1
Random Walks on Fractal Structures By Aaron Tsai, Johnny Wang, Devin Gladys, Isaac Medina, Alexander Valdez, Andrea Ruedas, Ciante Jones, Lucero Ramirez, Ricardo Gutierrez, Timothy Valdez and Dr. Roberto Garza Computational random walk calculations using Markovian chains can be used to predict chemical properties such as kinetics, diffusion, reaction rates, and overall dynamics of a given chemical system. We studied the efficiency of diffusion-controlled reactions on different families of 2-dimensional and 3- dimensional lattices with reaction centers located at unique sites. We calculated numerically-exact values for the absorption time (or mean walk length) of a particle performing a nearest -neighbor random walk on finite, nth generation 2D and 3D Sierpinski lattices, binary fractals and cubic structures (Garza-López, et al., J Phys. Chem. B 1999). We obtained results demonstrating that the overall efficiency of different structures in terms of walk lengths is dependent on the size, growth of the system (N), valency of the active sites (v), dimensionality of the lattice (d), and boundary conditions. Chemical reactions can be described as a random diffusion of molecules leading to collision. Catalysts accelerate chemical reactions by facilitating the diffusion process and collision of molecules in the proper orientation. In effect catalysts lower the activation energy of a reaction and thus increase the efficiency of the reaction. In our investigation we mathematically modeled the path of a molecule or particle as it might diffuse on the surface of a given catalyst via adsorption and weak intermolecular forces. We assumed the process to be a Markovian chain, where at each step the particle independently jumps to another site according to some probability distribution until it reaches a reaction center or “trap.” The lattices were assumed to be catalysts in the solid phase. Abstract Results Methods Discussion Introduction References Garza-López et.al. “Asymptotic Scaling for Euclidean Lattices”, Without Bounds: A Scientific Canvas of Nonlinearity and Complex Dynamics.” Springer-Verlag, 2013 Garza-López et.al. Chemical Phys. Letters, 538,86, 2012 We constructed families of 2D and sometimes 3D Sierpinski gaskets, fractal binaries and cubes. All varying in size (N), and trap site (T) location. Then we calculated all the walklengths from any given site on a constructed lattice to a particular trap. We also calculated the average walk length for all sites. In order to this we began by using Microsoft Excel. First we constructed equations representing walk lengths from a site in terms of the probability of a sample particle, jumping to its neighboring sites. Each site had its own walklength and corresponding equation. Finally, we took all the equations for each particular structure and stored them as systems of equations on Maple a computational engine. Using the solve function we were able to solve each system for the particular walklengths of each active site on the lattice. Valency (b) Growth (n) Number of Unique Sites Probability Towards Trap Probability Towards Peripheral Sites Average Walklength 3 1 2 2/3 1/6 8/3 4 1 2 3/4 1/12 29/12 5 1 2 4/5 1/20 23/10 6 1 2 5/6 1/30 67/30 Table 1. Branching structure data. The valency for each structure doesn’t apply to the trap site or the peripheral sites, but all of the intermediate sites. With respect to growth all of the structures have the same number of unique sites regardless of what b equals. T 1 2 3 4 5 6 Figure 1. Binary Structure b=3, n=1. Binary structure where branching (b)=3, growth (n)=1, and differing probabilities depending on the destination of the particle. Based on observed data the particle has a higher probability of going towards the trap than it does of going towards the periphery sites. Growth (n) Number of Sites (N) Average Walklengths (<n>) Walklength of Site Nearest to Trap (W n ) Walklength of Site Furthest from Trap (W f ) 1 6 9.200 8 10 2 15 43.429 26 50 3 42 211.561 80 250 4 123 1047.311 242 1250 Table 2. Data for Sierpinski triangle structure based on growths. Trap is located on the apex of the structure. Growth (n) Number of Sites (N) Average Walklengths (<n>) Walklength of Site Nearest to Trap (W n ) Walklength of Site Furthest from Trap (W f ) 1 10 17.000 15 18 2 34 98.727 63 108 3 130 185.767 255 648 4 514 3503.298 1023 3888 5 2050 21001.581 4095 23328 6 8194 125981.000 16383 139968 Table 3. Data for Sierpinski tower based on growths. Trap is located on the apex of the structure. 2 1 4 3 4,0,1 3,0,3 3,0,2 3,0,1 3,0,4 3,0,5 3,0,6 2,0,3 2,0,2 2,0,1 1 5,0,8 5,0,11 5,0,7 5,0,4 4,0,5 4,0,6 4,0,7 4,0,8 4,0,9 4,0,4 4,0,3 4,0,2 5,1,1 5,0,10 5,1,2 5,0,5 5,0,6 5,0,9 5,0,3 5,0,1 5,0,2 5,0,12 5,1,3 Figure 2. Basic unit of Sierpinski tower, containing 4 sites. Dashed lines go inwards, denoting separate planes. Dashed and solid lines are representative of all the connectivities. Sites Connected to 1 2,3,4 2 1,3,4 3 1,2,4 4 1,3,2 Figure 3 . 2 nd growth (n=2) of Sierpinski tower structure, containing 34 sites. New notation is used because n=2 contains the first lackinarity. All subsequent growths are based off the numbering system (a,b,c), in which a = horizontal layer, b = sublayer, and c =site position. Valency in binary fractals refers to the maximum number of sites that can be connected to any given site. A unique site refers to any site or group of sites with a specific walklength. After reviewing our calculations, we noticed that the number of unique sites for non-extended binary fractals is not dependent upon the valency, b, of the structure. Instead, it depends on the growth (the degree of branching) of the binary fractals. When looking at the 2D Sierpinski gaskets we noticed that the number of sites for subsequent growths always increased by a factor of 3 n+1 where n=current growth. With this information we could predict the total number of sites for any growth. We discovered patterns regarding the walklengths of sites closest to and furthest from the apical trap. The walklengths of sites nearest to the trap increase for each growth according to this mathematical formula: W n of previous growth +18(3 n-1 ), where n=current growth. The walklengths of sites furthest from the trap increase by a factor of 5 for each growth. Similarly, there were patterns for # of sites and walklengths of sites in the 3D Sierpinski towers. The total # of sites, N, for any growth can be calculated using the formula: (N of previous growth*4)-6. Walklengths of sites nearest the apical trap followed the formula: W n of previous growth + 48(4^n-1), where n=current growth. The walklengths of the sites furthest from the trap increased by a factor of 6. Future Directions We plan to use our results in the stochastic master equation, also accounting for possible dipole-dipole interactions and the distance between each site. This will further our knowledge about the diffustion and energy transfer in our structures as it might relate the the patterns we discovered. Acknowledgements We would like to thank Dr. Roberto Garza and the Pomona College Chemistry Department as well as the Howard Hughes Medical Institute for their support.

SURP presentation 2014

Embed Size (px)

Citation preview

Page 1: SURP presentation 2014

Random Walks on Fractal StructuresBy Aaron Tsai, Johnny Wang, Devin Gladys, Isaac Medina, Alexander Valdez, Andrea Ruedas, Ciante Jones, Lucero Ramirez, Ricardo Gutierrez, Timothy Valdez and Dr. Roberto Garza

  Computational random walk calculations using Markovian chains can be used to predict chemical properties such as kinetics, diffusion, reaction rates, and overall dynamics of a given chemical system.  We studied the efficiency of diffusion-controlled reactions on different families of 2-dimensional and 3-dimensional lattices with reaction centers located at unique sites. We calculated numerically-exact values for the absorption time  (or mean walk length) of a particle performing a nearest -neighbor random walk on finite, nth generation 2D and 3D Sierpinski lattices, binary fractals and cubic structures (Garza-López, et al., J Phys. Chem. B 1999).  We obtained results demonstrating that the overall efficiency of different structures in terms  of walk lengths  is dependent on the size, growth of the system (N), valency of the active sites (v), dimensionality of the lattice (d), and boundary conditions.  

Chemical reactions can be described as a random diffusion of molecules leading to collision. Catalysts  accelerate chemical reactions by facilitating the diffusion process and collision of molecules in the proper orientation. In effect catalysts lower the activation energy of a reaction and thus increase the efficiency of the reaction. In our investigation we mathematically modeled the path of a molecule or particle as it might diffuse on the surface of a given catalyst via adsorption and weak intermolecular forces. We assumed the process to be a Markovian chain, where at each step the particle independently jumps to another site according to some probability distribution until it reaches a reaction center or “trap.” The lattices  were assumed to be catalysts in the solid phase.  

Abstract Results

Methods

Discussion

Introduction

ReferencesGarza-López et.al. “Asymptotic Scaling for Euclidean Lattices”,     “Without Bounds: A Scientific Canvas of Nonlinearity and Complex Dynamics.” Springer-Verlag, 2013 

Garza-López et.al. Chemical Phys. Letters, 538,86, 2012

We constructed families of 2D and sometimes 3D Sierpinski gaskets, fractal binaries and cubes. All varying in size (N), and trap site (T) location. Then we calculated all the walklengths from any given site on a constructed lattice to a particular trap. We also calculated the average walk length for all sites.In order to this we began by using Microsoft Excel. First we constructed equations representing walk lengths from a site in terms of the probability of a sample particle, jumping to its neighboring sites. Each site had its own walklength and corresponding equation. Finally, we took all the equations for each particular structure and stored them as systems of equations on Maple a computational engine. Using the solve function we were able to solve each system for the particular walklengths of each active site on the lattice. 

Valency (b) Growth (n) Number of Unique

Sites

Probability Towards Trap

Probability Towards

Peripheral Sites

Average Walklength

3 1 2 2/3 1/6 8/34 1 2 3/4 1/12 29/125 1 2 4/5 1/20 23/106 1 2 5/6 1/30 67/30

Table 1. Branching structure data. The valency for each structure doesn’t apply to the trap site or the peripheral sites, but all of the intermediate sites. With respect to growth all of the structures have the same number of unique sites regardless of what b equals.

 

T 1

3

4

5

6

 

 

 

  

 

 

 Figure 1.  Binary Structure b=3, n=1. Binary structure where branching (b)=3, growth (n)=1, and differing probabilities depending on the destination of the particle. Based on observed data the particle has a higher probability of going towards the trap than it does of going towards the periphery sites. 

Growth (n) Number of Sites (N)

Average Walklengths

(<n>)

Walklength of Site Nearest to

Trap (Wn)

Walklength of Site Furthest

from Trap (Wf)

1 6 9.200 8 102 15 43.429 26 503 42 211.561 80 2504 123 1047.311 242 1250

Table 2. Data for Sierpinski triangle structure based on growths. Trap is located on the apex of the structure. 

Growth (n) Number of Sites (N)

Average Walklengths

(<n>)

Walklength of Site Nearest to

Trap (Wn)

Walklength of Site Furthest

from Trap (Wf)

1 10 17.000 15 182 34 98.727 63 1083 130 185.767 255 6484 514 3503.298 1023 38885 2050 21001.581 4095 233286 8194 125981.000 16383 139968

Table 3. Data for Sierpinski tower based on growths. Trap is located on the apex of the structure. 

2

1

4 3

 

 

 

 

 

 

   

 

   

 

   

 

 

 

    

  

    

 

 

  

 

 

 

    

 

   

  

  

   

 4,0,1

3,0,3

3,0,2

3,0,1

3,0,43,0,5

3,0,6

2,0,3 2,0,2

2,0,1

1

5,0,8

5,0,11

5,0,7

5,0,4

4,0,54,0,64,0,7

4,0,8

4,0,9

4,0,4

4,0,3

4,0,2

5,1,1

5,0,10 5,1,2

5,0,55,0,65,0,9

5,0,3

5,0,1

5,0,25,0,12

5,1,3

Figure 2. Basic unit of Sierpinski tower, containing 4 sites. Dashed lines go inwards, denoting separate planes. Dashed and solid lines are representative of all the connectivities.

Sites Connected to1 2,3,42 1,3,43 1,2,44 1,3,2

Figure 3 . 2nd growth (n=2) of Sierpinski tower structure, containing 34 sites. New notation is used because n=2 contains the first lackinarity. All subsequent growths are based off the numbering system (a,b,c), in which a = horizontal layer, b = sublayer, and c =site position.

Valency in binary fractals refers to the maximum number of sites that can be connected to any given site.  A unique site refers to any site or group of sites with a specific walklength. After reviewing our calculations, we noticed that the number of unique sites for non-extended binary fractals is not dependent upon the valency, b, of the structure. Instead, it depends on the growth (the degree of branching) of the binary fractals. When looking at the 2D Sierpinski gaskets we noticed that the number of sites for subsequent growths always increased by a factor of 3n+1 where n=current growth. With this information we could predict the total number of sites for any growth. We discovered patterns regarding the walklengths of sites closest to and furthest from the apical trap. The walklengths of sites nearest to the trap increase for each growth according to this mathematical formula: Wn of previous growth +18(3n-1), where n=current growth. The walklengths of sites furthest from the trap increase by a factor of 5 for each growth. Similarly, there were patterns for # of sites and walklengths of sites in the 3D Sierpinski towers. The total # of sites, N, for any growth can be calculated using the formula: (N of previous growth*4)-6. Walklengths of sites nearest the apical trap followed the formula: Wn of previous growth + 48(4^n-1), where n=current growth. The walklengths of the sites furthest from the trap increased by a factor of 6.Future DirectionsWe plan to use our results in the stochastic master equation, also accounting for possible dipole-dipole interactions  and the distance between each site. This will further our knowledge about the diffustion and energy transfer in our structures as it might relate the the patterns we discovered.

AcknowledgementsWe would like to thank Dr. Roberto Garza and the Pomona College Chemistry Department as well as the Howard Hughes Medical Institute for their support.