Summary Dynamics(1)

Embed Size (px)

Citation preview

  • 8/13/2019 Summary Dynamics(1)

    1/14

    Particle Kinematics

    r i j k ( ) ( ) ( ) ( )t x t y t z t r(t)

    r(t+dt)

    v(t) dt

    i

    j

    path of particle

    kO

    ( ) ( ) ( ) ( )

    ( ) ( ) ( )

    x y z

    x y z

    t v t v t v t

    d dx dy dz x y z

    dt dt dt dt

    dx dy dz v t v t v t

    dt dt dt

    v i j k

    i j k i j k

    Direction of velocity vector is parallel to path

    Magnitude of velocity vector is distance traveled / time

    Inertial framenon accelerating, non rotating reference frame

    Particlepoint mass at some position in space

    Position Vector

    Velocity Vector

    Acceleration Vector

    2 2 2

    2 2 2

    ( ) ( ) ( ) ( )

    ( ) ( ) ( )

    yx zx y z x y z

    yx zx y z

    dvdv dvdt a t a t a t v v v

    dt dt dt dt

    dvdv dvd x d y d z a t a t a t

    dt dt dt dt dt dt

    a i j k i j k i j k

  • 8/13/2019 Summary Dynamics(1)

    2/14

    Particle Kinematics

    Simple Harmonic Motion

    x(t)

    k,L0

    m

    i

    j

    02

    2

    sin(2 / ) cos(2 / ) sin(2 / )

    2 2 4

    X X t T V t T A t T

    X V XV A

    T T T

    r i v i a i

    Circular Motion at const speed

    2

    2 2

    cos sin

    sin cos

    (cos sin )

    R

    R V

    VR R

    R

    r i j

    v i j t

    a i j n n

    Straight line motion with constant acceleration

    2

    0 0 0

    1

    2X V t at V at a

    r i v i a i

    t s R V R

    t

    R

    i

    j

    Rcos

    Rsin

    tsin

    cos

    n

  • 8/13/2019 Summary Dynamics(1)

    3/14

    Summary

    General circular motion

    Arbitrary path

    R

    i

    j

    Rcos

    Rsin

    tsin

    cos

    n

    2

    22

    cos sin

    sin cos

    ( sin cos ) (cos sin )

    R

    R V

    R R

    dV VR R

    dt R

    r i j

    v i j t

    a i j i j

    t n t n

    2 2/ / /

    /

    d dt d dt d dt

    s R V ds dt R

    2

    V

    dV V

    dt R

    v t

    a t n

    t

    R

    t

    n2 2

    2 2

    3/222

    1

    d y dydx d x

    d dd d

    Rdydx

    d d

    ( ) ( )x y r i j

  • 8/13/2019 Summary Dynamics(1)

    4/14

    Summary

    Polar Coords

    r

    i

    j

    e

    er

    22 2

    2 2 2

    r

    r

    dr dr

    dt dt

    d r d d dr d r r

    dt dt dt dt dt

    v e e

    a e e

  • 8/13/2019 Summary Dynamics(1)

    5/14

  • 8/13/2019 Summary Dynamics(1)

    6/14

    Calculating forces required to cause prescribed

    motion of a particle

    Idealize system Free body diagram

    Kinematics

    F=mafor each particle. (for rigid bodies or frames only)

    Solve for unknown forces or accelerationsc M 0

  • 8/13/2019 Summary Dynamics(1)

    7/14

    Deriving Equations of Motion for particles

    1. Idealize system

    2. Introduce variables to describe motion(oftenx,y coords, but we will see other

    examples)

    3. Write down r, differentiate to get a

    4. Draw FBD

    5.

    6. If necessary, eliminate reaction forces

    7. Result will be differential equations for coordsdefined in (2), e.g.

    8. Identify initial conditions, and solve ODE

    mF a

    2

    02 sin

    d x dxm kx kY t

    dtdt

  • 8/13/2019 Summary Dynamics(1)

    8/14

    Motion of a projectile

    i

    j

    kX0

    V00 0 0

    0 0 0

    0

    x y z

    X Y Z

    tdV V V

    dt

    r i j k

    ri j k

    2

    0 0 0 0 0 0

    0 0 0

    1

    2x y z

    x y z

    X V t Y V t Z V t gt

    V V V gt

    g

    r i j k

    v i j k

    a k

  • 8/13/2019 Summary Dynamics(1)

    9/14

    Work and Energy relations

    Rate of work done by a force(power developed by force)i

    j

    k

    O

    PF

    vP F v

    Total work done by a force

    ij

    k

    O

    PF(t)

    r0

    r1

    1

    0

    t

    W dt

    F v

    1

    0

    W d

    r

    rF r

    2 2 2 21 1

    2 2 x y zT m m v v v vKinetic energy

    i

    j

    k

    O

    P

    v

    r0

    r1Work-kinetic energy relation1

    0

    0W d T T

    r

    r

    F r

    Power-kinetic energy relationdT

    Pdt

  • 8/13/2019 Summary Dynamics(1)

    10/14

    Potential energy

    i

    j

    k

    O

    P

    Fr0

    r1

    0

    ( ) constantV d r

    r

    r F r

    Potential energy of a

    conservative force (pair)

    grad( )V F

    Type of force Potential energy

    Gravity acting on aparticle near earthssurface

    V mgy

    Fm

    j

    i y

    Gravitational forceexerted on mass mby

    massMat the origin

    GMmV

    r

    r

    F

    r m

    Force exerted by a

    spring with stiffness kand unstretched length

    0L

    2

    0

    1

    2V k r L F

    i

    j r

    Force acting betweentwo charged particles

    1 2

    4

    QQV

    r

    r

    +Q1+Q2

    i

    j

    1

    F2

    Force exerted by onemolecule of a noble gas(e.g. He, Ar, etc) on

    another (Lennard Jonespotential). ais the

    equilibrium spacingbetween molecules, and

    Eis the energy of thebond.

    12 6

    2a a

    Er r

    r

    i

    j

    1

    F2

  • 8/13/2019 Summary Dynamics(1)

    11/14

    m1

    m2

    m3

    m4

    R21

    R12

    R13 R31

    R23

    R32

    F2

    ext

    F3

    ext

    F1

    ext

    Energy relations for

    conservative systems subjected to external forces

    ijR

    Internal Forces: (forces exerted by

    one part of the system on another)

    External Forces: (any other forces) extiF

    0

    0

    ( ) ( )

    t t

    ext

    ext i

    forces t

    W t t dt

    F vWork done by external forces

    0 0

    extW T V T V

    System is conservative if all internal forces are

    conservative forces (or constraint forces)

    Energy relation for a conservative system 0 0t t t t

    Kinetic and potential energy at time 0t 0 0T V

    Kinetic and potential energy at timet

    T V

  • 8/13/2019 Summary Dynamics(1)

    12/14

    Linear Impulse of a force

    i

    jk

    O

    F(t) v

    m

    1

    0

    ( )

    t

    t

    t dt F

    Linear momentum of a particle mp v

    Impulse-momentum relations d

    dt

    pF 1 0 p p

    Impulse-momentum relations

    m1

    m2

    m3

    m4

    R21

    R12

    R13 R31

    R23

    R32

    F2

    ext

    F3

    ext

    F1

    ext

    0

    0

    ( )

    t t

    ext

    tot i

    particles t

    t dt

    FTotal external impulse

    tot i i

    particles

    m p vTotal linear momentum

    ( )ext totiparticles

    dt

    dt

    p

    FConservation lawtot tot

    p

    Impulse-momentum for a system of particles

    Impulse-momentum for a single particle

  • 8/13/2019 Summary Dynamics(1)

    13/14

    Collisions

    *

    A B

    A B

    vx

    B1vx

    A1

    vx

    B0

    vx

    A0

    1 1 0 0A B A B

    A x B x A x B xm v m v m v m v

    1 1 0 0B A B A

    v v e v v

    1 0 0 0

    1 0 0 0

    (1 )

    (1 )

    B B B AA

    A B

    A A B AB

    A B

    mv v e v v

    m m

    mv v e v v

    m m

    A

    B

    A B

    B0vA0

    v

    vA1

    B1

    v

    n

    1 1 0 0 0 0(1 )B A B A B Ae v v v v v v n n

    1 1 0 0B A B A

    B A B Am m m m v v v v

    1 0 0 0(1 )

    B B B AA

    B A

    me

    m m

    v v v v n n

    1 0 0 0(1 )A A B ABB A

    me

    m m

    v v v v n n

  • 8/13/2019 Summary Dynamics(1)

    14/14

    Angular Impulse-Momentum Equations for a Particle

    i

    j

    k

    x

    y

    z

    O

    F(t)

    r(t)

    0

    0

    ( ) ( )

    t t

    t

    t t dt

    r F

    m h r p r v

    d

    dt

    hMImpulse-Momentum relations

    1 0 h h

    Useful for central force problems

    Angular Momentum

    Angular Impulse