95
Statistical nonmolecular phylogenetics: can molecular phylogenies illuminate morphological evolution? 21 April 2011. Joe Felsenstein Storer Lecture, U.C. Davis Statistical nonmolecular phylogenetics: can molecular phylogenies illuminate morphological evolution? – p.1/80

Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

Statistical nonmolecular phylogenetics: can molecularphylogenies illuminate morphological evolution?

21 April 2011.

Joe Felsenstein

Storer Lecture, U.C. Davis

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.1/80

Page 2: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

A model of quantitative characters on a phylogeny

We can model character change on a phylogeny as Brownianmotion with multiple characters with different variances and withcovariation as well.

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.2/80

Page 3: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

A model of quantitative characters on a phylogeny

We can model character change on a phylogeny as Brownianmotion with multiple characters with different variances and withcovariation as well.This started with approximating gene frequencies in the 1960s byAnthony Edwards and Luca Cavalli-Sforza.

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.2/80

Page 4: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

A model of quantitative characters on a phylogeny

We can model character change on a phylogeny as Brownianmotion with multiple characters with different variances and withcovariation as well.This started with approximating gene frequencies in the 1960s byAnthony Edwards and Luca Cavalli-Sforza.

I expanded it to model quantitative characters determined by thesegenes.

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.2/80

Page 5: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

Models for long-term evolution

The use of quantative genetics approximations to model long-termevolution in lineages was largely introduced by Russ Lande in the 1980s.

Russell Lande on his website at Imperial College, U.K., where he hasbeen in recent years.

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.3/80

Page 6: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

Where do the covariances come from?

Genetic covariances (the same loci affect two or morw traits)

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.4/80

Page 7: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

Where do the covariances come from?

Genetic covariances (the same loci affect two or morw traits)

Selective covariances (Tedin, 1926; Stebbins 1950) The sameenvironmental conditions select changes in two or more traits –even though they may have no genetic covariance.

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.4/80

Page 8: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

Part 1

Morphometrics and phylogenies

Fred Bookstein

... is co-author on the first half of the talk

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.5/80

Page 9: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

How to use morphometric coordinates on phylogenies?

Is it possible to simply use the coordinates of landmarks(x1, y1), (x2, y2), . . . , (xp, yp) as continuous phenotypes x1, y1, . . . , xp, ypusing Brownian motion along a phylogeny?

Yes, but ...

First we must make sure that the forms (or if we are scaling to eliminatesize differences, the shapes), are represented in a proper morphometricspace.

Otherwise meaningless translations (shifts) or rotations of the specimenswill affect the coordinates.

In effect we are superimposing the specimens properly, although acomplete superposition isn’t necessary.

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.6/80

Page 10: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

Dealing with translation

The specimens can be reduced to differences among coordinates ofdifferent points, losing the grand mean of each specimen.

This amounts to taking contrasts between the different points of onespecimen (a different matter from phylogenetic contrasts, which are for the samecoordinate, but between different specimens).

In effect one is centering each specimen so that the mean of its points isat (0, 0). (The assumption is that the horizontal and vertical placement ofthe specimen on the digitizer is not useful information).

This has the effect of dropping two degrees of freedom so that eachspecimen now has 2p− 2 coordinates. It now “lives” in a(2p− 2)-dimensional space.

For example, we could drop the last point (xp, yp) as it is then alwayspredictable from the sum of the other points. Or we could replace thecoordinates by any set of 2p− 2 contrasts such as the Helmert transform.

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.7/80

Page 11: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

Can we superpose specimens?

Consider two cases:

lineage 1 lineage 2

Are these different?Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.8/80

Page 12: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

Why superposition is in principle impossible

Consider two cases:

lineage 1 lineage 2

Are these different? No!Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.9/80

Page 13: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

The annoying issue of rotation

Sadly, there is no corresponding transform that tosses out rotation, asthere is for translation.

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.10/80

Page 14: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

Degrees of freedom and other transforms

There are other possible rotation transforms that are all approximatelyequivalent, including:

Superposing by a joint Procrustes (least squares) superposition.

The “Bookstein transformation”, an approximate Procrustes.

Choosing the angles of rotation of all but the first specimen(θ2, θ3, . . . , θp) to maximize the resulting likelihood.

All of these reduce the degrees of freedom of each specimen by 3, to2p− 3.

But does this mean that the multivariate density function does not exist?No, it does exist, just in a (2p− 3)-dimensional subspace.

In that space, all the usual machinery of the phylogeneticcomparative method is available: contrasts to evaluate covariationof characters, reconstruction of ancestors, etc.

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.11/80

Page 15: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

What about shape?

Fred has a version of the Bookstein Transformation that also standardizessizes so all change is in “shape” not “form”.

Since evolutionary biologists are interested in size as well as shape, herewe leave size in, assuming that the multivariate methods can detect itsunusual variability compared to shape and correct for that, later.

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.12/80

Page 16: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

A simulation: the true ancestor

Here is a simulation showing the operation of the BooksteinTransformation in an imaginary species:

−6 −4 −2 0 2 4 6

−4

−2

0

2

4

x

y

The dreaded Thresher Salmon-Shark (Palionchorhynchus)

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.13/80

Page 17: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

The true tree of 20 formsT

D

O

Q

N

I

E

L

M

S

B

R

C

F

A

P

K

G

H

J

(We used a 100-species tree similar to this).Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.14/80

Page 18: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

The true directions of change by Brownian motion

−6 −4 −2 0 2 4 6

−4

−2

0

2

4

x

y

Green circles are independent circular normal change

Red lines show perfectly correlated normal change

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.15/80

Page 19: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

The (unknown) true superposition

0 2 4 6 8 10 12−4

−2

0

2

4

y

x

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.16/80

Page 20: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

The Procrustes (least squares) superposition

−6 −4 −2 0 2 4 6

−4

−2

0

2

4

y

x

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.17/80

Page 21: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

Inferring the covariances of change

Basically, you just take the standardized contrasts as independentsamples, as usual. The variation will “live” in the 17-dimensional spacebut the best estimate of the covariance is still the empirical covariance.

We can then find eigenvalues and eigenvectors of the empiricalcovariances of contrasts, as usual.

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.18/80

Page 22: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

The first principal component of variation

This was computed from phylogenetic contrasts on the true tree with theProcrustes superposition:

0 5 10

05

(Not too bad, though there are some signs that the program still hasproblems).

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.19/80

Page 23: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

Part 2

Fossils and phylogenies

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.20/80

Page 24: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

Present methods for calibrationA B C D

F

Can take a fossil to indicate a bound on how recently a common ancestorwas present. Use various priors on how much earlier or how much morerecently.

But there is another way, which is being explored by me and(independently) by Fredrik Rønquist

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.21/80

Page 25: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

Another way of using fossils

morphology(palaeontology)

Tree (neo)

morphology(neontology)

molecularsequences

Infer tree of present-day species from molecular sequences

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.22/80

Page 26: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

Using fossils

morphology(palaeontology)

Cov

Tree (neo)

molecularsequences

morphology(neontology)

Infer covariances of morphology using it, present-day species

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.23/80

Page 27: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

Using fossils

morphology(palaeontology)

Cov

Tree Tree (neo)

molecularsequences

morphology(neontology)

Infer placement of fossil species using their data

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.24/80

Page 28: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

Using fossils

Likelihood

Time

Use fossil and present-day morphology, covariances, tree,also stratigraphic models

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.25/80

Page 29: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

Using fossils

Likelihood

Time

Use fossil and present-day morphology, covariances, tree,also stratigraphic models

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.26/80

Page 30: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

Using fossils

Likelihood

Time

Use fossil and present-day morphology, covariances, tree,also stratigraphic models

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.27/80

Page 31: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

Using fossils

Likelihood

Time

Use fossil and present-day morphology, covariances, tree,also stratigraphic models

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.28/80

Page 32: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

Using fossils

Likelihood

Time

Use fossil and present-day morphology, covariances, tree,also stratigraphic models

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.29/80

Page 33: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

Using fossils

Likelihood

Time

Use fossil and present-day morphology, covariances, tree,also stratigraphic models

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.30/80

Page 34: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

Using fossils

Likelihood

Time

Use fossil and present-day morphology, covariances, tree,also stratigraphic models

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.31/80

Page 35: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

Using fossils

Likelihood

Time

Use fossil and present-day morphology, covariances, tree,also stratigraphic models

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.32/80

Page 36: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

Using fossils

Likelihood

Time

Use fossil and present-day morphology, covariances, tree,also stratigraphic models

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.33/80

Page 37: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

Using fossils

Likelihood

Time

Use fossil and present-day morphology, covariances, tree,also stratigraphic models

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.34/80

Page 38: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

Using fossils

Likelihood

Time

Use fossil and present-day morphology, covariances, tree,also stratigraphic models

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.35/80

Page 39: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

Using fossils

Likelihood

Time

Use fossil and present-day morphology, covariances, tree,also stratigraphic models

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.36/80

Page 40: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

Using fossils

Likelihood

Time

Use fossil and present-day morphology, covariances, tree,also stratigraphic models

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.37/80

Page 41: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

Using fossils

Likelihood

Time

Use fossil and present-day morphology, covariances, tree,also stratigraphic models

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.38/80

Page 42: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

Using fossils

Likelihood

Time

Use fossil and present-day morphology, covariances, tree,also stratigraphic models

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.39/80

Page 43: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

The algebra

If T is the covariances of n tips on the tree, and V is the (unknown)covariances of the Brownian motion of the p characters, thelog-likelihood of a set of characters (stacked as a vector) x is

lnL = −(np/2) ln(2π)− (1/2) ln |T⊗V| − (1/2)(x− µ)t(T⊗V)−1(x− µ)

If C is an (n− 1)× n set of contrasts, each orthogonal to the grandmean, such that CTCt is an n− 1-dimensional identity matrix, then takingthe density of the transformed data y = C x, this has expectation vector 0:

lnL = K − (1/2) ln |In−1 ⊗V| − (1/2)yt(I(n−1) ⊗V)−1y

(where K collects the constant stuff).

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.40/80

Page 44: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

... simplifying ...

This can also be expressed as

lnL = K − ((n− 1)/2) ln |V| − (1/2)tr(SV)−1

)

where

S =∑

i

y(i)(y(i)

)t

is the p× p sum of squares matrix of characters across contrasts.Inferring the Brownian motion phylogenetic covariances by maximumlikelihood we find that

V̂ = S/(n− 1)

which leads tolnL = K ′ − ((n− 1)/2) ln |V̂|

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.41/80

Page 45: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

A simple result

The upshot is that to find the maximum likelihood placement of a fossillineage, we

Hook it up somewhere

Obtain the contrasts for that treeInfer the phylogenetic covariances of the characters from thecontrastsThe log-likelihood for this placement is (a constant plus) −(n− 1)/2times the log of the determinant of the covariance matrix

So we minimize the determinant to find the best placement. We canconsider whether we can do likelihood ratio tests, too, at least forplacement within a single branch.

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.42/80

Page 46: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

An example: the true tree with F a fossil species

JCHI

FAEKBLGD

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.43/80

Page 47: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

Traffic-light colors shows where fossil can be placed

JCHI

FAEKBLGD

Green = within 1 log-likelihood unit, Orange = within 2 units, Red = lowerthan that. Green arrow is the ML placement. Gray placements are ruledout by date of the fossil.

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.44/80

Page 48: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

Calibrating the molecular clock

Molecular trees don’t usually have branch lengths on a time scale, and weneed that. How to infer the calibration of the clock?

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.45/80

Page 49: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

Calibrating the molecular clock

There will be two quantities to infer, the scaling of the molecular tree onthe time scale, and the placement of the connection to the fossil. Wemake an ML estimate and accept other values that are not rejected by aLikelihood Ratio Test with 2 degrees of freedom.

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.46/80

Page 50: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

Calibrating the molecular clock

JCHI

FAEKBLGD

For example if (not a real example) the placement of F turned out to be asshown, with the branch length shown in red, that in turn scales the wholemolecular tree, as we know the time of F.

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.47/80

Page 51: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

Part 3

A threshold model for 0/1 characters

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.48/80

Page 52: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

Current methods for statistical treatment of 0/1 character sPagel (1994) and Lewis (2001) treat such data with

A B DC

0 1α

β

dt

dt

Pagel allows inference of whether change is correlated, on a known tree.Lewis infers the tree, but does not allow for correlations among characters.Neither takes into account contributions to a 0/1 character from multipleunderlying loci.

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.49/80

Page 53: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

The threshold modelA relevant model was invented in 1934 by

Sewall Wright (1889-1988)shown here in 1954

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.50/80

Page 54: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

The threshold modelA relevant model was invented in 1934 by

Sewall Wright (1889-1988)

rumor has it he then absent-mindedlyerased the board with the guinea pig

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.51/80

Page 55: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

The threshold model

Sewall Wright (1934), guinea pig digit number(from Wright’s follow-up 1934 second paper)

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.52/80

Page 56: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

The threshold model on a tree3.154

3.473

5.345

2.433

−4.983

1.884

4.339

−1.930

0.000

0

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.53/80

Page 57: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

Computing the likelihood

With two species, one character:

(1,0)

x1

x

c

c

2

Disadvantages:

Quite hard to compute likelihoods: need to compute area in a corner of acorrelated multivariate normal distribution.

With 5 species, one character:

L = Prob (1, 1, 0, 1, 1)

=

∫∞

0

∫∞

0

∫ 0

−∞

∫∞

0

∫∞

0

ϕ(x1, x2, x3, x4, x5 | Tree) dx1 dx2 dx3 dx4 dx5

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.54/80

Page 58: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

Likelihoods under the threshold model on a treeTo compute the likelihood for a tree under the threshold model with pcharacters, want to compute:

L =∫∞

c

∫ c

−∞. . .

∫∞

c|V|−1(2π)−np/2

× exp(− 1

2(x− µ)t V−1 (x− µ)

)dx11 dx12 . . . dxnp

where µ is the appropriate vector of means, and

V = A⊗T

involves the tree and the “evolutionary" covariance matrix of thecharacters.

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.55/80

Page 59: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

MCMC on liabilities

A B C D E2.03 1.64 0.57 −1.4 −0.3

1.69

0.81

−0.29

0.23

(1) (0) (0)(1) (1)

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.56/80

Page 60: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

MCMC on liabilities: Gibbs sampling in the interior

A B C D E2.03 1.64 0.57 −1.4 −0.3

0.81

−0.29

0.23

(1) (0) (0)(1) (1)

Gibbs sampler for internal node values

x

v1 v

v

2

6

1(1/v ) (1/v ) (1/v ) 2.03 + 1.64 + 0.812 6

1(1/v ) (1/v ) (1/v )2 6 + +

1

1(1/v ) (1/v ) (1/v )2 6 + +

x drawn from normal distribution,

mean =

var =

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.57/80

Page 61: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

MCMC on liabilities: result of Gibbs sampling

A B C D E2.03 1.64 0.57 −1.4 −0.3

0.81

−0.29

0.23

(1) (0) (0)(1) (1)

Gibbs sampler for internal node values

1.48

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.58/80

Page 62: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

MCMC on liabilities: rejection at tips

A B1.64

0.81

(1) (1)

1.48

x

v1

(must condition on ancestor and observed phenotype)

How to update the liability at a tip?

conditional distributionof x at tip given ancestor

(etc.)

1.48

v1

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.59/80

Page 63: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

An example

−1 0 1 2 3 4

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.60/80

Page 64: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

An example

−1 0 1 2 3 4

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.61/80

Page 65: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

An example

−1 0 1 2 3 4

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.62/80

Page 66: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

An example

−1 0 1 2 3 4

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.63/80

Page 67: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

An example

−1 0 1 2 3 4

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.64/80

Page 68: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

An example

−1 0 1 2 3 4

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.65/80

Page 69: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

An example

−1 0 1 2 3 4

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.66/80

Page 70: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

An example

−1 0 1 2 3 4

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.67/80

Page 71: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

An example

−1 0 1 2 3 4

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.68/80

Page 72: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

An example

−1 0 1 2 3 4

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.69/80

Page 73: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

An example

−1 0 1 2 3 4

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.70/80

Page 74: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

An example

−1 0 1 2 3 4

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.71/80

Page 75: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

An example

−1 0 1 2 3 4

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.72/80

Page 76: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

An example

−1 0 1 2 3 4

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.73/80

Page 77: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

A 3-character simulation

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.74/80

Page 78: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

A 3-character simulation

For these true covariances:

1.64 0.8 0

0.8 1.36 −0.60 −0.6 1

100 data sets with 100-species trees were analyzed.

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.75/80

Page 79: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

Inferred correlation coefficients

character 1 character 2

character 1

character 2

−1.0 −0.5 0.0 0.5 1.0

0.5357

character 3

−1.0 −0.5 0.0 0.5 1.0

0.00

−1.0 −0.5 0.0 0.5 1.0

0.5145

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.76/80

Page 80: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

Extensions

To take uncertainty in the tree into account ...

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.77/80

Page 81: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

Extensions

To take uncertainty in the tree into account ...

... use bootstrap sampled trees, or

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.77/80

Page 82: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

Extensions

To take uncertainty in the tree into account ...

... use bootstrap sampled trees, or

... use Bayesian posterior samples of trees, and in either case

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.77/80

Page 83: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

Extensions

To take uncertainty in the tree into account ...

... use bootstrap sampled trees, or

... use Bayesian posterior samples of trees, and in either case

... do the analysis once for each of these trees

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.77/80

Page 84: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

Extensions

To take uncertainty in the tree into account ...

... use bootstrap sampled trees, or

... use Bayesian posterior samples of trees, and in either case

... do the analysis once for each of these trees

It is also possible to do an overall Bayesian inference if we havepriors on the covariances that we are happy with. But this may turnout much the same.

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.77/80

Page 85: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

Extensions

To take uncertainty in the tree into account ...

... use bootstrap sampled trees, or

... use Bayesian posterior samples of trees, and in either case

... do the analysis once for each of these trees

It is also possible to do an overall Bayesian inference if we havepriors on the covariances that we are happy with. But this may turnout much the same.For within-species variation, where we have finite samples ofspecimens for each species, we can extend these methods usingmachinery similar to my 2008 paper on comparative methods withwithin-species variation.

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.77/80

Page 86: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

Extensions

To take uncertainty in the tree into account ...

... use bootstrap sampled trees, or

... use Bayesian posterior samples of trees, and in either case

... do the analysis once for each of these trees

It is also possible to do an overall Bayesian inference if we havepriors on the covariances that we are happy with. But this may turnout much the same.For within-species variation, where we have finite samples ofspecimens for each species, we can extend these methods usingmachinery similar to my 2008 paper on comparative methods withwithin-species variation.

I have not talked about the Ornstein-Uhlenbeck model of characterchange but will in the next hour, where we will cover adaptive peaks,multiple peaks, and moving peaks.

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.77/80

Page 87: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

What about QTLs?In principle, in the long run, we can integrate this work with QTLinference.

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.78/80

Page 88: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

What about QTLs?In principle, in the long run, we can integrate this work with QTLinference.Perhaps this would enable us to use phylogenetic information to notonly identify QTLs, but to see them change across species,including some QTLs causing variation within some species, somewithin others.

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.78/80

Page 89: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

What about QTLs?In principle, in the long run, we can integrate this work with QTLinference.Perhaps this would enable us to use phylogenetic information to notonly identify QTLs, but to see them change across species,including some QTLs causing variation within some species, somewithin others.In principle, this could even allow us to infer on which of twocorrelated characters the selection really acted (or to what extentand in what direction on both).

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.78/80

Page 90: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

What we can ... and cannot ... inferBUT ... we have limited power from any one sample of species.Biologists must learn to accept that, and find ways to propagate thatuncertainty through the analysis that flow from these inferences. Wecannot (ever!) have a Fly-On-The-Wall account of evolution.

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.79/80

Page 91: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

What we can ... and cannot ... inferBUT ... we have limited power from any one sample of species.Biologists must learn to accept that, and find ways to propagate thatuncertainty through the analysis that flow from these inferences. Wecannot (ever!) have a Fly-On-The-Wall account of evolution.

Furthermore we must always be sensitive to the limits of our models– as we expand the tree to less related groups, the models arecalled severely into question.

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.79/80

Page 92: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

References

For the last 40-50 years population-genetic work within species hasbeen (mostly) isolated from work on molecular evolution betweenspecies.

Now we are in a gradual Reunion of these two lines of work (not aNew Synthesis, though) as observations can be made that connectthem (coalescents across species boundaries, Ds/Dn inferences,etc.)

As this happens, Russ Lande’s vision will become more and more ofa reality – quantitative genetics will become directly relevant tomulti-species evolutionary biology.

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.80/80

Page 93: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

ReferencesLewis, P. O. 2001. A likelihood approach to estimating phylogeny from

discrete morphological character data. Systematic Biology 50: 913-925. [Uses 0/1 stochastic process to infer morphological phylogenies]

Pagel, M. 1994. Detecting correlated evolution on phylogenies:A general method for the comparative analysis of discretecharacters. Proceedings of the Royal Society of London Series BBiological Sciences. 255: 37-45. [0/1 stochastic model for discretecharacters]

Wright, S. 1934. An analysis of variability in number of digits in aninbred strain of guinea pigs. Genetics 19: 506-536. [The thresholdmodel for discrete traits]

Falconer, D. S. 1965. The inheritance of liability to certain diseases,estimated from the incidence among relatives. Annals of HumanGenetics 29: 51-76. [Threshold model applied to human diseases]

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.81/80

Page 94: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

ReferencesFelsenstein, J. 1988. Phylogenies and quantitative characters. Annual

Review of Ecology and Systematics 19: 445-471. [Review withmention of usefulness of threshold model]

Felsenstein, J. 2002. Quantitative characters, phylogenies,and morphometrics.pp. 27-44 in “Morphology, Shape, andPhylogenetics", ed. N. MacLeod. Systematics Association SpecialVolume Series 64. Taylor and Francis, London. [Review repeating1988 material and going into some more detail on the question ofthreshold models.]

Felsenstein, J. 2004. Inferring Phylogenies. Sinauer Associates,Sunderland, Massachusetts. Mentions this model and also samplesize issues in contrasts method.

Felsenstein, J. 2005. Using the quantitative genetic thresholdmodel for inferences between and within species. PhilosophicalTransactions of the Royal Society of London, series B 360: 1427-1434.[This project in a slightly earlier version]

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.82/80

Page 95: Statistical nonmolecular phylogenetics: can molecular ...evolution.genetics.washington.edu/talks/ucdavis2011/davis.pdf · evolution in lineages was largely introduced by Russ Lande

ReferencesFelsenstein, J. 2004. Inferring Phylogenies. Sinauer Associates,

Sunderland, Massachusetts. [Especially Chapters 23-25 aboutcontinuous characters, Brownian motion models, and contrasts]

Felsenstein, J. 2002. Quantitative characters, phylogenies, andmorphometrics. pp. 27-44 in Morphology, Shape, and Phylogenetics,edited by N. MacLeod. Systematics Association Special VolumeSeries 64. Taylor and Francis, London. [This fossil strategy in anearlier incarnation]

Statistical nonmolecular phylogenetics: can molecular phylogenies illuminatemorphological evolution? – p.83/80