Switch Cap01

Embed Size (px)

Citation preview

  • 8/18/2019 Switch Cap01

    1/60

      Switched Capacitor Circuits (10/11/00) Page 1

    ECE4430 Analog Integrated Circuit Design

    SWITCHED CAPACITOR CIRCUITS INTRODUCTION

     Object ive

    The objective of these notes is to provide an elementary background about switched capacitorcircuits.

     Outline

    • Introduction

    • Resistance emulation

    • Switches

    • Amplifiers

    • Integrators

    • First-order circuits

    • Summary

  • 8/18/2019 Switch Cap01

    2/60

      Switched Capacitor Circuits (10/11/00) Page 2

    ECE4430 Analog Integrated Circuit Design

    RESISTORS RESISTOR EMULATION

    Switched Capacitors are Not New

     James Clerk Maxwell used switches and a capacitor to measure the equivalent resistance of agalvanometer in the 1860’s.

     Parallel Switched Capacitor Equivalent Resistor:

    i (t) i (t)2

    v (t)1 v (t)2

    1  R

    (b.)

    Figure 9.1-1 (a.) Parallel switched capacitor equivalent resistor.

    (b.) Continuous time resistor of value R.

    (a.)

    i (t) i (t)2

    C v (t)1 v (t)2

    1 1 2

    v (t)C 

    Two-Phase, Nonoverlapping Clock:

    1

    0

    1

    00 T/ 2 T  3T/ 2 2T 

    2

    1

    Figure 9.1-2 - Waveforms of a typical two-phase, nonoverlapping clock scheme.

  • 8/18/2019 Switch Cap01

    3/60

      Switched Capacitor Circuits (10/11/00) Page 3

    ECE4430 Analog Integrated Circuit Design

     EQUIVALENT RESISTANCE OF A SWITCHED CAPACITOR CIRCUIT

    Assume that v1(t ) and v2(t ) are changing slowly with respect to the clock period.

    The average current is,

    i1(average) =1

    T⌡⌠ 0

    i1(t)dt =1

    T⌡⌠ 0

    T/2

    i1(t)dt 

    Charge and current are related as,

    i1(t) = dq1(t)dt Substituting this in the above gives,

    i1(average) =1

    T⌡⌠ 0

    T  /2

    dq1(t ) =q1(T  /2)-q1(0)

    T  =

    CvC (T  /2)-CvC (0)

    However, vC (T  /2) = v1(T  /2) and vC (0) = v2(0). Therefore,

    i1(average) = C [v1(T  /2)-v2(0)]

    T  ≈ C [V 1-V 2]T   

    For the continuous time circuit:

      ⇒  i1(average) =V 1-V 2 R

      ∴  R ≈  T 

    C  

    For v1(t ) ≈ V 1 and v2(t ) ≈ V 2, the signal frequency must be much less than  f c.

    i (t) i (t)2

    C v (t)1 v (t)2

    1 1 2

    v (t)C 

    i (t) i (t)2

    v (t)1 v (t)2

    1  R

  • 8/18/2019 Switch Cap01

    4/60

      Switched Capacitor Circuits (10/11/00) Page 4

    ECE4430 Analog Integrated Circuit Design

     EXAMPLE 9.1 - DESIGN OF A PARALLEL SWITCHED CAPACITOR RESISTOR EMULATION

    If the clock frequency of parallel switched capacitor equivalent resistor is 100kHz, find thevalue of the capacitor C  that will emulate a 1MΩ resistor.

    Solution

    The period of a 100kHz clock waveform is 10µsec. Therefore, using the previousrelationship, we get that

    C =T 

     R  =

    10-5

    106 = 10pF

    We know from previous considerations that the area required for 10pF capacitor is much less thanfor a 1MΩ resistor when implemented in CMOS technology.

  • 8/18/2019 Switch Cap01

    5/60

      Switched Capacitor Circuits (10/11/00) Page 5

    ECE4430 Analog Integrated Circuit Design

     POWER DISSIPATION IN THE RESISTANCE EMULATION

    If the switched capacitor circuit is an equivalent resistance, how is the power dissipated?

    i (t) i (t)2

    v (t)1 v (t)2

    1  R

    (b.)Figure 9.1-1 (a.) Parallel switched capacitor equivalent resistor.

    (b.) Continuous time resistor of value R.

    (a.)

    i (t) i (t)2

    C v (t)1 v (t)2

    1 1 2

    v (t)C 

    Continuous Time Resistor:

    Power =(V 1 - V 2)

    2

     R 

    Discrete Time Resistor Emulation:

    Assume the switches have an ON resistance of Ron. The power dissipated per clock cycle is,

    Power = i1(aver.)(V 1-V 2) where i1 (aver.) =(V 1 -V 2)

     RonT  ⌡⌠ 0

    e -t  /( RonC )dt  

    ∴ Power =(V 

    1-V 

    2)2

    TRon ⌡⌠ 0

    e -t  /( RonC )dt  =(V 

    1-V 

    2)2

    (T/C )  [ ]-e -T  /( RonC ) + 1 ≈ 

    (V 1-V 

    2)2

    (T/C )   if T >>  RonC 

    Thus, if R = T/C , then the power dissipation is identical in the continuous time and discrete timerealizations.

  • 8/18/2019 Switch Cap01

    6/60

      Switched Capacitor Circuits (10/11/00) Page 6

    ECE4430 Analog Integrated Circuit Design

     OTHER SWITCHED CAPACITOR EQUIVALENT RESISTANCE CIRCUITS

    Series

    i (t)2

    v (t)1 v (t)2

    i (t)1 1 2

    1S  2S 

    v (t)C 

    Series-Parallel

    i (t)2

    C v (t)1 v (t)2

    i (t)1 1 2

    1S  2S 1

    C 2v (t)C1 v (t)C2 1

    1S  i (t)2

    v (t) v (t)2

    i (t)1

    1 2

    2S C 

    12

    1S  2S 

    Bilinear

    v (t)C 

    Series-Parallel:The current, i1(t ), that flows during both the φ 1 and φ 2 clocks is:

    i1(average) =1

    T⌡⌠ 0

    i1(t )dt  =1

    T    

        

    ⌡⌠ 0

    T  /2

    i1(t )dt  + ⌡⌠ T  /2

    i1(t )dt   =q1(T  /2)-q1(0)

    T + 

    q1(T )-q1(T  /2)

    Therefore, i1(average) can be written as,

    i1(average) = C 2 [vC 2(T  /2)-vC 2(0)]

    T +

    C 1 [vC 1(T )-vC 1(T  /2)]T 

     

    The sequence of switches cause,vC 2(0) = V 2 , vC 2(T/2) = V 1 , vC 1(T/2) = 0, and vC 1(T) = V 1 - V 2.Applying these results gives

    i1(average) = C 2[V 1-V 2]

    T  +

    C 1[V 1-V 2- 0]

    T  = 

    (C 1+C 2)(V 1-V 2)

    T  

    Equating the average current to the continuous time circuit gives:  R   =T 

    C 1 + C 2 

  • 8/18/2019 Switch Cap01

    7/60

      Switched Capacitor Circuits (10/11/00) Page 7

    ECE4430 Analog Integrated Circuit Design

     EXAMPLE 9.1-2 - DESIGN OF A SERIES-PARALLEL SWITCHED CAPACITOR

     RESISTOR EMULATION

    If C 1 = C 2 = C , find the value of C  that will emulate a 1MΩ resistor if the clock frequency is250kHz.

    Solution

    The period of the clock waveform is 4µsec. Using above relationship we find that C is givenas,

    2C  =T 

     R =

    4x10-6

    106 = 4pF

    Therefore, C 1 = C 2 = C  = 2pF.

  • 8/18/2019 Switch Cap01

    8/60

      Switched Capacitor Circuits (10/11/00) Page 8

    ECE4430 Analog Integrated Circuit Design

     SUMMARY OF THE FOUR SWITCHED CAPACITOR RESISTANCE CIRCUITS

    Switched Capacitor Resistor 

    Emulation Circuit  Schematic Equivalent Resistance

    Parallel C v (t)1 v (t)2

    1 2

     

    Series v (t)1 v (t)2

    1 2

    C T 

    C  

    Series-Parallel

    C v (t)1 v (t)2

    1 2

    1 C 2

    C 1 + C 2 

    Bilinear 

    1v (t) v (t)2

    1 2

    2 1

    T 4C 

     

  • 8/18/2019 Switch Cap01

    9/60

      Switched Capacitor Circuits (10/11/00) Page 9

    ECE4430 Analog Integrated Circuit Design

     ACCURACY OF SWITCHED CAPACITOR CIRCUITS

    Consider the following continuous time, first-order, low pass circuit:

     R1

    C 21v v2

    The transfer function of this simple circuit is,

     H ( jω ) =V 2( jω )

    V 1( jω ) =

    1

     jω  R1C 2 + 1 =

    1

     jωτ 1 + 1 

    where τ 1 = R1C 2 is the time constant of the circuit and determines the accuracy.

     Continuous Time Accuracy

    Let τ 1

    = τ C . The accuracy of τ 

    C  can be expressed as,

    d τ C τ C 

     = dR1 R1

     +dC 2C 2

      ⇒  5% to 20% depending on the size of the components Discrete Time Accuracy

    Let τ 1 = τ  D =   

       T 

    C 1 C 2  =  

     

       1

     f cC 1 C 2. The accuracy of τ  D can be expressed as,

    d τ  Dτ  D  = 

    dC 2C 2  - 

    dC 1C 1  - 

    df c f c   ⇒  0.1% to 1% depending on the size of components

    The above is the primary reason for the success of switched capacitor circuits in CMOS technology.

  • 8/18/2019 Switch Cap01

    10/60

      Switched Capacitor Circuits (10/11/00) Page 10

    ECE4430 Analog Integrated Circuit Design

     SWITCHED CAPACITOR CIRCUITS -  kT/C NOISE

    Switched capacitors generate an inherent thermal noise given by kT/C . This noise is verified asfollows.

    An equivalent circuit for a switched capacitor:

    C  vout vin

    +

    -

    +

    -C  vout vin

    +

    -

    +

    -

     Ron

    (a.) (b.)

    Figure 9.3-11 - (a.) Simple switched capacitor circuit. (b.) Approximation of (a.).

    The noise voltage spectral density of Fig. 9.3-11b is given as

    e 2 Ron

     = 4kTRon Volts2 /Hz =2kTR

    onπ    Volt

    2 /Rad./sec. (1)

    The rms noise voltage is found by integrating this spectral density from 0 to ∞ to give

     v2

     Ron

     =2kTRon

    π  ⌡⌠ 

    0

    ω 12d ω 

    ω 12+ω 2 

    =2kTRon

    π      

       π ω1

    2 =

    kT 

    C   Volts(rms)2 (2)

    where ω 1 = 1/( RonC ). Note that the switch has an effective noise bandwidth of 

     f  sw =1

    4 RonC   Hz (3)

    which is found by dividing Eq. (2) by Eq. (1).

  • 8/18/2019 Switch Cap01

    11/60

      Switched Capacitor Circuits (10/11/00) Page 11

    ECE4430 Analog Integrated Circuit Design

    SWITCHES

     MOS TRANSISTOR AS A SWITCH

     SymbolBulk 

    A B

    (S/D) (D/S)

    C (G)

    A B

    Fig4.1-2

     On Characteristics of a MOS Switch

    Assume operation in active region (vDS < vGS - VT) and vDS small.

    iD =µCoxW

    (vGS  - VT) -vD S

    2vDS ≈ 

    µCoxW

    L (vGS - VT)vDS

    Thus, RON  ≈  vD S

    iD  =

    1

    µCoxWL

     (vGS  - VT)

     

    OFF Characteristics of a MOS Switch

    If vGS < VT, then iD = IOFF = 0 when vDS ≈ 0V.

    If vDS > 0, then

      RO N  ≈  1

    iDλ  =

    1

    IOFFλ  ≈  ∞  

  • 8/18/2019 Switch Cap01

    12/60

      Switched Capacitor Circuits (10/11/00) Page 12

    ECE4430 Analog Integrated Circuit Design

     MOS SWITCH VOLTAGE RANGES

    If a MOS switch is used to connect two circuits that can have analog signal that vary from 0 to5V, what must be the value of the bulk and gate voltages for the switch to work properly?

    Circuit

    1

    Circuit

    2

    (0 to 5V)

    (S/D)

    (0 to 5V)

    (D/S)

    Bulk 

    GateFig.4.1-3

    • To insure that the bulk-source and bulk-drain pn junctions are reverse biased, the bulk voltagemust be less than the minimum analog signal for a NMOS switch.

    • To insure that the switch is on, the gate voltage must be greater than the maximum analog signalplus the threshold for a NMOS switch.

    Therefore:

    V  Bulk  ≤ 0V

    and

    V Gate > 5V + V T 

    Also, V Gate(off) ≤ 0VUnfortunately, the large value of reverse bias bulk voltage causes the threshold voltage to increase.

  • 8/18/2019 Switch Cap01

    13/60

      Switched Capacitor Circuits (10/11/00) Page 13

    ECE4430 Analog Integrated Circuit Design

     CURRENT-VOLTAGE CHARACTERISTICS OF A NMOS SWITCH

    The following simulated output characteristics correspond to triode operation of the MOSFET.

    100µA

    60µA

    20µA

    -20µA

    -60µA

    -100µA-1V -0.6V -0.2V 0.2V 0.6V 1V

    VGS=2V

    VGS=3V

    VGS=4V

    VGS=5V

    VGS=10V

    VGS=9V

    VGS=8V

    VGS=7V

    VGS=6V

    Fig. 4.1-3

    SPICE Input File:

    MOS Switch On CharacteristicsM1 1 2 0 3 MNMOS W=3U L=3U.MODEL MNMOS NMOS VTO=0.75, KP=25U,+LAMBDA=0.01, GAMMA=0.8 PHI=0.6VDS 1 0 DC 0.0

    VGS 2 0 DC 0.0VBS 3 0 DC -5.0.DC VDS -1 1 0.1 VGS 2 10 1.PRINT DC ID(M1).PROBE.END

  • 8/18/2019 Switch Cap01

    14/60

      Switched Capacitor Circuits (10/11/00) Page 14

    ECE4430 Analog Integrated Circuit Design

     MOS SWITCH ON RESISTANCE AS A FUNCTION OF GATE-SOURCE VOLTAGE

    100k Ω

    10k Ω

    1k Ω

    100Ω1.0V 1.5V 2.0V 2.5V 3.0V 3.5V 4.0V 4.5V 5.0V

    W/L = 1

    W/L = 5

    W/L = 10

    W/L = 50

       M   O   S   S  w   i   t  c   h   O  n   R  e  s   i

      s   t  a  n  c  e

    Gate-Source Voltage Fig. 4.1-5

    SPICE Input File:

    MOS Switch On Resistance as a f(W/L)M1 1 2 0 0 MNMOS W=3U L=3UM2 1 2 0 0 MNMOS W=15U L=3UM3 1 2 0 0 MNMOS W=30U L=3UM4 1 2 0 0 MNMOS W=150U L=3U.MODEL MNMOS NMOS VTO=0.75, KP=25U,

    +LAMBDA=0.01, GAMMA=0.8, PHI=0.6

    VDS 1 0 DC 0.001VVGS 2 0 DC 0.0.DC VGS 1 5 0.1.PRINT DC ID(M1) ID(M2) ID(M3) ID(M4).PROBE.END

  • 8/18/2019 Switch Cap01

    15/60

      Switched Capacitor Circuits (10/11/00) Page 15

    ECE4430 Analog Integrated Circuit Design

     INFLUENCE OF THE ON RESISTANCE ON MOS SWITCHES

    Finite ON Resistance:

    vin=2.5VV GateC 

    vC (0) = 0-+

    vin>0C 

    vC -+

     RON 

    Fig. 4.1-6

     Example

    Initially assume the capacitor is uncharged. If V Gate(ON) is 5V and is high for 0.1µs, find theW/L of the MOSFET switch that will charge a capacitance of 10pF in five time constants

    (K  N ’=110µA/V2 and V TN  = 0.7V).

     Solution

    The time constant must be equal to100ns

    5 = 20ns. Therefore RON  must be less than

    20ns

    10pF  = 2k Ω.

    The on resistance of the MOSFET (for small v DS ) is

     RON  =1

    K  N ’(W  /  L)(V GS -V T )  ⇒

     L =

    1

     RON ·K  N ’(V GS -V T ) =

    1

    2k Ω·110µA/V2·4.3  = 1.06

    Comments:

    • It is relatively easy to charge on-chip capacitors with minimum size switches.

    • Switch resistance is really not constant during switching and the problem is more complex thanabove.

  • 8/18/2019 Switch Cap01

    16/60

      Switched Capacitor Circuits (10/11/00) Page 16

    ECE4430 Analog Integrated Circuit Design

     INCLUDING THE INFLUENCE OF THE VARYING ON RESISTANCE

    Gate-source Constant

    gON (t ) =K’W 

     L  (vGS (t )-V T ) -v DS (t )

    gON (aver.) =1

    r ON (aver.) ≈ 

    gON (0) + gON (∞)2

     

    = K’W 2 L (V GS -V T ) -K’WV 

     DS (0)

    2 L  + K’W 2 L (V GS -V T )

    =K’W 

     L(V GS -V T ) -

    K’WV  DS (0)

    2 L

     Gate-source Varying

    V GS =5V

    V GS =5V-v IN 

    V  DS 

     I  D t =0

    t =∞

    gON (0)

    gON 

    (∞)

    Fig. 4.1-8v DS (0)v DS (∞)

    V Gate

    C  vC (0) = 0-

    +

    +

    -

    vGS (t )

    v IN 

    gON =K’W 

    2 L [V GS (0)-V T ] -

    K’WV  DS (0)

    2 L +

    K’W 

    2 L [V GS (∞)-v IN -V T ]

    V GS =5V

    V  DS 

     I  D t =0

    t =∞

    gON (0)

    gON (∞)

    Fig. 4.1-7v DS (0)v DS (∞)

  • 8/18/2019 Switch Cap01

    17/60

      Switched Capacitor Circuits (10/11/00) Page 17

    ECE4430 Analog Integrated Circuit Design

     SWITCH ON RESISTANCE EXAMPLE

    Assume that at t  = 0, the gate of the switch shown is taken to 5V. Design the W/L value of theswitch to discharge the C 1 capacitor to within 1% of its initial charge in 10ns. Use the MOSFET

    parameters of Table 3.1-2.

    +

    -+

    5V-

    0V

    5V

    C 1 =

    10pF

    C 2 = 10pF

    + -0V

    Fig.4.1-9

    vout (t )

     Solution

    Note that the source of the NMOS is on the right and is always at ground potential so there isno bulk effect as long as the voltage across C 1 is positive. The voltage across C 1 can be expressed as

    vC 1(t ) = 5exp  

       -t  RON C 1 

    At 10ns, vC 1 is 5/100 or 0.05V. Therefore,

    0.05 = 5exp

      

        -10-8

     RON 10-11

     = 5exp  

       -103

     RON   ⇒ exp(GON 103) = 100 ⇒  GON  =

    ln(100)

    103 =

    0.0046S

    ∴  0.0046 =K’W 

     L(V GS -V T ) -

    K’WV  DS 

    2 L =  

     

       

    110x10-6·4.3 -110x10-6·5

    2 W 

     L  = 198x10-6

     L

    Thus,W 

     L =

    0.0046

    198x10-6 = 23.2 ≈ 23

  • 8/18/2019 Switch Cap01

    18/60

      Switched Capacitor Circuits (10/11/00) Page 18

    ECE4430 Analog Integrated Circuit Design

     INFLUENCE OF THE OFF STATE ON MOS SWITCHES

    The OFF state influence is primarily in any current that flows from the terminals of the switch toground.

    An example might be:

    vinvout 

    C  H 

    +

    - R Bulk +

    -vCH 

    Fig. 4.1-10

    Typically, no problems occur unless capacitance voltages are held for a long time. For example,

    vout (t ) = vCH [1 - e-t /(R Bulk C  H )]

    If R Bulk  ≈ 109Ω and C  H  = 10pF, the time constant is 109·10-11 = 0.01seconds

  • 8/18/2019 Switch Cap01

    19/60

      Switched Capacitor Circuits (10/11/00) Page 19

    ECE4430 Analog Integrated Circuit Design

     INFLUENCE OF PARASITIC CAPACITANCES

    The parasitic capacitors have two influences:

    • Parasitics to ground at the switch terminals (C  BD and C  BS ) add to the value of the desired

    capacitors.

    This problem is solved by the use of stray-insensitive switched capacitor circuits

    • Parasitics from gate to source and drain cause charge injection onto or off the desired capacitors.

    This problem can be minimized but not eliminated.

    Model for studying charge injection:

    1

    V S

    +

    -

    C L

    vCL V S

    +

    -

    C L

    vCL

    C channel

    CGS0 CGD0

     Rchannel

    V S

    +

    -

    C L

    vCL

    C channel

    CGS0 CGD0

     Rchannel

    2

    C channel

    2

    1 1

    Fig. 4.1-11

    A simple switch circuit useful

    for studying charge injection.

    A distributed model of 

    the transistor switch.

    A lumped model of 

    the transistor switch.

  • 8/18/2019 Switch Cap01

    20/60

      Switched Capacitor Circuits (10/11/00) Page 20

    ECE4430 Analog Integrated Circuit Design

     CHARGE INJECTION (CLOCK FEEDTHROUGH, CHARGE FEEDTHROUGH) 

    Charge injection is a complex analysis which is better suited for computer analysis. Here wewill attempt to develop an understanding sufficient to show ways of reducing the effect of chargeinjection.

     What is Charge Injection?

    1.) When the voltages change across the gate-drain and gate-source

    capacitors, a current will flow because i = C  

    dv

    dt   .

    2.) When the switch is off, charge injection will appear on the externalcapacitors (C  L) connected to the switch terminals causing their voltages

    to change.

    There are two cases of charge injection depending upon the transition rate when the switch turns off.

    1.) Slow transition time.

    2.) Fast transition time.

    Fig. 4.1-12

  • 8/18/2019 Switch Cap01

    21/60

      Switched Capacitor Circuits (10/11/00) Page 21

    ECE4430 Analog Integrated Circuit Design

     SLOW TRANSITION TIME

    Consider the following switch circuit:

    vin+V T 

    Switch ONA

    B

    C

    C  Lvin

    Fig. 4.1-13

    vin+V T Switch OFF

    A

    B

    C

    C  Lvin

    Charge

    injection

    1.) During the on-to-off transition time from A to B, the charge injection is absorbed by the lowimpedance source, vin.

    2.) The switch turns off when the gate voltage is vin+V T  (point B).

    3.) From B to C the switch is off but the gate voltage is changing. As a result charge injectionoccurs to C  L.

  • 8/18/2019 Switch Cap01

    22/60

      Switched Capacitor Circuits (10/11/00) Page 22

    ECE4430 Analog Integrated Circuit Design

     FAST TRANSITION TIME

    For the fast transition time, the rate of transition is faster than the channel time constant so that someof the charge during the region from point A to point B is injected onto C  L  even though the

    transistor switch has not yet turned off.

    vin+V T 

    Switch ONA

    B

    C

    C  Lvin

    Fig. 4.1-14

    vin+V T Switch OFF

    A

    B

    C

    C  Lvin

    Charge

    injection

    Charge

    injection

  • 8/18/2019 Switch Cap01

    23/60

      Switched Capacitor Circuits (10/11/00) Page 23

    ECE4430 Analog Integrated Circuit Design

     APPROXIMATE ANALYSIS OF FEEDTHROUGH

    The model for this case is given as:

    Fig. 4.1-16

    V S +V T Switch OFF

    A

    B

    C

    C  Lvin ≈V S  ≈V  D

    Charge

    injection

    C OLC OL

    V S +V T  

    C OL

    C  L

    +

    -

    vCL

    V  L

    V S

    V T 

    V  LCircuit at the

    instant gate

    reaches V S +V T 

    The switch decrease from B to C is modeled as a negative step of magnitude V S +V T  - V  L.

    The output voltage on the capacitor after opening the switch is,

    vCL =  

       C  L

    C OL+C  LV S  -

      

       C OL

    C OL+C  LV T   -(V S  + V T   -V  L)

      

       C OL

    COL+C  L ≈ V S  - (V S  + 2V T   -V  L)

      

       C OL

    C  L 

    if C OL < C  L.

    Therefore, the error voltage is

    V error ≈ -(V S  + 2V T  - V  L)  

     

      

     C OLC  L  = -(vin + 2V T  - V  L)  

     

      

     C OLC  L

  • 8/18/2019 Switch Cap01

    24/60

      Switched Capacitor Circuits (10/11/00) Page 24

    ECE4430 Analog Integrated Circuit Design

     SOLUTIONS TO CHARGE INJECTION

    1.) Use minimum size switches to reduce the overlap capacitances and/or increaseC  L.

    2.) Use a dummy compensating transistor.

    φ1   φ1

    M1 MD

    W 1 L1

    W  D L D

    =W 12 L1

    Fig. 4.1-19

    • Requires complementary clocks

    • Complete cancellation is difficult and may in fact may make the feedthrough worse

    3.) Use complementary switches (transmission gates)

    4.) Use differential implementation of switched capacitor circuits (probably the best solution)

  • 8/18/2019 Switch Cap01

    25/60

      Switched Capacitor Circuits (10/11/00) Page 25

    ECE4430 Analog Integrated Circuit Design

     INPUT-DEPENDENT CHARGE INJECTION

    Examination of the error voltage reveals that,

     Error voltage = Component independent of the input  + Component dependent on the input 

    This only occurs for switches that are floating and is due to the fact that the input influences thevoltage at which the transistor switches (vin ≈ V S  ≈ V  D). Leads to spurious responses and otherundesired results.

    Solution:Use delayed clocks to remove the input-dependence by breaking the current path for injection

    from the floating switches.

    C i

    φ1

    φ2φ1d

    φ2

    CsVin

    LC

    VoutS1

    S2 S3

    S4

    φ1

    φ2

    φ1d

    Clock Delay

    t

    t

    t

    Fig. 4.1-20

    Assume that C  s is charged to V in (both φ 1 and φ 1d are high):

    1.) φ 1 opens, no input-dependent feedthrough because switch terminals (S3) are at ground potential.

    2.) φ 1d opens, no feedthrough occurs because there is no current path (except through small

    parasitic capacitors).

    S i h d C i Ci i (10/11/00) P 26

  • 8/18/2019 Switch Cap01

    26/60

      Switched Capacitor Circuits (10/11/00) Page 26

    ECE4430 Analog Integrated Circuit Design

     CMOS SWITCHES (TRANSMISSION GATE)

    V  DD

    Clock 

    Clock 

     A B

    Fig. 4.1-21

     B A

    Clock 

    Clock 

    Advantages:

    • Feedthrough somewhat diminished

    • Larger dynamic range

    • Lower ON resistance

    Disadvantages:

    • Requires a complementary clock 

    • Requires more area

    S it h d C it Ci it (10/11/00) P 27

  • 8/18/2019 Switch Cap01

    27/60

      Switched Capacitor Circuits (10/11/00) Page 27

    ECE4430 Analog Integrated Circuit Design

     DYNAMIC RANGE OF THE CMOS SWITCH

    The dynamic range of a switch is the range of voltages at the switch terminals (V  A ≈ V  B = V  A,B)over which the ON resistance stays reasonably small.

    V  DD

     A B

    V  DD

    M1

    M2

    1µAV  A,B

    Fig. 4.1-22

    Spice File:Simulation of the resistance of a CMOS

    transmission switch

    M1 1 3 2 0 MNMOS L=2U W=50U

    M2 1 0 2 3 MPMOS L=2U W=50U

    .MODEL MNMOS NMOS VTO=0.75, KP=25U,LAMBDA=0.01, GAMMA=0.5, PHI=0.5

    .MODEL MPMOS PMOS VTO=-0.75, KP=10U,LAMBDA=0.01, GAMMA=0.5, PHI=0.5

    VDD 3 0

    VAB 1 0

    IA 2 0 DC 1U

    .DC VAB 0 5 0.02 VDD 4 5 0.5

    .PRINT DC V(1,2)

    .END

    Result:Low on resistance over a wide voltage range becomes very difficult as the power supply

    decreases.

    0k Ω

    0.5k Ω

    1k Ω

    1.5k Ω

    2k Ω

    2.5k Ω

    3k Ω

       S  w   i   t  c   h   O  n   R  e  s   i  s   t  a  n  c  e

    0V 1V 2V 3V 4V 5V

    VDD = 5V

    VDD = 4.5V

    VDD = 4V

    A,B (Common mode voltage)V

    Switched Capacitor Circuits (10/11/00) Page 28

  • 8/18/2019 Switch Cap01

    28/60

      Switched Capacitor Circuits (10/11/00) Page 28

    ECE4430 Analog Integrated Circuit Design

     CMOS SWITCH WITH TWIN-WELL SWITCHING

    VDD

    VSS

    M1

    M2

    M3

    M4 M5

    Analog

    SignalInput

    Analog

    Signal

    Output

    VControl

    VControl

    Circuit when V Control  is in its high state. Circuit when V Control  is in its low state.

    M1

    M2

    High State

    Low State

    Analog

    SignalOutput

    Analog

    SignalInput

    M1

    M2

    High State

    Low State

    Analog

    Signal

    Output

    Analog

    Signal

    Input VDD

    VSS

    Switched Capacitor Circuits (10/11/00) Page 29

  • 8/18/2019 Switch Cap01

    29/60

      Switched Capacitor Circuits (10/11/00) Page 29

    ECE4430 Analog Integrated Circuit Design

     CHARGE PUMPS FOR SWITCHES WITH LOW POWER SUPPLY VOLTAGES

    As power supply voltages decrease below 3V, it becomes difficult to keep the switch on at alow value of on-resistance over the range of the power supply. Consequently, charge pumps areused.

    Charge pump circuit:

    0V

    3.3V

    C1 C2

    VDD

    = 3.3V

    Vsub_hi

    CL

    0V

    0V

    Vhi

    To asingleNMOSswitch

    M1

    (Prevents latchup)

    ≈ 5V

    Vhi = 2VDD·C2

    Cgate,NMOS switch + C2 + CL 

    Switched Capacitor Circuits (10/11/00) Page 30

  • 8/18/2019 Switch Cap01

    30/60

      Switched Capacitor Circuits (10/11/00) Page 30

    ECE4430 Analog Integrated Circuit Design

     CHARGE PUMP - CONTINUED

    High voltage generator for the well of M1:

    C1 C2

    VDD = 3.3V

    Vsub_hi

    CStorage

    0V

    0V

    3.3V

    6.6V

    Prevents latch-up of M1 by providing a high bulk bias (6.6V).

    Use a separate clock driver for each switch to avoid crosstalk through the gate clock lines.

    Area for layout can be small.

      Switched Capacitor Circuits (10/11/00) Page 31

  • 8/18/2019 Switch Cap01

    31/60

    Sw tc ed Capac to C cu ts ( 0/ /00) age 3

    ECE4430 Analog Integrated Circuit Design

     SIMULATION OF THE CHARGE PUMP CIRCUIT

    Circuit:

    V  DD

    C 1

    V SS 

    M1 CLK_out

    CLK_in

    M2M3

    M4

    Fig. 4.1-23

    CLK_outM5

    M6

    C 1

    Simulation:3.0

    2.0

    1.0

    0.0

    -1.00.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

         V    o      l     t    s

    Time (µs)

    Input

    Output

    Fig. 4.1-24

      Switched Capacitor Circuits (10/11/00) Page 32

  • 8/18/2019 Switch Cap01

    32/60

    p ( ) g

    ECE4430 Analog Integrated Circuit Design

     SUMMARY OF MOS SWITCHES

    •  Symmetrical switching characteristics

    • High OFF resistance

    • Moderate ON resistance (OK for most applications)

    • Clock feedthrough is proportional to size of switch (W) and inversely proportional to

    switching capacitors.

    • Output offset due to clock feedthrough has 3 components:

    Ideal

    Input dependent

    Input independent

    • Complementary switches help increase dynamic range.

    • As power supply reduces, switches become more difficult to fully turn on.

      Switched Capacitor Circuits (10/11/00) Page 33

  • 8/18/2019 Switch Cap01

    33/60

    ECE4430 Analog Integrated Circuit Design

    AMPLIFIERS

     CONTINUOUS TIME AMPLIFIERS

    +

    -

    v IN 

    OUT v R1  R2

    +

    -

    v IN   R1  R2OUT v

    Noninverting Amplifier Inverting Amplifier

    Gain and GB = ∞:V out V in

     = R1+ R2

     R1 

    V out V in

     = - R2 R1

     

    Gain ≠ ∞, GB = ∞:

    V out V in

     =  Avd (0)

    1 + A vd (0) R 1

     R1+ R2

     =  

        R1+ R2

     R1 

     A vd (0)  R1

     R1+ R2

     1 + A vd (0) R 1

     R1+ R2

      V out V in

     =

    -R2 Avd (0)

     R1+ R2

    1 + A vd (0) R 1

     R1+ R2

     = -  

        R2

     R1 

     R1 Avd (0)

     R1+ R2

    1 + A vd (0) R 1

     R1+ R2

     

    Gain ≠ ∞, GB ≠ ∞:

    V out (s)

    V in(s)  =  

     

      

      R1+ R2 R1  

    GB·R1 R1+ R2

    s +GB·R 1 R1+ R2

    =  

     

      

      R1+ R2 R1  

    ω  H s+ω  H 

    V out (s)

    V in(s)  =  

     

      

     -

     R 2 R1  

    GB·R1 R1+ R2

    s +GB·R1 R1+ R2

     =  

     

      

     -

     R 2 R1  

    ω  H s+ω  H  

      Switched Capacitor Circuits (10/11/00) Page 34

  • 8/18/2019 Switch Cap01

    34/60

    ECE4430 Analog Integrated Circuit Design

     EXAMPLE 9.2-1- ACCURACY LIMITATION OF VOLTAGE AMPLIFIERS DUE TO

     A FINITE VOLTAGE GAINAssume that the noninverting and inverting voltage amplifiers have been designed for avoltage gain of +10 and -10. If Avd (0) is 1000, find the actual voltage gains for each amplifier.Solution

    For the noninverting amplifier, the ratio of  R2 /  R1 is 9.

     Avd (0) R1 /( R1+ R2) =1000

    1+9= 100.

    ∴ V out V in = 10

      

       100

    101 = 9.901 rather than 10.

    For the inverting amplifier, the ratio of R2 /  R1 is 10. Avd (0) R1

     R1+ R2 =

    1000

    1+10 = 90.909

    ∴ V out 

    V in = -(10)

      

       90.909

    1+90.909

     = - 9.891 rather than -10.

      Switched Capacitor Circuits (10/11/00) Page 35

  • 8/18/2019 Switch Cap01

    35/60

    ECE4430 Analog Integrated Circuit Design

     EXAMPLE 9.2-2 - - 3 dB FREQUENCY OF VOLTAGE AMPLIFIERS DUE TO FINITE

     UNITY-GAINBANDWIDTHAssume that the noninverting and inverting voltage amplifiers have been designed for a

    voltage gain of +1 and -1. If the unity-gainbandwidth, GB, of the op amps are 2πMrads/sec, findthe upper -3dB frequency for each amplifier.

    Solution

    In both cases, the upper -3dB frequency is given by

    ω  H  =GB·R1 R1+ R2

    For the noninverting amplifier with an ideal gain of +1, the value of  R2 /  R1 is zero.

    ∴  ω  H  = GB = 2π  Mrads/sec (1MHz)

      For the inverting amplifier with an ideal gain of -1, the value of R2 /  R1 is one.

    ∴   ω  H  =GB·11+1

     =GB2

     = π  Mrads/sec (500kHz)

      Switched Capacitor Circuits (10/11/00) Page 36

  • 8/18/2019 Switch Cap01

    36/60

    ECE4430 Analog Integrated Circuit Design

     CHARGE AMPLIFIERS

    +

    -

    v IN 

    OUT vC 1 C 2

    Noninverting Charge Amplifier

    +

    -

    v IN OUT v

    Inverting Charge Amplifier

    C 1 C 2

    Gain and GB = ∞:V out V in

     =C 1+C 2

    C 2

    V out V in

     = -C 1C 2

    Gain ≠ ∞, GB = ∞:

    V out V in =

          C 1+C 2C 2

     

     Avd (0)C 2C 

    1+C 

    2

    1 + Avd (0)C 2

    C 1+C 2

    V out V in =

          -C 1C 2

     

     Avd (0)C 2C 

    1+C 

    2

    1 + Avd (0)C 2

    C 1+C 2Gain ≠ ∞, GB ≠ ∞:

    V out 

    V in =

     

     

     

      C 1+C 2

    C 2 

    GB·C 2C 1+C 2

    s + GB·C 2C 1+C 2

    V out 

    V in =

     

     

     

      

    -C 1

    C 2 

    GB·C 2C 1+C 2

    s + GB·C 2C 1+C 2

      Switched Capacitor Circuits (10/11/00) Page 37

  • 8/18/2019 Switch Cap01

    37/60

    ECE4430 Analog Integrated Circuit Design

     SWITCHED CAPACITOR AMPLIFIERS

    Parallel Switched Capacitor Amplifier:

    1 2

    +

    -

    1 2

    vout inv

    C 1

    2C 

    Inverting Switched Capacitor Amplifier

    +

    -

    vC 1

    vC 2

    +

    -

    1 2

    +

    -

    1

    2C 

    C 1

    vout inv

    Modification to prevent open-loop operation

    vC 1

    vC 2

    +

    -

    +-

    Analysis:

     Assume that the switching frequency (clock frequency, f c = 1/ T ) is much greater than the

    signal bandwidth. Then,

    V out 

    V in = -

    “ R2”

     “ R1” ≈ -

    T/C 2

    T/C 1 = -

    C 1

    C 2If the oversampling assumption is not made, then the transfer function becomes,

    V out V in

     = - C 1C 2

      z-1

      Switched Capacitor Circuits (10/11/00) Page 38

  • 8/18/2019 Switch Cap01

    38/60

    ECE4430 Analog Integrated Circuit Design

     FREQUENCY RESPONSE OF SWITCHED CAPACITOR AMPLIFIERS

    Replace  z by e jω T .

     H ( jω ) =V out (e

     jω T )

     V in(e jω T )

    = -  

       C 1

    C 2 e-jω T/2 

    and

     H ( jω ) =

    V out (e jω T )

     V in(e jω T ) = - 

        C 

    1C 2  e

    -jω T  

    If C 1 / C 2 is equal to R2 /  R1, then the magnitude response is identical to inverting unity gain amplifier.

    However, the phase shift of H oe(e  jω T ) is

    Arg[ H  (e jω T )] = ±180° - ω T  /2

    and the phase shift of H oe

    (e  jω T 

    ) isArg[ H  (e jω T )] = ±180° - ω T .

    Comments:

    • The phase shift of the switched capacitor inverting amplifier has an excess linear phase delay.

    • When the frequency is equal to 0.5 f c, this delay is 90°.

    • One must be careful when using switched capacitor circuits in a feedback loop because of theexcess phase delay.

      Switched Capacitor Circuits (10/11/00) Page 39

  • 8/18/2019 Switch Cap01

    39/60

    ECE4430 Analog Integrated Circuit Design

     POSITIVE AND NEGATIVE TRANSRESISTANCE EQUIVALENT CIRCUITS

    Transresistance circuits are two-port networks where the voltage across one port controls thecurrent flowing between the ports. Typically, one of the ports is at zero potential (virtual ground).

    Circuits:

    Positive Transresistance Realization.

    1

    2 2

    1

    vC (t )

    v1(t )

    i1(t ) i2(t )

    C P C P

    Negative Transresistance Realization.

    1

    2

    2

    1

    vC (t )

    v1(t )

    i1(t ) i2(t )

    C P C P

    Analysis (Negative transresistance realization):

     RT  =v1(t )

    i2(t ) =

    v1i2(average)

     

    If we assumev1(t ) is approximately constant over one period of the clock, then we can write

    i2(average) =1

    T   ⌡⌠ T  /2

     T 

    i2(t )dt  =q2(T ) - q2(T  /2)

    T  =

    CvC (T ) - CvC (T  /2)

    T  =

    -Cv1T 

    Substituting this expression into the one above shows that

      R

    T  = -T / C

    Similarly, it can be shown that the positive transresistance is T  / C .

    Comments:

      • These results are only valid when f c  >> f .

      • These circuits are insensitive to the parasitic capacitances shown as dotted capacitors.

      Switched Capacitor Circuits (10/11/00) Page 40

  • 8/18/2019 Switch Cap01

    40/60

    ECE4430 Analog Integrated Circuit Design

     INVERTING STRAY INSENSITIVE SWITCHED CAPACITOR AMPLIFIER

    Inverting Switched Capacitor Voltage Amplifier.

    1

    2

    +

    -

    1

    2C 

    vout inv  v

    C 2+-

    1

    2

    vC1(t )vC1(t )

    1C 

    vC1(t )

    Analysis:

     Assume that the switching frequency (clock frequency, f c = 1/ T ) is much greater than the

    signal bandwidth. Then,

    V out 

    V in = -

    “ R2”

     “ R1” ≈ -

    T/C 2

    T/C 1 = -

    C 1

    C 2

      Switched Capacitor Circuits (10/11/00) Page 41

  • 8/18/2019 Switch Cap01

    41/60

    ECE4430 Analog Integrated Circuit Design

     NONVERTING STRAY INSENSITIVE SWITCHED CAPACITOR AMPLIFIER

    Use the negative transresistor switched capacitor circuit at the input to get,

    Noninverting Switched Capacitor Voltage Amplifier.

    1 2

    +

    -

    1

    2C 

    vout invvC 2

    +-

    121C 

    vC1(t )

    Analysis:

     Assume that the switching frequency (clock frequency, f c = 1/ T ) is much greater than the

    signal bandwidth. Then,

    V out 

    V in = -

    “ R2”

     “ R1” ≈ -

    T/C 2

    -T/C 1 = +

    C 1

    C 2

      Switched Capacitor Circuits (10/11/00) Page 42

  • 8/18/2019 Switch Cap01

    42/60

    ECE4430 Analog Integrated Circuit Design

     EXAMPLE 9.2-3 - DESIGN OF A SWITCHED CAPACITOR SUMMING AMPLIFIER

    Design a switched capacitor summing amplifier using the circuits in stray insensitivetransresistance circuits which gives the output voltage during the φ 2 phase period that is equal to10v1 - 5v2, where v1 and v2 are held constant during a φ 2-φ 1 period and then resampled for the nextperiod.

    Solution

    Based on the previous examples, a solution is proposed below.

    1 2

    +

    -

    1

    vo12

    v1

    1

    2

    1

    2v2

    10C 

    5C 

    It easy to show that if the oversampling assumption is true that,

    V o ≈ 10V 1 - 5V 2

      Switched Capacitor Circuits (10/11/00) Page 43

  • 8/18/2019 Switch Cap01

    43/60

    ECE4430 Analog Integrated Circuit Design

     NONIDEAL OP AMPS - FINITE GAIN

    Consider the inverting switched capacitor amplifier during φ 2:

    inv

    +

    -

    2C C 1

    +

    -

    (n-1)T 

    vout (n-1/2)T e

    ovout (n-1/2)T 

    e

     Avd (0)

    +- Op amp with finite

    value of Avd (0)Fig. 9.2-11

    The output during φ 2 can be written as,

    ve

    out (n -1/2)T  =   

       C 1

    C 2 v

    o

    in(n -1)T  +   

       C 1+C 2

    C 2 v

    e

    out (n -1/2)T 

     Avd (0) 

    Converting this to the z-domain and solving for the H oe( z) transfer function gives

     H oe( z) =V 

    e

    out ( z)

    V o

    in( z) =

      

       C 1

    C 2  z-1/2 

    1

    1 -C 1 + C 2

     Avd (0)C 2

     .

    Comments:• The phase response is unaffected by the finite gain

    • A gain of 1000 gives a magnitude of 0.998 rather than 1.0.

      Switched Capacitor Circuits (10/11/00) Page 44

  • 8/18/2019 Switch Cap01

    44/60

    ECE4430 Analog Integrated Circuit Design

     NONIDEAL OP AMPS - FINITE BANDWIDTH AND SLEW RATE

    Finite GB:• In general the analysis is complicated. (We will provide more detail for integrators.)

    • The clock period, T , should be equal to or less that 10/ GB.

    • The settling time of the op amp must be less that T  /2.

    Slew Rate:

    • The slew rate of the op amp should be large enough so that the op amp can make a fullswing within T  /2.

      Switched Capacitor Circuits (10/11/00) Page 45

  • 8/18/2019 Switch Cap01

    45/60

    ECE4430 Analog Integrated Circuit Design

     CONTINUOUS TIME INTEGRATORS

    - R1 C 2  R  R V out V in

    (a.)

    +

    -

    +

    -

    Inverter

    (b.)

     R1 C 2V in V out 

    +

    -

    (a.) Noninverting and (b.) inverting continuous time integrators.

    Ideal Performance:

    Noninverting- Inverting-

    V out ( jω )

    V in( jω ) =

    1

     jω R 1C 2 =

    ω  I  jω 

     =- jω  I ω 

     V out ( jω )

    V in( jω ) =

    -1

     jω R 1C 2 =

    -ω  I  jω 

     = jω  I ω 

     

    Frequency Response:

    90°

    Arg[V out ( jω)/ V in( jω)]

    ω I  log10

    ω

    |V out ( jω)/ V in( jω)|

    ω I ω I ω I 100   10

    10ω I 100ω I log10ω

    40 dB

    20 dB

    0 dB

    -20 dB

    -40 dB

    (a.) (b.)

      Switched Capacitor Circuits (10/11/00) Page 46

  • 8/18/2019 Switch Cap01

    46/60

    ECE4430 Analog Integrated Circuit Design

     NONINVERTING SWITCHED CAPACITOR INTEGRATOR

    Approximate analysis: Assume that the switching frequency (clock frequency,

     f c = 1/ T ) is much greater than the signal bandwidth. Then,

    V out 

    V in = -

    1/ sC 2

     “ R1” ≈ -

    1 /sC 2

    -T/C 1 = +

    C 1

    sTC 2 =

    ω  I s

    where

    ω  I  =C I

    TC 2 

    Exact analysis:V out ( z) V in( z)

     =  

       C 1

    C 2  z-1

    1- z-1 =

      

       C 1

    C 2 

    1

     z-1 

    Exact frequency response (replace z by e jω T  ) to get,

    V out (e jω T )

     V in(e jω T )

     =  

       C 1

    C 2 

    e-jωΤ/ 2

     j2 sin(ω T  /2)   

       ω T 

    ω T  =

      

       C 1

     jω TC 2   

       ω T /2

    sin(ω T  /2) ( )e

    -jωΤ/ 2  

    = (Ideal)x(Magnitude error)x(Phase error) where ω  I  =C 1

    TC 2  ⇒  Ideal =

    ω  I 

     jω  

    Noninverting, stray insensitive integrator.

    1 2

    2C 

    vout invvC 2

    +-

    12

    1C 

    vC1(t )

    +

    -

    + -S 1

    S 2 S 3

    S 4

      Switched Capacitor Circuits (10/11/00) Page 47

  • 8/18/2019 Switch Cap01

    47/60

    ECE4430 Analog Integrated Circuit Design

     EXAMPLE 9.3-2 - COMPARISON OF A CONTINUOUS TIME AND SWITCHED

     CAPACITOR INTEGRATORAssume that ω  I  is equal to 0.1ω c and plot the magnitude and phase response of the

    noninverting continuous time and switched capacitor integrator from 0 to ω  I .

    Solution

    Letting ω  I  be 0.1ω c gives

     H ( jω ) =1

    10 jω  / ω c  and  H oo(e  jωΤ ) =

      

       1

    10 jω  / ω c 

      

       πω /ω c

    sin(πω /ω c) ( )e

    -jπω /ω c

    Plots:

    0

    1

    2

    3

    4

    5

    0 0.2 0.4 0.6 0.8 1

    Magnitude

    |Hoo

    (e jωT

    )|

    |H(jω)|ωI

    ω/ω c

    -300

    -250

    -200

    -150

    -100

    -50

    0

    0 0.2 0.4 0.6 0.8 1

    Phase Shift (Degrees)

    Arg[Hoo(e jωT)]

    Arg[H(jω)]

    ωI ω/ω c

      Switched Capacitor Circuits (10/11/00) Page 48

  • 8/18/2019 Switch Cap01

    48/60

    ECE4430 Analog Integrated Circuit Design

     INVERTING SWITCHED CAPACITOR INTEGRATOR

    Analysis:Approximate analysis:

     Assume that the switching frequency (clock frequency,  f c = 1/ T ) is much greater than the signal

    bandwidth. Then,

    V out V in

     = - 1/ sC 2 “ R1”

     ≈ - 1 /sC 2T/C 1

     = - C 1sTC 2

     = - ω  I s

    where

    ω  I  =C I

    TC 2 

    Exact analysis:

     H ( z) = V out ( z)

     V in( z) = -

      

       C 1

    C 2  11- z-1

     = -  

       C 1

    C 2   z z-1

     

    Exact frequency response (replace z by e jω T  ) to get,

    V out (e jω T )

     

    V in(e jω T 

    )

     =  

       C 1

    C 2 

    e-jωΤ/ 2

     j2 sin(ω T  /2)   

       ω T 

    ω T  = -

      

       C 1

     jω TC 2   

       ω T /2

    sin(ω T  /2) ( )e

     jωΤ/ 2

    Same as noninverting integrator except for phase error.

    Consequently, the magnitude response is identical but the phase response is given as

    Arg[ H (e  jωΤ )] =π 

    2 +

    ωΤ 

    2   .

    Inverting, stray insensitive integrator.

    1

    2

    2C 

    vout invvC 2

    +-

    1

    2

    1C 

    vC1(t )

    +

    -S 1

    S 2 S 3

    S 4

      Switched Capacitor Circuits (10/11/00) Page 49

  • 8/18/2019 Switch Cap01

    49/60

    ECE4430 Analog Integrated Circuit Design

     A SIGN MULTIPLEXER

    A circuit that changes the φ 1 and φ 2 of the leftmost switches of the stray insensitive, switchedcapacitor integrator.

    1 2

    V C 

     x

     y

    To switch connected

    to the input signal (S 1).

    To the left most switch

    connected to ground (S 2).

    V C 

    0

    1

     x y

    1

    12

    2

    Fig. 9.3-8

    This circuit steers the φ 1 and φ 2 clocks to the input switch (S 1) and the leftmost switch connected to

    ground (S 2) as a function of whether V c is high or low.

      Switched Capacitor Circuits (10/11/00) Page 50

  • 8/18/2019 Switch Cap01

    50/60

    ECE4430 Analog Integrated Circuit Design

    FIRST-ORDER, SWITCHED CAPACITOR CIRCUITS

     GENERAL, FIRST-ORDER TRANSFER FUNCTIONSA general first-order transfer function in the s-domain:

     H (s) =sa1 ± a0s + b0

     

    a1 = 0 ⇒  Low pass, a0 = 0 ⇒  High Pass, a0 ≠ 0 and a1 ≠ 0 ⇒  All pass

    Note that the zero can be in the RHP or LHP.

    The following continuous time circuit is capable of realizing most of the various forms above:

    +

    -

     R1  R2

    C 1 C 2

    V in V out 

    Fig.9.5-0

    V out 

    V in = -

      

        R2

     R1 sR1C 1+1

     sR2C 2+1

      Switched Capacitor Circuits (10/11/00) Page 51

  • 8/18/2019 Switch Cap01

    51/60

    ECE4430 Analog Integrated Circuit Design

     NONINVERTING, FIRST-ORDER, LOW PASS CIRCUIT

    +

    -

    vi(t )

    φ1

    φ1φ2

    φ2

    φ2

    vo(t)

    C 1

    (a.) (b.)Figure 9.5-1 - (a.) Noninverting, first-order low pass circuit. (b.) Equivalent circuit of Fig. 9.5-1a.

    φ1   φ1   φ2

    +

    -

    vi(t )

    φ1

    φ1φ2

    φ2

    φ2

    vo(t)

    φ2

    φ1φ1vo(t )

    α1C 1

    α2C 1

    α2C 1

    α1C 1

    C 1

    Transfer function:

    Noting that C 1 of the general circuit is zero gives,

    V out 

    V in = -

      

       “ R2”

    ” R1” 

    1

     s” R2”C 2+1 ≈ -

    α 1

    α 2 

    1

    sT/ α 2 +1 =

    -α 1

    sT  + α 2  =

    -α 1 / T 

    s + α 2 / T  

    Equating the above to the H(s) of the general first-order transfer function gives,

    α 1 = a0T  =a0

     f c  and α 2 = b0T  =

    b0

     f c 

      Switched Capacitor Circuits (10/11/00) Page 52

  • 8/18/2019 Switch Cap01

    52/60

    ECE4430 Analog Integrated Circuit Design

     INVERTING, FIRST-ORDER, LOW PASS CIRCUIT

    An inverting low pass circuit can be obtained by reversing the phases of the leftmost two switches inFig. 9.5-1a.

    +

    -

    vi(t )

    φ2

    φ1φ1

    φ2

    φ2

    vo(t)

    C 1

    Inverting, first-order low pass circuit. Equivalent circuit.

    φ1   φ1   φ2

    +

    -

    vi(t )

    φ2

    φ1φ1

    φ2

    φ2

    vo(t)

    φ2

    φ1φ1vo(t )

    α1C 1

    α2C 1

    α2C 1

    α1C 1

    C 1

    It can be shown that,

    V out 

    V in =

      

       “ R2”

    ” R1” 

    1

     s” R2”C 2+1 ≈ 

    α 1

    α 2 

    1

    sT/ α 2 +1 =

    α 1

    sT  + α 2  =

    α 1 / T 

    s + α 2 / T  

    Equating the above to the H(s) of a general first order transfer function gives the design equations as

    α 1 = a0T  =a0

     f c  and α 2 = b0T  =

    b0

     f c 

      Switched Capacitor Circuits (10/11/00) Page 53

  • 8/18/2019 Switch Cap01

    53/60

    ECE4430 Analog Integrated Circuit Design

     EXAMPLE 9.5-1 - DESIGN OF A SWITCHED CAPACITOR FIRST-ORDER CIRCUIT

    Design a switched capacitor first-order circuit that has a low frequency gain of +10 and a -3dB frequency of 1kHz. Give the value of the capacitor ratios α 1 and α 2. Use a clock frequency of 

    100kHz.

     Solution

    Assume that the clock frequency, f c, is much larger than the -3dB frequency. In this example,

    the clock frequency is 100 times larger so this assumption should be valid. Therefore we can write,V out (s)

    V in

    (s) ≈ 

    α 1α 2 + s T 

     =α 1 / α 2

    1 + s(T  / α 2)

    Setting this equation equal to the specifications gives α 1 = 10α 2  and α 2 =ω -3dB f c

     

    ∴ α 2 = 6283/100,000 = 0.0628  and α 1 = 0.6283The above represent capacitor ratios and should preferably be close to unity for small area.

      Switched Capacitor Circuits (10/11/00) Page 54

  • 8/18/2019 Switch Cap01

    54/60

    ECE4430 Analog Integrated Circuit Design

     FIRST-ORDER, HIGH PASS CIRCUIT

    +

    -

    vi(t )

    φ2

    vo(t)α1C 

    φ1   φ1   φ2α2C 

    +

    -

    vi(t )

    φ2

    φ2

    vo(t)

    φ1   φ1   φ2

    (a.) (b.)

    Figure 9.5-3 - (a.) Switched-capacitor, high pass circuit. (b.) Version of Fig. 9.5-3a

    that constrains the charging of C 1 to the φ2 phase.

    α1C 

    α2C 

    Transfer function:

    It can be shown that,

    V out V in

     = -s“ R2”C 1

     s” R2”C 2+1 ≈ - sT α 1C/ α 2C 

    sTC/ α 2C  +1  = -

    sT α 1 / α 2sT/ α 2 +1

     = -sT α 1

    sT  + α 2  = -

    sα 1s + α 2 / T 

     

    Equating the above to the general first-order H(s) gives the design equations as

    a1 = α 1  and α 2 / T  = b0

    Solving for α 1 and α 2 gives

    α 1 = a1 and α 2 =b0T  =b0

     f c

      Switched Capacitor Circuits (10/11/00) Page 55

  • 8/18/2019 Switch Cap01

    55/60

    ECE4430 Analog Integrated Circuit Design

     FIRST-ORDER, ALLPASS CIRCUIT

    +

    -

    vi(t )

    φ1

    φ1φ2

    φ2

    φ2

    vo(t)

    (b.)

    φ1   φ1   φ2

    φ2

    +

    -

    vi(t )

    φ1

    φ1φ2

    φ2

    φ2

    vo(t)

    α1C  C 

    (a.)

    φ1   φ1   φ2α3C 

    Figure 9.5-5 - (a.) High or low frequency boost circuit. (b.) Modification of (a.) to simplify

    the z-domain modeling

    α2C    α3C    α2C 

    α1C 

    Transfer function:

    Summing the currents flowing into the inverting input of the op amp gives

    V out 

    V in = -

      

       “ R2”

     “ R1” 

    s“ R1”C 1+1

     s“ R2”C 2+1 = -

      

       α 1

    α 2 sT α 3 / α 1+1

     sT/ α 2+1 = -

    α 3s + α 1 / T 

    s + α 2 / T  

    Therefore,

    α 3 = a1, α 1 / T  = a0 and α 2 / T   = b0

    or

    a1 = α 3, α 1 = a0T  =a0

     f c  and α 2 = b0T  =

    b0

     f c 

      Switched Capacitor Circuits (10/11/00) Page 56

  • 8/18/2019 Switch Cap01

    56/60

    ECE4430 Analog Integrated Circuit Design

     EXAMPLE 9.5-2 - DESIGN OF A SWITCHED CAPACITOR BASS BOOST CIRCUIT

    Find the values of the capacitor ratiosα 1, α 2, and α 3 using a 100kHz clock for Fig. 9.5-5 that willrealize the asymptotic frequency response shown in Fig. 9.5-7.

    dB

    20

    01kHz 10kHz10Hz 100Hz

    FrequencyFigure 9.5-7 - Bass boost response for Ex. 9.5-2.

     Solution

    From the previous results, we can write the all-pass transfer function approximately as,

     H (s) ≈ -sT α 3 + α 1sT  + α 2

     = -α 1α 2

       

       sT α 3 / α 1 - 1

    sT/ α 2 + 1 

    From Fig. 9.5-7, we see that the desired response has a dc gain of 10, a right-half plane zero at 2πkHz and a pole at -200π Hz. Thus, we see that the following relationships must hold.

    α 1α 2

     = 10 ,α 1

    T α 3 = 2000π , and

    α 2T 

     = 200π 

    From these relationships we get the desired values as

     α 1 =2000π

     f c, α 2  =

    2 0 0π f c

    , a n d α 3   = 1

      Switched Capacitor Circuits (10/11/00) Page 57

  • 8/18/2019 Switch Cap01

    57/60

    ECE4430 Analog Integrated Circuit Design

     PRACTICAL IMPLEMENTATIONS OF THE FIRST-ORDER CIRCUITS

    Most practical implementations of switched capacitor circuits are fully differential as shown below.

    +

    -

    vi(t )

    φ1

    φ1φ2

    φ2

    φ2

    vo(t)C 1

    (a.) (b.)

    Figure 9.5-8 - Differential implementations of (a.) Fig. 9.5-1, (b.) Fig. 9.5-3, and (c.) Fig. 9.5-5.

    φ1   φ1

    φ2α2C 

    vo(t )

    +

    -

    φ1   φ1

    φ2   φ2

    φ1   φ2

    +

    -

    +

    -

    vi(t )

    φ2

    φ2

    vo(t)

    φ1   φ1

    φ2

    vo(t )

    +

    -

    φ1   φ1

    φ2   φ2

    φ2

    +

    -

    +

    -

    vi(t )

    φ1

    φ1φ2

    φ2

    φ2

    vo(t)

    (c.)

    φ1   φ1φ2

    vo(t )

    +

    -

    φ1   φ1

    φ2   φ2

    φ1   φ2

    +

    -

    φ2

    φ2α2C 

    α1C 

    α1C 

    α2C 

    α2C 

    α1C 

    α1C 

    α2C 

    α2C 

    α1C 

    α1C 

    α3C 

    α3C 

    Comments:

    • Differential operation reduces clock feedthrough, common mode noise sources and enhances thesignal swing.

    • Differential operation requires op amps or OTAs with differential outputs which in turnrequires a means of stabilizing the output common mode voltage.

      Switched Capacitor Circuits (10/11/00) Page 58

  • 8/18/2019 Switch Cap01

    58/60

    ECE4430 Analog Integrated Circuit Design

     ANTI-ALIASING IN SWITCHED CAPACITOR FILTERS

    A characteristic of circuits that sample the signal (switched capacitor circuits) is that the signalpassbands occur at each harmonic of the clock frequency including the fundamental.

    T(jω)

    T(j0)T(jωPB)

    ωPB00

    ω

    Figure 9.7-28 - Spectrum of a discrete-time filter and a continuous-time

    anti-aliasing filter.

    -ωPB   ωc   2ωc

    ωc+ωPBωc-ωPB   2ωc-ωPB   2ωc+ωPB

    Anti-Aliasing Filter

    Baseband

    The primary problem of aliasing is that there are undesired passbands that contribute to thenoise in the desired baseband.

      Switched Capacitor Circuits (10/11/00) Page 59

  • 8/18/2019 Switch Cap01

    59/60

    ECE4430 Analog Integrated Circuit Design

     NOISE ALIASING IN SWITCHED CAPACITOR CIRCUITS

    In all switched capacitor circuits, a noise aliasing occurs from the passbands that occur at theclock frequency and each harmonic of the clock frequency.

    , ,

    , ,

     f 0.5 f c  f c f  B f sw-f  B

     f c-f sw

     f c+f  B f c-f  B

     f c+f 

    sw

    Magnitude

    0

    Noise Aliasing

    ,

    ,

    From higher bands

    Baseband

    Figure 9.7-31 - Illustration of noise aliasing in switched capacitor circuits.

     It can be shown that the aliasing enhances the baseband noise voltage spectral density by a factor of 2 f sw /  f c. Therefore, the baseband noise voltage spectral density is

    e BN 2  =       kT/C  f  sw

    x  

       2 f 

     sw f c

     = 2kT  f cC  volts2 /Hz

    Multiplying this equation by 2 f  B gives the baseband noise voltage in volts(rms)2. Therefore, the

    baseband noise voltage is

    v BN 2 =

     

     

     

      2kT 

     f cC 

     ( )2 f  B  =2kT 

    C  

     

     

     

      2 f  B

     f c

     =2kT  / C 

    OSR  volts(rms)2 

    where OSR is the oversampling ratio.

      Switched Capacitor Circuits (10/11/00) Page 60

  • 8/18/2019 Switch Cap01

    60/60

    ECE4430 Analog Integrated Circuit Design

    SUMMARY

    • Switched capacitor circuits have reached maturity in CMOS technology.

    • The switched capacitor circuit concept was a pivotal step in the implementation of analog signalprocessing circuits in CMOS technology.

    • The accuracy of the signal processing is proportional to capacitor ratios.

    • Switched capacitor circuits have been developed for:

    AmplificationIntegration

    Differentiation

    Summation

    Filtering

    Comparing

    Analog-digital conversion

    • Approaches to switched capacitor circuit design:

    Oversampled approach - clock frequency is much greater than the signal frequency

    z-domain approach - specifications converted to the z-domain and directly realized, canoperate to within half of the clock frequency (not covered in the above notes)

    • Clock feedthrough and kT/C  noise represent the lower limit of the dynamic range of switchedcapacitor circuits.