93
Submodular Maximization Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular Maximization

Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Submodular Maximization

Seffi Naor

Lecture 3

4th Cargese Workshop on Combinatorial Optimization

Seffi Naor Submodular Maximization

Page 2: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Continuous Relaxation

Recap: a continuous relaxation for maximization

Multilinear Extension:

F(x) = ∑R⊆N

f (R) ∏ui∈R

xi ∏ui /∈R

(1− xi) , ∀x ∈ [0, 1]N

Simple probabilistic interpretation.

x integral ⇒ F(x) = f (x).

Multilinear Relaxation

What are the properties of F?

It is neither convex nor concave.

Seffi Naor Submodular Maximization

Page 3: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Continuous Relaxation

Recap: a continuous relaxation for maximization

Multilinear Extension:

F(x) = ∑R⊆N

f (R) ∏ui∈R

xi ∏ui /∈R

(1− xi) , ∀x ∈ [0, 1]N

Simple probabilistic interpretation.

x integral ⇒ F(x) = f (x).

Multilinear Relaxation

What are the properties of F?

It is neither convex nor concave.

Seffi Naor Submodular Maximization

Page 4: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Continuous Relaxation

Recap: a continuous relaxation for maximization

Multilinear Extension:

F(x) = ∑R⊆N

f (R) ∏ui∈R

xi ∏ui /∈R

(1− xi) , ∀x ∈ [0, 1]N

Simple probabilistic interpretation.

x integral ⇒ F(x) = f (x).

Multilinear Relaxation

What are the properties of F?

It is neither convex nor concave.

Seffi Naor Submodular Maximization

Page 5: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Properties of the Multilinear Extension

Lemma

The multilinear extension F satisfies:

If f is non-decreasing, then ∂F∂xi> 0 everywhere in the cube for all i.

If f is submodular, then ∂2 F∂xi∂x j

6 0 everywhere in the cube for all i, j.

Useful for proving:

Theorem

The multilinear extension F satisfies:

If f is non-decreasing, then F is non-decreasing in every direction ~d.

If f is submodular, then F is concave in every direction ~d > 0.

If f is submodular, then F is convex in every direction~ei −~e j for alli, j ∈ N .

Seffi Naor Submodular Maximization

Page 6: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Properties of the Multilinear Extension

Lemma

The multilinear extension F satisfies:

If f is non-decreasing, then ∂F∂xi> 0 everywhere in the cube for all i.

If f is submodular, then ∂2 F∂xi∂x j

6 0 everywhere in the cube for all i, j.

Useful for proving:

Theorem

The multilinear extension F satisfies:

If f is non-decreasing, then F is non-decreasing in every direction ~d.

If f is submodular, then F is concave in every direction ~d > 0.

If f is submodular, then F is convex in every direction~ei −~e j for alli, j ∈ N .

Seffi Naor Submodular Maximization

Page 7: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Properties of the Multilinear Extension

Summarizing:

f +(x)︸ ︷︷ ︸concave closure

> F(x)︸︷︷︸multilinear ext.

> f−(x)︸ ︷︷ ︸convex closure

= f L(x)︸ ︷︷ ︸Lovasz ext.

Any extension can be described as E[ f (R)] where R is chosen from adistribution that preserves the xi values (marginals).

concave closure maximizes expectation but is hard to compute.

concave closure minimizes expectation and has a nice characterization(Lovasz extension).

Multilinear extension is somewhere in the “middle”.

Seffi Naor Submodular Maximization

Page 8: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Continuous Relaxation

constrained submodular maximization problem

Family of allowed subsetsM⊆ 2N .

max f (S)s.t. S ∈ M

following the paradigm for relaxing linear maximization problems

PM - convex hull of feasible sets (characteristic vectors)

max F(x)s.t. x ∈ PM

comparing linear and submodular relaxations

optimizing a fractional solution:linear: easysubmodular: not clear ...

rounding a fractional solution:linear: hard (problem dependent)submodular: easy (pipage for matroids)

Seffi Naor Submodular Maximization

Page 9: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Continuous Relaxation

constrained submodular maximization problem

Family of allowed subsetsM⊆ 2N .

max f (S)s.t. S ∈ M

following the paradigm for relaxing linear maximization problems

PM - convex hull of feasible sets (characteristic vectors)

max F(x)s.t. x ∈ PM

comparing linear and submodular relaxations

optimizing a fractional solution:linear: easysubmodular: not clear ...

rounding a fractional solution:linear: hard (problem dependent)submodular: easy (pipage for matroids)

Seffi Naor Submodular Maximization

Page 10: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Continuous Relaxation

constrained submodular maximization problem

Family of allowed subsetsM⊆ 2N .

max f (S)s.t. S ∈ M

following the paradigm for relaxing linear maximization problems

PM - convex hull of feasible sets (characteristic vectors)

max F(x)s.t. x ∈ PM

comparing linear and submodular relaxations

optimizing a fractional solution:linear: easysubmodular: not clear ...

rounding a fractional solution:linear: hard (problem dependent)submodular: easy (pipage for matroids)

Seffi Naor Submodular Maximization

Page 11: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Continuous Relaxation

constrained submodular maximization problem

Family of allowed subsetsM⊆ 2N .

max f (S)s.t. S ∈ M

following the paradigm for relaxing linear maximization problems

PM - convex hull of feasible sets (characteristic vectors)

max F(x)s.t. x ∈ PM

comparing linear and submodular relaxations

optimizing a fractional solution:linear: easysubmodular: not clear ...

rounding a fractional solution:linear: hard (problem dependent)submodular: easy (pipage for matroids)

Seffi Naor Submodular Maximization

Page 12: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Pipage Rounding on Matroids

Work of [Ageev-Sviridenko-04],[Calinescu-Chekuri-Pal-Vondrak-08].

For a matroidM, the matroid polytope associated with it:

PM = {x ∈ [0, 1]N : ∑i∈S

xi 6 rM(S) ∀S ⊆M}

where rM(·) is the rank function ofM.

The extreme points of PM correspond to characterstic vectors ofindepenedent sets inM.

Observation: if f is linear, a point x can be rounded by writing it as a convexsum of extreme points.

Question: What do we do if f is (general) submodular?

Seffi Naor Submodular Maximization

Page 13: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Pipage Rounding on Matroids

Work of [Ageev-Sviridenko-04],[Calinescu-Chekuri-Pal-Vondrak-08].

For a matroidM, the matroid polytope associated with it:

PM = {x ∈ [0, 1]N : ∑i∈S

xi 6 rM(S) ∀S ⊆M}

where rM(·) is the rank function ofM.

The extreme points of PM correspond to characterstic vectors ofindepenedent sets inM.

Observation: if f is linear, a point x can be rounded by writing it as a convexsum of extreme points.

Question: What do we do if f is (general) submodular?

Seffi Naor Submodular Maximization

Page 14: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Pipage Rounding on Matroids

Work of [Ageev-Sviridenko-04],[Calinescu-Chekuri-Pal-Vondrak-08].

For a matroidM, the matroid polytope associated with it:

PM = {x ∈ [0, 1]N : ∑i∈S

xi 6 rM(S) ∀S ⊆M}

where rM(·) is the rank function ofM.

The extreme points of PM correspond to characterstic vectors ofindepenedent sets inM.

Observation: if f is linear, a point x can be rounded by writing it as a convexsum of extreme points.

Question: What do we do if f is (general) submodular?

Seffi Naor Submodular Maximization

Page 15: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Pipage Rounding on Matroids

Work of [Ageev-Sviridenko-04],[Calinescu-Chekuri-Pal-Vondrak-08].

For a matroidM, the matroid polytope associated with it:

PM = {x ∈ [0, 1]N : ∑i∈S

xi 6 rM(S) ∀S ⊆M}

where rM(·) is the rank function ofM.

The extreme points of PM correspond to characterstic vectors ofindepenedent sets inM.

Observation: if f is linear, a point x can be rounded by writing it as a convexsum of extreme points.

Question: What do we do if f is (general) submodular?

Seffi Naor Submodular Maximization

Page 16: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Pipage Rounding on Matroids

Rounding general submodular function f :

if x is non-integral, there are i, j ∈ N for which 0 < xi , x j < 1.

recall, F is convex in every direction ei − e j.

hence, F is non-decreasing in one of the directions ±(ei − e j)

Rounding Algorithm:

suppose direction ei − e j is non-decreasing

δ - max change (due to a tight set A)

if either xi + δ or x j − δ are integral - progress

else there exists a tight set A′ ⊂ A, i ∈ A′, j /∈ A′ (|A′| < |A|)recurse on A′ - progresseventually: minimal tight set (contained in all tight sets) in which any pairof coordinates can be increased/decreased - progress

Seffi Naor Submodular Maximization

Page 17: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Pipage Rounding on Matroids

Rounding general submodular function f :

if x is non-integral, there are i, j ∈ N for which 0 < xi , x j < 1.

recall, F is convex in every direction ei − e j.

hence, F is non-decreasing in one of the directions ±(ei − e j)

Rounding Algorithm:

suppose direction ei − e j is non-decreasing

δ - max change (due to a tight set A)

if either xi + δ or x j − δ are integral - progress

else there exists a tight set A′ ⊂ A, i ∈ A′, j /∈ A′ (|A′| < |A|)recurse on A′ - progresseventually: minimal tight set (contained in all tight sets) in which any pairof coordinates can be increased/decreased - progress

Seffi Naor Submodular Maximization

Page 18: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Continuous Greedy

The Continuous Greedy Algorithm [Calinescu-Chekuri-Pal-Vondrak-08]

computes an approximate fractional solution

f is monotone (for now ...)

PM is downward closed (~0 ∈ PM)

Seffi Naor Submodular Maximization

Page 19: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Continuous Greedy

~x(0) =~0

~y∗(t) = argmax

{n

∑i=1

∂F (~x(t))∂xi

· yi : ~y ∈ PM

}

∂xi(t)∂t

= y∗i (t)

Seffi Naor Submodular Maximization

Page 20: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Continuous Greedy

~x(0) =~0

~y∗(t) = argmax

{n

∑i=1

∂F (~x(t))∂xi

· yi : ~y ∈ PM

}

∂xi(t)∂t

= y∗i (t)

Seffi Naor Submodular Maximization

Page 21: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Continuous Greedy

~x(0) =~0

~y∗(t) = argmax

{n

∑i=1

∂F (~x(t))∂xi

· yi : ~y ∈ PM

}

∂xi(t)∂t

= y∗i (t)

Seffi Naor Submodular Maximization

Page 22: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Continuous Greedy

~x(0) =~0

~y∗(t) = argmax

{n

∑i=1

∂F (~x(t))∂xi

· yi : ~y ∈ PM

}

∂xi(t)∂t

= y∗i (t)

Seffi Naor Submodular Maximization

Page 23: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Continuous Greedy

~x(0) =~0

~y∗(t) = argmax

{n

∑i=1

∂F (~x(t))∂xi

· yi : ~y ∈ PM

}

∂xi(t)∂t

= y∗i (t)

Seffi Naor Submodular Maximization

Page 24: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Continuous Greedy

~x(0) =~0

~y∗(t) = argmax

{n

∑i=1

∂F (~x(t))∂xi

· yi : ~y ∈ PM

}

∂xi(t)∂t

= y∗i (t)

Seffi Naor Submodular Maximization

Page 25: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Continuous Greedy

~x(0) =~0

~y∗(t) = argmax

{n

∑i=1

∂F (~x(t))∂xi

· yi : ~y ∈ PM

}

∂xi(t)∂t

= y∗i (t)

Seffi Naor Submodular Maximization

Page 26: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Continuous Greedy

~x(0) =~0

~y∗(t) = argmax

{n

∑i=1

∂F (~x(t))∂xi

· yi : ~y ∈ PM

}

∂xi(t)∂t

= y∗i (t)

Seffi Naor Submodular Maximization

Page 27: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Continuous Greedy

~x(0) =~0

~y∗(t) = argmax

{n

∑i=1

∂F (~x(t))∂xi

· yi : ~y ∈ PM

}

∂xi(t)∂t

= y∗i (t)

Seffi Naor Submodular Maximization

Page 28: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Continuous Greedy

~x(0) =~0

~y∗(t) = argmax

{n

∑i=1

∂F (~x(t))∂xi

· yi : ~y ∈ PM

}

∂xi(t)∂t

= y∗i (t)

Seffi Naor Submodular Maximization

Page 29: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Continuous Greedy

~x(0) =~0

~y∗(t) = argmax

{n

∑i=1

∂F (~x(t))∂xi

· yi : ~y ∈ PM

}

∂xi(t)∂t

= y∗i (t)

Seffi Naor Submodular Maximization

Page 30: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Continuous Greedy

~x(0) =~0

~y∗(t) = argmax

{n

∑i=1

∂F (~x(t))∂xi

· yi : ~y ∈ PM

}

∂xi(t)∂t

= y∗i (t)

Seffi Naor Submodular Maximization

Page 31: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Continuous Greedy

~x(0) =~0

~y∗(t) = argmax

{n

∑i=1

∂F (~x(t))∂xi

· yi : ~y ∈ PM

}

∂xi(t)∂t

= y∗i (t)

Seffi Naor Submodular Maximization

Page 32: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Continuous Greedy

~x(0) =~0

~y∗(t) = argmax

{n

∑i=1

∂F (~x(t))∂xi

· yi : ~y ∈ PM

}

∂xi(t)∂t

= y∗i (t)

Seffi Naor Submodular Maximization

Page 33: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Continuous Greedy

~x(0) =~0

~y∗(t) = argmax

{n

∑i=1

∂F (~x(t))∂xi

· yi : ~y ∈ PM

}

∂xi(t)∂t

= y∗i (t)

Seffi Naor Submodular Maximization

Page 34: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Continuous Greedy

~x(0) =~0

~y∗(t) = argmax

{n

∑i=1

∂F (~x(t))∂xi

· yi : ~y ∈ PM

}

∂xi(t)∂t

= y∗i (t)

Seffi Naor Submodular Maximization

Page 35: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Continuous Greedy

~x(0) =~0

~y∗(t) = argmax

{n

∑i=1

∂F (~x(t))∂xi

· yi : ~y ∈ PM

}

∂xi(t)∂t

= y∗i (t)

Seffi Naor Submodular Maximization

Page 36: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Continuous Greedy

~x(0) =~0

~y∗(t) = argmax

{n

∑i=1

∂F (~x(t))∂xi

· yi : ~y ∈ PM

}

∂xi(t)∂t

= y∗i (t)

Seffi Naor Submodular Maximization

Page 37: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Continuous Greedy - Analysis

[Calinescu-Chekuri-Pal-Vondrak-08]

F (~x(t)) >(1− e−t) F(1OPT)

When to stop the algorithm?

t = 1 ⇒{

~x(1) feasible (convex combination of feasible vectors)F (~x(1)) >

(1− 1

e

)F(1OPT)

Seffi Naor Submodular Maximization

Page 38: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Continuous Greedy - Analysis

[Calinescu-Chekuri-Pal-Vondrak-08]

F (~x(t)) >(1− e−t) F(1OPT)

When to stop the algorithm?

t = 1 ⇒{

~x(1) feasible (convex combination of feasible vectors)F (~x(1)) >

(1− 1

e

)F(1OPT)

Seffi Naor Submodular Maximization

Page 39: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Continuous Greedy - Analysis

[Calinescu-Chekuri-Pal-Vondrak-08]

F (~x(t)) >(1− e−t) F(1OPT)

When to stop the algorithm?

t = 1 ⇒{

~x(1) feasible (convex combination of feasible vectors)F (~x(1)) >

(1− 1

e

)F(1OPT)

Seffi Naor Submodular Maximization

Page 40: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Continuous Greedy - Analysis (Cont.)

Proof:

∂F (~x(t))∂t

=n

∑i=1

∂F (~x(t))∂xi

· ∂xi(t)∂t

=n

∑i=1

∂F (~x(t))∂xi

· y∗i (t)

> ∑i∈OPT

∂F (~x(t))∂xi

= ∑i∈OPT

F(~x(t) ∨ 1{i}

)− F (~x(t))

1− xi(t)

> ∑i∈OPT

[F(~x(t) ∨ 1{i}

)− F (~x(t))

]> F (~x(t) ∨ 1OPT)− F (~x(t)) > F (1OPT)− F (~x(t))

We obtain a differential equation:∂F(~x(t))

∂t > F (1OPT)− F (~x(t))

F (~x(0)) > 0

The solution is:F (~x(t)) >

(1− e−t) F(1OPT)

Seffi Naor Submodular Maximization

Page 41: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Continuous Greedy - Analysis (Cont.)

Proof:

∂F (~x(t))∂t

=n

∑i=1

∂F (~x(t))∂xi

· ∂xi(t)∂t

=n

∑i=1

∂F (~x(t))∂xi

· y∗i (t)

> ∑i∈OPT

∂F (~x(t))∂xi

= ∑i∈OPT

F(~x(t) ∨ 1{i}

)− F (~x(t))

1− xi(t)

> ∑i∈OPT

[F(~x(t) ∨ 1{i}

)− F (~x(t))

]> F (~x(t) ∨ 1OPT)− F (~x(t)) > F (1OPT)− F (~x(t))

We obtain a differential equation:∂F(~x(t))

∂t > F (1OPT)− F (~x(t))

F (~x(0)) > 0

The solution is:F (~x(t)) >

(1− e−t) F(1OPT)

Seffi Naor Submodular Maximization

Page 42: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Continuous Greedy - Analysis (Cont.)

Proof:

∂F (~x(t))∂t

=n

∑i=1

∂F (~x(t))∂xi

· ∂xi(t)∂t

=n

∑i=1

∂F (~x(t))∂xi

· y∗i (t)

> ∑i∈OPT

∂F (~x(t))∂xi

= ∑i∈OPT

F(~x(t) ∨ 1{i}

)− F (~x(t))

1− xi(t)

> ∑i∈OPT

[F(~x(t) ∨ 1{i}

)− F (~x(t))

]> F (~x(t) ∨ 1OPT)− F (~x(t)) > F (1OPT)− F (~x(t))

We obtain a differential equation:∂F(~x(t))

∂t > F (1OPT)− F (~x(t))

F (~x(0)) > 0

The solution is:F (~x(t)) >

(1− e−t) F(1OPT)

Seffi Naor Submodular Maximization

Page 43: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Continuous Greedy - Analysis (Cont.)

Proof:

∂F (~x(t))∂t

=n

∑i=1

∂F (~x(t))∂xi

· ∂xi(t)∂t

=n

∑i=1

∂F (~x(t))∂xi

· y∗i (t)

> ∑i∈OPT

∂F (~x(t))∂xi

= ∑i∈OPT

F(~x(t) ∨ 1{i}

)− F (~x(t))

1− xi(t)

> ∑i∈OPT

[F(~x(t) ∨ 1{i}

)− F (~x(t))

]> F (~x(t) ∨ 1OPT)− F (~x(t)) > F (1OPT)− F (~x(t))

We obtain a differential equation:∂F(~x(t))

∂t > F (1OPT)− F (~x(t))

F (~x(0)) > 0

The solution is:F (~x(t)) >

(1− e−t) F(1OPT)

Seffi Naor Submodular Maximization

Page 44: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Continuous Greedy - Analysis (Cont.)

Proof:

∂F (~x(t))∂t

=n

∑i=1

∂F (~x(t))∂xi

· ∂xi(t)∂t

=n

∑i=1

∂F (~x(t))∂xi

· y∗i (t)

> ∑i∈OPT

∂F (~x(t))∂xi

= ∑i∈OPT

F(~x(t) ∨ 1{i}

)− F (~x(t))

1− xi(t)

> ∑i∈OPT

[F(~x(t) ∨ 1{i}

)− F (~x(t))

]> F (~x(t) ∨ 1OPT)− F (~x(t)) > F (1OPT)− F (~x(t))

We obtain a differential equation:∂F(~x(t))

∂t > F (1OPT)− F (~x(t))

F (~x(0)) > 0

The solution is:F (~x(t)) >

(1− e−t) F(1OPT)

Seffi Naor Submodular Maximization

Page 45: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Continuous Greedy - Analysis (Cont.)

Proof:

∂F (~x(t))∂t

=n

∑i=1

∂F (~x(t))∂xi

· ∂xi(t)∂t

=n

∑i=1

∂F (~x(t))∂xi

· y∗i (t)

> ∑i∈OPT

∂F (~x(t))∂xi

= ∑i∈OPT

F(~x(t) ∨ 1{i}

)− F (~x(t))

1− xi(t)

> ∑i∈OPT

[F(~x(t) ∨ 1{i}

)− F (~x(t))

]> F (~x(t) ∨ 1OPT)− F (~x(t)) > F (1OPT)− F (~x(t))

We obtain a differential equation:∂F(~x(t))

∂t > F (1OPT)− F (~x(t))

F (~x(0)) > 0

The solution is:F (~x(t)) >

(1− e−t) F(1OPT)

Seffi Naor Submodular Maximization

Page 46: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Continuous Greedy - Analysis (Cont.)

Proof:

∂F (~x(t))∂t

=n

∑i=1

∂F (~x(t))∂xi

· ∂xi(t)∂t

=n

∑i=1

∂F (~x(t))∂xi

· y∗i (t)

> ∑i∈OPT

∂F (~x(t))∂xi

= ∑i∈OPT

F(~x(t) ∨ 1{i}

)− F (~x(t))

1− xi(t)

> ∑i∈OPT

[F(~x(t) ∨ 1{i}

)− F (~x(t))

]

> F (~x(t) ∨ 1OPT)− F (~x(t)) > F (1OPT)− F (~x(t))

We obtain a differential equation:∂F(~x(t))

∂t > F (1OPT)− F (~x(t))

F (~x(0)) > 0

The solution is:F (~x(t)) >

(1− e−t) F(1OPT)

Seffi Naor Submodular Maximization

Page 47: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Continuous Greedy - Analysis (Cont.)

Proof:

∂F (~x(t))∂t

=n

∑i=1

∂F (~x(t))∂xi

· ∂xi(t)∂t

=n

∑i=1

∂F (~x(t))∂xi

· y∗i (t)

> ∑i∈OPT

∂F (~x(t))∂xi

= ∑i∈OPT

F(~x(t) ∨ 1{i}

)− F (~x(t))

1− xi(t)

> ∑i∈OPT

[F(~x(t) ∨ 1{i}

)− F (~x(t))

]> F (~x(t) ∨ 1OPT)− F (~x(t))

> F (1OPT)− F (~x(t))

We obtain a differential equation:∂F(~x(t))

∂t > F (1OPT)− F (~x(t))

F (~x(0)) > 0

The solution is:F (~x(t)) >

(1− e−t) F(1OPT)

Seffi Naor Submodular Maximization

Page 48: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Continuous Greedy - Analysis (Cont.)

Proof:

∂F (~x(t))∂t

=n

∑i=1

∂F (~x(t))∂xi

· ∂xi(t)∂t

=n

∑i=1

∂F (~x(t))∂xi

· y∗i (t)

> ∑i∈OPT

∂F (~x(t))∂xi

= ∑i∈OPT

F(~x(t) ∨ 1{i}

)− F (~x(t))

1− xi(t)

> ∑i∈OPT

[F(~x(t) ∨ 1{i}

)− F (~x(t))

]> F (~x(t) ∨ 1OPT)− F (~x(t)) > F (1OPT)− F (~x(t))

We obtain a differential equation:∂F(~x(t))

∂t > F (1OPT)− F (~x(t))

F (~x(0)) > 0

The solution is:F (~x(t)) >

(1− e−t) F(1OPT)

Seffi Naor Submodular Maximization

Page 49: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Continuous Greedy - Analysis (Cont.)

Proof:

∂F (~x(t))∂t

=n

∑i=1

∂F (~x(t))∂xi

· ∂xi(t)∂t

=n

∑i=1

∂F (~x(t))∂xi

· y∗i (t)

> ∑i∈OPT

∂F (~x(t))∂xi

= ∑i∈OPT

F(~x(t) ∨ 1{i}

)− F (~x(t))

1− xi(t)

> ∑i∈OPT

[F(~x(t) ∨ 1{i}

)− F (~x(t))

]> F (~x(t) ∨ 1OPT)− F (~x(t)) > F (1OPT)− F (~x(t))

We obtain a differential equation:

∂F(~x(t))

∂t > F (1OPT)− F (~x(t))

F (~x(0)) > 0

The solution is:F (~x(t)) >

(1− e−t) F(1OPT)

Seffi Naor Submodular Maximization

Page 50: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Continuous Greedy - Analysis (Cont.)

Proof:

∂F (~x(t))∂t

=n

∑i=1

∂F (~x(t))∂xi

· ∂xi(t)∂t

=n

∑i=1

∂F (~x(t))∂xi

· y∗i (t)

> ∑i∈OPT

∂F (~x(t))∂xi

= ∑i∈OPT

F(~x(t) ∨ 1{i}

)− F (~x(t))

1− xi(t)

> ∑i∈OPT

[F(~x(t) ∨ 1{i}

)− F (~x(t))

]> F (~x(t) ∨ 1OPT)− F (~x(t)) > F (1OPT)− F (~x(t))

We obtain a differential equation:∂F(~x(t))

∂t > F (1OPT)− F (~x(t))

F (~x(0)) > 0

The solution is:F (~x(t)) >

(1− e−t) F(1OPT)

Seffi Naor Submodular Maximization

Page 51: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Continuous Greedy - Analysis (Cont.)

Proof:

∂F (~x(t))∂t

=n

∑i=1

∂F (~x(t))∂xi

· ∂xi(t)∂t

=n

∑i=1

∂F (~x(t))∂xi

· y∗i (t)

> ∑i∈OPT

∂F (~x(t))∂xi

= ∑i∈OPT

F(~x(t) ∨ 1{i}

)− F (~x(t))

1− xi(t)

> ∑i∈OPT

[F(~x(t) ∨ 1{i}

)− F (~x(t))

]> F (~x(t) ∨ 1OPT)− F (~x(t)) > F (1OPT)− F (~x(t))

We obtain a differential equation:∂F(~x(t))

∂t > F (1OPT)− F (~x(t))

F (~x(0)) > 0

The solution is:

F (~x(t)) >(1− e−t) F(1OPT)

Seffi Naor Submodular Maximization

Page 52: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Continuous Greedy - Analysis (Cont.)

Proof:

∂F (~x(t))∂t

=n

∑i=1

∂F (~x(t))∂xi

· ∂xi(t)∂t

=n

∑i=1

∂F (~x(t))∂xi

· y∗i (t)

> ∑i∈OPT

∂F (~x(t))∂xi

= ∑i∈OPT

F(~x(t) ∨ 1{i}

)− F (~x(t))

1− xi(t)

> ∑i∈OPT

[F(~x(t) ∨ 1{i}

)− F (~x(t))

]> F (~x(t) ∨ 1OPT)− F (~x(t)) > F (1OPT)− F (~x(t))

We obtain a differential equation:∂F(~x(t))

∂t > F (1OPT)− F (~x(t))

F (~x(0)) > 0

The solution is:F (~x(t)) >

(1− e−t) F(1OPT)

Seffi Naor Submodular Maximization

Page 53: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Continuous Greedy - Analysis (Cont.)

Proof:

∂F (~x(t))∂t

=n

∑i=1

∂F (~x(t))∂xi

· ∂xi(t)∂t

=n

∑i=1

∂F (~x(t))∂xi

· y∗i (t)

> ∑i∈OPT

∂F (~x(t))∂xi

= ∑i∈OPT

F(~x(t) ∨ 1{i}

)− F (~x(t))

1− xi(t)

> ∑i∈OPT

[F(~x(t) ∨ 1{i}

)− F (~x(t))

]> F (~x(t) ∨ 1OPT)− F (~x(t)) > F (1OPT)− F (~x(t))

We obtain a differential equation:∂F(~x(t))

∂t > F (1OPT)− F (~x(t))

F (~x(0)) > 0

The solution is:F (~x(t)) >

(1− e−t) F(1OPT)

Seffi Naor Submodular Maximization

Page 54: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Continuous Greedy - Tight?

[Nemhauser-Wolsey-78]

Maximizing a monotone submodular f over a matroid is(

1− 1e

)-hard.

Are we done?1 Submodular Welfare:

1− 1e [Calinescu-Chekuri-Pal-Vondrak-08]

k2k−1 [Dobzinski-Schapira-06](

1−(

1− 1k

)k)

-hard{

[Khot-Lipton-Markakis-Mehta-05]

[Mirrokni-Schapira-Vondrak-07]

Is the case of two players special?2 Greedy and Continuous Greedy fail for non-monotone f .

Seffi Naor Submodular Maximization

Page 55: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Continuous Greedy - Tight?

[Nemhauser-Wolsey-78]

Maximizing a monotone submodular f over a matroid is(

1− 1e

)-hard.

Are we done?

1 Submodular Welfare:1− 1

e [Calinescu-Chekuri-Pal-Vondrak-08]

k2k−1 [Dobzinski-Schapira-06](

1−(

1− 1k

)k)

-hard{

[Khot-Lipton-Markakis-Mehta-05]

[Mirrokni-Schapira-Vondrak-07]

Is the case of two players special?2 Greedy and Continuous Greedy fail for non-monotone f .

Seffi Naor Submodular Maximization

Page 56: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Continuous Greedy - Tight?

[Nemhauser-Wolsey-78]

Maximizing a monotone submodular f over a matroid is(

1− 1e

)-hard.

Are we done?1 Submodular Welfare:

1− 1e [Calinescu-Chekuri-Pal-Vondrak-08]

k2k−1 [Dobzinski-Schapira-06](

1−(

1− 1k

)k)

-hard{

[Khot-Lipton-Markakis-Mehta-05]

[Mirrokni-Schapira-Vondrak-07]

Is the case of two players special?2 Greedy and Continuous Greedy fail for non-monotone f .

Seffi Naor Submodular Maximization

Page 57: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Continuous Greedy - Tight?

[Nemhauser-Wolsey-78]

Maximizing a monotone submodular f over a matroid is(

1− 1e

)-hard.

Are we done?1 Submodular Welfare:

1− 1e [Calinescu-Chekuri-Pal-Vondrak-08]

k2k−1 [Dobzinski-Schapira-06](

1−(

1− 1k

)k)

-hard{

[Khot-Lipton-Markakis-Mehta-05]

[Mirrokni-Schapira-Vondrak-07]

Is the case of two players special?

2 Greedy and Continuous Greedy fail for non-monotone f .

Seffi Naor Submodular Maximization

Page 58: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Continuous Greedy - Tight?

[Nemhauser-Wolsey-78]

Maximizing a monotone submodular f over a matroid is(

1− 1e

)-hard.

Are we done?1 Submodular Welfare:

1− 1e [Calinescu-Chekuri-Pal-Vondrak-08]

k2k−1 [Dobzinski-Schapira-06](

1−(

1− 1k

)k)

-hard{

[Khot-Lipton-Markakis-Mehta-05]

[Mirrokni-Schapira-Vondrak-07]

Is the case of two players special?2 Greedy and Continuous Greedy fail for non-monotone f .

Seffi Naor Submodular Maximization

Page 59: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Measured Continuous Greedy

Continuous Greedy:~y∗(t) = argmax{

∑ni=1

∂F(~x(t))∂xi

· yi : ~y ∈ PM}

∂xi(t)∂t = y∗i (t)

Measured Continuous Greedy:~y∗(t) = argmax{

∑ni=1

∂F(~x(t))∂xi

· (1− xi(t)) · yi : ~y ∈ PM}

∂xi(t)∂t = (1− xi(t)) · y∗i (t)

Intuition:

∂F (~x(t))∂xi

=F(~x(t) ∨ 1{i}

)− F (~x(t))

1− xi(t)

Continuous greedy ignores the current position xi(t).

Seffi Naor Submodular Maximization

Page 60: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Measured Continuous Greedy

Continuous Greedy:~y∗(t) = argmax{

∑ni=1

∂F(~x(t))∂xi

· yi : ~y ∈ PM}

∂xi(t)∂t = y∗i (t)

Measured Continuous Greedy:~y∗(t) = argmax{

∑ni=1

∂F(~x(t))∂xi

· (1− xi(t)) · yi : ~y ∈ PM}

∂xi(t)∂t = (1− xi(t)) · y∗i (t)

Intuition:

∂F (~x(t))∂xi

=F(~x(t) ∨ 1{i}

)− F (~x(t))

1− xi(t)

Continuous greedy ignores the current position xi(t).

Seffi Naor Submodular Maximization

Page 61: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Measured Continuous Greedy

Continuous Greedy:~y∗(t) = argmax{

∑ni=1

∂F(~x(t))∂xi

· yi : ~y ∈ PM}

∂xi(t)∂t = y∗i (t)

Measured Continuous Greedy:~y∗(t) = argmax{

∑ni=1

∂F(~x(t))∂xi

· (1− xi(t)) · yi : ~y ∈ PM}

∂xi(t)∂t = (1− xi(t)) · y∗i (t)

Intuition:

∂F (~x(t))∂xi

=F(~x(t) ∨ 1{i}

)− F (~x(t))

1− xi(t)

Continuous greedy ignores the current position xi(t).

Seffi Naor Submodular Maximization

Page 62: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Measured Continuous Greedy

[Feldman-N-Schwartz-11]

The measured continuous greedy algorithm achieves:1 monotone f : F (~x(t)) >

(1− e−t) F(1OPT).

2 non-monotone f : F (~x(t)) > te−t · F(1OPT).

Non-Monotone f :Stopping at t = 1 ⇒ (1/e)-approximation.

All known rounding procedures work for non-monotone f as well.(matroid and O(1) knapsack)

Greedy methods fail in the discrete setting.

Seffi Naor Submodular Maximization

Page 63: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Measured Continuous Greedy

[Feldman-N-Schwartz-11]

The measured continuous greedy algorithm achieves:1 monotone f : F (~x(t)) >

(1− e−t) F(1OPT).

2 non-monotone f : F (~x(t)) > te−t · F(1OPT).

Non-Monotone f :Stopping at t = 1 ⇒ (1/e)-approximation.

All known rounding procedures work for non-monotone f as well.(matroid and O(1) knapsack)

Greedy methods fail in the discrete setting.

Seffi Naor Submodular Maximization

Page 64: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Measured Continuous Greedy - Non-Monotone f

Proof:

∂F (~x(t))∂t

=n

∑i=1

∂F (~x(t))∂xi

· ∂xi(t)∂t

=n

∑i=1

∂F (~x(t))∂xi

· (1− xi(t)) · y∗i (t)

> ∑i∈OPT

∂F (~x(t))∂xi

· (1− xi(t))

= ∑i∈OPT

F(~x(t) ∨ 1{i}

)− F (~x(t))

1− xi(t)· (1− xi(t))

> ∑i∈OPT

[F(~x(t) ∨ 1{i}

)− F (~x(t))

]> F (~x(t) ∨ 1OPT)− F (~x(t))

monotone: > F (1OPT)− F (~x(t)) yielding same factor as continuous greedy

non-monotone: how to lower bound F (~x(t) ∨ 1OPT)?

Seffi Naor Submodular Maximization

Page 65: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Measured Continuous Greedy - Non-Monotone f

Proof:

∂F (~x(t))∂t

=n

∑i=1

∂F (~x(t))∂xi

· ∂xi(t)∂t

=n

∑i=1

∂F (~x(t))∂xi

· (1− xi(t)) · y∗i (t)

> ∑i∈OPT

∂F (~x(t))∂xi

· (1− xi(t))

= ∑i∈OPT

F(~x(t) ∨ 1{i}

)− F (~x(t))

1− xi(t)· (1− xi(t))

> ∑i∈OPT

[F(~x(t) ∨ 1{i}

)− F (~x(t))

]> F (~x(t) ∨ 1OPT)− F (~x(t))

monotone: > F (1OPT)− F (~x(t)) yielding same factor as continuous greedy

non-monotone: how to lower bound F (~x(t) ∨ 1OPT)?

Seffi Naor Submodular Maximization

Page 66: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Measured Continuous Greedy - Non-Monotone f

Proof:

∂F (~x(t))∂t

=n

∑i=1

∂F (~x(t))∂xi

· ∂xi(t)∂t

=n

∑i=1

∂F (~x(t))∂xi

· (1− xi(t)) · y∗i (t)

> ∑i∈OPT

∂F (~x(t))∂xi

· (1− xi(t))

= ∑i∈OPT

F(~x(t) ∨ 1{i}

)− F (~x(t))

1− xi(t)· (1− xi(t))

> ∑i∈OPT

[F(~x(t) ∨ 1{i}

)− F (~x(t))

]> F (~x(t) ∨ 1OPT)− F (~x(t))

monotone: > F (1OPT)− F (~x(t)) yielding same factor as continuous greedy

non-monotone: how to lower bound F (~x(t) ∨ 1OPT)?

Seffi Naor Submodular Maximization

Page 67: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Measured Continuous Greedy - Non-Monotone f

Proof:

∂F (~x(t))∂t

=n

∑i=1

∂F (~x(t))∂xi

· ∂xi(t)∂t

=n

∑i=1

∂F (~x(t))∂xi

· (1− xi(t)) · y∗i (t)

> ∑i∈OPT

∂F (~x(t))∂xi

· (1− xi(t))

= ∑i∈OPT

F(~x(t) ∨ 1{i}

)− F (~x(t))

1− xi(t)· (1− xi(t))

> ∑i∈OPT

[F(~x(t) ∨ 1{i}

)− F (~x(t))

]> F (~x(t) ∨ 1OPT)− F (~x(t))

monotone: > F (1OPT)− F (~x(t)) yielding same factor as continuous greedy

non-monotone: how to lower bound F (~x(t) ∨ 1OPT)?

Seffi Naor Submodular Maximization

Page 68: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Measured Continuous Greedy - Non-Monotone f

Proof:

∂F (~x(t))∂t

=n

∑i=1

∂F (~x(t))∂xi

· ∂xi(t)∂t

=n

∑i=1

∂F (~x(t))∂xi

· (1− xi(t)) · y∗i (t)

> ∑i∈OPT

∂F (~x(t))∂xi

· (1− xi(t))

= ∑i∈OPT

F(~x(t) ∨ 1{i}

)− F (~x(t))

1− xi(t)· (1− xi(t))

> ∑i∈OPT

[F(~x(t) ∨ 1{i}

)− F (~x(t))

]> F (~x(t) ∨ 1OPT)− F (~x(t))

monotone: > F (1OPT)− F (~x(t)) yielding same factor as continuous greedy

non-monotone: how to lower bound F (~x(t) ∨ 1OPT)?

Seffi Naor Submodular Maximization

Page 69: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Measured Continuous Greedy - Non-Monotone f

Proof:

∂F (~x(t))∂t

=n

∑i=1

∂F (~x(t))∂xi

· ∂xi(t)∂t

=n

∑i=1

∂F (~x(t))∂xi

· (1− xi(t)) · y∗i (t)

> ∑i∈OPT

∂F (~x(t))∂xi

· (1− xi(t))

= ∑i∈OPT

F(~x(t) ∨ 1{i}

)− F (~x(t))

1− xi(t)· (1− xi(t))

> ∑i∈OPT

[F(~x(t) ∨ 1{i}

)− F (~x(t))

]> F (~x(t) ∨ 1OPT)− F (~x(t))

monotone: > F (1OPT)− F (~x(t)) yielding same factor as continuous greedy

non-monotone: how to lower bound F (~x(t) ∨ 1OPT)?

Seffi Naor Submodular Maximization

Page 70: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Measured Continuous Greedy - Non-Monotone f

Proof:

∂F (~x(t))∂t

=n

∑i=1

∂F (~x(t))∂xi

· ∂xi(t)∂t

=n

∑i=1

∂F (~x(t))∂xi

· (1− xi(t)) · y∗i (t)

> ∑i∈OPT

∂F (~x(t))∂xi

· (1− xi(t))

= ∑i∈OPT

F(~x(t) ∨ 1{i}

)− F (~x(t))

1− xi(t)· (1− xi(t))

> ∑i∈OPT

[F(~x(t) ∨ 1{i}

)− F (~x(t))

]

> F (~x(t) ∨ 1OPT)− F (~x(t))

monotone: > F (1OPT)− F (~x(t)) yielding same factor as continuous greedy

non-monotone: how to lower bound F (~x(t) ∨ 1OPT)?

Seffi Naor Submodular Maximization

Page 71: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Measured Continuous Greedy - Non-Monotone f

Proof:

∂F (~x(t))∂t

=n

∑i=1

∂F (~x(t))∂xi

· ∂xi(t)∂t

=n

∑i=1

∂F (~x(t))∂xi

· (1− xi(t)) · y∗i (t)

> ∑i∈OPT

∂F (~x(t))∂xi

· (1− xi(t))

= ∑i∈OPT

F(~x(t) ∨ 1{i}

)− F (~x(t))

1− xi(t)· (1− xi(t))

> ∑i∈OPT

[F(~x(t) ∨ 1{i}

)− F (~x(t))

]> F (~x(t) ∨ 1OPT)− F (~x(t))

monotone: > F (1OPT)− F (~x(t)) yielding same factor as continuous greedy

non-monotone: how to lower bound F (~x(t) ∨ 1OPT)?

Seffi Naor Submodular Maximization

Page 72: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Measured Continuous Greedy - Non-Monotone f

Proof:

∂F (~x(t))∂t

=n

∑i=1

∂F (~x(t))∂xi

· ∂xi(t)∂t

=n

∑i=1

∂F (~x(t))∂xi

· (1− xi(t)) · y∗i (t)

> ∑i∈OPT

∂F (~x(t))∂xi

· (1− xi(t))

= ∑i∈OPT

F(~x(t) ∨ 1{i}

)− F (~x(t))

1− xi(t)· (1− xi(t))

> ∑i∈OPT

[F(~x(t) ∨ 1{i}

)− F (~x(t))

]> F (~x(t) ∨ 1OPT)− F (~x(t))

monotone: > F (1OPT)− F (~x(t)) yielding same factor as continuous greedy

non-monotone: how to lower bound F (~x(t) ∨ 1OPT)?

Seffi Naor Submodular Maximization

Page 73: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Measured Continuous Greedy - Non-Monotone f

Proof:

∂F (~x(t))∂t

=n

∑i=1

∂F (~x(t))∂xi

· ∂xi(t)∂t

=n

∑i=1

∂F (~x(t))∂xi

· (1− xi(t)) · y∗i (t)

> ∑i∈OPT

∂F (~x(t))∂xi

· (1− xi(t))

= ∑i∈OPT

F(~x(t) ∨ 1{i}

)− F (~x(t))

1− xi(t)· (1− xi(t))

> ∑i∈OPT

[F(~x(t) ∨ 1{i}

)− F (~x(t))

]> F (~x(t) ∨ 1OPT)− F (~x(t))

monotone: > F (1OPT)− F (~x(t)) yielding same factor as continuous greedy

non-monotone: how to lower bound F (~x(t) ∨ 1OPT)?

Seffi Naor Submodular Maximization

Page 74: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Measured Continuous Greedy - Non-Monotone f

Proof:

∂F (~x(t))∂t

=n

∑i=1

∂F (~x(t))∂xi

· ∂xi(t)∂t

=n

∑i=1

∂F (~x(t))∂xi

· (1− xi(t)) · y∗i (t)

> ∑i∈OPT

∂F (~x(t))∂xi

· (1− xi(t))

= ∑i∈OPT

F(~x(t) ∨ 1{i}

)− F (~x(t))

1− xi(t)· (1− xi(t))

> ∑i∈OPT

[F(~x(t) ∨ 1{i}

)− F (~x(t))

]> F (~x(t) ∨ 1OPT)− F (~x(t))

monotone: > F (1OPT)− F (~x(t)) yielding same factor as continuous greedy

non-monotone: how to lower bound F (~x(t) ∨ 1OPT)?

Seffi Naor Submodular Maximization

Page 75: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Measured Continuous Greedy - Non-Monotone f (Cont.)

1 xi(t) cannot be too large:∂xi(t)

∂t 6 1− xi(t)

xi(0) = 0

⇓xi(t) 6 1− e−t .

2 ∀S ⊆ N and ~y ∈ [0, 1]N s.t. maxi∈N {yi} = ymax:

F (1S ∨~y) > (1− ymax) F(1S).

Intuition: by submodularity (decreasing marginals), when “0”coordinates are increased to ymax, loss to F(1S) is at most aymax-fraction

F (~x(t) ∨ 1OPT) > e−t · F(1OPT).

Seffi Naor Submodular Maximization

Page 76: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Measured Continuous Greedy - Non-Monotone f (Cont.)

1 xi(t) cannot be too large:∂xi(t)

∂t 6 1− xi(t)

xi(0) = 0

⇓xi(t) 6 1− e−t .

2 ∀S ⊆ N and ~y ∈ [0, 1]N s.t. maxi∈N {yi} = ymax:

F (1S ∨~y) > (1− ymax) F(1S).

Intuition: by submodularity (decreasing marginals), when “0”coordinates are increased to ymax, loss to F(1S) is at most aymax-fraction

F (~x(t) ∨ 1OPT) > e−t · F(1OPT).

Seffi Naor Submodular Maximization

Page 77: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Measured Continuous Greedy - Non-Monotone f (Cont.)

1 xi(t) cannot be too large:∂xi(t)

∂t 6 1− xi(t)

xi(0) = 0

⇓xi(t) 6 1− e−t .

2 ∀S ⊆ N and ~y ∈ [0, 1]N s.t. maxi∈N {yi} = ymax:

F (1S ∨~y) > (1− ymax) F(1S).

Intuition: by submodularity (decreasing marginals), when “0”coordinates are increased to ymax, loss to F(1S) is at most aymax-fraction

F (~x(t) ∨ 1OPT) > e−t · F(1OPT).

Seffi Naor Submodular Maximization

Page 78: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Measured Continuous Greedy - Non-Monotone f (Cont.)

∂F (~x(t))∂t

> F (~x(t) ∨ 1OPT)− F (~x(t))

> e−t · F(1OPT)− F (~x(t))

Solving the differential equation with F (~x(0)) > 0 gives:

F (~x(t)) > te−t · F(1OPT).

Non-Monotone f Guarantee

F (~x(1)) >(

1e

)· F(1OPT)

Seffi Naor Submodular Maximization

Page 79: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Measured Continuous Greedy - Non-Monotone f (Cont.)

∂F (~x(t))∂t

> F (~x(t) ∨ 1OPT)− F (~x(t))

> e−t · F(1OPT)− F (~x(t))

Solving the differential equation with F (~x(0)) > 0 gives:

F (~x(t)) > te−t · F(1OPT).

Non-Monotone f Guarantee

F (~x(1)) >(

1e

)· F(1OPT)

Seffi Naor Submodular Maximization

Page 80: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Measured Continuous Greedy - Monotone f

Monotone f Guarantee

F (~x(t)) > F(1OPT)(1− e−t)

Note: ~x(t) gains the same value but advances less:

xi(t) 6 1− e−t

⇒ one might possibly stop at times t > 1 and still be feasible!

Seffi Naor Submodular Maximization

Page 81: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Measured Continuous Greedy - Monotone f

Monotone f Guarantee

F (~x(t)) > F(1OPT)(1− e−t)

Note: ~x(t) gains the same value but advances less:

xi(t) 6 1− e−t

⇒ one might possibly stop at times t > 1 and still be feasible!

Seffi Naor Submodular Maximization

Page 82: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Measured Continuous Greedy - Monotone f

Submodular MAX-SAT

CNF formula and a monotone submodular function f defined over theclauses

Goal: find an assignment φ maximizing f (over clauses satisfied by φ)

Optimizing over a Partition Matroid

each xi is replaced by a group {(xi , 0), (xi , 1)}only one element can be chosen from a group (guarantees feasibility)

Cx,v - clauses satisfied by setting x← vfor a set of clauses S: g(S) = f (∪(x,v)∈SCx,v)g is submodular (by submodularity of f )

submodular MAX SAT can be represented as a monotone submodularmaximization problem over a matroid

Seffi Naor Submodular Maximization

Page 83: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Measured Continuous Greedy - Monotone f

Submodular MAX-SAT

CNF formula and a monotone submodular function f defined over theclauses

Goal: find an assignment φ maximizing f (over clauses satisfied by φ)

Optimizing over a Partition Matroid

each xi is replaced by a group {(xi , 0), (xi , 1)}only one element can be chosen from a group (guarantees feasibility)

Cx,v - clauses satisfied by setting x← vfor a set of clauses S: g(S) = f (∪(x,v)∈SCx,v)g is submodular (by submodularity of f )

submodular MAX SAT can be represented as a monotone submodularmaximization problem over a matroid

Seffi Naor Submodular Maximization

Page 84: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Measured Continuous Greedy - Monotone f

Submodular MAX-SAT

CNF formula and a monotone submodular function f defined over theclauses

Goal: find an assignment φ maximizing f (over clauses satisfied by φ)

Optimizing over a Partition Matroid

each xi is replaced by a group {(xi , 0), (xi , 1)}only one element can be chosen from a group (guarantees feasibility)

Cx,v - clauses satisfied by setting x← vfor a set of clauses S: g(S) = f (∪(x,v)∈SCx,v)g is submodular (by submodularity of f )

submodular MAX SAT can be represented as a monotone submodularmaximization problem over a matroid

Seffi Naor Submodular Maximization

Page 85: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Measured Continuous Greedy - Monotone f

Question: for which T > 1 can we run the measured continuous greedyalgorithm and stay feasible?

For variable x:

T0 - total time in which (x, 0) is increased

T1 - total time in which (x, 1) is increased

Clearly, T0 + T1 6 T

By properties of measured greedy:

(x, 0) 6 1− e−T0 , (x, 1) 6 1− e−T1

(x, 1) + (x, 1) 6 (1− e−T0 ) + (1− e−T1 ) 6 2− e−T0 − eT0−T (T0 + T1 6 T)When is 2− e−T0 − eT0−T maximized? T0 = T/2

Matroid constraints need to be satisfied:

2− e−T0 − eT0−T 6 2(1− e−T/2) 6 1

Yielding: T 6 2 ln 2

Approximation factor is (1− e−T): 34 for T = 2 ln 2.

Seffi Naor Submodular Maximization

Page 86: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Measured Continuous Greedy - Monotone f

Question: for which T > 1 can we run the measured continuous greedyalgorithm and stay feasible?

For variable x:

T0 - total time in which (x, 0) is increased

T1 - total time in which (x, 1) is increased

Clearly, T0 + T1 6 T

By properties of measured greedy:

(x, 0) 6 1− e−T0 , (x, 1) 6 1− e−T1

(x, 1) + (x, 1) 6 (1− e−T0 ) + (1− e−T1 ) 6 2− e−T0 − eT0−T (T0 + T1 6 T)When is 2− e−T0 − eT0−T maximized? T0 = T/2

Matroid constraints need to be satisfied:

2− e−T0 − eT0−T 6 2(1− e−T/2) 6 1

Yielding: T 6 2 ln 2

Approximation factor is (1− e−T): 34 for T = 2 ln 2.

Seffi Naor Submodular Maximization

Page 87: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Measured Continuous Greedy - Monotone f

Question: for which T > 1 can we run the measured continuous greedyalgorithm and stay feasible?

For variable x:

T0 - total time in which (x, 0) is increased

T1 - total time in which (x, 1) is increased

Clearly, T0 + T1 6 T

By properties of measured greedy:

(x, 0) 6 1− e−T0 , (x, 1) 6 1− e−T1

(x, 1) + (x, 1) 6 (1− e−T0 ) + (1− e−T1 ) 6 2− e−T0 − eT0−T (T0 + T1 6 T)When is 2− e−T0 − eT0−T maximized? T0 = T/2

Matroid constraints need to be satisfied:

2− e−T0 − eT0−T 6 2(1− e−T/2) 6 1

Yielding: T 6 2 ln 2

Approximation factor is (1− e−T): 34 for T = 2 ln 2.

Seffi Naor Submodular Maximization

Page 88: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Measured Continuous Greedy - Monotone f

Question: for which T > 1 can we run the measured continuous greedyalgorithm and stay feasible?

For variable x:

T0 - total time in which (x, 0) is increased

T1 - total time in which (x, 1) is increased

Clearly, T0 + T1 6 T

By properties of measured greedy:

(x, 0) 6 1− e−T0 , (x, 1) 6 1− e−T1

(x, 1) + (x, 1) 6 (1− e−T0 ) + (1− e−T1 ) 6 2− e−T0 − eT0−T (T0 + T1 6 T)

When is 2− e−T0 − eT0−T maximized? T0 = T/2

Matroid constraints need to be satisfied:

2− e−T0 − eT0−T 6 2(1− e−T/2) 6 1

Yielding: T 6 2 ln 2

Approximation factor is (1− e−T): 34 for T = 2 ln 2.

Seffi Naor Submodular Maximization

Page 89: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Measured Continuous Greedy - Monotone f

Question: for which T > 1 can we run the measured continuous greedyalgorithm and stay feasible?

For variable x:

T0 - total time in which (x, 0) is increased

T1 - total time in which (x, 1) is increased

Clearly, T0 + T1 6 T

By properties of measured greedy:

(x, 0) 6 1− e−T0 , (x, 1) 6 1− e−T1

(x, 1) + (x, 1) 6 (1− e−T0 ) + (1− e−T1 ) 6 2− e−T0 − eT0−T (T0 + T1 6 T)When is 2− e−T0 − eT0−T maximized? T0 = T/2

Matroid constraints need to be satisfied:

2− e−T0 − eT0−T 6 2(1− e−T/2) 6 1

Yielding: T 6 2 ln 2

Approximation factor is (1− e−T): 34 for T = 2 ln 2.

Seffi Naor Submodular Maximization

Page 90: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Measured Continuous Greedy - Monotone f

Question: for which T > 1 can we run the measured continuous greedyalgorithm and stay feasible?

For variable x:

T0 - total time in which (x, 0) is increased

T1 - total time in which (x, 1) is increased

Clearly, T0 + T1 6 T

By properties of measured greedy:

(x, 0) 6 1− e−T0 , (x, 1) 6 1− e−T1

(x, 1) + (x, 1) 6 (1− e−T0 ) + (1− e−T1 ) 6 2− e−T0 − eT0−T (T0 + T1 6 T)When is 2− e−T0 − eT0−T maximized? T0 = T/2

Matroid constraints need to be satisfied:

2− e−T0 − eT0−T 6 2(1− e−T/2) 6 1

Yielding: T 6 2 ln 2

Approximation factor is (1− e−T): 34 for T = 2 ln 2.

Seffi Naor Submodular Maximization

Page 91: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Measured Continuous Greedy - Monotone f

Question: for which T > 1 can we run the measured continuous greedyalgorithm and stay feasible?

For variable x:

T0 - total time in which (x, 0) is increased

T1 - total time in which (x, 1) is increased

Clearly, T0 + T1 6 T

By properties of measured greedy:

(x, 0) 6 1− e−T0 , (x, 1) 6 1− e−T1

(x, 1) + (x, 1) 6 (1− e−T0 ) + (1− e−T1 ) 6 2− e−T0 − eT0−T (T0 + T1 6 T)When is 2− e−T0 − eT0−T maximized? T0 = T/2

Matroid constraints need to be satisfied:

2− e−T0 − eT0−T 6 2(1− e−T/2) 6 1

Yielding: T 6 2 ln 2

Approximation factor is (1− e−T): 34 for T = 2 ln 2.

Seffi Naor Submodular Maximization

Page 92: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Measured Continuous Greedy - Monotone f (Cont.)

P =

{x∣∣∣ ∑

i∈Nai, jxi 6 b j , 1 6 j 6 m , 0 6 xi 6 1, ∀i ∈ N

}

d(P) , min16 j6m

{b j

∑i∈N ai, j

}

[Feldman-N-Schwartz-11]

~x(t) ∈ P if

t 6ln(

11−d(P)

)d(P)

(∗).

Note: (∗) > 1 since d (P) > 0.

Seffi Naor Submodular Maximization

Page 93: Submodular Maximization - CNRventura/Cargese13/Lectures slides/Naor3.pdf · 2013-12-05 · Seffi Naor Lecture 3 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Submodular

Measured Continuous Greedy - Results

Problem Result Previous HardnessSubmodular Welfare

1−(

1− 1k

)kmax

{1− 1/e, k

2k−1

}1−

(1− 1

k

)k

k players

Submodular Max-SAT 3/4 2/3 3/4

non-monotone f 1/e ≈ 0.325 ≈ 0.478matroidnon-monotone f 1/e ≈ 0.325 ≈ 0.491O(1) knapsack

Seffi Naor Submodular Maximization