Stochastic lecture 4

  • Upload
    musama

  • View
    215

  • Download
    0

Embed Size (px)

Citation preview

  • 7/30/2019 Stochastic lecture 4

    1/35

    Copyright Syed Ali Khayam 2009

    EE 801: Analysis of StochasticSystems

    Inequalities and Limit Theorems

    Dr. Muhammad Usman Ilyas

    School of Electrical Engineering & Computer Science

    National University of Sciences & Technology (NUST)

    Pakistan

  • 7/30/2019 Stochastic lecture 4

    2/35

    Copyright Syed Ali Khayam 2009

    Whatwillwecoverinthislecture?

    Inthislecture,wewillcoverimportantinequalitiesand

    theoremsthatwillleadtoafundamentalresultinprobability

    theoryknownastheCentralLimitTheorem

    Alistoftopicsthatwillbecoveredisasfollows:

    MarkovInequality

    ChebyshevInequality BinomialTheorem

    TheWeakLawofLargeNumbers

    TheCentralLimitTheorem

    Forthislecture,Iamborrowingderivations/discussionsfromthe

    followingbook:

    KishoreS.Trivedi,ProbabilityandStatisticswithReliability,Queuing,and

    ComputerScienceApplications,2005.2

  • 7/30/2019 Stochastic lecture 4

    3/35

    Copyright Syed Ali Khayam 2009

    MarkovInequality

    ConsiderthatyouaregiventhemeanE{X}= ofanonnegative

    randomvariableX

    DefineafunctionofXas:

    0, if

    ,

    X tY

    t X t

  • 7/30/2019 Stochastic lecture 4

    4/35

    Copyright Syed Ali Khayam 2009

    MarkovInequality

    ConsiderthatyouaregiventhemeanE{X}= ofanonnegative

    randomvariableX

    DefineafunctionofXas:

    Recallthatafunctionofarandomvariableisalsoarandom

    variable Sowhatisthepmf ofY?

    0, if

    ,

    X tY

    t X t

  • 7/30/2019 Stochastic lecture 4

    5/35

    Copyright Syed Ali Khayam 2009

    MarkovInequality

    Yhasadiscretepmf:

    TheexpectedvalueofYis:

    0, if

    ,

    X tY

    t X t

  • 7/30/2019 Stochastic lecture 4

    6/35

    Copyright Syed Ali Khayam 2009

    Relationship BetweenRVsX&Y

    X

    Y

    0 t

    t

    pX(x)

    pY(y)

  • 7/30/2019 Stochastic lecture 4

    7/35

  • 7/30/2019 Stochastic lecture 4

    8/35

    Copyright Syed Ali Khayam 2009

    MarkovInequality

    SinceXY,wehaveE{X}E{Y}

    0, if

    ,

    X tY

    t X t

  • 7/30/2019 Stochastic lecture 4

    9/35

    Copyright Syed Ali Khayam 2009

    MarkovInequality

    ProbabilitythatXtakesvaluesfarfromthemeanislow

    Pr{ }X tt

    m

    9

  • 7/30/2019 Stochastic lecture 4

    10/35

    Copyright Syed Ali Khayam 2009

    ChebyshevInequality

    DefineanewrandomvariableW=(X)2

    asafunctionofthenonnegativerandomvariableX

    Clearly,Wisanonnegativerandomvariable

    Also,lets=t2

    ThenbyMarkovinequality

    Markov

    Inequality{ }

    Pr{ }X

    X tt

    E

    2

    2 22

    22 2

    2

    { }Pr{ }

    {( ) }Pr{( ) }

    Pr{( ) }

    WW s

    s

    XX tt

    X tt

    mm

    sm

    E

    E --

    -

    10

  • 7/30/2019 Stochastic lecture 4

    11/35

  • 7/30/2019 Stochastic lecture 4

    12/35

    Copyright Syed Ali Khayam 2009

    ChebyshevInequality

    DefineanewrandomvariableW=(X)2

    asafunctionofthenonnegativerandomvariableX

    Clearly,Wisanonnegativerandomvariable

    Also,lets=t2

    ThenbyMarkovinequality

    Markov

    Inequality{ }

    Pr{ }X

    X tt

    E

    2

    2 22

    22 2

    2

    { }Pr{ }

    {( ) }Pr{( ) }

    Pr{( ) }

    WW s

    s

    XX tt

    X tt

    mm

    sm

    E

    E --

    -

    12

  • 7/30/2019 Stochastic lecture 4

    13/35

    Copyright Syed Ali Khayam 2009

    ChebyshevInequality

    DefineanewrandomvariableW=(X)2

    asafunctionofthenonnegativerandomvariableX

    Clearly,Wisanonnegativerandomvariable

    Also,lets=t2

    ThenbyMarkovinequality

    Markov

    Inequality{ }

    Pr{ }X

    X tt

    E

    2

    2 22

    22 2

    2

    { }Pr{ }

    {( ) }Pr{( ) }

    Pr{( ) }

    WW s

    s

    XX tt

    X tt

    mm

    sm

    E

    E --

    -

    13

  • 7/30/2019 Stochastic lecture 4

    14/35

    Copyright Syed Ali Khayam 2009

    ChebyshevInequality

    Nownotethat

    Thus:

    22 2

    2Pr{( ) }X t

    t

    sm-

    2 2Pr{( ) } Pr{ } Pr{ }X t X t X t m m m- = - = -

    2

    2Pr{ }X t

    t

    sm-

    This is called

    the Chebyshev

    Inequality

    14

  • 7/30/2019 Stochastic lecture 4

    15/35

    Copyright Syed Ali Khayam 2009

    ChebyshevInequality

    Chebyshev inequalitygivesanintuitivesenseforvariance

    2 issmall=>Valuesclosetothemeanhavehigherprobabilities

    2 islarge=>Valuesfarawayfromthemeanhavehigh

    probabilities

    2

    2Pr{ }X t

    t

    sm-

    15

  • 7/30/2019 Stochastic lecture 4

    16/35

  • 7/30/2019 Stochastic lecture 4

    17/35

    Copyright Syed Ali Khayam 2009

    ReadingAssignment

    Example3.40inthetextbook

    Example3.41inthetextbook

    Example3.42inthetextbook

    17

  • 7/30/2019 Stochastic lecture 4

    18/35

  • 7/30/2019 Stochastic lecture 4

    19/35

    Copyright Syed Ali Khayam 2009

    BernoullisTheorem

    ConsiderabinomialdistributionXwithparameters(n,p)

    NowapplyingtheChebyshevInequalitygives:

    { } 2

    2

    1Pr (1 ) 1

    (1 ) 1Pr 1

    X np k np pk

    p pXp k

    n n k

    - < - -

    - - < -

    npm = (1 )np ps = -

    19

  • 7/30/2019 Stochastic lecture 4

    20/35

    Copyright Syed Ali Khayam 2009

    BernoullisTheorem

    Set

    2

    (1 ) 1Pr 1

    p pXp k

    n n k

    - - < -

    (1 )/k p p n e = -

    2

    (1 )

    Pr 1

    p pX

    pn ne e

    - - < -

    lim Pr 1n

    Xp

    n

    e

    - < =

    This is called

    Bernoullis

    Theorem

    20

  • 7/30/2019 Stochastic lecture 4

    21/35

    Copyright Syed Ali Khayam 2009

    BernoullisTheorem

    BernoullisTheoremstatesthatifwerunalargenumberof

    Bernoullitrials(n)thentheprobabilitythattheproportionof

    successesinthentrialsdiffersfrompisarbitrarilysmall

    BernoullisTheoremisaspecialcaseoftheWeakLawofLargeNumbersdiscussednext

    lim Pr 1n

    Xp

    ne

    - < =

    21

  • 7/30/2019 Stochastic lecture 4

    22/35

    Copyright Syed Ali Khayam 2009

    WeakLawofLargeNumbers

    LetX1,X2,,Xn,bemutuallyindependentidenticallydistributed

    randomvariables

    Let representthemeanofthecommondistributionofthese

    randomvariables

    Thenforlargen,wewouldexpectthatthesamplemean iscloseto

    1 2 nx x xxn

    m+ + +

    =

    22

  • 7/30/2019 Stochastic lecture 4

    23/35

    Copyright Syed Ali Khayam 2009

    WeakLawofLargeNumbers

    Let:

    Thenthevarianceofthesamplemeanis:

    1 2 nx x xxn

    m+ + +

    =

    1/

    n

    n i n

    i

    S X and X S n =

    = =

    { } { }{ }

    1

    2 1

    2 2

    2

    1var var var

    1var

    nn

    i

    i

    n

    ii

    SX X

    n n

    Xn

    n

    n n

    s s

    =

    =

    = =

    =

    = =

    Sample mean

    23

  • 7/30/2019 Stochastic lecture 4

    24/35

    Copyright Syed Ali Khayam 2009

    WeakLawofLargeNumbers

    Thusvarianceofthesamplemeanapproaches0asnapproaches

    infinity

    Thatis,thedistributionofthesamplemeangetsmoreandmore

    concentratedaboutitsmeanasthenumberoftrials(n)approachinfinity

    { }2

    var Xn

    s=

    24

  • 7/30/2019 Stochastic lecture 4

    25/35

    Copyright Syed Ali Khayam 2009

    WeakLawofLargeNumbers

    Forlargenumberoftrials,thedistributionofthesamplemean

    getsmoreandmoreconcentratedaboutitsmean

    UsingChebyshevs Inequality,weget

    { }2

    var Xn

    s=

    { }

    2

    2 2

    var{ }

    Pr

    X

    X n

    s

    m d d d- = =

    25

  • 7/30/2019 Stochastic lecture 4

    26/35

    Copyright Syed Ali Khayam 2009

    WeakLawofLargeNumbers

    Takingthelimitoftheaboveinequalityyields:

    { }2

    2Pr X

    n

    sm d

    d- =

    { }lim Pr 0n

    X m d

    - = This is called theWeak Law of

    Large Number

    26

  • 7/30/2019 Stochastic lecture 4

    27/35

    Copyright Syed Ali Khayam 2009

    WeakLawofLargeNumbers

    Takingthelimitoftheaboveinequalityyields:

    { }2

    2Pr X

    n

    sm d

    d- =

    { }lim Pr 0n

    X m d

    - = This is called theWeak Law of

    Large Number

    27

  • 7/30/2019 Stochastic lecture 4

    28/35

    Copyright Syed Ali Khayam 2009

    WeakLawofLargeNumbers

    TheWeakLawofLargeNumbersstatesthatifyourunalarge

    numberoftrials(n)thentheprobabilitythatthesamplemean

    convergestothetruemeanis1

    { }lim Pr 0n

    X m d

    - =

    28

  • 7/30/2019 Stochastic lecture 4

    29/35

    Copyright Syed Ali Khayam 2009

    TheCentralLimitTheorem

    LetX1,X2,,Xn,bemutuallyindependentrandomvariableswitha

    finitemeanE{Xi}=i andafinitevariancevar{Xi}=(i)2.Weforma

    normalizedrandomvariable:

    sothatE{Zn}=0andvar{Zn}=1.Then,undercertainregularity

    conditions,thelimitingdistributionofZn isstandardnormal:

    1 1

    2

    1

    n n

    i i

    i in n

    i

    i

    X

    Z

    m

    s

    = =

    =

    -=

    (0,1)nZ N

    2 /21lim ( ) lim Pr{ }2n

    t

    yZ n

    n nF t Z t e dy

    p-

    -

    = =

    29

  • 7/30/2019 Stochastic lecture 4

    30/35

  • 7/30/2019 Stochastic lecture 4

    31/35

    Copyright Syed Ali Khayam 2009

    Example:TheCentralLimitTheorem

    ThisisthehistogramoftheweightsofpeopleonRhodeIsland.

    Reference: http://www.intuitor.com/statistics/CentralLim.html

    31

  • 7/30/2019 Stochastic lecture 4

    32/35

    Copyright Syed Ali Khayam 2009

    Example:TheCentralLimitTheorem

    Now,insteadofplottingthehistogramofeachsampleseparately,

    weplotaveragesof2samples

    Reference: http://www.intuitor.com/statistics/CentralLim.html

    32

  • 7/30/2019 Stochastic lecture 4

    33/35

    Copyright Syed Ali Khayam 2009

    Example:TheCentralLimitTheorem

    Thenweplothistogramoftheaverageof50samples

    Reference: http://www.intuitor.com/statistics/CentralLim.html

    33

  • 7/30/2019 Stochastic lecture 4

    34/35

    Copyright Syed Ali Khayam 2009

    Example:TheCentralLimitTheorem

    Finally,weplotthehistogramoftheaverageof100samples

    Reference: http://www.intuitor.com/statistics/CentralLim.html

    The distribution

    approaches

    normality as we

    move keepaveraging over more

    and more samples

    34

  • 7/30/2019 Stochastic lecture 4

    35/35

    Copyright Syed Ali Khayam 2009

    ReadingAssignment

    Example5.11inthetextbook

    Example5.12inthetextbook

    Example5.13inthetextbook

    Example5.14inthetextbook

    35