24
Strain Effects on Strain Effects on Bulk <001> Ge Bulk <001> Ge Valence Band Valence Band EEL6935: Computational Nanoelectronics Fall 2006 Andrew Koehler

Strain Effects on Bulk Ge Valence Band EEL6935: Computational Nanoelectronics Fall 2006 Andrew Koehler

Embed Size (px)

Citation preview

Page 1: Strain Effects on Bulk Ge Valence Band EEL6935: Computational Nanoelectronics Fall 2006 Andrew Koehler

Strain Effects on Bulk Strain Effects on Bulk <001> Ge Valence Band<001> Ge Valence BandEEL6935: Computational NanoelectronicsFall 2006

Andrew Koehler

Page 2: Strain Effects on Bulk Ge Valence Band EEL6935: Computational Nanoelectronics Fall 2006 Andrew Koehler

2

Andrew Koehler

OutlineOutline

• Motivation • Background

– Strain– Germanium

• Simulation Results and Discussion• Summary• References

Page 3: Strain Effects on Bulk Ge Valence Band EEL6935: Computational Nanoelectronics Fall 2006 Andrew Koehler

3

Andrew Koehler

MotivationMotivation

• Moore’s Law– ~ 0.7X linear scale factor– 2X increase in density / 2

years– Higher performance (~30%

/ 2 years)

• Approaching Fundamental Limits– “No Exponential is

Forever”

• What is the solution?

Ultimate

CMOS

Current

CMOS

Energy kTln(2) kT(104~105)

Channel

Length1 nm 100 nm

Density 1014/cm2 109/cm2

Power 107 W/cm2 100 W/cm2

Speed 0.01 ps 1 ps

Page 4: Strain Effects on Bulk Ge Valence Band EEL6935: Computational Nanoelectronics Fall 2006 Andrew Koehler

4

Andrew Koehler

Solution: Novel MaterialsSolution: Novel Materials

Page 5: Strain Effects on Bulk Ge Valence Band EEL6935: Computational Nanoelectronics Fall 2006 Andrew Koehler

5

Andrew Koehler

History of StrainHistory of Strain

1954: Piezoresistance in silicon was first discovered by C. S. Smith

(resistance change due to applied stress)

1980s: Thin Si layers grown on relaxed silicon–germanium (SiGe) substrates

1990s: High-stress capping layers deposited on MOSFETs were investigated as a technique to introduce stress into the channel

1990s: SiGe incorporated in the source and drain areas

2002: Intel uses strained Si in P4 processor

00

0 11

R

R

R

RR

Page 6: Strain Effects on Bulk Ge Valence Band EEL6935: Computational Nanoelectronics Fall 2006 Andrew Koehler

6

Andrew Koehler

What is Strain?What is Strain?

• Stress: Limit of Force/Area as Area approaches zero

• Strain: Fractional change in length of an object Distortion of a structure caused by stress

0A

FLim

A

0

0

a a

a

xx

yy

zz

yz

zx

xy

2

2

2

xx

yy

zz

yz

zx

xy

Normal Stress

Component

Shear Stress

Component

Normal Strain

Component

Shear Strain

Component

Page 7: Strain Effects on Bulk Ge Valence Band EEL6935: Computational Nanoelectronics Fall 2006 Andrew Koehler

7

Andrew Koehler

What is Strain?What is Strain?

11 12 12

12 11 12

12 12 12

44

44

C C C 0 0 0

C C C 0 0 0

C C C 0 0 0

0 0 0 C 0 0

0 0 0 0 C 0

0 0 0

xx

yy

zz

yz

zx

xy

44

2

2

0 0 C 2

xx

yy

zz

yz

zx

xy

11 12 12

12 11 12

12 12 12

44

44

S S S 0 0 0

S S S 0 0 0

S S S 0 0 0

2 0 0 0 S 0 0

0 0 0 0 S 02

0 0 2

xx

yy

zz

yz

zx

xy

440 0 0 S

xx

yy

zz

yz

zx

xy

C

S

Elastic Stiffness Coefficients (1011N/cm2)

Compliance Coefficients (10-11cm2/N)

c11 c12 c44

Si 1.657 0.639 0.7956

Ge 1.292 0.479 0.670

s11 s12 s44

Si 0.768 -0.214 1.26

Ge 0.964 -0.260 1.49

Page 8: Strain Effects on Bulk Ge Valence Band EEL6935: Computational Nanoelectronics Fall 2006 Andrew Koehler

8

Andrew Koehler

Strain Effect on Valence BandStrain Effect on Valence Band

Page 9: Strain Effects on Bulk Ge Valence Band EEL6935: Computational Nanoelectronics Fall 2006 Andrew Koehler

9

Andrew Koehler

History of GermaniumHistory of Germanium

1959: First germanium hybrid integrated circuit demonstrated.- Jack Kilby, Robert Noyce

1960: High purity silicon began replacing germanium in transistors, diodes,

and rectifiers

2000s: Germanium transistors are still used in some stompboxes by musicians who wish to reproduce the distinctive tonal character of the "fuzz"-tone from the early rock and roll era.

2000s: Germanium is being discussed as a possible replacement of silicon???

Page 10: Strain Effects on Bulk Ge Valence Band EEL6935: Computational Nanoelectronics Fall 2006 Andrew Koehler

10

Andrew Koehler

Why Did Si Replace Ge?Why Did Si Replace Ge?

• Germanium’s limited availability• High Cost• Impossible to grow a stable oxide that could

– Passivate the surface– Be used as an etch mask– Act as a high-quality gate insulator

Page 11: Strain Effects on Bulk Ge Valence Band EEL6935: Computational Nanoelectronics Fall 2006 Andrew Koehler

11

Andrew Koehler

Novel Materials to the RescueNovel Materials to the Rescue

• High-k Dielectric– Used as gate oxide– eliminate the issue that germanium’s native oxide is not

suitable for nanoelectronics

• Atomic Layer Deposition (ALD)– HfO2– ZrO2– SrTiO3, SrZrO3 and SrHfO3– ALD WN/LaAlO3/AlN gate stack

Page 12: Strain Effects on Bulk Ge Valence Band EEL6935: Computational Nanoelectronics Fall 2006 Andrew Koehler

12

Andrew Koehler

Ge vs Other SemiconductorsGe vs Other Semiconductors

nMOS: GaAs is the best material pMOS: Ge is the best material

Page 13: Strain Effects on Bulk Ge Valence Band EEL6935: Computational Nanoelectronics Fall 2006 Andrew Koehler

13

Andrew Koehler

Future of Ge in NanoelectronicsFuture of Ge in Nanoelectronics

• Researchers Believe – Combination of a Ge pMOS with a GaAs nMOS could

be a manufacturable way to further increase the CMOS performance.

• Current Problems– Passivation of interface states– Reduction of diode leakage – Availability of high-quality germanium-on-insulator

substrates

Page 14: Strain Effects on Bulk Ge Valence Band EEL6935: Computational Nanoelectronics Fall 2006 Andrew Koehler

14

Andrew Koehler

k k ∙ p method∙ p method

• k ∙ p method was introduced by Bardeen and Seitz

• Kane’s model takes into account spin-orbit interaction– Ψnk(r) = eik∙runk(r)– unk(r+R) = unk(r) – Bloch function

• n refers to band• k refers to wave vector

• Useful technique for analyzing band structure near a particular point k0

Page 15: Strain Effects on Bulk Ge Valence Band EEL6935: Computational Nanoelectronics Fall 2006 Andrew Koehler

15

Andrew Koehler

k k ∙ p method∙ p method

• Schrodinger equation

• Written in terms of unk(r)

)()()()(2 0

2

rkErrVm

pnknnk

)(2

)()()(2 0

22

00

2

rum

kkErurVpk

mm

pnknnk

Page 16: Strain Effects on Bulk Ge Valence Band EEL6935: Computational Nanoelectronics Fall 2006 Andrew Koehler

16

Andrew Koehler

Unstressed Band StructuresUnstressed Band Structures

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

<--- out of plane (k) channel direction --->

Ene

rgy

(eV

) --

->

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

<--- out of plane (k) channel direction --->

Ene

rgy

(eV

) --

->

Silicon Germanium

Page 17: Strain Effects on Bulk Ge Valence Band EEL6935: Computational Nanoelectronics Fall 2006 Andrew Koehler

17

Andrew Koehler

Biaxial Compression 1 GPaBiaxial Compression 1 GPa

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

<--- out of plane (k) channel direction --->

Ene

rgy

(eV

) --

->

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

<--- out of plane (k) channel direction --->

Ene

rgy

(eV

) --

->

Silicon Germanium

Page 18: Strain Effects on Bulk Ge Valence Band EEL6935: Computational Nanoelectronics Fall 2006 Andrew Koehler

18

Andrew Koehler

Longitudinal Compression 1 GPaLongitudinal Compression 1 GPa

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

<--- out of plane (k) channel direction --->

Ene

rgy

(eV

) --

->

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

<--- out of plane (k) channel direction --->

Ene

rgy

(eV

) --

->

Silicon Germanium

Page 19: Strain Effects on Bulk Ge Valence Band EEL6935: Computational Nanoelectronics Fall 2006 Andrew Koehler

19

Andrew Koehler

Band SplittingBand Splitting

0 0.5 1 1.5 2 2.5 30

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Stress (GPa)

Ene

rgy

(eV

)

0 0.5 1 1.5 2 2.5 30

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Stress (GPa)

Ene

rgy

(eV

)

Ge

Si

Ge

Si

Biaxial Compression Longitudinal Compression

Page 20: Strain Effects on Bulk Ge Valence Band EEL6935: Computational Nanoelectronics Fall 2006 Andrew Koehler

20

Andrew Koehler

Silicon Mass ChangeSilicon Mass Change

0 0.5 1 1.5 2 2.5 30.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Stress (GPa)

m*/

m

0 0.5 1 1.5 2 2.5 30.18

0.2

0.22

0.24

0.26

0.28

0.3

Stress (GPa)

m*/

m

•Longitudinal Compression

In-Plane Out-of-Plane

80%

Page 21: Strain Effects on Bulk Ge Valence Band EEL6935: Computational Nanoelectronics Fall 2006 Andrew Koehler

21

Andrew Koehler

Germanium Mass ChangeGermanium Mass Change

0 0.5 1 1.5 2 2.5 30

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Stress (GPa)

m*/

m

0 0.5 1 1.5 2 2.5 30.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Stress (GPa)

m*/

m

•Longitudinal Compression

In-Plane Out-of-Plane

90%

Page 22: Strain Effects on Bulk Ge Valence Band EEL6935: Computational Nanoelectronics Fall 2006 Andrew Koehler

22

Andrew Koehler

SummarySummary

– Strain– Germanium– Strained Germanium Compared to Silicon

• Unstressed• Band Splitting

– Biaxial Compression

– Longitudinal Compression

• Mass Change - Longitudinal Compression– In-Plane

– Out-of-Plane

Page 23: Strain Effects on Bulk Ge Valence Band EEL6935: Computational Nanoelectronics Fall 2006 Andrew Koehler

23

Andrew Koehler

ReferencesReferences

C. S. Smith, “Piezoresistance effect in germanium and silicon,” Phys. Rev., vol. 94, no. 1, pp. 42–49, Apr. 1954.

R. People, J. C. Bean, D. V. Lang, A. M. Sergent, H. L. Stormer, K. W. Wecht, R. T. Lynch, and K. Baldwin, “Modulation doping in GexSi1−x/Si strained layer heterostructures,” Appl. Phys. Lett., vol. 45, no. 11, pp. 1231–1233, Dec. 1984.

S. Gannavaram, N. Pesovic, and C. Ozturk, “Low temperature (800 ◦C) recessed junction selective silicon-germanium source/drain technology for sub-70 nm CMOS,” in IEDM Tech. Dig., 2000, pp. 437–440.

S. E. Thompson and et al., "A Logic Nanotechnology Featuring Strained-Silicon," IEEE Electron Device Lett., vol. 25, pp. 191-193, 2004.

S. E. Thompson and et al., "A 90 nm Logic Technology: Part I - Featuring Strained Silicon," IEEE Trans. Electron Devices, 2004.

W. A. Brantley, "Calculated Elastic Constants for Stress Problem Associated with Semiconductor Devices," J. Appl. Phys., vol. 44, pp. 534-535, 1973.

Semiconductor on NSM, URL http://www.ioffe.rssi.ru/SVA/NSM/Semicond/.

O. Madelung, ed., Data in Science and Technology: Semiconductors-Group IV elements and III-V Compounds (Springer, Berlin, 1991).

Page 24: Strain Effects on Bulk Ge Valence Band EEL6935: Computational Nanoelectronics Fall 2006 Andrew Koehler

24

Andrew Koehler

THANK YOUTHANK YOU