19
Strings and Black Holes Erik Verlinde Institute for Theoretical Physics University of Amsterdam

Strings and Black Holes - Stony Brook University

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Strings and Black Holes - Stony Brook University

Strings and Black Holes

Erik VerlindeInstitute for Theoretical Physics

University of Amsterdam

Page 2: Strings and Black Holes - Stony Brook University

General Relativity

12 8R Rg GTµν µν µνπ− =

Gravity = geometry

Einstein: geometry => physics

Strings: physics => geometry

Page 3: Strings and Black Holes - Stony Brook University

• 1916 Schwarzschild solution.

Einstein: ``I had not expected that the exact solution to the problem could be formulated. Your analytical treatment to the problem appears to me splendid.''

• 1939 Gravitational collapse: “frozen” or “black” stars.

• 1959~ Global structure, exact solutions.

• 1967 “Black hole” singularity theorems.

• 1975 Black hole thermodynamics.

• 1994 Holographic principle.

. 1996 Microscopic origin of entropy.

A Brief History of Black Holes

Oppenheimer-Volkov

Penrose-Hawking

Bekenstein-Hawking

‘t Hooft- Susskind

Strominger-Vafa

Kruskal, Kerr, Newman

Page 4: Strings and Black Holes - Stony Brook University

• 1968 Veneziano amplitude, dual models

• 1971 Bosonic and fermionic string theory

• 1976 Superstrings as theory of quantum gravity

• 1984 Anomaly cancellation, heterotic strings

• 1995 String dualities, D-branes

• 1996 Microscopic origin of black hole entropy

• 1997 AdS-CFT correspondence and holography.

A Brief History of String TheoryNambu-Goto

Neveu-Schwarz-Ramond

Witten, Polchinski

Strominger-Vafa

Green-Schwarz

Scherk-Schwarz

Maldacena

Page 5: Strings and Black Holes - Stony Brook University

Black Holes

• Hawking Radiation • Information Paradox • The Holographic Principle

Black Holes in String Theory

• Strings and D-branes• Microscopic Origin of Black Hole Entropy• Holography in String Theory

Outline

Page 6: Strings and Black Holes - Stony Brook University

Hawking Radiation

3

8cT

kGMπ=

h

Black Holes emit thermal radiationwith temperature

Note: depends on 4 fundamental constants of Nature!!

2

GMaR

=2exp exp c

kT aω πω⎛ ⎞ ⎛ ⎞− = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠h

Boltzman factor determined by acceleration at horizon

Bekenstein-Hawking Entropy

2, 44cAS A R

Gπ= =

h

What is the origin of this entropy?

Hawking 1975

Page 7: Strings and Black Holes - Stony Brook University

Black Hole ThermodynamicsCharged Black Holes:

2

2

2( ) 1 M QH rr r

= − +

( )2

2 2 2 2 2 2( ) sin( )

drds H r dt r d dH r

θ θ φ= − + + +

Reisner-Nordstrom

22 2 2 2( )

( )drds H r dt r d

H r= − + + Ω

Inner and outer horizon

2 2r M M Q± = ± −

Electric Potential, Entropy and Temperature

( )2

14

T r rrπ + −+

= −2S rπ +=2

2

Qr+

Φ =

obey the first law of thermodynamics

TdS dM dQ= + Φ dJ+Ω

2

1 Qr

⎛ ⎞→ −⎜ ⎟⎝ ⎠

Extremal Black Holes

M Q=

0T →

Page 8: Strings and Black Holes - Stony Brook University

Einstein equation as equation of state

Raychaudhuri equation (no shear or vorticity)

212

vv

d R k kd

µµ

θ θλ= − − ;k µ

µθ =

can be integrated using the Einstein equation

21 ( )8

vvT k k O

µθ λ λπ

= +

0θ =

horizon

0k kµ µ =

Ted Jacobson

= local version of 1st law of thermodynamics

Tds ρ=

Page 9: Strings and Black Holes - Stony Brook University

The Information Paradox (early ’90’s)

Lkjoiwjojjdndfldfl

Fkdhshwofekfew

Kdlfsflsdfjlsdfsldf

Skdjfkjshkj

Sdjflsjlfsl

Sdd,f LkjoiwjojjdndfldflFkdhshwofekfew

KdlfsflsdfjlsdfsldfSkdjfkjshkjSdjflsjlfslSdd,f

LkjoiwjojjdndfldflFkdhshwofekfew

KdlfsflsdfjlsdfsldfSkdjfkjshkjSdjflsjlfslSdd,f

Lkjo

iwjo

jjdnd

fldfl

Fkdh

shw

ofek

few

Kdl

fsfls

dfjls

dfsl

dfS

kdjfk

jshk

jS

djfls

jlfsl

Sdd

,f

Lkjoiwjojjdndfldfl

Fkdhshwofekfew

Kdlfsflsdfjlsdfsldf

Skdjfkjshkj

Sdjflsjlfsl

Sdd,f

Lkjoiwjojjdndfldfl

Fkdhshwofekfew

Kdlfsflsdfjlsdfsldf

Skdjfkjshkj

Sdjflsjlfsl

Sdd,f

LkjoiwjojjdndfldflFkdhshwofekfew

KdlfsflsdfjlsdfsldfSkdjfkjshkjSdjflsjlfslSdd,f

Lkjo

iwjo

jjdnd

fldfl

Fkdh

shw

ofek

few

Kdlfs

flsdf

jlsdf

sldf

Skdj

fkjs

hkj

Sdjfl

sjlfs

lSd

d,f

~~~~~~> ~~~~~~>

~~~~~~>

~~~~~~>

~~~~

~~>

~~~~

~~>

~~~~~~>

~~~~~~>

~~~~~~>

~~~~~~>

~~~~~~>

~~~~

~~>

~~~~~~>

~~~~

~~>

~~~~~~>

~~~~~~>

Where did the information go?

Page 10: Strings and Black Holes - Stony Brook University

11

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0 01

0 0

10

00

0

0 0

0

01

1

1

1

10

0 0

1

1

0 1

11

0

1001

10

1

1

1

1

1 0

0

# S ta te s ex p4AG

=

The Holographic Principle (1994)

Planck Area

‘t HooftSusskind

Page 11: Strings and Black Holes - Stony Brook University

Strings, D-branes and GravityOpen strings: gauge interactions

Closed strings: gravity

, IA Xµ

, ,g Bµν µν Φ

D-branes: gauge theory on worldvolume.source for gravity:

gravity induced byopen string loops

Page 12: Strings and Black Holes - Stony Brook University

D-branes as Black Holes

D-branes wrap certain “cycles” insidecompactification manifold. They becomecharged massive objects: (extremal) black holes.

Their world-volume theory gives a microcopicdescription of the states associatedwith the black holes.

( )2 2 2 2 21 ( )( )

ds dt H r dr r dH r

= − + + Ω

2

( ) 1 QH rr

⎛ ⎞= +⎜ ⎟⎝ ⎠

iiQ Qφ=

Page 13: Strings and Black Holes - Stony Brook University

Microscopic Origin of Entropy

2 2sM N −= l

Excited string states have high degeneracy

#states exp cNπ≈

2 2exp exps pM Mπ πl l

But not enough to explain black hole entropy

2#states exp Qπ≈

For extremal black holes

D-brane described microscopically by “gas of strings” with

2c Q= 2N Q=

Page 14: Strings and Black Holes - Stony Brook University

Exact counting

2 2( , )4AS Q P P Qπ= = 2 2( , ) log ( , )S Q P D Q P=

Extremal “dyonic” black holes:

Generating function:

( ) ( )

, ,

( , ) 1c nmtN sM nt ms

N M n m

D N M e e−− − − −= −∑ ∏

41( )1

nN

nn n

qc N qq

⎛ ⎞+= ⎜ ⎟−⎝ ⎠

∑ ∏

with:

Page 15: Strings and Black Holes - Stony Brook University

AdS/CFT CorrespondenceAnti-de Sitter- Conformal FieldTheory

Near horizon geometry of a D3-brane

22 2 2 2 2

2(1 )1drds r dt r d

r= − + + + Ω

+

55AdS S×

AdS metric

Strings on

= dual to a CFT: N=4 SuperYang-Mills

( , ) ( , )CFT stringZ g Z gφ φ=

22 2 2 2( )

( )drds H r d t r d

H r= − + + Ω

AdS black hole = thermal CFT

22( ) 1 MH r r

r= − +

Page 16: Strings and Black Holes - Stony Brook University

quarks

Boundary: 4D Minkowski space

Hawking radiationWilson loops

Bulk: 5D anti-de Sitter space

Black holes

strings

Page 17: Strings and Black Holes - Stony Brook University

4D Attractor Black Holes and Entropy

( ) 2, 2Im ( )iF Q F QΦ = + Φ( ) ( ) ( ), , ,FS Q P F Q QΛ

Λ

∂= Φ − Φ Φ

∂Φ

( ),FP QΛ Λ

∂= Φ∂Φ

Ooguri, Strominger, VafaEntropy as Legendre transform

( )( ),

Re

Re

X Q

F P

Λ Λ

Λ Λ

=

=( ) , ,

,,

Q PS Q P X F X F

ΛΛΛ Λ

⎡ ⎤= −⎢ ⎥⎣ ⎦

Semiclassical entropy

( ) ( )expX iF XΨ =

Mixed partition function factorizes as

( ) ( )2

, P

pQ P e Q i− ΦΩ = Ψ + Φ∑

( , ) log ( , )S Q P D Q P=

, ,( , ) ( ) ( )P Q P QP Q dΩ = ΦΨ Φ Ψ Φ∫, ( ) ( )i P

P Q e QΦΨ Φ = Ψ +Φ

Page 18: Strings and Black Holes - Stony Brook University

• Flux vacua as wave functions on moduli space

• Relative probability determined by entropy

Flux Wave Functions

. ..

.. .

...

.. .

,P QX

( ),P Q XΨ

• Moduli fixed by fluxes : discrete points.

The Entropic Principle

Flux Vacua

, , exp ( , )P Q P Q S P QΨ Ψ ≈

Entropic Principle

• Nature is (most likely) described by state of maximal entropy

• Constructive way to select vacua (in contrast with “Anthropic Principle”)

Page 19: Strings and Black Holes - Stony Brook University