscheid, Ph.D.,

ASBStandard036,1stEd.‐2017

23

FigureB.1—CombinedCalibrationCurveDemonstratingLossofLinearityAbove1000G/Ml

TheresidualplotshowedaninvertedU‐shapeddistributionsuggestinganon‐linearmodelwouldbethebestcalibrationmodelforthesedata(FigureB.2).FigureB.2—StandardResidualPlotofCalibrationCurveDatawithanInvertedU‐Shaped

Distribution

Becausethelaboratory’spreferencewastousealinearcalibrationmodel,theyre‐evaluatedthesedataafterdroppingthe1500and2000ng/mLcalibrators.Doingsoallowedfortheiroriginalvalidationplanrequirements(10ng/mL–1000ng/mL)tostillbemet.Therevisedcalibrationcurveappearedtoprovideabetterfitofthesedatausinganunweightedlinearmodel(FigureB.3).Thiswasconfirmedbytheresidualplotthatshowedarandomdistributionaroundthezerolinesuggestingalinearmodelwasthemostappropriateforthesedata(FigureB.4).

R² = 0.9906

0

1

2

3

4

5

6

7

8

0 500 1000 1500 2000

Ratio

Concentration (ng/mL)

‐3

‐2

‐1

0

1

2

3

0 500 1000 1500 2000 2500

Stan

dard Residual

Concentration (ng/mL)

Page 30: Standard Practices for Method Validation Forensic Toxicology · PDF fileDarcie Wallace‐Duckworth, Ph.D.; Aegis Sciences Corporation; Nashville, Tennessee Jeff Walterscheid, Ph.D.,

ASBStandard036,1stEd.‐2017

24

FigureB.3—RevisedCalibrationCurve

FigureB.4—ResidualPlotofCalibrationCurvedDatawithaRandomDistribution

Forfuturevalidationexperiments,thelaboratoryusedcalibratorspreparedat10,50,100,250,500,and1000ng/mL.

Sinceaccuratequantitativeresultscannotbeassumedabove1000ng/mL,thelaboratoryknewtheywouldhavetore‐extract(withdilution)anysamplesthatexceed1000ng/mL.Therefore,theyplannedtoevaluatedilutionintegrityinratiosupto1:5whenconductingthebiasandprecisionexperiments.

R² = 0.9989

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 200 400 600 800 1000

Ratio

Concentation (ng/mL)

‐3

‐2

‐1

0

1

2

3

0 200 400 600 800 1000

Stan

dard Residual

Concentration (ng/mL)

Page 31: Standard Practices for Method Validation Forensic Toxicology · PDF fileDarcie Wallace‐Duckworth, Ph.D.; Aegis Sciences Corporation; Nashville, Tennessee Jeff Walterscheid, Ph.D.,

ASBStandard036,1stEd.‐2017

25

Recallthatnocarryoverwasobservedupto1500ng/mLinthelaboratory’sstudy.However,sincetheworkingcalibrationrangewillendat1000ng/mL,thelaboratoryrecognizedthataccuratequantitativeresultscannotbeachievedabovetheworkingrange.Socarryoverwillneedtobeevaluatedinsamplesthatfollowthosethatexceed1000ng/mL.IftheamountofDrugXinsamplesfollowingthosewithconcentrationsgreaterthan1000ng/mLisabovethemethod’sLOD,thesampleswithpotentialcarryoverwillbere‐extractedandanalyzed.

LimitofDetection(Section8.7)

ToestimatetheLOD,thelaboratorychosetoutilizetheresultsfromtheirpreviouslygeneratedcalibrationcurvedata(Section8.7.6).Boththeslopeandy‐interceptoftheindividualcalibrationcurves(10–1000ng/mL)weredeterminedinordertocalculatetheaverageslopeandstandarddeviationofthey‐intercepts(TableB.4).

TableB.4—SlopeandY‐InterceptDatafromCalibrationCurves

Slope y‐interceptRun1 0.003980 ‐0.00050Run2 0.003828 ‐0.01543Run3 0.004009 ‐0.01247Run4 0.003934 0.00695

Run5 0.003995 ‐0.00318Average 0.003949 0.00125StdDev 0.000073 0.01054

TheLODwascalculatedusingtheformula:3.3×0.01054/0.003949=8.8ng/mL

LowerLimitofQuantitation(Section8.8)

ThelaboratorychosetoanalyzereferencematerialstoestablishtheirLLOQ(Section8.8.4).Threesourcesofwholebloodwereeachfortifiedat20,15,and10ng/mL.Theywereextractedandanalyzedinduplicateagainstafreshlypreparedcalibrationcurveonthreedifferentdays.Thelowestconcentrationthatwascapableofreproduciblyprovidingsymmetricalpeaksandtheminimummassspectralidentificationratios,whilemaintainingabiasof±20%anda%CVof<20%wasthe10ng/mLsample.Thisconcentrationwasdeemedasthemethod’sLLOQandreaffirmedacceptableresultsatthelowestcalibrationpoint.

BiasandPrecision(Section8.2)

Toestablishthemethod’sbiasandprecision,thelaboratorypreparedthreepoolsoffortifiedmatrixsamplesatthefollowingconcentrations:low(30ng/mL);medium(400ng/mL);andhigh(800ng/mL).Eachconcentrationpooloffortifiedsampleswasanalyzedintriplicateonfiveseparatedaysalongwithafreshlypreparedcalibrationcurve(TableB.5).

Thelaboratorycalculatedthebias(Section8.2.1)byfirstdeterminingthemeanforeachconcentration.ThisresultedinthevalueslistedinTableB.6.

Fromthesevalues,thebiaswascalculatedateachconcentration.Forexample,forthelowconcentrationsample,thebiaswasdeterminedas:BiasLow=((28–30)/30)×100)=(‐6.7%)

Page 32: Standard Practices for Method Validation Forensic Toxicology · PDF fileDarcie Wallace‐Duckworth, Ph.D.; Aegis Sciences Corporation; Nashville, Tennessee Jeff Walterscheid, Ph.D.,

ASBStandard036,1stEd.‐2017

26

Likewise,thebiasforthemediumandhighconcentrationswascalculatedas9.3%and–2.4%,respectively.

TableB.5—QuantitativeResults(ng/mL)ofBiasandPrecisionRuns

Low(30ng/mL)

Run1 Run2 Run3 Run4 Run5

Rep1 32 26 29 26 28Rep2 28 24 31 35 25Rep3 27 28 27 30 29Med

(400ng/mL) Run1 Run2 Run3 Run4 Run5Rep1 412 435 427 455 444Rep2 444 410 419 438 442Rep3 422 450 479 452 423High

(800ng/mL) Run1 Run2 Run3 Run4 Run5Rep1 892 793 761 742 820Rep2 827 741 729 734 749Rep3 850 769 803 720 791

TableB.6—MeanConcentrations(ng/mL)forBiasCalculationsConc(ng/mL) CalculatedMean BiasLow(30) 28 ‐6.7%

Med(400) 437 9.3%

High(800) 781 ‐2.4%

Within‐runandbetween‐runprecisionswerecalculatedusingtheone‐wayANOVAapproach(Section8.2.2.3.4).UsingtheANOVA:SingleFactoranalysisinpopularspreadsheetorstatisticsprograms(seeTableB.7forLowConcentration),thelaboratorywasabletoobtainvaluesforthemeansquarewithingroupsforthelowconcentrationandintroducedintotheappropriateformulaasfollows:

%

100

%√7.93328

100

%2.81728

100

% 10.1%

Page 33: Standard Practices for Method Validation Forensic Toxicology · PDF fileDarcie Wallace‐Duckworth, Ph.D.; Aegis Sciences Corporation; Nashville, Tennessee Jeff Walterscheid, Ph.D.,

ASBStandard036,1stEd.‐2017

27

TableB.7—ANOVACalculationsfor30ng/mLSample

ANOVA:SingleFactor

SUMMARY

Groups Count Sum Average Variance

Column1 3 87 29 7

Column2 3 78 26 4

Column3 3 87 29 4

Column4 3 91 30.33333 20.33333

Column5 3 82 27.33333 4.333333

ANOVA

SourceofVariation

SS df MS F P‐value Fcrit

BetweenGroups

34 4 8.5 1.071429 0.420175 3.47805

WithinGroups 79.33333 10 7.933333

Total 113.3333 14

Thebetween‐runprecisionforthelowconcentrationwascalculatedusingtheformulaandthemeansquarebetweengroupsfromtheANOVAtable:

%

1 ∗

100

%

8.5 3 1 ∗ 7.9333

28100

%2.84528

100

% 10.2%

Usingthedataforthemediumandhighconcentrations,theANOVA:SingleFactoranalysiswasconductedontheselevels(datanotshown)andappropriatevaluesintroducedintotheformulastoobtainthewithin‐runandbetween‐runprecisions.TableB.8liststhecalculatedresultsforallconcentrations.

Page 34: Standard Practices for Method Validation Forensic Toxicology · PDF fileDarcie Wallace‐Duckworth, Ph.D.; Aegis Sciences Corporation; Nashville, Tennessee Jeff Walterscheid, Ph.D.,

ASBStandard036,1stEd.‐2017

28

TableB.8—PrecisionResults

Low Medium HighWithin‐Run 10.1%CV 4.5%CV 3.9%CV

Between‐Run 10.2%CV 4.2%CV 2.2%CVIonizationSuppression/Enhancement(Section8.6)

AstheinstrumentalportionofthemethodinvolvesLC/MS/MS,thelaboratorywasrequiredtoconductionizationsuppression/enhancementexperiments.Thepost‐columnextractionapproachwaschosen(Section8.6.3).

Twosetsofsampleswerepreparedfortheexperiment.Setoneconsistedofstandardspreparedinmobilephaseat30and800ng/mL.Theywerenotextracted,butinsteadsimplyinjectedsixtimeseach.

Settwowaspreparedintenblankmatrixsamples.Eachblankmatrixwasfromanindependentsourceofblankwholebloodfrompreviouslyanalyzedcases.Thesewerethesametenblankmatrixsamplesusedintheinterferencestudies.Theblankmatrixsampleswereextractedinduplicateandthenfortifiedto30and800ng/mLwithDrugXand250ng/mLwithd3‐DrugX.Eachconcentrationsetsamplewasinjectedonetimeeach.

AveragepeakareasforboththeDrugXandthed3‐DrugXarefoundinTableB.9.

TableB.9—AveragePeakAreasFromSuppression/EnhancementExperiments

AveragePeakAreas30ng/mL 800ng/mL

DrugX d3‐DrugX DrugX d3‐DrugXSet1 13890 110381 330822 112827Set2 11812 102444 303992 105923

Usingtheabovedatasets,thelaboratorycalculatedthe%ionizationsuppression/enhancementforthetargetiontransitionsateachconcentrationusingtheformula:

%Ionizationsuppression/enhancementDrugX(Low)=((11812/13890)‐1)×100=(‐15.0%)

Thenegativevaluesuggestedsomesuppressionwasoccurring,butitwaslessthan25%.

Similarly,thelaboratorycalculatedthe%suppression/enhancementfor800ng/mLandfortheinternalstandardinbothsets.Theresultssuggestedsuppressionof‐8.1%forDrugXatthe800ng/mLconcentration.Althoughatthesameconcentrationinboththelowandhighsamples,thed3‐DrugXdemonstratedionizationsuppressionsof7.2%and6.1%,respectively.

Thedatawerealsousedtocalculatethe%CVateachconcentration.All%CVswere<14%(datanotshown).

Sincetheaveragesuppressionforallanalytesdidnotexceed±25%andthecalculated%CVvaluewas<15%,thevariationwasconsideredinsignificant.Nofurtherworkwasrequiredforothervalidationparameters.

Page 35: Standard Practices for Method Validation Forensic Toxicology · PDF fileDarcie Wallace‐Duckworth, Ph.D.; Aegis Sciences Corporation; Nashville, Tennessee Jeff Walterscheid, Ph.D.,

ASBStandard036,1stEd.‐2017

29

DilutionIntegrity(Section9.2)

Whilethelaboratoryindicatedthataminimumworkingrangeforthecalibrationcurvewasbetween10–1000ng/mL,theyanticipatedoccasionalsamplesthatcontainDrugXatconcentrationsabove1000ng/mL.Theirinitialattempttoextendthecalibrationrangeto2000ng/mLwasabandonedwhentheyrealizedthatanon‐linearcalibrationmodelwouldbeneeded.Therefore,theyconducteddilutionintegrityexperimentstodemonstrateacceptablebiasandprecisionresultswhensamplesaredilutedindeionizedwater.Theyevaluatedtwodilutionsratios:1:2and1:5.

Thelaboratorypreparedtwofortifiedmatrixsamplesatconcentrationsof1600ng/mLand3000ng/mL.The1600ng/mLsamplewasdiluted1:2beforeextractionandanalysis.Likewise,the3000ng/mLsamplewasdiluted1:5.Bothdilutionsampleswereanalyzedintriplicateoverfivedifferentruns;eachwithafreshlypreparedcalibrationcurve.Biasandprecisioncalculationswereperformedandresults(TableB.10)demonstratedcomparablevaluescomparedtotheresultsobtainedwithoutdilution.Thisprovidedproofofnodetrimentalimpactwhendilutingthesamplesbeforeextraction.

TableB.10—EffectofDilutiononBiasandPrecision

1600ng/mL(1:2dilution)

3000ng/mL(1:5dilution)

Bias 8.2% 9.9%Within‐RunPrecision 4.0% 2.9%Between‐RunPrecision 4.4% 3.7%ProcessedSampleStability(Section9.3)

Thelaboratoryrecognizedthatsamplesarenotalwaysanalyzedimmediatelyafterextractionduetolargebatchesorunforeseendelays.Forexample,theinstrumentmaylosecommunicationwithitscontroller,inadvertentlyshuttingdownabatchrun.Therefore,toevaluatetheimpactofroomtemperaturestorageofprocessedsamplessittingontheautosamplerbeforeanalysis,thelaboratoryconductedastabilitystudyonextractedsamples.Thiswasachievedbypreparingfortifiedmatrixsamplesattwoconcentrations,30ng/mLand800ng/mL.Twelvealiquotsofeachconcentrationwereextracted.Reconstitutedextractsforeachconcentrationwerecombinedandvortexedtoensureadequatemixing.Theconcentrationpoolwasthendividedinto12autosamplervialsandplacedontheautosampler.Thefirstvialofeachlevelwasinjectedthreetimestorepresentthetimezero(t0)sample.Theremainingvialsforeachconcentrationwereanalyzedintriplicateeverysixhoursupto66hours.Analytesignalsfromthetriplicateanalyseswereaveragedandcomparedtothet0signals(TableB.11).

Page 36: Standard Practices for Method Validation Forensic Toxicology · PDF fileDarcie Wallace‐Duckworth, Ph.D.; Aegis Sciences Corporation; Nashville, Tennessee Jeff Walterscheid, Ph.D.,

ASBStandard036,1stEd.‐2017

30

TableB.11—AveragePeakAreasforProcessedSampleStabilityStudy

Time(hr)AveragePeakArea

30ng/mL 800ng/mL

DrugX d3‐DrugX DrugX d3‐DrugX0 12490 101832 332554 1004236 12289 100382 331820 10032812 12198 100432 330779 10110118 11732 100733 330246 10098724 10983 100992 329787 10083230 10101 101789 326048 10082136 10328 100904 327238 10023442 10281 100086 326838 10032348 10271 100183 315009 9972754 10612 100309 315772 9942160 10402 100233 316231 9638166 10183 100872 315499 94832

ByplottingtheaveragepeakareasforbothDrugXandtheinternalstandard,thelaboratorycouldevaluatetheprocessedsampleswhiletheywerestoredontheautosampler.Astheirrequiredbiasis±20%,theyconsideredthecompoundsstableuntiltheysawadecrease(orincrease)insignalofmorethan20%fromthet0averagepeakarea.Theplotforthe30ng/mLconcentrationofDrugXisshowntodemonstratethisconcept(FigureB.5).

FigureB.5—ChangeinDrugXPeakAreaOver66Hours

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

0 10 20 30 40 50 60 70

Peak Area

Hours

Drug X ‐ 30 ng/mL

Page 37: Standard Practices for Method Validation Forensic Toxicology · PDF fileDarcie Wallace‐Duckworth, Ph.D.; Aegis Sciences Corporation; Nashville, Tennessee Jeff Walterscheid, Ph.D.,

ASBStandard036,1stEd.‐2017

31

ThesedataappeartosuggestDrugXremainedstablewithinthepre‐definedlimitsfortheentire66‐hourperiodofthestudy.However,thetrendlineshowsthat66hoursmaybethemaximumperiodoftimebeforethesamplesmayneedtobere‐extracted.Itwasnotedthatatthe30‐hourmark,stabilityseemedtohavedroppedveryclosetothe“instability”point.Sincethepreviouslydeterminedbiaswasactuallymuchbetterthanthe±20%requiredintheirvalidationplan,thelaboratorymadeadecisiontore‐extractanysamplesthatremainontheautosamplermorethan24hours.

DocumentationofResults(Section11)

AlongwithalloftheotherrequireddocumentationlistedinSection11,thelaboratorycomparedtheresultsfromthevalidationstudiesconductedtotheoriginallydefinedrequirements,asdemonstratedinTableB.12.

TableB.12—SummaryofValidationResults

Parameter: AcceptanceCriteria: Result:

Bias Shallnotexceed±20% ‐6.7to9.3%

CalibrationModel 10–1000ng/mL(linearmodeldesired) 10–1000ng/mL(linearmodel)

Carryover Carryoverafterhighestcalibratordoesnotexceed10%ofsignaloflowestcalibrator.

Nosignificantcarryoverat2000ng/mL.Re‐extractandanalyzesamplescontainingDrugXabovetheLODifthatsamplefollowsonethatexceeds1000ng/mLofDrugX.

InterferenceStudies Nointerferingsignalfrommatrix,internalstandard,commondrugsofabuse(includingothercommonopiates/metabolites),OTCdrugs,andprescriptionmedications.

Noobservedinterferencesfrommatrixorfromcommondrugs/metabolites.

IonizationSuppression/Enhancement

<25%suppressionorenhancementand<15%CVduetomatrix(ifnot,evaluateimpactonLOD,LLOQ,andBias).

‐8.1to‐15.0%;<14%CV

LimitofDetection Shallbe10ng/mLorlower 8.8ng/mL

LowerLimitofQuantitation

Shallbe10ng/mLorlower 10ng/mL

Precision %CVshallnotexceed20% Within‐run(3.9to10.1%)

Between‐run(2.2to10.2%)

DilutionIntegrity Biasandprecisioncriteriashallbemetwithdilutionofsamples.

Using1:2and1:5aqueousdilutions,bias(8.2to9.9%)andprecision(within‐run(2.9to4.0%);between‐run(3.7to4.4%).Comparabletoresultsobtainedwithoutdilution.

ProcessedSampleStability

Evaluatelengthoftimethatanalyteinextractedsamplesstoredatroomtemperatureremainsstable

24hours

Page 38: Standard Practices for Method Validation Forensic Toxicology · PDF fileDarcie Wallace‐Duckworth, Ph.D.; Aegis Sciences Corporation; Nashville, Tennessee Jeff Walterscheid, Ph.D.,

ASBStandard036,1stEd.‐2017

32

AnnexC(informative)

ImmunoassayScreenofBenzodiazepinesinUrineValidationExample

Thefollowingisanexampleoftheimmunoassayvalidationstepsoutlinedinthisdocument.Itisnotintendedtoprovidespecificguidanceforanyparticularmethod.

Inthisexample,assumealaboratoryvalidatedanimmunoassaykitforitsabilitytoscreenurineforbenzodiazepines.

CreateValidationPlan(Section6)

Beforestartingthevalidationexperiments,thelaboratorypreparedthevalidationplan.Intheplan,theyspecifiedthattheywilluseCompanyABC’sELISAImmunoassayKitforBenzodiazepines(Oxazepam)designedwitha“cutoff”of300ng/mL.Thelaboratoryplannedtoselecttheirowncutoffconcentration(decisionpoint)of50ng/mLforthetargetcompoundofoxazepam.Thesamplepreparationsteps,aswellasinstrumentalsettingswerelistedintheplan.Thevalidationparameterswereassessedagainstthepre‐definedrequirementslistedinTableC.1.

TableC.1—ValidationParameterstobeAssessed

Parameter: DesiredLimit:LimitofDetection Sameasdecisionpoint(50ng/mLforoxazepam,lorazepamandalpha‐

hydroxyalprazolamand25ng/mLforalprazolam)

Precision %CVshallnotexceed20%;grandmeans±2StdDevcannotoverlapPrecisionattheDecisionPoint(Section8.2.2.2)

Theproductbrochurelistedthecross‐reactivitiesforoxazepam,otherbenzodiazepines,andtheirmetabolites.Anabbreviatedlistofthesecross‐reactivitiesisasfollows:oxazepam(100%);nordiazepam(425%);lorazepam(175%);alprazolam(450%);andalpha‐hydroxyalprazolam(340%).

Sincetheassaywastobeusedtodeterminetheuseofthebroadclassofbenzodiazepines,thelaboratorywasrequiredtoverifyprecisionforoxazepamandanyotheranalytesthattheychosetoscreenforusingthisassaywithcross‐reactivitieslessthan100%orwithadecisionconcentrationlessthanthatofoxazepam(50ng/mL).Forexample,thislaboratorydecidedtousetheassaytoscreenforlorazepam(decisionconcentration50ng/mL),alprazolam(decisionconcentration25ng/mL)andalpha‐hydroxyalprazolam(decisionconcentration50ng/mL).Bothoxazepamandalprazolamhadtobeevaluatedforprecisionattheirdecisionconcentration.However,sincelorazepamandalpha‐hydroxyalprazolamhadcross‐reactivitiesgreaterthan100%andthesamedecisionpointasoxazepam(50ng/mL),precisionstudieswerenotrequiredfortheseassays.

Thelaboratorypreparedthreepoolsofoxazepam‐fortifiedmatrixsamplesatthefollowingconcentrations:25ng/mL(50%below);50ng/mL(decisionpoint);and75ng/mL(50%above).Eachofthefortifiedsamplesetsisanalyzedintriplicateonfiveseparatedays.TheresultsareshowninTableC.2.

Page 39: Standard Practices for Method Validation Forensic Toxicology · PDF fileDarcie Wallace‐Duckworth, Ph.D.; Aegis Sciences Corporation; Nashville, Tennessee Jeff Walterscheid, Ph.D.,

ASBStandard036,1stEd.‐2017

33

TableC.2—Results(B/BoforELISA;AbsorbanceValuesForLiquidReagentAssays)ofPrecisionRunsfortheOxazepamSampleSets.

25ng/mL Run1 Run2 Run3 Run4 Run5Rep1 44.396 39.911 39.171 41.213 41.929Rep2 43.896 40.632 37.556 39.111 41.293Rep3 45.323 44.814 39.789 41.454 44.843

GrandMean 41.689StdDev 2.443%CV 5.9%

50ng/mL Run1 Run2 Run3 Run4 Run5Rep1 32.664 31.943 30.649 29.807 32.686Rep2 29.882 30.862 28.210 31.013 32.284Rep3 27.707 31.078 29.619 28.946 29.303

GrandMean 30.444StdDev 1.557%CV 5.1%

75ng/mL Run1 Run2 Run3 Run4 Run5Rep1 19.256 24.012 20.857 23.329 23.342Rep2 17.009 18.928 19.517 20.227 20.831Rep3 17.794 18.712 17.867 20.159 22.003

GrandMean 20.256StdDev 2.152%CV 10.6%

Theresultforthe50ng/mLdecisionpointconcentrationwhenconsideringthegrandmeanofthemeasurementplusorminustwostandarddeviations(30.444±(2×1.557))wasbetween27.330‐33.558.Thisrangedidnotoverlapwiththerangescalculatedforthe25ng/mLor75ng/mLsamples.

The%CVforeachconcentrationwas5.9%,5.1%,and10.6%,respectively;wellbelowtherequirementtonotexceed20%.

Similarexperimentswereconductedforalprazolamatthe25ng/mLdecisionpoint,aswellasconcentrations‐50%and+50%ofthedecisionpoint(datanotshown).

LimitofDetection(Section8.7.4)

Thelaboratoryusedthedecisionpointconcentrationsastheassayslimitofdetectionforeachofthebenzodiazepinesandmetabolites.

DocumentationofResults(Section11)

AlongwithalloftheotherrequireddocumentationlistedinSection11,thelaboratorycomparedtheresultsfromthevalidationstudiesconductedtotheoriginallydefinedrequirements,asdemonstratedinTableC.3.

Page 40: Standard Practices for Method Validation Forensic Toxicology · PDF fileDarcie Wallace‐Duckworth, Ph.D.; Aegis Sciences Corporation; Nashville, Tennessee Jeff Walterscheid, Ph.D.,

ASBStandard036,1stEd.‐2017

34

TableC.3—SummaryofValidationResults

Parameter: DesiredLimit: Result:LimitofDetection Sameasdecisionpoint:

Oxazepam(50ng/mL)Lorazepam(50ng/mL)Alprazolam(25ng/mL)Alpha‐hydroxyalprazolam(50ng/mL)

50ng/mL50ng/mL25ng/mL50ng/mL

Precision %CVshallnotexceed20%Grandmeans±2StdDevcannotoverlap

5.1to10.6%25ng/mL:36.803–46.57550ng/mL:27.330–33.55875ng/mL:15.952–24.560

Page 41: Standard Practices for Method Validation Forensic Toxicology · PDF fileDarcie Wallace‐Duckworth, Ph.D.; Aegis Sciences Corporation; Nashville, Tennessee Jeff Walterscheid, Ph.D.,

ASBStandard036,1stEd.‐2017

35

AnnexD(informative)

ExampleFlowchartofMethodValidationExperiments

Page 42: Standard Practices for Method Validation Forensic Toxicology · PDF fileDarcie Wallace‐Duckworth, Ph.D.; Aegis Sciences Corporation; Nashville, Tennessee Jeff Walterscheid, Ph.D.,

ASBStandard036,1stEd.‐2017

36

AnnexE(informative)

TableofExampleExperimentsforValidationofQualitativeConfirmation/IdentificationMethods

Interference(Section8.5)

10differentsourcesofeachmatrix,noIS 1blanksample+isotopically‐labeledIS 1fortifiedsamplewithhighanalyteconcentrations,noIS Neat,fortified,orauthenticsamplescontainingpotentiallyinterfering

compounds/metabolitesbutnoanalyte

Carryover(Section8.4)

AddressedinroutineQCpracticesbyanalyzingextractedblankmatrixsamplesbetweencasesamples

LimitofDetection(Section8.7.5.2)

Fortifiedmatrixsamplesfortifiedatincreasinglylowerconcentrationsandanalyzedinduplicateover3days.Lowestconcentrationthatreproduciblyyieldssignalgreaterthanorequalto3.3timesthenoiseofbackgroundsignalistheLOD.

Page 43: Standard Practices for Method Validation Forensic Toxicology · PDF fileDarcie Wallace‐Duckworth, Ph.D.; Aegis Sciences Corporation; Nashville, Tennessee Jeff Walterscheid, Ph.D.,

ASBStandard036,1stEd.‐2017

37

AnnexF(informative)

TableofExampleExperimentsforValidationofQuantitativeMethods

InterferencesIonization

Suppression/Enhancementa CalibrationModel

10differentsourcesofeachmatrix,withoutIS

1blanksamplewithIS 1fortifiedsamplewithhighanalyteconcentrationsandwithoutIS

Neat,fortified,orauthenticsamplescontainingpotentiallyinterferingcompounds/metabolitesbutnoanalyte

Post‐columninfusion: 10blankextractsfortifiedafterextractionatlowconcentration

10blankextractsfortifiedafterextractionathighconcentration

Analytesolutionsforinfusion(lowandhighconcentrations)eachinjected6times

6concentrationlevels,5replicateseach(maybeaccomplishedwithcalibrationcurvesgeneratedforstudiesbelow)

Mainvalidationphase

Bias&Precision DilutionIntegrity

Run Calibration Low Medium High LODb LLOQbBias&Precision

1 6 3 3 3 3 3 3

2 6 3 3 3 3 3 3

3 6 3 3 3 3 3 3

4 6 3 3 3 ‐ ‐ 3

5 6 3 3 3 ‐ ‐ 3aLC‐MS(/MS)methodsonlybForthisexample,thereferencematerialapproachisusedtoestimatetheLOD(Section8.7.5.2)andLLOQ(Section8.8.4)

Page 44: Standard Practices for Method Validation Forensic Toxicology · PDF fileDarcie Wallace‐Duckworth, Ph.D.; Aegis Sciences Corporation; Nashville, Tennessee Jeff Walterscheid, Ph.D.,

ASBStandard036,1stEd.‐2017

38

AnnexG(informative)

Bibliography

1] AraujoP,KeyAspectsofAnalyticalMethodValidationandLinearityEvaluation,JChromatogrB,877,(2009),2224‐2234.

2] Boyd,RobertK.,CeciliaBasic,andRobertA.Bethem.TraceQuantitativeAnalysisbyMassSpectrometry.Hoboken,N.J.:JohnWiley(2008)

3] BressolleF,Bromet‐PetitM,Audran,M,ValidationofLiquidChromatographicandGasChromatographicMethods,ApplicationstoPharmacokinetics,JChromatogrB,686,(1996),3‐10.

4] BruceP,Minkkinen,RiekkolaM,PracticalMethodValidation:ValidationSufficientforanAnalyticalMethod,MikrochimActa,128(1998),93‐106.

5] ClinicalandLaboratoryStandardsInstitute,C50‐AMassSpectrometryintheClinicalLaboratory:GeneralPrinciplesandGuidance;ApprovedGuideline,Vol27,No24(2007).

6] CorleyJ,BestPracticesinEstablishingDetectionandQuantificationLimitsforPesticidesResiduesinFoodsinHandbookofResidueAnalyticalMethodsforAgrochemicals,JohnWiley&SonsLtd,Chichester(2003).

7] DrummerO,RequirementsforBioanalyticalProceduresinPostmortemToxicology,AnalBioanalChem,388(2007),1495‐1503.

8] EurachemGuide,TheFitnessforPurposesofAnalyticalMethods,(1998).

9] HealthSciencesAuthority,GuidanceNotesonAnalyticalMethodValidation:Methodology,(Sept.6,2004).

10] HubertPh,Nguyen‐HuuJ‐J,BoulangerBetal.,HarmonizationofStrategiesfortheValidationofQuantitativeAnalyticalProceduresASFSTPProposal–PartI,JPharmBiomedAnal,36(2004),579‐586.

11] HubertPh,Nguyen‐HuuJ‐J,BoulangerBetal.,HarmonizationofStrategiesfortheValidationofQuantitativeAnalyticalProceduresASFSTPProposal–PartII,JPharmBiomedAnal,45(2007),70‐81.

12] HubertPh,Nguyen‐HuuJ‐J,BoulangerBetal.,HarmonizationofStrategiesfortheValidationofQuantitativeAnalyticalProceduresASFSTPProposal–PartIII,JPharmBiomedAnal,45(2007),82‐96.

13] InternationalVocabularyofMetrology–BasicandGeneralConceptsandAssociatedTerms(VIM),ISO/IECGuide99:2007,OrganizationforStandardization(ISO)/InternationalElectrotechnicalCommission(IEC),Geneva,2007.

14] KushnirMM,RockwoodAL,NelsonGJ,etal.,AssessingAnalyticalSpecificityinQuantitativeAnalysisUsingTandemMassSpectrometry,ClinBiochem,12:003,(2004),319‐327.

Page 45: Standard Practices for Method Validation Forensic Toxicology · PDF fileDarcie Wallace‐Duckworth, Ph.D.; Aegis Sciences Corporation; Nashville, Tennessee Jeff Walterscheid, Ph.D.,

ASBStandard036,1stEd.‐2017

39

15] LiangHR,FoltzRL,MengM,BennettP,Ionizationenhancementinatmosphericpressurechemicalionizationandsuppressioninelectrosprayionizationbetweentargetdrugsandstable‐isotope‐labeledinternalstandardsinquantitativeliquidchromatography/tandemmassspectrometry,RapidCommMassSpec,17(2003),2815‐2821.

16] MatuszewskiBK,ConstanzerML,Chavez‐EngCM,StrategiesfortheAssessmentofMatrixEffectsinQuantitativeBioanalyticalMethodsBasedonHPLC‐MS/MS,AnalChem,75:13,(2003),3019‐3030.

17] NiedbalaRSandGonzalezJM,ImmunoassaysinClarke’sAnalysisofDrugsandPoisons,4thedition,ACMoffat,MDOsselton,BWiddop,andJWattsEds.PharmaceuticalPress:London(2011).

18] PetersF,MaurerHH,BioanalyticalMethodValidationandItsImplicationsforForensicandClinicalToxicology–AReview,AccredQualAssur,7,(2002),441‐449.

19] PetersFT,MethodValidationinApplicationsofLC‐MSinToxicology,PharmaceuticalPress,London(2006).

20] PetersF,DrummerO,MusshoffF,ValidationofNewMethods,ForensicSciInt,165(2007),216‐224.

21] RemaneD,MeyerMR,WissenbachDK,MauerHH,Ionsuppressionandenhancementeffectsofco‐elutinganalytesinmulti‐analyteapproaches:systematicinvestigationusingultra‐highperformanceliquidchromatography/massspectrometrywithatmosphericpressurechemicalionizationorelectrosprayionization,RapidCommMassSpec,24(2010),3103‐3108.

22] ShahV,MidhaK,DigheS,etal,AnalyticalMethodsValidation:Bioavailability,BioequivalenceandPharmacokineticsStudies,PharmRes,9:4,(1992),588‐592.

23] ShahV,MidhaK,FindlayJ,etal.,BioanalyticalMethodValidation–ARevisitwithaDecadeofProgress,PharmRes,17:12(2000),1551‐1557.

24] ShultzEK,AnalyticalGoalsandClinicalInterpretationofLaboratoryProceduresinTietzTextbookofClinicalChemistry,2ndedition,CABurtisandERAshwood,Eds.W.B.SaundersCompany:Pennsylvania(1994).

25] StocklD,D’HondtH,ThienpontLM,MethodValidationAcrosstheDisciplines‐CriticalInvestigationofMajorValidationCriteriaandAssociatedExperimentalProtocols,JChromatogrB,877,(2009),2180‐2190.

26] ThompsonM,EllisonSLR,WoodR.HarmonizedGuidelinesforSingle‐LaboratoryValidationofMethodsofAnalysis,IUPACTechnicalReport,PureApplChem,74:5,(2002),835‐855.

27] U.S.DepartmentofHealthandHumanServices,FoodandDrugAdministration,GuidanceforIndustry,BioanalyticalMethodValidation,(2001).

28] VanEeckhartA,LanckmasK,SarreS,etal.,ValidationofBioanalyticalLC‐MS/MSAssays:EvaluationofMatrixEffects,JChromatogrB,877,(2009),2198‐2207.

29] ViswanathanCT,BansalS,BoothB,etal.,QuantitativeBioanalyticalMethodsValidationandImplementation:BestPracticesforChromatographicandLigandBindingAssays,PharmRes,24:10,(2007),1962‐1973.

Page 46: Standard Practices for Method Validation Forensic Toxicology · PDF fileDarcie Wallace‐Duckworth, Ph.D.; Aegis Sciences Corporation; Nashville, Tennessee Jeff Walterscheid, Ph.D.,

ASBStandard036,1stEd.‐2017

40

30] ViswanathanCT,BansalS,BoothB,etal.,Workshop/ConferenceReport‐QuantitativeBioanalyticalMethodsValidationandImplementation:BestPracticesforChromatographicandLigandBindingAssays,AAPSJ,9:1,(2007),E30‐E42.

Page 47: Standard Practices for Method Validation Forensic Toxicology · PDF fileDarcie Wallace‐Duckworth, Ph.D.; Aegis Sciences Corporation; Nashville, Tennessee Jeff Walterscheid, Ph.D.,

AcademyStandardsBoard4200WisconsinAvenue,NW

Suite106‐310Washington,DC20016‐2143

http://asb.aafs.org/