STATIC ANALYSIS OF STRUCTURES WITH ENERGY PRINCIPLE

Embed Size (px)

Citation preview

  • 8/3/2019 STATIC ANALYSIS OF STRUCTURES WITH ENERGY PRINCIPLE

    1/47

    Supervisor (Chairman) : Assoc. Prof. Dr. Nihal ERATLI (ITU)

    Members of the Examining Committee : Assis. Prof. Dr. Fethi KADIOLU (ITU)

    B.Sc. Thesis byMesut KU(010040010)

    Mehmet Engin DUMLU

    (010000165)

    Lokman SAYIN

    (010050137)

    Ahmet Faruk DOAN(010020167)

    STANBUL TECHNICAL UNIVERSITY CIVIL ENGINEERING FACULTYCIVIL ENGINEERING DEPARTMENT

    Date of submission : 11 January 2010

    Date of defence examination: 27 January 2010

    JANUARY 2010

    STATIC ANALYSIS OF STRUCTURES

    WITH ENERGY PRINCIPLE

  • 8/3/2019 STATIC ANALYSIS OF STRUCTURES WITH ENERGY PRINCIPLE

    2/47

  • 8/3/2019 STATIC ANALYSIS OF STRUCTURES WITH ENERGY PRINCIPLE

    3/47

  • 8/3/2019 STATIC ANALYSIS OF STRUCTURES WITH ENERGY PRINCIPLE

    4/47

    iii

    TABLE OF CONTENTS

    Page

    SUMMARY ............................................................................................................... iv

    1. INTRODUCTION .................................................................................................. 1

    2. Energy Methods ..................................................................................................... 2

    2.1 Work and Energy ............................................................................................... 2

    2.2 Total Potential Energy ........................................................................................ 3

    2.3 Equivalent Potential Energy ............................................................................... 5

    3. 3D FRAMES ........................................................................................................... 7

    3.1 Stiffness Matrix .................................................................................................. 7

    3.2 Transformation Matrix ..................................................................................... 11

    3.3 Load Vector ...................................................................................................... 15

    4. APPLICATION OF ENERGY METHODS ...................................................... 19

    4.1 Implementation of the Program ........................................................................ 19

    4.1.1 Material description .................................................................................. 19

    4.1.2 Section description .................................................................................... 20

    4.1.3 Drawing the system geometry ................................................................... 21

    4.1.4 Restraint definitions .................................................................................. 21

    4.1.5 Node load definitions ................................................................................ 22

    4.1.6 Element load definitions ........................................................................... 224.2 Numerical Analyses ......................................................................................... 23

    4.2.1 Numerical Analysis 1 ................................................................................ 23

    4.2.2 Numerical Analysis 2 ................................................................................ 31

    4.2.3 Numerical Analysis 3 ................................................................................ 33

    4.2.4 Numerical Analysis 4 ................................................................................ 36

    5. CONCLUSON..................................................................................................... 41REFERENCES ......................................................................................................... 42

  • 8/3/2019 STATIC ANALYSIS OF STRUCTURES WITH ENERGY PRINCIPLE

    5/47

    iv

    STATIC ANALYSIS OF STRUCTURES WITH ENERGY PRINCIPLE

    SUMMARY

    Structures can be analyzed by using different methods. In this thesis structures areanalyzed by energy principle. Required equations for analyzing structures are

    obtained according to equivalent potential energy. After that as an application of

    equivalent potential energy principle is developed. By using this software various

    structures are analyzed and results of these analyses are compared with SAP2000.

  • 8/3/2019 STATIC ANALYSIS OF STRUCTURES WITH ENERGY PRINCIPLE

    6/47

    1

    1. INTRODUCTION

    We can employee the three fundamental concepts of deformable body mechanics

    (equilibrium, geometry of deformation, and constitutive behaviour of materials) to

    examine the response of several types of structural members to applied loads and/or

    temperature changes. We determine the distribution of normal stress and shear stress

    in members and the deformation of the members. We also examine the stability of

    members undergoing axial compression. We turn now to the important topic of

    energy methods in deformable-body mechanics. Before the advent of the digital

    computer, energy methods were the most powerful tools available for solving

    deflection problems, especially statically indeterminate problems. And now, energy

    methods form a basis of the finiteelement method, the most popular and most

    powerful current method for analyzing deformable bodies (machines, structures,

    etc.). You will see that the energy methods presented in this searching again

    incorporate the three essentials of deformable-body mechanics-equilibrium,

    geometry of deformation, and constitutive behaviour of materials.

  • 8/3/2019 STATIC ANALYSIS OF STRUCTURES WITH ENERGY PRINCIPLE

    7/47

    2

    2. Energy Methods

    2.1Work and EnergyIn mechanics the term work refers to a quantity that is basically (force X distance).

    When work is done on a deformable body, some or all of the work done on the body

    goes into strain energy stored in the body. For example, when you stretch a rubber

    band by pulling on it, the work that you do on the rubber band is stored as strain

    energy. When you release the applied force, the rubber band releases this energy as it

    returns to its undeformed shape.

    Now, we will define a number of work-energy terms: work of external forces,

    complementary work, strain energy, complementary strain energy, virtual

    displacements, virtual forces, and virtual work. The work-energy principle will be

    employed to calculate the deflection of members subjected to single static loads. The

    more powerful virtual-work principles the principal of virtual displacements and

    the principle of virtual forces- will also be introduced and will be used to solve more

    complex problems, such as statically intermediate problems for structures with

    several loads acting simultaneously. Finally, energy methods will be used to solve

    several simple impact-loading problems.

    These are processes based on linear elastic behaviour and maintenance of energy.

    i.e. the work done by external forces equals the energy accumulated in the structure

    under load. Energy equation is defined as;

    (2.1)Where F is the functional force, x is the distance moved in the way of the power at its

    point of application and k is the elastic firmness of the piece, again in the direction of

    the force at its point of application.

    Energy equation can be written for any stress type for a bar. In tension;

    (2.2)

    In torsion;

  • 8/3/2019 STATIC ANALYSIS OF STRUCTURES WITH ENERGY PRINCIPLE

    8/47

    3

    (2.3)

    In bending;

    (2.4)In shear;

    (2.5)

    If four stress occur same time energy equation can be written as;

    (2.6)

    2.2Total Potential EnergyThe attitude of minimum total potential energy is a primary idea used in physics,

    chemistry, biology, and engineering. It asserts that a structure or body shall collapseor relocate to a position that minimizes the overall probable energy, with the lost

    potential energy being dissipated as heat. For instance, a marble located in a bowl

    will shift to the base and rest there, and similarly, a tree branch laden with snow will

    curve to a lower position. The lower position is the position for minimum potential

    energy: it is the steady arrangement for equilibrium. The principle has many

    applications in structural analysis and solid mechanics.

    The propensity to minimum total potential energy is due to the second rule of

    thermodynamics, which stated that the entropy of a system will make the most of at

    equilibrium. Given two possibilities - a low heat content and a high potential energy,

    or a high heat content and low potential energy, the concluding will be the condition

    with the uppermost entropy, and will therefore be the state in the direction of which

    the system goes.

  • 8/3/2019 STATIC ANALYSIS OF STRUCTURES WITH ENERGY PRINCIPLE

    9/47

    4

    The principle of minimum total potential energy should not be mystified with the

    associated principle of minimum energy which declares that for a system that

    changes without heat transfer, the total energy will be minimized.

    Note that in most compound systems there is one global minimum and many local

    minima (smaller dips) in the potential energy. These are called metastable states. A

    system might live in a local minimum for a long time yet an effectively infinite

    period of time.

    The total potential energy is the sum of the elastic strain energy, U, stored in the

    deformed body and the potential energy, V, of the applied forces:

    (2.7)This energy is at a motionless position when a minuscule disparity from such

    position occupies no change in energy:

    (2.8)

    The principle of minimum total potential energy may be derived as a special case of

    the virtual work principle for elastic systems subject to conservative forces. The

    equality between external and internal virtual work (due to virtual displacements) is:

    (2.9)

    where, u= vector of displacements, T= vector of distributed forces acting on the part

    St of the surface, f= vector of body forces and = engineering strain.

    In the special case of elastic bodies, the right-hand-side of (2.9) can be taken to be

    the change, U, of elastic strain energy U due to infinitesimal variations of real

    displacements. Additionally, when the external forces are conservative forces, the

    left-hand-side of (2.9) can be seen as the change in the potential energy function V of

    the forces. The function V is defined as:

  • 8/3/2019 STATIC ANALYSIS OF STRUCTURES WITH ENERGY PRINCIPLE

    10/47

    5

    (2.10)

    where the minus sign implies a loss of potential energy as the force is displaced in its

    direction. With these two supplementary conditions, (2.9) becomes:

    (2.11)This directs to (2) as wanted. The distinctional form of (2) is frequently used as the

    roots for developing the finite element method in structural mechanics.

    2.3Equivalent Potential Energy

    When two endpoint of the bar is connected rigidly, we can use equivalent potential

    energy instead of total potential energy, so the calculation of two flush depended bar

    is more complicated than reduced system. And the system reactions can estimate by

    using this algorithm.

    Figure 2.1 :A cantilever beam and its equivalent beam.We can cut down B endpoint and we put into here moment. For calculate thesystems equivalent potential energy function. From end conditions;

    L

  • 8/3/2019 STATIC ANALYSIS OF STRUCTURES WITH ENERGY PRINCIPLE

    11/47

    6

    (2.12)

    Elastic curve function for unloaded beam is

    (2.13)Equivalent potential energy function that uses this elastic curve;

    (2.14)The derivative of this equation by functional ;

    (2.15)Normally, equal to zero at B endpoint. So easily Mb moment is

    (2.16)obtained by using this way. And we can easily estimate flush moments of every load

    type with inserting this equation to computer programs.

  • 8/3/2019 STATIC ANALYSIS OF STRUCTURES WITH ENERGY PRINCIPLE

    12/47

    7

    3. 3D FRAMES

    3.1Stiffness MatrixTotal Potential Energy of a 3D frame element can be written as;

    (3.1)

    In equation (3.1) the definitions are as follows:

    : Elastic displacement function of the element due to the flexure (local axis) : Elastic displacement function due to the normal forces (local axis) : Flexure rigidity of the cross section (assumed constant along the element) : Internal end forces acting in local directions of the element: Nodal end displacements of the element in the direction of

    : Distributed load function in the direction of

    : Distributed load function in the direction of

    Figure 3.1 :Local axis and end forces and moments of 3D frame element.

    1q

    2q

    3q

    4q 5

    q

    6q

    7q

    8q

    10q

    11q

    12q

    9

    q

    1 3plane

    1 2 plane

    i

    j

    1

    2

    3

  • 8/3/2019 STATIC ANALYSIS OF STRUCTURES WITH ENERGY PRINCIPLE

    13/47

    8

    Figure 3.2 :Internal end loads and distributed loading in 1-2 plane of the element.

    Figure 3.3 :Internal end loads and distributed loading in 1-3 plane of the element.The axial displacement function can be interpolated with linear function such that

    ( )u uu x a x b (3.2)

    where the boundary conditions are

    1

    7

    (0)

    ( )

    u q

    u L q

    (3.3)

    from (3.2) and (3.3) axial displacement function is found to be

    5Q

    3Q

    11Q

    9Q 10Q

    13vp

    4Q

    1Q

    6Q

    2Q

    12Q

    8Q 7Q

    12vp

    up

  • 8/3/2019 STATIC ANALYSIS OF STRUCTURES WITH ENERGY PRINCIPLE

    14/47

    9

    7 11

    ( )q q

    u x x qL

    (3.4)

    and the derivative is

    7 1q qduudx L

    (3.5)

    A similar procedure can be applied for torsion.

    10 4q qd

    dx L

    (3.6)

    For flexure there is 4 degree of freedoms so displacement functions in 1-2 and 1-3

    planes can be described as

    3 2( )v x ax bx cx d (3.7)

    And the boundary conditions for 1-2 plane are

    12 2

    12 6

    12 8

    12 12

    (0)

    (0)

    ( )

    ( )

    v q

    v q

    v L q

    v L q

    (3.8)

    For 1-3 plane

    13 3

    13 5

    13 9

    13 11

    (0)

    (0)

    ( )

    ( )

    v q

    v q

    v L q

    v L q

    (3.9)

    And the flexure displacement functions are found to be

    (3.10)

  • 8/3/2019 STATIC ANALYSIS OF STRUCTURES WITH ENERGY PRINCIPLE

    15/47

    10

    All deformation functions from (3.4), (3.6) and (3.10) are substituted into equation

    (3.1) to obtain the internal energy function of the element. After calculations

    performed

    (3.11)

    expression is obtained. The stiffness matrix can be obtained by deriving the internal

    energy function with respect to the nodal displacements such that

    2

    ij

    i j

    UK

    q q

    (3.12)

  • 8/3/2019 STATIC ANALYSIS OF STRUCTURES WITH ENERGY PRINCIPLE

    16/47

    11

    In matrix form, K element stiffness matrix and [q] displacement vector can be

    written as;

    [

    ]

    [

    ]

    (3.13)

    3.2Transformation MatrixThree-dimensional structure is composed of unification of the different structural

    elements at the node points. The nodal point displacement and force vector are

    defined in the XYZ global cartesian team. End-displacement vectors and end-force

    vectors of the element which is leaded at any direction are defined at local axis of the

    element.

    Figure 3.4 :XYZ and xyz coordinate systems.

    Z

    X

    Y

    y

    z

    O

    x

    A

    B

    H

  • 8/3/2019 STATIC ANALYSIS OF STRUCTURES WITH ENERGY PRINCIPLE

    17/47

    12

    Any OB element is in vertical plane OHBA. The direction of the element is defined

    as angle between this vertical plane and the plane XOZ, and angle between the

    element and horizontal plane XOY. For the element, assume that x is defined as the

    intersection axis with element axis. Let z is the vertical axis to the x axis in order to

    keep within the vertical plane OHBA in which the element located. Let y is the axis

    which is vertical to plane xz and directed to create a right-handed-system with plane

    xz. Pay attention that y axis stays within the horizontal plane XOY. Let show the

    unit vectors of coordinate teams with {I , J , K } for XYZ and {i , j , k} forxyz. {i , j , k} vector can be written in forms of {I , J , K } by using angles { , } and projections.

    = cos cos+ cos sin+ sin= cos - sin = - cos sin - sin sin+ cos (3.14)Now let consider looking to the cross section of element in reverse direction of x axis

    of the element and assuming that the principal axes of the cross section are not

    intersected with y-z axes.

    Figure 3.5 :Cross section of an element. = = cos - sin = sin + cos (3.15)

    z

    x

  • 8/3/2019 STATIC ANALYSIS OF STRUCTURES WITH ENERGY PRINCIPLE

    18/47

    13

    If values of (3.15) are replaced in (3.14)

    = cos cos+ cos sin+ sin

    = (-sin cos + cos sin sin)

    + (cos cos + sin sin sin)

    -

    sin cos = (-sin sin - cos sin cos) + (sin cos - cos sin sin) +cos cos

    (3.26)

    Transformations have been found. Let write the (3.16) correlation in matrix form.

    {

    }

    {

    } (3.37)There are two ways to write vectors {, , } in forms of vectors { , , }. Firstone is with geometric projection by using figures 1 and 2, and second one is using

    inverse of orthogonal matrix which is given at (3.18). As known, inverse of an

    orthogonal matrix is just the transpose of this matrix. So, wanted correlation is found

    as;

    {

    }

    {

    } (3.48)

  • 8/3/2019 STATIC ANALYSIS OF STRUCTURES WITH ENERGY PRINCIPLE

    19/47

    14

    Table 3.1:Transformation matrix T is given below as 12x12. 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0

    0 0 0

    0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    Where = = =

    =

    = =

    (3.59)

  • 8/3/2019 STATIC ANALYSIS OF STRUCTURES WITH ENERGY PRINCIPLE

    20/47

    15

    3.3Load VectorLoad vector is total of node and element load vectors. Node load vector simply

    includes external node forces. External forces that are in restrained node

    displacement directions are ignored. For an element dimension of load vector is

    12x1.

    Figure 3.6 :Local axis and external node forces of an element.The load vector for two nodes can be written as;

    (

    )

    (3.20)

    1 3plane

    1 2 plane

    i

    j

    1

    2

    3

  • 8/3/2019 STATIC ANALYSIS OF STRUCTURES WITH ENERGY PRINCIPLE

    21/47

    16

    Figure 3.7 :Local axis and flush reactions caused by uniformly distributed load q.To transform q distributed load to elements local coordinate system following

    equation is used.

    (3.21)

    Where T is transformation matrix from global coordinates to local coordinates of the

    element. The flush reactions of the bar;

    (3.22)

    are obtained. Load vector for external forces;

    1Q

    2Q

    3Q

    4Q 5

    Q

    6Q

    7Q

    8Q

    10Q

    11Q

    12Q

    9Q

    1 3plane

    1 2 plane

    i

    j

    1 2

    3

  • 8/3/2019 STATIC ANALYSIS OF STRUCTURES WITH ENERGY PRINCIPLE

    22/47

    17

    (

    )

    (3.23)

    Total load vector for the element in global coordinates;

    (3.24)

  • 8/3/2019 STATIC ANALYSIS OF STRUCTURES WITH ENERGY PRINCIPLE

    23/47

    18

    Loading

    End Moment Reactions End Shear Reactions

    Table 3.2:Bar end reactions for general loading types.

    M

    a b

    L

    P

    a b

    L

  • 8/3/2019 STATIC ANALYSIS OF STRUCTURES WITH ENERGY PRINCIPLE

    24/47

    19

    4. APPLICATION OF ENERGY METHODS

    Importance of energy methods is that all calculations are programmable. Therefore,

    as an application of this method a 3d frame analysis software was developed and

    some structures were analyzed with this software.

    4.1Implementation of the ProgramminiCAD is a program with a graphical user interface which provides the static

    linear elastic solution of frame structures under various boundary conditions.

    Material property definitions and cross-sectional information can be defined from the

    Define menu easily. Elements and joints can directly be drawn to the screen with

    the help of custom grid lines provided by the user. Loads can be applied to either

    nodes as concentrated load or to the elements as concentrated or distributed load

    both.

    4.1.1 Material description

    Any number of materials can be created with a unique name given by the user from

    the Define->material menu. The only property needed for material description isthe elasticity modulus E. The defined material properties can be assigned to any

    cross-section. So every cross-section must have its own material property data.

    Figure 4.1 : Material defining dialog.User can also see the list of materials and edit /delete materials from the Define

    menu by selecting material names.

  • 8/3/2019 STATIC ANALYSIS OF STRUCTURES WITH ENERGY PRINCIPLE

    25/47

    20

    4.1.2 Section description

    Figure 4.2 : Section defining dialog.Cross-section dimensions can be defined in two different ways. If desired the user

    can enter the section dimensions height (h) and width (b) and the section properties

    are calculated automatically by the program, or for the second choice all properties

    can separately be given manually independent from the shape of the cross-section.

    Also every cross-section has to be assigned a material type from the material library.

    Sections are assigned to elements to provide their cross-sectional data.

    Figure 4.3 : Grid defining dialog.

  • 8/3/2019 STATIC ANALYSIS OF STRUCTURES WITH ENERGY PRINCIPLE

    26/47

    21

    Grid intersections are used to catch the proper 3D coordinates in the 2D computer

    screen. From the Define->Grid menu any uniform grid system can be created. For

    this purpose Grid origin, Spacing and grid counts for x, y and z dimensions (total 9

    values) must be provided.

    4.1.3 Drawing the system geometry

    Mouse pointer snaps grid intersection to find the exact coordinate while drawing the

    elements. Elements are characterized with yellow lines. Also nodes are created

    automatically while drawing elements. Nodes are shown by green dots.

    Elements and nodes have their own snap to be selected. After selection of items

    (elements or nodes) property assignments or property modification can be performed

    with the help of appropriate menus.

    4.1.4 Restraint definitions

    Figure 4.4 : Restraint defining dialog.With left mouse click multiple nodes and element can be selected. From the Define-

    >Restraint->Selected Nodes menu, any of the 6 degree of freedoms of the node can

    be checked to be zero. Also fast restraint options are available.

  • 8/3/2019 STATIC ANALYSIS OF STRUCTURES WITH ENERGY PRINCIPLE

    27/47

    22

    4.1.5 Node load definitions

    Figure 4.5 : Node load defining dialog.Node loads are concentrated loads defined positive in the direction of the degree of

    freedoms. Otherwise node loads must be negative. Following the node selection,

    from Define->Loads->Selected Nodes menu, global components of force and

    moment vectors can be entered separately.

    4.1.6 Element load definitions

    Figure 4.6 : Element load defining dialog.

  • 8/3/2019 STATIC ANALYSIS OF STRUCTURES WITH ENERGY PRINCIPLE

    28/47

    23

    Elements can either have concentrated or distributed loads. For the concentrated load

    assignment Define->Loads->Selected Elements menu is selected. In the dialog box

    appeared Concentrated option must be on. Also concentrated moments can be

    applied properly from the same dialog.

    Load vector components must be provided in global directions.

    For distributed loading the same dialog can be used. Selecting the Distributed

    option in the dialog the function definition of the load q(x) must be provided

    properly in its text form. So any distributed load can be applied by its function

    definition.

    4.2Numerical AnalysesFour different structures are analyzed in this chapter. First and last structures were

    also analyzed in SAP2000 14.0 and got same results. Second and third structures

    couldnt be analyzed in SAP2000 because of distributed load functions of greater

    degree than one are not supported by SAP2000.

    4.2.1 Numerical Analysis 1

    Figure 4.7 : An one storied and bayed structure.Elements are numbered by input order. Thus, element 1 is first typed element by

    user. Nodes are automatically created while typing elements. Below analyze steps are

    shown on tables. For all tables force unit is kN and distance unit is m.

  • 8/3/2019 STATIC ANALYSIS OF STRUCTURES WITH ENERGY PRINCIPLE

    29/47

    24

    Table 4.1:Material information. G is automatically generated by using E.Name E

    MAL 30000000

    Table 4.2:Section information. I1 is torsion constant. I2 and I3 are moment ofinertia about 2 and 3 axes.

    Name Material A I1 I2 I3

    KES1 MAL 0,12 0,001264 0,0036 0,0004

    KES2 MAL 0,27 0,006401 0,018225 0,002025

    KES3 MAL 0,16 0,001797 0,000533 0,008533

    Table 4.3:Node information. qi symbols are code vector members. Code vectormembers are starting with 0 to degrees of freedom minus one and assigned by

    using node restraints. Each freedom increases index by one. -1 shows that

    node has restraint for the mentioned displacement.

    Number X Y Z Px Py Pz Mx My Mz qx qy qz qtetx qtety qtetz

    1 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1

    2 0 0 3 0 200 0 0 0 0 0 1 2 3 4 5

    5 0 4 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1

    6 0 4 3 0 0 0 0 0 0 6 7 8 9 10 11

    3 5 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1

    4 5 0 3 0 200 0 0 0 0 12 13 14 15 16 17

    7 5 4 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1

    8 5 4 3 0 0 0 0 0 0 18 19 20 21 22 23

    Table 4.4:Element information. DLoadF and DMomentF are distributed loadand moment functions on the element. Rf and Rm are direction vectors of

    distributed load and moment functions. Pcount and Mcount show point force

    and moment counts.

    Number Node1 Node2 Section DLoadF DMomentF Rfx Rfy Rfz Rmx Rmy Rmz Pcount Mcount

    1 1 2 KES1 0 0 0 0 0 0 0 0

    2 3 4 KES1 0 0 0 0 0 0 0 0

    3 5 6 KES1 0 0 0 0 0 0 0 0

    4 7 8 KES1 0 0 0 0 0 0 0 0

    5 2 4 KES2 20 0 0 -1 0 0 0 0 0

    6 6 8 KES2 20 0 0 -1 0 0 0 0 0

    7 2 6 KES3 20 0 0 -1 0 0 0 0 0

    8 4 8 KES3 30 0 0 -1 0 0 0 0 0

    After creating element and node information K element stiffness matrixes are needed

    to create global stiffness matrix. K is generated by using the following equation.

    (4.1)

  • 8/3/2019 STATIC ANALYSIS OF STRUCTURES WITH ENERGY PRINCIPLE

    30/47

    25

    Where T is transformation matrix from global coordinates to local coordinates of

    element, k is local stiffness matrix of element. Stiffness matrixes of each element are

    shown below.

    Table 4.5:K stiffness matrix for element 1, 2, 3 and 4. Since section and localaxes of these elements are equal, K stiffness matrixes are equal, too.48000 0 0 0 72000 0 -48000 0 0 0 72000 0

    0 5333,333 0 -8000 0 0 0 -5333,33 0 -8000 0 0

    0 0 1200000 0 0 0 0 0 -1200000 0 0 0

    0 -8000 0 16000 0 0 0 8000 0 8000 0 0

    72000 0 0 0 144000 0 -72000 0 0 0 72000 0

    0 0 0 0 0 4861,539 0 0 0 0 0 -4861,54

    -48000 0 0 0 -72000 0 48000 0 0 0 -72000 0

    0 -5333,33 0 8000 0 0 0 5333,333 0 8000 0 0

    0 0 -1200000 0 0 0 0 0 1200000 0 0 0

    0 -8000 0 8000 0 0 0 8000 0 16000 0 072000 0 0 0 72000 0 -72000 0 0 0 144000 0

    0 0 0 0 0 -4861,54 0 0 0 0 0 4861,539

    Table 4.6:K stiffness matrix for element 5 and 6.1620000 0 0 0 0 0 -1620000 0 0 0 0 0

    0 5832 0 0 0 14580 0 -5832 0 0 0 14580

    0 0 52488 0 -131220 0 0 0 -52488 0 -131220 0

    0 0 0 14771,54 0 0 0 0 0 -14771,5 0 0

    0 0 -131220 0 437400 0 0 0 131220 0 218700 0

    0 14580 0 0 0 48600 0 -14580 0 0 0 24300

    -1620000 0 0 0 0 0 1620000 0 0 0 0 0

    0 -5832 0 0 0 -14580 0 5832 0 0 0 -14580

    0 0 -52488 0 131220 0 0 0 52488 0 131220 0

    0 0 0 -14771,5 0 0 0 0 0 14771,54 0 0

    0 0 -131220 0 218700 0 0 0 131220 0 437400 0

    0 14580 0 0 0 24300 0 -14580 0 0 0 48600

    Table 4.7:K stiffness matrix for element 7 and 8.47998,13 0 0 0 0 -95996,3 -47998,1 0 0 0 0 -95996,3

    0 1200000 0 0 0 0 0 -1200000 0 0 0 0

    0 0 2998,125 5996,25 0 0 0 0 -2998,13 5996,25 0 0

    0 0 5996,25 15990 0 0 0 0 -5996,25 7995 0 0

    0 0 0 0 5183,654 0 0 0 0 0 -5183,65 0

    -95996,3 0 0 0 0 255990 95996,25 0 0 0 0 127995

    -47998,1 0 0 0 0 95996,25 47998,13 0 0 0 0 95996,25

    0 -1200000 0 0 0 0 0 1200000 0 0 0 0

    0 0 -2998,13 -5996,25 0 0 0 0 2998,125 -5996,25 0 0

    0 0 5996,25 7995 0 0 0 0 -5996,25 15990 0 0

    0 0 0 0 -5183,65 0 0 0 0 0 5183,654 0

    -95996,3 0 0 0 0 127995 95996,25 0 0 0 0 255990

  • 8/3/2019 STATIC ANALYSIS OF STRUCTURES WITH ENERGY PRINCIPLE

    31/47

    26

    Global matrix is generated by using code vector and element stiffness matrixes.

    Global matrix only contains stiffness matrix members that are free to displace. In

    other words restrained displacements that come from two nodes of the element are

    ignored when creating global matrix from element stiffness matrixes. Thus, stiffness

    matrix members that have -1 displacement index arent added to global matrix and

    dimension of global matrix is NxN where N is degrees of freedom.

    To explain this more clearly an example will be helpful. From Table 4 nodes of

    element 1 are node 1 and 2. Node 1 is restrained for all displacements. Node 2 is

    totally free. From the Table 3 code vector for node 1 is (-1, -1, -1, -1, -1, -1) and code

    vector for node 2 is (0, 1, 2, 3, 4, 5). Thus, code vector for element 1 is

    [

    ]

    (4.1)

    First six rows of code vector for element 1 is -1. This means that first six

    displacements on element 1 is zero. Thus load and displacement equation for element

    1 is

    [

    ]

    (4.2)

  • 8/3/2019 STATIC ANALYSIS OF STRUCTURES WITH ENERGY PRINCIPLE

    32/47

    27

    In this equation unknowns are , , , , and . Thus, eliminatingunneeded rows and columns this equation can be written as;

    [

    ]

    [

    ] [

    ]

    (4.3)

    Since (, , , , , ) indexed as (0, 1, 2, 3, 4, 5) in code vector, additionof element 1 to the global matrix can be written as;

    Table 4.8:Addition of element 1. Note that matrix indexes are beginning with 0.GM[0,0]=K[6,6] GM[0,1]=K[6,7] GM[0,2]=K[6,8] GM[0,3]=K[6,9] GM[0,4]=K[6,10] GM[0,5]=K[6,11]

    GM[1,0]=K[7,6] GM[1,1]=K[7,7] GM[1,2]=K[7,8] GM[1,3]=K[7,9] GM[1,4]=K[7,10] GM[1,5]=K[7,11]

    GM[2,0]=K[8,6] GM[2,1]=K[8,7] GM[2,2]=K[8,8] GM[2,3]=K[8,9] GM[2,4]=K[8,10] GM[2,5]=K[8,11]

    GM[3,0]=K[9,6] GM[3,1]=K[9,7] GM[3,2]=K[9,8] GM[3,3]=K[9,9] GM[3,4]=K[9,10] GM[3,5]=K[9,11]

    GM[4,0]=K[10,6] GM[4,1]=K[10,7] GM[4,2]=K[10,8] GM[4,3]=K[10,9] GM[4,4]=K[10,10] GM[4,5]=K[10,11]

    GM[5,0]=K[11,6] GM[5,1]=K[11,7] GM[5,2]=K[11,8] GM[5,3]=K[11,9] GM[5,4]=K[11,10] GM[5,5]=K[11,11]

    Last 6x6 region of stiffness matrix of element 1 is added to first 6x6 region of global

    matrix because code vector of element 1 is pointing this region. After addition of all

    elements calculated the global matrix is created. Since last code vector member is 23,

    dimension of global matrix is 24x24.

    Table 4.9:First 12x12 region of Global matrix.1715998 0 0 0 -72000 -95996,3 -47998,1 0 0 0 0 -95996,3

    0 1211165 0 8000 0 14580 0 -1200000 0 0 0 0

    0 0 1255486 5996,25 -131220 0 0 0 -2998,13 5996,25 0 0

    0 8000 5996,25 46761,54 0 0 0 0 -5996,25 7995 0 0

    -72000 0 -131220 0 586583,6 0 0 0 0 0 -5183,65 0

    -95996,3 14580 0 0 0 309451,5 95996,25 0 0 0 0 127995

    -47998,1 0 0 0 0 95996,25 1715998 0 0 0 -72000 95996,25

    0 -1200000 0 0 0 0 0 1211165 0 8000 0 14580

    0 0 -2998,13 -5996,25 0 0 0 0 1255486 -5996,25 -131220 0

    0 0 5996,25 7995 0 0 0 8000 -5996,25 46761,54 0 0

    0 0 0 0 -5183,65 0 -72000 0 -131220 0 586583,6 0

    -95996,3 0 0 0 0 127995 95996,25 14580 0 0 0 309451,5

    To calculate displacements following equations are used.

    (4.4)

  • 8/3/2019 STATIC ANALYSIS OF STRUCTURES WITH ENERGY PRINCIPLE

    33/47

    28

    Where u is displacement vector and LV is load vector.

    Table 4.10: Load vector is total of node load vectors and element loadvectors. Dimension of load matrix is 24x1.

    0

    200

    -90

    -26,6667

    41,66666

    0

    0

    0

    -90

    26,66667

    41,666660

    0

    200

    -110

    -40

    -41,6667

    0

    0

    0

    -110

    40

    -41,6667

    0

    Table 4.11: Node displacements.Node q1 q2 q3 q4 q5 q6

    8 2,17E-06 0,026778 -0,00015 -0,00385 -0,00011 -4,3E-08

    7 0 0 0 0 0 0

    6 7,22E-06 0,026779 -0,00013 -0,0041 0,000119 -4,4E-085 0 0 0 0 0 0

    4 2,21E-06 0,026871 -3,8E-05 -0,00691 -0,00011 7,35E-08

    3 0 0 0 0 0 0

    2 7,27E-06 0,02687 -2,2E-05 -0,00666 0,000119 7,37E-08

    1 0 0 0 0 0 0

    After all unknowns are found, element local end forces can be calculated. To

    calculate end forces following equations are used.

  • 8/3/2019 STATIC ANALYSIS OF STRUCTURES WITH ENERGY PRINCIPLE

    34/47

    29

    (4.5)

    Where [P] is reaction vector which is caused by external forces on the element. [u] is

    global displacement vector of two nodes of the element. [q] is local displacement

    vector for the element.

    Figure 4.8 : Positive directions of element end forces.Element end forces should be shown in directions which are shown in Figure 4.8. To

    obtain Q element end forces following equations are used.

    (4.5)

    T1

    M2

    M1

    T2

    N1

    N2

  • 8/3/2019 STATIC ANALYSIS OF STRUCTURES WITH ENERGY PRINCIPLE

    35/47

    30

    Figure 4.9 : Positive directions of element end forces.Table 4.12: Element end forces

    Element N1 T1 T2 M1 M2 M3 N2 T3 T4 M4 M5 M6

    8 -111,98 0 -4,23 0 100,7 -0,01 -111,98 0 -124,23 0 -156,24 -0,01

    7 -110 0 -24,23 0 112,04 -0,01 -110 0 -104,23 0 -144,9 -0,01

    6 -8,19 0 50,05 3,68 -16,55 -0,01 -8,19 0 -49,95 3,68 -16,32 0,01

    5 -8,19 0 50,04 -3,68 -16,54 0,01 -8,19 0 -49,96

    -

    3,68 -16,32 -0,01

    4 -174,19 -111,99 8,19 0 -8,24 183,39 -174,19 -111,99 8,19 0 16,32 -152,56

    3 -154,28 -110 -8,19 0 8,01 181,41 -154,28 -110 -8,19 0 -16,55 -148,58

    2 -45,72 -88,02 8,19 0 -8,24 159,67 -45,72 -88,02 8,19 0 16,32 -104,38

    1 -25,81 -90 -8,19 0 8,01 161,66 -25,81 -90 -8,19 0 -16,54 -108,36

    T1

    M6

    M3

    T3

    M1

    M6

    T2

    M5

    M2

    T4

    N1

    N2

  • 8/3/2019 STATIC ANALYSIS OF STRUCTURES WITH ENERGY PRINCIPLE

    36/47

    31

    4.2.2 Numerical Analysis 2

    Figure 4.10 : An one storied and two bayed structure.Table 4.13: Material information.

    Name E

    MAL 30000000

    Table 4.14: Section information.Name Material A I1 I2 I3

    B1 MAT 0,18 0,003708 0,0054 0,00135

    C1 MAT 0,25 0,008802 0,005208 0,005208

    Table 4.15: Node information.Number X Y Z Px Py Pz Mx My Mz qx qy qz qtetx qtety qtetz

    1 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1

    2 0 0 3 0 0 0 0 0 0 0 1 2 3 4 5

    3 0 4 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1

    4 0 4 3 0 0 0 0 0 0 6 7 8 9 10 11

    9 10 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -110 10 0 3 0 0 0 0 0 0 12 13 14 15 16 17

    11 10 4 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1

    12 10 4 3 0 0 0 0 0 0 18 19 20 21 22 23

    5 5 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1

    6 5 0 3 0 0 0 0 0 0 24 25 26 27 28 29

    7 5 4 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1

    8 5 4 3 0 0 0 0 0 0 30 31 32 33 34 35

  • 8/3/2019 STATIC ANALYSIS OF STRUCTURES WITH ENERGY PRINCIPLE

    37/47

    32

    Table 4.16: Element information.Number Node1 Node2 Section DLoadF DMomentF Rfx Rfy Rfz Rmx Rmy Rmz Pcount Mcount

    1 1 2 C1 0 0 0 0 0 0 0 0

    2 3 4 C1 0 0 0 0 0 0 0 0

    3 5 6 C1 0 0 0 0 0 0 0 0

    4 7 8 C1 0 0 0 0 0 0 0 0

    5 9 10 C1 0 0 0 0 0 0 0 0

    6 11 12 C1 0 0 0 0 0 0 0 0

    7 10 6 B1 x^2+3*x+4 0 0 -2 0 0 0 0 0

    8 6 2 B1 x^2+3*x+4 0 0 -2 0 0 0 0 0

    9 12 8 B1 x^2+3*x+4 0 0 -2 0 0 0 0 0

    10 8 4 B1 x^2+3*x+4 0 0 -2 0 0 0 0 0

    11 2 4 B1 0 0 0 0 0 0 1 1

    12 10 12 B1 0 0 0 0 0 0 1 1

    13 6 8 B1 0 0 0 0 0 0 1 1

    Table 4.17: Node displacements.Node q1 q2 q3 q4 q5 q6

    12 7,92E-05 -6,2E-05 -3,2E-05 7,52E-05 -0,00018 -3,7E-11

    11 0 0 0 0 0 0

    10 7,92E-05 -5,9E-05 -2,1E-05 5,09E-06 -0,00018 -3,7E-11

    9 0 0 0 0 0 0

    8 0,000102 -6,2E-05 -9,6E-05 7,52E-05 7,36E-05 -2,8E-11

    7 0 0 0 0 0 06 0,000102 -5,9E-05 -8,5E-05 5,09E-06 7,36E-05 -3,5E-11

    5 0 0 0 0 0 0

    4 0,000124 -6,2E-05 -5,9E-05 7,52E-05 0,000312 -4E-11

    3 0 0 0 0 0 0

    2 0,000124 -5,9E-05 -4,8E-05 5,09E-06 0,000312 -4,2E-11

    1 0 0 0 0 0 0

  • 8/3/2019 STATIC ANALYSIS OF STRUCTURES WITH ENERGY PRINCIPLE

    38/47

    33

    Table 4.18: Element end forcesElement N1 T1 T2 M1 M2 M3 N2 T3 T4 M4 M5 M6

    13 -3,56 0 -3,55 0 -5,07 0 -3,56 0 -23,55 0 -9,25 0

    12 -3,56 0 -3,54 0 -5,07 0 -3,56 0 -23,54 0 -9,25 0

    11 -3,56 0 -3,54 0 -5,07 0 -3,56 0 -23,55 0 -9,25 0

    10 -23,87 0 73,59 0 -90,84 0 -23,87 0 -124,74 0 -52,04 0

    9 -24,46 0 55,96 0 -46,18 0 -24,46 0 -142,38 0 -95,57 0

    8 -23,87 0 73,59 0 -90,84 0 -23,87 0 -124,74 0 -52,04 0

    7 -24,46 0 55,96 0 -46,18 0 -24,46 0 -142,38 0 -95,57 0

    6 -79,5 -3,56 24,46 0 -27,21 1,42 -79,5 -3,56 24,46 0 46,18 -9,25

    5 -52,41 3,56 24,46 0 -27,21 -5,6 -52,41 3,56 24,46 0 46,18 5,07

    4 -239,52 -3,56 -0,6 0 -2,94 1,42 -239,5 -3,56 -0,6 0 -4,73 -9,25

    3 -212,43 3,56 -0,6 0 -2,94 -5,6 -212,4 3,56 -0,6 0 -4,73 5,07

    2 -148,28 -3,56 -23,87 0 19,57 1,42 -148,3 -3,56 -23,87 0 -52,04 -9,25

    1 -121,19 3,56 -23,87 0 19,57 -5,6 -121,2 3,56 -23,87 0 -52,04 5,07

    4.2.3 Numerical Analysis 3

    Figure 4.11 : A two storied and one bayed structure.Table 4.19: Material information.

    Name E

    MAL 30000000

  • 8/3/2019 STATIC ANALYSIS OF STRUCTURES WITH ENERGY PRINCIPLE

    39/47

    34

    Table 4.20: Section information.Name Material A I1 I2 I3

    B1 MAT 0,18 0,003708 0,0054 0,00135

    C1 MAT 0,25 0,008802 0,005208 0,005208

    C2 MAT 0,16 0,003605 0,002133 0,002133

    Table 4.21: Node information.Number X Y Z Px Py Pz Mx My Mz qx qy qz qtetx qtety qtetz

    1 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1

    2 0 0 3 0 0 0 0 0 0 0 1 2 3 4 5

    9 0 0 6 0 0 0 0 0 0 6 7 8 9 10 11

    3 0 4 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1

    4 0 4 3 0 0 0 0 0 0 12 13 14 15 16 17

    10 0 4 6 0 0 0 0 0 0 18 19 20 21 22 23

    5 5 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1

    6 5 0 3 0 0 0 0 0 0 24 25 26 27 28 29

    12 5 0 6 0 0 0 0 0 0 30 31 32 33 34 35

    7 5 4 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1

    8 5 4 3 0 0 0 0 0 0 36 37 38 39 40 41

    11 5 4 6 0 0 0 0 0 0 42 43 44 45 46 47

    Table 4.22: Element information.Number Node1 Node2 Section DLoadF DMomentF Rfx Rfy Rfz Rmx Rmy Rmz Pcount Mcount

    1 1 2 C1 0 0 0 0 0 0 0 02 3 4 C1 0 0 0 0 0 0 0 0

    3 5 6 C1 0 0 0 0 0 0 0 0

    4 7 8 C1 0 0 0 0 0 0 0 0

    8 6 2 B1 x^2 0 0 -2 0 -2 0 0 0

    10 8 4 B1 0 0 -2 0 0 0 1 1

    11 2 4 B1 x 0 0 -3 0 0 0 0 0

    13 6 8 B1 x 0 0 -3 0 0 0 0 0

    14 2 9 C2 0 0 0 0 0 0 0 0

    15 4 10 C2 0 0 0 0 0 0 0 0

    16 8 11 C2 0 0 0 0 0 0 0 0

    17 6 12 C2 0 0 0 0 0 0 0 0

    18 12 9 B1 x^2 0 0 0 0 -2 0 0 0

    19 11 12 B1 x 0 0 -3 0 0 0 0 0

    20 11 10 B1 0 0 0 0 0 0 1 1

    21 10 9 B1 x 0 0 -3 0 0 0 0 0

  • 8/3/2019 STATIC ANALYSIS OF STRUCTURES WITH ENERGY PRINCIPLE

    40/47

    35

    Table 4.23: Node displacements.Node q1 q2 q3 q4 q5 q6

    12 -0,00019 0,000191 -3,6E-05 -4,6E-05 -0,00012 0,000328

    11 -0,0016 0,00019 -1,2E-05 9,25E-07 -9,1E-05 0,000231

    10 -0,00162 -0,00136 -1,8E-05 0,000121 -9,7E-05 0,0002719 -0,00018 -0,00135 -1,7E-05 2,49E-05 0,00012 0,00032

    8 -0,00069 7,42E-05 -6,7E-06 -1,4E-05 -0,00021 6,79E-05

    7 0 0 0 0 0 0

    6 -8,2E-05 7,29E-05 -1,8E-05 -3E-05 -6,5E-05 0,000138

    5 0 0 0 0 0 0

    4 -0,0007 -0,00059 -1,1E-05 0,00019 -0,00022 9,47E-05

    3 0 0 0 0 0 0

    2 -8,4E-05 -0,00058 -1E-05 0,000151 2,09E-05 0,000133

    1 0 0 0 0 0 0

    Table 4.24: Element end forcesElement N1 T1 T2 M1 M2 M3 N2 T3 T4 M4 M5 M6

    21 -13,96 -1,91 -1,7 -2,33 15,31 4,32 -13,96 -1,91 -25,7 -2,33 -23,5 -3,33

    20 15,53 2,54 -2,34 6,97 22,65 -3,23 -14,47 22,54 -12,34 0,97 -19,05 1,88

    19 -0,22 -2,25 10,66 0,29 -11,42 5,49 -0,22 -2,25 -13,34 0,29 -0,78 -3,52

    18 -6,95 0,33 14,81 -0,61 -8,47 -0,88 -6,95 0,33 14,81 -0,61 -17,75 0,74

    17 -28,15 -0,11 4,7 2,64 -5,92 0,5 -28,15 -0,11 4,7 2,64 8,19 0,18

    16 -8,32 -2,76 -13,27 2,26 17,46 3,83 -8,32 -2,76 -13,27 2,26 -22,36 -4,45

    15 -10,64 8,59 -12,56 2,44 16,29 -11,4 -10,64 8,59 -12,56 2,44 -21,38 14,3414 -10,89 14,28 -8,87 2,59 11,18 -18,7 -10,89 14,28 -8,87 2,59 -15,43 24,11

    13 1,73 -1,52 4,19 -1,51 0,28 2,32 1,73 -1,52 -19,81 -1,51 -14,96 -3,74

    11 -10,21 -1,25 27,91 -2,54 -46,24 2,12 -10,21 -1,25 3,91 -2,54 33,39 -2,9

    10 14,96 2,69 -11,46 6,26 45,31 -3,7 -15,04 22,69 -21,46 0,26 -42,01 2,13

    8 2,14 0,1 13,18 -1,55 -9,34 -0,28 2,14 0,1 13,18 -1,55 -26,79 0,2

    4 -16,67 -3,72 -26,71 2,3 50,78 6,3 -16,67 -3,72 -26,71 2,3 -29,36 -4,87

    3 -45,52 -1,93 1,05 4,68 1,78 4,46 -45,52 -1,93 1,05 4,68 4,94 -1,33

    2 -28,19 21,06 -26,35 3,2 50,8 -41,5 -28,19 21,06 -26,35 3,2 -28,25 21,71

    1 -25,62 24,59 -7,99 4,51 10,89 -44,7 -25,62 24,59 -7,99 4,51 -13,07 29,04

  • 8/3/2019 STATIC ANALYSIS OF STRUCTURES WITH ENERGY PRINCIPLE

    41/47

    36

    4.2.4 Numerical Analysis 4

    Figure 4.12 : A two storied and bayed structure.In this analysis some results will be compared with SAP2000.

    Table 4.25: Material information.Name E

    MAL 30000000Table 4.26: Section information.

    Name Material A I1 I2 I3

    B1 MAT 0,18 0,003708 0,0054 0,00135

    C1 MAT 0,25 0,008802 0,005208 0,005208

    C2 MAT 0,16 0,003605 0,002133 0,002133

  • 8/3/2019 STATIC ANALYSIS OF STRUCTURES WITH ENERGY PRINCIPLE

    42/47

    37

    Table 4.27: Node information.Number X Y Z Px Py Pz Mx My Mz qx qy qz qtetx qtety qtetz

    1 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1

    2 0 0 3 100 0 0 0 0 0 0 1 2 3 4 5

    9 0 0 6 100 0 0 0 0 0 6 7 8 9 10 11

    3 0 4 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1

    4 0 4 3 100 0 0 0 0 0 12 13 14 15 16 17

    10 0 4 6 100 0 0 0 0 0 18 19 20 21 22 23

    13 10 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1

    14 10 0 3 0 0 0 0 0 0 24 25 26 27 28 29

    18 10 0 6 0 0 0 0 0 0 30 31 32 33 34 35

    15 10 4 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1

    16 10 4 3 0 0 0 0 0 0 36 37 38 39 40 4117 10 4 6 0 0 0 0 0 0 42 43 44 45 46 47

    5 5 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1

    6 5 0 3 0 0 0 0 0 0 48 49 50 51 52 53

    12 5 0 6 0 0 0 0 0 0 54 55 56 57 58 59

    7 5 4 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1

    8 5 4 3 0 0 0 0 0 0 60 61 62 63 64 65

    11 5 4 6 0 0 0 0 0 0 66 67 68 69 70 71

  • 8/3/2019 STATIC ANALYSIS OF STRUCTURES WITH ENERGY PRINCIPLE

    43/47

    38

    Table 4.28: Element information.Number Node1 Node2 Section DLoadF DMomentF Rfx Rfy Rfz Rmx Rmy Rmz Pcount Mcount

    1 1 2 C1 0 0 0 0 0 0 0 0

    2 3 4 C1 0 0 0 0 0 0 0 0

    3 5 6 C1 0 0 0 0 0 0 0 0

    4 7 8 C1 0 0 0 0 0 0 0 0

    8 6 2 B1 1 0 0 -10 0 0 0 0 0

    10 8 4 B1 1 0 0 -10 0 0 0 0 0

    11 2 4 B1 1 0 0 -20 0 0 0 0 0

    13 6 8 B1 1 0 0 -20 0 0 0 0 0

    14 2 9 C2 0 0 0 0 0 0 0 0

    15 4 10 C2 0 0 0 0 0 0 0 0

    16 8 11 C2 0 0 0 0 0 0 0 017 6 12 C2 0 0 0 0 0 0 0 0

    18 12 9 B1 1 0 0 -10 0 0 0 0 0

    19 11 12 B1 1 0 0 -20 0 0 0 0 0

    20 11 10 B1 1 0 0 -10 0 0 0 0 0

    21 10 9 B1 1 0 0 -20 0 0 0 0 0

    22 13 14 C1 0 0 0 0 0 0 0 0

    23 15 16 C1 0 0 0 0 0 0 0 0

    24 16 17 C2 0 0 0 0 0 0 0 0

    25 14 18 C2 0 0 0 0 0 0 0 0

    26 18 17 B1 1 0 0 -20 0 0 0 0 0

    27 14 16 B1 1 0 0 -20 0 0 0 0 0

    28 14 6 B1 1 0 0 -10 0 0 0 0 0

    29 16 8 B1 1 0 0 -10 0 0 0 0 0

    30 18 12 B1 1 0 0 -10 0 0 0 0 0

    31 11 17 B1 1 0 0 -10 0 0 0 0 0

  • 8/3/2019 STATIC ANALYSIS OF STRUCTURES WITH ENERGY PRINCIPLE

    44/47

    39

    Table 4.29: Node displacements.Node q1 q2 q3 q4 q5 q6

    18 0,003955 3,16E-06 -0,00012 -0,00015 0,000212 9E-09

    17 0,003955 -3,1E-06 -0,00012 0,000147 0,000212 8,82E-09

    16 0,00167 1,02E-06 -7,1E-05 5,46E-05 0,000516 2,92E-09

    15 0 0 0 0 0 0

    14 0,00167 -1E-06 -7,1E-05 -5,5E-05 0,000516 2,97E-09

    13 0 0 0 0 0 0

    12 0,003986 3,15E-06 -0,00014 -0,00015 0,00013 6,08E-09

    11 0,003986 -3,1E-06 -0,00014 0,000147 0,00013 6,06E-09

    10 0,004059 -3,2E-06 -5,8E-05 0,000147 0,000405 8,97E-09

    9 0,004059 3,14E-06 -5,8E-05 -0,00015 0,000405 8,96E-09

    8 0,001696 1,02E-06 -7,6E-05 5,46E-05 0,000356 1,98E-097 0 0 0 0 0 0

    6 0,001696 -1E-06 -7,6E-05 -5,5E-05 0,000356 2,05E-09

    5 0 0 0 0 0 0

    4 0,001756 1,01E-06 -2,9E-05 5,46E-05 0,000622 2,96E-09

    3 0 0 0 0 0 0

    2 0,001756 -1E-06 -2,9E-05 -5,5E-05 0,000622 2,93E-09

    1 0 0 0 0 0 0

    Table 4.30: Node displacements for Node 9 in SAP2000.q1 q2 q3 q4 q5 q6

    0,00428 3,1E-06 -6E-05 -0,0002 0,00042 0

  • 8/3/2019 STATIC ANALYSIS OF STRUCTURES WITH ENERGY PRINCIPLE

    45/47

    40

    Table 4.31: Element end forcesElement N1 T1 T2 M1 M2 M3 N2 T3 T4 M4 M5 M6

    31 -33,94 0 11,44 0 10,43 0 -33,94 0 -38,56 0 -57,39 0

    30 -33,94 0 38,56 0 -57,39 0 -33,94 0 -11,44 0 10,43 0

    29 -28,28 0 58,95 0 -110,9 0 -28,28 0 8,95 0 58,87 0

    28 -28,28 0 58,96 0 -110,91 0 -28,28 0 8,96 0 58,87 0

    27 2,74 0 40 0 -22,24 0 2,74 0 -40 0 -22,25 0

    26 -8,5 0 40 0 -14,73 0 -8,5 0 -40 0 -14,73 0

    25 -78,56 8,5 33,94 0 -44,44 -10,77 -78,56 8,5 33,94 0 57,39 14,73

    24 -78,56 -8,5 33,94 0 -44,44 10,77 -78,56 -8,5 33,94 0 57,39 -14,73

    23 -177,52 -5,76 62,22 0 -120,18 5,79 -177,52 -5,76 62,22 0 66,47 -11,48

    22 -177,52 5,76 62,22 0 -120,19 -5,79 -177,52 5,76 62,22 0 66,47 11,48

    21 -8,5 0 40 0 -14,73 0 -8,5 0 -40 0 -14,73 0

    20 -78,34 0 44,62 0 -60,97 0 -78,34 0 -5,38 0 37,12 0

    19 -8,5 0 40 0 -14,73 0 -8,5 0 -40 0 -14,73 0

    18 -78,34 0 44,62 0 -60,97 0 -78,34 0 -5,38 0 37,12 0

    17 -96,05 8,5 44,4 0 -61,8 -10,77 -96,05 8,5 44,4 0 71,4 14,73

    16 -96,05 -8,5 44,4 0 -61,79 10,77 -96,05 -8,5 44,4 0 71,4 -14,73

    15 -45,38 -8,5 21,66 0 -27,86 10,77 -45,38 -8,5 21,66 0 37,12 -14,73

    14 -45,38 8,5 21,66 0 -27,86 -10,77 -45,38 8,5 21,66 0 37,12 14,73

    13 2,74 0 40 0 -22,25 0 2,74 0 -40 0 -22,25 0

    11 2,74 0 40 0 -22,25 0 2,74 0 -40 0 -22,24 0

    10 -64,58 0 62,3 0 -105,45 0 -64,58 0 12,3 0 81,07 0

    8 -64,58 0 62,3 0 -105,45 0 -64,58 0 12,3 0 81,07 04 -189,4 -5,76 80,7 0 -139,58 5,79 -189,4 -5,76 80,7 0 102,53 -11,48

    3 -189,4 5,76 80,7 0 -139,58 -5,79 -189,4 5,76 80,7 0 102,53 11,48

    2 -73,08 -5,76 57,08 0 -118,03 5,79 -73,08 -5,76 57,08 0 53,21 -11,48

    1 -73,08 5,76 57,08 0 -118,03 -5,79 -73,08 5,76 57,08 0 53,21 11,48

    Table 4.32: Element end forces for Element 11 in SAP2000.N1 T1 T2 M1 M2 M3 N2 T3 T4 M4 M5 M6

    2,7 0 40 0 -21,97 0 2,7 0 -40 0 -21,97 0

  • 8/3/2019 STATIC ANALYSIS OF STRUCTURES WITH ENERGY PRINCIPLE

    46/47

    41

    5. CONCLUSON

    Compared with other static analysis methods energy principle is more practical. The

    main advantage of energy principle is computers can be used for analyses. Thus,

    analyzing structures by using energy principle is really fast. Since calculations are

    done in computer, human based errors are minimized.

  • 8/3/2019 STATIC ANALYSIS OF STRUCTURES WITH ENERGY PRINCIPLE

    47/47

    REFERENCES

    [1] Akz, Y., 2005. Enerji Yntemleri ve Yap Sistemleri, Istanbul Technical

    University.

    [2] Case, J., Chilver L., and Ross. C. T. F., (1993). Strength of Materials andStructures, Printed and bound in Great Britain by St Edmundsbury

    Press.

    [3] Meek, J. L., (1991). Computer Methods in structural Analysis, Printed in

    Singapore by Fong & Sons Printers Pte. Ltd.

    [4]Energy Methods, Retrieved November 15, 2009, from

    http://courses.washington.edu/me354a/Energy%20methods.pdf

    [5] Wikimedia Foundation, 2009. Structural Analysis. Retrieved November 20,

    2009, from http://en.wikipedia.org/wiki/Structural_analysis

    [6] Wikimedia Foundation, 2009. Minimum Total Potential Energy Principle.

    Retrieved November 25, 2009, from

    http://en.wikipedia.org/wiki/Minimum_total_potential_energy_princip

    le