6
Supplementary Material Table S1: Requirements for spectrally neutral terrain used to create average neutral spectra for ratioing purposes, with parameters (defined by Viviano-Beck et al., 2014) listed for each cube for which spectra are shown. Mineral mask is used to produce spectra shown in main text, but the dust mask is a viable alternative, as shown in Figure S1. Parameter FRT47A3 FRT5C5E FRT5850 FRT1182A HRL40FF Mineral Mask R770 > 0.01 > 0.01 > 0.01 > 0.01 > 0.01 BDI1000IR < 0.035 < 0.02 < 0.015 < 0.035 < 0.035 OLINDEX3 < 0.09 < 0.09 < 0.07 < 0.09 < 0.12 BD1300 < 0.02 < 0.02 < 0.005 < 0.02 < 0.02 LCPINDEX2 < -0.03 < -0.02 < -0.015 < -0.025 < -0.03 HCPINDEX2 < 0 < -0.01 < -0.005 < 0 < 0 D2200 < 0.005 < 0.005 < 0.002 < 0.005 < 0.005 BD2290 < 0 < 0.005 < 0.002 < 0.004 < 0.005 D2300 < 0.005 < 0.005 < 0.002 < 0.005 < 0.005 BD2500_2 < -0.005 < -0.005 < -0.005 < -0.005 < -0.005 Pixels selected 3,458 16,113 10,568 21,930 1,200 Dust Mask R770 > 0.01 > 0.01 > 0.01 > 0.01 > 0.01 RBR > 3.8 > 3.4 > 3.5 > 3.5 > 3.5 RPEAK1 > 0.73 > 0.73 > 0.725 > 0.725 > 0.73 BD2500_2 < -0.005 < -0.005 < -0.005 < -0.005 < -0.005 Pixels selected 2,490 2,148 1,353 1,471 10,577

Supplementary Material Table S1: Requirements for ...ars.els-cdn.com/content/image/1-s2.0-S0019103518306067-mmc1.pdfSupplementary Material Table S1: Requirements for spectrally neutral

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Supplementary Material Table S1: Requirements for ...ars.els-cdn.com/content/image/1-s2.0-S0019103518306067-mmc1.pdfSupplementary Material Table S1: Requirements for spectrally neutral

Supplementary Material

Table S1: Requirements for spectrally neutral terrain used to create average neutral spectra for ratioing purposes, with parameters (defined by Viviano-Beck et al., 2014) listed for each

cube for which spectra are shown. Mineral mask is used to produce spectra shown in main text, but the dust mask is a viable alternative, as shown in Figure S1.

Parameter FRT47A3 FRT5C5E FRT5850 FRT1182A HRL40FF

Mineral Mask

R770 > 0.01 > 0.01 > 0.01 > 0.01 > 0.01

BDI1000IR < 0.035 < 0.02 < 0.015 < 0.035 < 0.035

OLINDEX3 < 0.09 < 0.09 < 0.07 < 0.09 < 0.12

BD1300 < 0.02 < 0.02 < 0.005 < 0.02 < 0.02

LCPINDEX2 < -0.03 < -0.02 < -0.015 < -0.025 < -0.03

HCPINDEX2 < 0 < -0.01 < -0.005 < 0 < 0

D2200 < 0.005 < 0.005 < 0.002 < 0.005 < 0.005

BD2290 < 0 < 0.005 < 0.002 < 0.004 < 0.005

D2300 < 0.005 < 0.005 < 0.002 < 0.005 < 0.005

BD2500_2 < -0.005 < -0.005 < -0.005 < -0.005 < -0.005

Pixels selected 3,458 16,113 10,568 21,930 1,200

Dust Mask

R770 > 0.01 > 0.01 > 0.01 > 0.01 > 0.01

RBR > 3.8 > 3.4 > 3.5 > 3.5 > 3.5

RPEAK1 > 0.73 > 0.73 > 0.725 > 0.725 > 0.73

BD2500_2 < -0.005 < -0.005 < -0.005 < -0.005 < -0.005

Pixels selected 2,490 2,148 1,353 1,471 10,577

Page 2: Supplementary Material Table S1: Requirements for ...ars.els-cdn.com/content/image/1-s2.0-S0019103518306067-mmc1.pdfSupplementary Material Table S1: Requirements for spectrally neutral

Figure S1: Comparison of ratio spectra produced via mineral mask (dashed line) and via dust mask (solid line), as detailed in Table S1. Each plot is equivalent to figure in main text as

labeled. Mineral mask-derived spectra are used in main text, as it tends to produce clearer 2.5 μm bands.

Page 3: Supplementary Material Table S1: Requirements for ...ars.els-cdn.com/content/image/1-s2.0-S0019103518306067-mmc1.pdfSupplementary Material Table S1: Requirements for spectrally neutral

Table S2: Summary of marginal carbonate deposits in terrestrial, modern and recent, endorheic, perennial lakes. Brackets indicate ranges.

Page 4: Supplementary Material Table S1: Requirements for ...ars.els-cdn.com/content/image/1-s2.0-S0019103518306067-mmc1.pdfSupplementary Material Table S1: Requirements for spectrally neutral

Table S3: Summary of microfossils encased in marginal carbonate deposits of terrestrial, recent and ancient lacustrine settings.

Page 5: Supplementary Material Table S1: Requirements for ...ars.els-cdn.com/content/image/1-s2.0-S0019103518306067-mmc1.pdfSupplementary Material Table S1: Requirements for spectrally neutral

1

References

Arp G. (1995) Lacustrine Bioherms, Spring Mounds, and Marginal Carbonates of the Ries-lmpact-Crater (Miocene, Southern Germany). Facies 33, 35-90.

Awramik S. & Buchheim P. (2014) Giant Microbialites from the Green River Formation, Laney Member, Sand Wash Basin, Colorado. Search and Discovery Article #50984, AAPG Annual Convention and Exhibition, Houston, Texas, April 6-9, 2014.

Bertrand-Sarfati J., Freytet P. & Plaziat J.C. (1994) Microstructures in Tertiary Nonmarine Stromatolites (France). In Phanerozoic Stromatolites II (Bertrand-Sarfati & Monty eds). Kluwer Academic Publishers, 155-193.

Brunskill, G.J., and Ludlam, S.D., 1969, Fayetteville Green Lake, NY: Physical and chemical limnology: Limnology and Oceanography, 14, 817-829

Buick R. (1992) The antiquity of oxygenic photosynthesis: evidence from stromatolites in sulfate-deficient Archean lakes. Science 255, 5044, 74-77

Busquets P., Mendez-Badia I., Gallastegii G. et al. (2014) Lata Palaeozoic microbial lacustrine carbonate and related volcanic facies from the Andean Frontal Cordillera (San Juan, Argentina). In 4th European Meeting on the Palaeontology and Stratigraphy of Latin America (Díaz-Martínez & Rábano, Eds.), Cuadernos del Museo Geominero, nº 8. Instituto Geológico y Minero de España, Madrid

Cabaleri N.G., Armella C. & Silva Neto D.G. (2005) Saline paleolake of the Canadon Asfalto Formation (Middle-Upper Jurassic), Cerro Condor, Chubut province (Patagonia, Argentina). Facies 51, 350–364.

Cartwright A., Quade J., Stine S. et al. (2011) Chronostratigraphy and lake-level changes of Laguna Cari-Laufqu en, Rio Negro, Argentina. Quatern. Res., 76, 430–440.

Casanova J. & Thouin C. (1990) Biosédimentologie des stromatolites holocènes du lac Tanganyika (Burundi). Bull. Soc. Géol. France VI, 4, 647-656.

Chafetz H.S. and Folk R.F. (1984) Travertines - Depositional morphology and the bacterially constructed constituents. Journal of Sedimentary Petrology, 54, 1, 289-316.

Chafetz H., Barth J., Cook M. et al. (2018) Origins of carbonate spherulites: Implications for Brazilian Aptian pre-salt reservoir. Sedimentary Geol. 365, 21-23.

Cohen A. and Thouin C. (1987) Nearshore carbonate deposits in lake Tanganyika. Geology, 15, 414-418.

Jones B. and Renaut R. (1996) Morphology and growth of aragonite crystals in hot-spring travertines at Lake Bogoria, Kenyan Rift Valley. Sedimentology, 43, 2, 323-340.

Page 6: Supplementary Material Table S1: Requirements for ...ars.els-cdn.com/content/image/1-s2.0-S0019103518306067-mmc1.pdfSupplementary Material Table S1: Requirements for spectrally neutral

2

Kazmierczak J., Coleman M.L., Gruszczynski M. et al. (1996) Cyanobacterial ket to the genesis of micritic and peloidal limestones in ancient seas. Acta Palaeont. Polonica, 41, 4, 319-338.

Kazmierczak J., Kempe S., Kremer B. et al. (2011) Hydrochemistry and microbialites of the alkaline crater lake Alchichica, Mexico. Facies 57, 543-570.

Kelts K. and Shahrabi M. (1986) Holocene sedimentology of hypersaline Lake Urmia, northwestern Iran. Palaeogeo. Palaeoclim. Palaeoeco. 54, 105-130.

Lindqvist J.K.J. (1994) Lacustrine stromatolites and oncoids: Manuherikia Group (Miocene), New Zealand. In Phanerozoic Stromatolites II (Bertrand-Sarfati & Monty eds). Kluwer Academic Publishers, 227-254.

Pace, A., Bourillot, R., Bouton, A., Vennin, E., Galaup, S., Bundeleva, I., Patrier, P., Dupraz, C., Thomazo, C., Sansjofre, P. and Yokoyama, Y. (2016), Microbial and diagenetic steps leading to the mineralisation of Great Salt Lake microbialites. Scientific reports, 6, 31495.

Pacton M., Hunger G., Martinuzzi V. et al. (2016) Organomineralization processes in freshwater stromatolites: a living example from eastern Patagonia. The Depositional Record, 1, 2, 130-146.

Riding R. (1979) Origin and diagenesis of lacustrine algal bioherms at the margin of the Ries crater, Upper Miocene, Southern Germany. Sedimentology 26, 645-680.

Saller A., Rushton S., Buambua L. et al. (2016) Presalt stratigraphy and depositional systems in the Kwanza Basin, offshore Angola. Am. Ass. of Petrol. Geol. Bull. 100, 1135–1164.

Scholl, D.W. (1960) Pleistocene algal pinnacles at Searles Lake, California. J. Sedim. Petrology 30, 414-431.

Spencer H., Eugster P. and Kelts V (1981) Late Pleistocene and Holocene Sedimentary History of Great Salt Lake, Utah. AAPG Bull., 65, 996-996.

Swizydczuk K., Wilkinson B.H. & Smith G.R. (1980) The Pliocene Glenns Ferry Oolite: Lake-margin carbonate deposition in the southwestern Snake River Plain - Reply. Jour. Sed. Petrology 50, 4, 1237 - 1248.

Thiercelin J.-J. & Vincens A. (1987) Le demi-graben de Baringa-Bogoria, Rift Gregory, Kenya. Bull. CREP Elf-Aquitaine, 11, 2, 181-540.

Vennin E., Bouton A., Bourillot R. et al. (2018) The lacustrine microbial carbonate factory of the successive Lake Bonneville and Great Salt Lake, Utah, USA. Sedimentology doi: 10.1111/sed.12499.

Warren J.C. (2006) Evaporites: Sediments, Resources, and Hydrocarbons. Springer, 1041 p. 654 figs.

Wright, V. P. (2012), Lacustrine carbonates in rift settings: the interaction of volcanic and microbial processes on carbonate deposition, Geological Society, London, Special Publications, 370(1), 39–47, doi:10.1144/SP370.2.