29
Virginia H. Dale Virginia H. Dale Center for BioEnergy Sustainability Center for BioEnergy Sustainability Oak Ridge National Laboratory Oak Ridge National Laboratory Oak Ridge, Tennessee USA Oak Ridge, Tennessee USA Steps toward Sustainability of Bioenergy US Department of Energy “Not everything that can be counted counts, and not everything that can be counted should be counted.” William Bruce Cameron

Steps toward Sustainability of Bioenergyconferences.ict.illinois.edu/RESINworkshop2011/invited...• Incorporate biofuel policy as a ”shock” Ag land available (previously cleared

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • Virginia H. Dale Virginia H. Dale Center for BioEnergy SustainabilityCenter for BioEnergy SustainabilityOak Ridge National Laboratory Oak Ridge National Laboratory Oak Ridge, Tennessee USAOak Ridge, Tennessee USA

    Steps toward Sustainability of  

    Bioenergy

    US Department of Energy

    “Not everything that can be counted counts, and not everything that can be counted should be counted.”

    William Bruce Cameron

  • Collaborators:Outstanding in field 

    of switchgrass

    •• Allen C. McBrideAllen C. McBride•• Latha M. BaskaranLatha M. Baskaran•• Mark E. DowningMark E. Downing•• Laurence M. EatonLaurence M. Eaton•• Rebecca A. EfroymsonRebecca A. Efroymson•• Charles T. Garten Jr.Charles T. Garten Jr.•• Natalie GriffithsNatalie Griffiths•• Michael Hilliard Michael Hilliard •• Keith L. KlineKeith L. Kline•• Henrietta I. JagerHenrietta I. Jager•• Matt Langholtz Matt Langholtz 

    •• Paul LeibyPaul Leiby•• Richard MiddletonRichard Middleton•• Patrick J. MulhollandPatrick J. Mulholland•• Gbadebo OladosuGbadebo Oladosu•• Esther S. ParishEsther S. Parish•• Peter E. SchweizerPeter E. Schweizer•• Nagendra SinghNagendra Singh•• Alexandre SorokineAlexandre Sorokine•• Maggie StevensMaggie Stevens•• John M. StoreyJohn M. Storey•• Neil ThomasNeil Thomas

  • Modeling (validated by farmer interviews) suggest that sustainability exists when farmers use• A diversity of perennial crops • No burning

    and lead to• Greater carbon storage• Less deforestation• Greater habitat diversity• Farmers remaining on land > 10yrs 

    Sustainability :The capacity of an activity to continue while maintaining options for future generations. 

    Farmer in Rondônia, Brazil

    Dale  et al. 1994.  Modeling effects of land management in the Brazilian settlement of Rondônia.  Conservation Biology 8:196‐206.

  • Sustainability Indicators 

    They should be • Useful

    Policymakers Agronomists Producers

    •Technically effectiveSensitive to stresses on systemAnticipatory: signify impending change Have known variability in response

    •PracticalEasily measured Consider context of measureBroadly applicable Predict changes that can be averted by management actions

    Dale and Beyeler. 2001. Challenges in the development and use of ecological indicators. Ecological Indicators 1: 3-10.

    Any measurable quantity that provides information about long‐term impacts of human activities on the environment, society, or economy.

  • Set of Indicators Should Apply to Entire Supply Chain

    Feedstock production 

    Feedstock Logistics

    Conversion Biofuel Distribution  End use

    Feedstock type

    Land conditions

    Land management

    Processing

    Storage

    Fuel type Transport

    Storage

    Engine  type

    Blend conditions

    Conversion process

    Transport

    Co‐products

    Harvesting and collection

  • Many Groups Working to Develop Indicators for Bioenergy Sustainability

    • Some examples GBEP (Global Bioenergy Partnership) RSB (Roundtable on Sustainable Biofuels) CSBP (Council on Sustainable Biomass 

    Production)

    • Concerns Too many indicators Measures that are too broad for 

    practical implementation

  • Environmental Indicators of Bioenergy Feedstock Sustainability

    Greenhouse gas emissions

    Soil quality

    Water quality and quantity

    Air quality

    Biological diversity

    Productivity

    McBride et al. 2011. Indicators to support environmental sustainability of bioenergy systems. Ecological Indicators 11(5) 1277‐

    1289

  • Categories of Sustainability IndicatorsEnvironment Indicator Units

    Soil quality 1. Total organic carbon (TOC)

    Mg/ha

    2. Total nitrogen (N) Mg/ha

    3. Extractable phosphorus (P)

    Mg/ha

    4. Bulk density g/cm3

    Water quality and quantity

    5. Nitrate concentration in streams (and export)

    concentration: mg/L;export: kg/ha/yr

    6. Total phosphorus (P) concentration in streams (and export)

    concentration: mg/L;export: kg/ha/yr

    7. Suspended sediment concentration in streams (and export)

    concentration: mg/L;export: kg/ha/yr

    8. Herbicide concentration in streams (and export)

    concentration: mg/L;export: kg/ha/yr

    9. storm flow L/s10. Minimum base flow L/s11. Consumptive water use (incorporates base flow)

    feedstock production: m3/ha/day;biorefinery: m3/day

    Environment Indicator UnitsGreenhouse gases

    12. CO2 equivalent emissions (CO2 and N2O)

    kgCeq/GJ

    Biodiversity 13. Presence of taxa of special concern

    Presence

    14. Habitat area of taxa of special concern

    ha

    Air quality 15. Tropospheric ozone ppb

    16. Carbon monoxide ppm

    17. Total particulate matter less than 2.5μm diameter (PM2.5)

    µg/m3

    18. Total particulate matter less than 10μm diameter (PM10)

    µg/m3

    Productivity 19. Aboveground net primary productivity (ANPP) / Yield

    gC/m2/year

  • Contexts for Environmental Indicators of Sustainability in the Biofuel Supply chain

    Feedstock Production 

    Feedstock Type

    Land Conditions

    Management

    Feedstock Logistics 

    Conversion to Biofuel

    Biofuel Logistics

    BiofuelEnd‐Uses

    Processing

    Harvesting & Collection

    Storage

    Transport

    Fuel Type

    Conversion Process

    Co‐Products

    Storage

    Transport

    Blend Conditions

    Engine Type & Efficiency

    Soil quality

    Water quality and quantity

    Greenhouse gases

    Biodiversity

    Air quality 

    Productivity

    Legend

    Efroymson et al. In review. Environmental indicators of biofuel sustainability: What about 

    context?

  • Considering socioeconomic sustainability requires assuming several conditions exist

    • Effective governance• Legal and regulatory protection

    • Acceptable levels of welfare (food, health, safety)  

  • Socioeconomic Indicators

    • Profitability• Employment • Welfare• External trade• Energy security• Natural resource accounting

    • Social acceptability

    ORNL report. In progress. Indicators to support  socioeconomic sustainability of bioenergy systems. 

  • Where Categories of Sustainability Indicators Are Affected within the Supply Chain 

    ORNL report. In progress. Indicators to support  socioeconomic sustainability of bioenergy systems. 

  • Adapting Indicator Set to a Particular Context

    • Indicator set is a starting point for sake of efficiency and standardization– Particular systems may 

    require addition of other indicators

    – Budget may require subtraction of some indicators

    – Some indicators more important for different supply chain steps

    • Protocols must be context‐specific

    • Indicator suite should be considered as a whole

  • Framework for Selecting Indicators

    List of potential indicators• Environmental• Socioeconomic

  • Testing the Indicator Suite

    • Indicators should be tested in a variety of systems

    • Context‐specific knowledge

    • Paired watershed experiments are ideal

  • Using an Optimization Model to Identify “Ideal” Sustainability Conditions

    Spatial optimization model identifies where to locate plantings of bioenergy crops given feedstock goals

    Considers farmer’s profit Water quality constraints

    16

    http://blosm.ornl.govParish et al. 2011. Biofuels, Bioprod. Bioref.

    Vonore Pilot-Scale Biorefinery

  • Scenarios considered (to date) 

    17

    • Baseline: business as usual (no target)• Minimize nitrogen: used to determine whether nitrogen concentration levels of 

    ≤1 mg/L could be achieved by planting the target tonnage of switchgrass throughout the study area

    • Minimize phosphorus: used to determine whether phosphorus concentration levels of ≤ 0.1 mg/L could be achieved by planting the target tonnage

    • Minimize sediment: examined the possibility of achieving sediment concentrations of ≤50 mg/L through planting the target tonnage

    • Maximize profit: solved for the greatest net returns achievable• Balanced: All three water quality goals and economic profit were equally weighted

    • But this solution changed such a large proportion of agricultural land (compared to hay/pasture land) to switchgrass that an additional limit of less than 25% conversion of agricultural land was also run.

    • Targets based on potential thresholds of stream eutrophication that resulted from these nutrients (Dodds 2007).• Model run to identify maximum achievable target in the Lower Little Tennessee watershed and then optimizations are compared to target 

  • Projections of Potential Achievable for Each Objective

    0.0%10.0%20.0%30.0%40.0%50.0%60.0%70.0%80.0%90.0%

    100.0%

    Max N Reduction

    Max P Reduction

    Max Sed Reduction

    Max Profit Equal Weighting

  • Current use and projected conversion under the “Balanced” scenario

    19

    •Existing Agricultural and Hay/Pasture lands in the Lower Little Tennessee watershed

    •Locations of switchgrass plantings recommended by BLOSM’s ‘Balanced’ Scenario

    •Currently there are 13,683 acres of agricultural land and 84,265 acres of hay/pasture land in this watershed.

    •The total land area recommended for switchgrass is 1.3% of the total watershed area (8,527acres out of 674,000 acres). 

  • Projected sediment concentrations under 6 BLOSM scenarios

    •20

  • Landscape Perspective

    Consider indicators within entire system (interactions and feedbacks) as an opportunity to design landscapes that add value.

  • Ways to improve estimates of LUC:1. Representation of policy in model specifications2. Economic decision‐making assumptions 3. Conceptual framework for drivers of initial conversion4. Land supply & management specifications5. Assumed land use dynamics (scenarios, baseline choice)6. Modeling yield change 7. Issues of time, scale8. Fire & other disturbances9. Correlation versus causation10. Many, many data issues to resolve 

    – See IEA Joint Task 38‐40‐43 presentation on LUC –http://ieabioenergy‐task38.org/workshops/campinas2011/

    What are effects of bioenergy policy on land?

    It depends

  • Threats to forests: local governance (policy, corruption, poverty, insecurity), fire and pests…

    Solutions:– Rural livelihoods*– Land tenure – Improve governance,

    local participation and capacity, enforcement

    – Land-use plans, soilmanagement, productive uses to reduce fire*

    – Inventory & protect key conservation areas*

    Source: Kline, 2008 California Biomass Collaborative., based on USAID-FAA Sec. 118/119 Reports for 2000-2008. FAO 2010c. See FAO forest management and conservation best practices: http://www.fao.org/bestpractices/content/05/05_02_en.htm

    *Bioenergy policy could help

  • Sustainability

    .

    15 regional & local studies in the Brazilian Amazon suggest deforestation results from :• Regional economic opportunities •Transportation infrastructure• Political & social forces  • Environmental & social conditions 

    Farm family in Rondônia, Brazil

  • Ongoing Land-Use Changes

    Initial Change Drivers(cultural, technical, biophysical, political, economic, demographic)

    Subsequent ChangeDrivers

    Land cover(typically measured by remote sensing methods at

    one place and time)

    Global Economic ModelsDemand

    Prices, Quantities, and Distribution of Goods

    Carbon Stocks

    Key Filter:

    Initial Land-Use Change

    Source: CBES 2010 http://www.ornl.gov/sci/besd/cbes/

    Filters: private land, rents

    Depiction of Land Changes

    Filters: LC data, scale, sources

    Filters: LC, carbon, change data

  • Putting global land factors into perspective

    • Currently models • Define land assets by “rents”• Assume land is fully & optimally used• Incorporate biofuel policy as a ”shock”

    Ag land available (previously cleared and underused) = 1500 M ha (but may be 5000 M ha) Global area burned each year = 380 M haArea converted to  developed/urban use

    Bioenergy use: too small to visualize

    From Agrawal et al., 2008, Science 320(based on FAO data) 

    Based on  FAO 2007

  • Area (m

    illions of h

    ectares)

    Graphic based on data from the USDA (2009)‐ NRI[Dale et al. (2011). Ecological Applications 21(4):1039‐1054.] 

    What are Implications of actual (not modeled) LUC trends? 

  • Policy Opportunities to Move Forward

  • Managed by UT-Battellefor the Department of Energy

    http://www.ornl.gov/sci/besd/cbes

    Thank you!