28
EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 1 EE247 Lecture 10 Switched-capacitor filters (continued) – Switched-capacitor integrators • DDI & LDI integrators Effect of parasitic capacitance Bottom-plate integrator topology – Switched-capacitor resonators – Bandpass filters – Lowpass filters – Switched-capacitor filter design considerations • Termination implementation • Transmission zero implementation • Limitations imposed by non-idealities EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 2 Switched-Capacitor Integrator - + Vin Vo φ 1 φ 2 C I C s - + Vin Vo φ 1 C I C s - + Vin Vo φ 2 C I C s φ 1 φ 2 T=1/f s φ 1 High C s Charged to Vin φ 2 High Charge transferred from C s to C I

Switched-Capacitor Integrator - EECS Instructional …ee247/fa08/files07/lectures/L10s_f08.pdf · Bottom Plate Switched-Capacitor Integrator z-Transform Model 1 2 1 2 1 11 11 zz 1z

Embed Size (px)

Citation preview

Page 1: Switched-Capacitor Integrator - EECS Instructional …ee247/fa08/files07/lectures/L10s_f08.pdf · Bottom Plate Switched-Capacitor Integrator z-Transform Model 1 2 1 2 1 11 11 zz 1z

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 1

EE247Lecture 10

• Switched-capacitor filters (continued)– Switched-capacitor integrators

• DDI & LDI integrators– Effect of parasitic capacitance– Bottom-plate integrator topology

– Switched-capacitor resonators– Bandpass filters– Lowpass filters– Switched-capacitor filter design considerations

• Termination implementation• Transmission zero implementation• Limitations imposed by non-idealities

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 2

Switched-Capacitor Integrator

-

+

Vin

Vo

φ1 φ2CI

Cs

-

+

Vin

Vo

φ1CI

Cs

-

+

Vin

Vo

φ2CI

Cs

φ1

φ2

T=1/fs

φ1 High Cs Charged to Vin

φ2 HighCharge transferred from Cs to CI

Page 2: Switched-Capacitor Integrator - EECS Instructional …ee247/fa08/files07/lectures/L10s_f08.pdf · Bottom Plate Switched-Capacitor Integrator z-Transform Model 1 2 1 2 1 11 11 zz 1z

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 3

Switched-Capacitor IntegratorOutput Sampled on φ1

φ1 φ2 φ1 φ2 φ1

Vin

Vo

VCs

Clock

Vo1

-

+

Vin

Vo1

φ1 φ2 CI

Cs

φ1

Vo

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 4

Switched-Capacitor Integrator

φ1 φ2 φ1 φ2 φ1

Vin

Vo

Vs

Clock

Vo1

Φ1 Qs [(n-1)Ts]= Cs Vi [(n-1)Ts] , QI [(n-1)Ts] = QI [(n-3/2)Ts]

Φ2 Qs [(n-1/2) Ts] = 0 , QI [(n-1/2) Ts] = QI [(n-1) Ts] + Qs [(n-1) Ts]

Φ1 _ Qs [nTs ] = Cs Vi [nTs ] , QI [nTs ] = QI[(n-1) Ts ] + Qs [(n-1) Ts]

Since Vo1= - QI /CI & Vi = Qs / Cs CI Vo1(nTs) = CI Vo1 [(n-1) Ts ] -Cs Vi [(n-1) Ts ]

(n-1)Ts nTs(n-1/2)Ts (n+1)Ts(n-3/2)Ts (n+1/2)Ts

Page 3: Switched-Capacitor Integrator - EECS Instructional …ee247/fa08/files07/lectures/L10s_f08.pdf · Bottom Plate Switched-Capacitor Integrator z-Transform Model 1 2 1 2 1 11 11 zz 1z

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 5

Switched-Capacitor IntegratorOutput Sampled on φ1

sIsI

1s1I

o s o ss sI I inCo s o s sinCC1 1o o inC

CC 1in

C V (nT ) C V C V(n 1)T (n 1)T

V (nT ) V V(n 1)T ( n 1)T

V ( Z ) Z V ( Z ) Z V ( Z )

Vo Z( Z )ZV

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

−−

− −

= −− −

= −− −

= −

= − ×

DDI (Direct-Transform Discrete Integrator)

-

+

Vin

Vo1

φ1 φ2 CI

Cs

φ1

Vo

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 6

Switched-Capacitor Direct-Transform Discrete Integrator

1s1I

s 1I

CC 1in

CC 1

Vo z( z )zV

z

−−−

= − ×

= − × −

-

+

Vin

Vo

φ1 φ2CI

Cs

φ1

Page 4: Switched-Capacitor Integrator - EECS Instructional …ee247/fa08/files07/lectures/L10s_f08.pdf · Bottom Plate Switched-Capacitor Integrator z-Transform Model 1 2 1 2 1 11 11 zz 1z

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 7

DDI Switched-Capacitor IntegratorCI

Ideal Integrator Magnitude Error Phase Error

( )

( )

1s1I

j T / 2s sj T j T / 2 j T / 2I I

sI

sI

C j TC 1in

j jC CC C1

C j T / 2C

C j T / 2C j T

Vo z( z ) , z ezV

e ee1 since : s in 2 je e e

1j e 2 sin T / 2

T / 21 esin T / 2

ωω ω ω

ω

α α

ω

ω

α

ω

ωω ω

−−

−−

− −

= − × =

−= × = × =

= − × ×

= − × ×

-

+

Vin

Vo

φ1 φ2CI

Cs

φ1

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 8

DDI Switched-Capacitor Integrator

Example: Mag. & phase error for:1- f / fs=1/12 Mag. error = 1% or 0.1dB

Phase error=15 degreeQintg = -3.8

2- f / fs=1/32 Mag. error=0.16% or 0.014dBPhase error=5.6 degreeQintg = -10.2

CI

-

+

Vin

Vo

φ1 φ2CI

Cs

φ1

DDI Integrator:magnitude error no problemphase error major problem

Page 5: Switched-Capacitor Integrator - EECS Instructional …ee247/fa08/files07/lectures/L10s_f08.pdf · Bottom Plate Switched-Capacitor Integrator z-Transform Model 1 2 1 2 1 11 11 zz 1z

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 9

5th Order Low-Pass Switched Capacitor Filter Built with DDI Integrators

Example: 5th Order Elliptic FilterSingularities pushed towards RHP due to integrator excess phase

s-planeFine View

σ

Ideal PoleIdeal Zero

s-planeCoarse View

σ

ωs

-ωs DDI PoleDDI Zero

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 10

Frequency (Hz)

Switched Capacitor Filter Build with DDI Integrator

( )ωjH

sf / 2 sf 2fs fContinuous-TimePrototype

SC DDI basedFilter

PassbandPeaking

Zeros lost!

Page 6: Switched-Capacitor Integrator - EECS Instructional …ee247/fa08/files07/lectures/L10s_f08.pdf · Bottom Plate Switched-Capacitor Integrator z-Transform Model 1 2 1 2 1 11 11 zz 1z

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 11

Switched-Capacitor Integrator Output Sampled on φ2

CI

-

+

Vin

Vo2

φ1 φ2CI

Cs

φ2

Sample output ½ clock cycle earlierSample output on φ2

Vo

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 12

Φ1 Qs [(n-1)Ts]= Cs Vi [(n-1)Ts] , QI [(n-1)Ts] = QI[(n-3/2)Ts]

Φ2 Qs [(n-1/2) Ts] = 0 , QI [(n-1/2) Ts] = QI [(n-3/2) Ts] + Qs [(n-1) Ts]

Φ1 _ Qs [nTs ] = Cs Vi [nTs ] , QI [nTs ] = QI[(n-1) Ts ] + Qs [(n-1) Ts]

Φ2 Qs [(n+1/2) Ts] = 0 , QI [(n+1/2) Ts] = QI [(n-1/2) Ts] + Qs [n Ts]

φ1 φ2 φ1 φ2 φ1

Vin

Vo2

Vs

Clock

(n-1)Ts nTs(n-1/2)Ts (n+1)Ts(n-3/2)Ts

Switched-Capacitor Integrator Output Sampled on φ2

(n+1/2)Ts

Page 7: Switched-Capacitor Integrator - EECS Instructional …ee247/fa08/files07/lectures/L10s_f08.pdf · Bottom Plate Switched-Capacitor Integrator z-Transform Model 1 2 1 2 1 11 11 zz 1z

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 13

QI [(n+1/2) Ts] = QI [(n-1/2) Ts] + Qs [n Ts]Vo2= - QI /CI & Vi = Qs / Cs CI Vo2 [(n+1/2) Ts] = CI Vo2 [(n-1/2) Ts ] -Cs Vi [n Ts ]Using the z operator rules:

CI Vo2 z1/2 = CI Vo2 z-1/2 - Cs Vi

1 / 2s1I

CC 1in

Vo2 z( z )zV

−−−

= − ×

Switched-Capacitor Integrator Output Sampled on φ2

φ1 φ2 φ1 φ2 φ1

Vin

Vo

Vs

Clock

(n-1)Ts nTs(n-1/2)Ts (n+1)Ts(n-3/2)Ts

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 14

LDI Switched-Capacitor Integrator

( )

( )

1/ 2s1I

j T / 2s e s 1j T j T / 2 j T / 2I I

sI

sI

C j TC 1 zin

C CC C1

CC

CC j T

Vo2 z( z ) , z eV

e e e

1j 2 sin T / 2

T / 21sin T / 2

ωω ω ω

ω

ω

ωω ω

−−

−− − +

− −

= − × =

= − × = ×

= − ×

= − ×

CI

Ideal Integrator Magnitude Error

No Phase Error! For signals at frequencies << sampling freq.

Magnitude error negligible

-

+

Vin

Vo2

φ1 φ2CI

Cs

φ2

LDI

LDI (Lossless Discrete Integrator) same as DDI but output is sampled ½clock cycle earlier

Page 8: Switched-Capacitor Integrator - EECS Instructional …ee247/fa08/files07/lectures/L10s_f08.pdf · Bottom Plate Switched-Capacitor Integrator z-Transform Model 1 2 1 2 1 11 11 zz 1z

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 15

Switched-Capacitor Filter Built with LDI Integrators( )ωjH

Zeros Preserved

Frequency (Hz) 2fs ffsfs /2

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 16

Switched-Capacitor IntegratorParasitic Capacitor Sensitivity

Effect of parasitic capacitors:

1- Cp1 - driven by opamp o.k.

2- Cp2 - at opamp virtual gnd o.k.

3- Cp3 – Charges to Vin & discharges into CI

Problem parasitic capacitor sensitivity

-

+

VinVo

φ1 φ2CI

CsCp3

Cp2

Cp1

Page 9: Switched-Capacitor Integrator - EECS Instructional …ee247/fa08/files07/lectures/L10s_f08.pdf · Bottom Plate Switched-Capacitor Integrator z-Transform Model 1 2 1 2 1 11 11 zz 1z

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 17

Parasitic InsensitiveBottom-Plate Switched-Capacitor Integrator

Sensitive parasitic cap. Cp1 rearrange circuit so that Cp1 does not charge/discharge

φ1=1 Cp1 grounded

φ2=1 Cp1 at virtual ground

Solution: Bottom plate capacitor integrator

Vi+

Cs-

+ Vo

CI

Cp1

Cp2

φ1 φ2

Vi-

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 18

Bottom Plate Switched-Capacitor Integrator

12

12

1s s1 1I I

s s1 1I I

C Cz zC C1 z 1 z

C Cz 1C C1 z 1 z

−−

− −

− −

− −

− −− −

Note: Different delay from Vi+ &Vi- to either output

Special attention needed for input/output connections to ensure LDI realization

Vi+

Cs-

+ Vo

CIφ1 φ2

Vi-

Vi+on φ1

Vi-on φ2

Vo1on φ1

Vo2on φ2

φ1

φ2

Vo2

Vo1

Output/Inputz-Transform

Page 10: Switched-Capacitor Integrator - EECS Instructional …ee247/fa08/files07/lectures/L10s_f08.pdf · Bottom Plate Switched-Capacitor Integrator z-Transform Model 1 2 1 2 1 11 11 zz 1z

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 19

Bottom Plate Switched-Capacitor Integratorz-Transform Model

12

12

11 1

1 1

z z1 z 1 z

z 11 z 1 z

−−− −

− −

− −

−− −

121

z1 z

−−

12z−

Input/Output z-transformVi+

Cs-

+ Vo

CIφ1 φ2

Vi-

φ1

φ2

Vo2

Vo1

Vi+

Vi- 12z+ Vo2

Vo1

LDI

s IC C

s IC C−

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 20

LDI Switched-Capacitor Ladder Filter

CsCI

12

1z

1 z

−−

-+

+ - + -3

1sτ 4

1sτ 5

1sτ

12z

−12z

+

12z

+12z

CsCI

CsCI

−CsCI

−CsCI

CsCI

Delay around integrator loop is (z-1/2 . z+1/2 =1) LDI function

12

1z

1 z

−−

12

1z

1 z

−−12z

12z

+

Page 11: Switched-Capacitor Integrator - EECS Instructional …ee247/fa08/files07/lectures/L10s_f08.pdf · Bottom Plate Switched-Capacitor Integrator z-Transform Model 1 2 1 2 1 11 11 zz 1z

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 21

Switched-Capacitor LDI Resonator

2s

ω

1s

ω−

C1 1f1 sR C Ceq1 2 2C1 3f2 sR C Ceq3 4 4

ω

ω

= = ×

= = ×

Resonator Signal Flowgraph

φ1 φ2

φ2 φ1

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 22

Fully Differential Switched-Capacitor Resonator

φ1 φ2

φ1 φ2

• Note: Two sets of S.C. bottom plate networks for each differential integrator

Page 12: Switched-Capacitor Integrator - EECS Instructional …ee247/fa08/files07/lectures/L10s_f08.pdf · Bottom Plate Switched-Capacitor Integrator z-Transform Model 1 2 1 2 1 11 11 zz 1z

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 23

Switched-Capacitor LDI Bandpass FilterUtilizing Continuous-Time Termination

0s

ω

0s

ω−

C C3 1f f0 s sC C4 2C2Q CQ

ω = × = ×

=

Bandpass FilterSignal Flowgraph

CQ

Vi

Vos-1/QVo2Vi

Vo2

Vo1

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 24

Switched-Capacitor LDI Bandpass FilterContinuous-Time Termination

0.1 1 10f0

0

-3dBΔf

Frequency

Mag

nitu

de (d

B)

C1 1f f0 s2 C2f0f Q

C C1 Q1 fs2 C C2 4

π

π

= ×

Δ =

= ×

Both accurately determined by cap ratios & clock frequency

Page 13: Switched-Capacitor Integrator - EECS Instructional …ee247/fa08/files07/lectures/L10s_f08.pdf · Bottom Plate Switched-Capacitor Integrator z-Transform Model 1 2 1 2 1 11 11 zz 1z

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 25

Fifth Order All-Pole LDI Low-Pass Ladder FilterComplex Conjugate Terminations

•Complex conjugate terminations (alternate phase switching)

Termination Resistor

Termination Resistor

Ref: Tat C. Choi, "High-Frequency CMOS Switched-Capacitor Filters," U. C. Berkeley, Department of Electrical Engineering, Ph.D. Thesis, May 1983 (ERL Memorandum No. UCB/ERL M83/31).

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 26

Fifth-Order All-Pole Low-Pass Ladder FilterTermination Implementation

Ref: Tat C. Choi, "High-Frequency CMOS Switched-Capacitor Filters," U. C. Berkeley, Department of Electrical Engineering, Ph.D. Thesis, May 1983 (ERL Memorandum No. UCB/ERL M83/31).

Page 14: Switched-Capacitor Integrator - EECS Instructional …ee247/fa08/files07/lectures/L10s_f08.pdf · Bottom Plate Switched-Capacitor Integrator z-Transform Model 1 2 1 2 1 11 11 zz 1z

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 27

Sixth-Order Elliptic LDI Bandpass Filter

TransmissionZero

Ref: Tat C. Choi, "High-Frequency CMOS Switched-Capacitor Filters," U. C. Berkeley, Department of Electrical Engineering, Ph.D. Thesis, May 1983 (ERL Memorandum No. UCB/ERL M83/31).

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 28

Effect of Opamp Nonidealities on Switched Capacitor Filter Behaviour

• Opamp finite gain

• Opamp finite bandwidth

• Finite slew rate of the opamp

• Non-linearity associated with opamp output/input characteristics

Page 15: Switched-Capacitor Integrator - EECS Instructional …ee247/fa08/files07/lectures/L10s_f08.pdf · Bottom Plate Switched-Capacitor Integrator z-Transform Model 1 2 1 2 1 11 11 zz 1z

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 29

Effect of Opamp Non-IdealitiesFinite DC Gain

Input/Output z-transformVi+

Cs-

+ Vo

CIφ1 φ2

Vi-DC Gain = a

sI s 1

I

1

Cs C C

s C a

o

o a

int g

1H( s ) f

s f

H( s )s

Q a

ωω

≈ −+ ×

−≈

+ ×

⇒ ≈

• Finite DC gain same effect in S.C. filters as for C.T. filters• If DC gain not high enough lowing of overall Q & droop in passband

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 30

Effect of Opamp Non-IdealitiesFinite Opamp Bandwidth

Input/Output z-transformVi+

Cs-

+ Vo

CIφ1 φ2

Vi-Unity-gain-freq.

= ft >> fuintg

Ref: K.Martin, A. Sedra, “Effect of the Opamp Finite Gain & Bandwidth on the Performance of Switched-Capacitor Filters," IEEE Trans. Circuits Syst., vol. CAS-28, no. 8, pp. 822-829, Aug 1981.

Assumption-Opamp does not slew (will be revisited)Opamp has only one pole only exponential settling

Vo

φ2

T=1/fs

settlingerror

time

Page 16: Switched-Capacitor Integrator - EECS Instructional …ee247/fa08/files07/lectures/L10s_f08.pdf · Bottom Plate Switched-Capacitor Integrator z-Transform Model 1 2 1 2 1 11 11 zz 1z

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 31

Effect of Opamp Non-IdealitiesFinite Opamp Bandwidth

actual idealIk k 1

I s

I t

I s s

t s

C1 e e ZH ( Z ) H ( Z )

C CC f

where kC C f

f Opamp unity gain frequency , f Clock frequency

π

− − −⎡ ⎤− + ×≈ ⎢ ⎥+⎣ ⎦

= × ×+

→ − − →

Ref: K.Martin, A. Sedra, “Effect of the Opamp Finite Gain & Bandwidth on the Performance of Switched-Capacitor Filters," IEEE Trans. Circuits Syst., vol. CAS-28, no. 8, pp. 822-829, Aug 1981.

Input/Output z-transformVi+

Cs-

+ Vo

CIφ1 φ2

Vi-Unity-gain-freq.

= ft

Vo

φ2

T=1/fs

settlingerror

time

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 32

Effect of Opamp Finite Bandwidth on Filter Magnitude Response

Magnitude deviation due to finite opamp unity-gain-frequency

Example: 2nd

order bandpass with Q=25

fc /ft

|Τ|non-ideal /|Τ|ideal (dB)

fc /fs=1/32fc /fs=1/12

Active RC

Ref: K.Martin, A. Sedra, “Effect of the Opamp Finite Gain & Bandwidth on the Performance of Switched-Capacitor Filters," IEEE Trans. Circuits Syst., vol. CAS-28, no. 8, pp. 822-829, Aug 1981.

Page 17: Switched-Capacitor Integrator - EECS Instructional …ee247/fa08/files07/lectures/L10s_f08.pdf · Bottom Plate Switched-Capacitor Integrator z-Transform Model 1 2 1 2 1 11 11 zz 1z

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 33

Effect of Opamp Finite Bandwidth on Filter Magnitude Response

Example:For 1dB magnitude response deviation:1- fc/fs=1/12

fc/ft~0.04ft>25fc

2- fc/fs=1/32fc/ft~0.022

ft>45fc

3- Cont.-Timefc/ft~1/700

ft >700fc fc /ft

|Τ|non-ideal /|Τ|ideal (dB)

fc /fs=1/32fc /fs=1/12

Active RC

Ref: K.Martin, A. Sedra, “Effect of the Opamp Finite Gain & Bandwidth on the Performance of Switched-Capacitor Filters," IEEE Trans. Circuits Syst., vol. CAS-28, no. 8, pp. 822-829, Aug 1981.

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 34

Effect of Opamp Finite Bandwidth on Filter Critical Frequency

Critical frequency deviation due to finite opamp unity-gain-frequency

Example: 2nd

order filterfc /ft

Δωc /ωc

fc /fs=1/32

fc /fs=1/12

Active RC

Ref: K.Martin, A. Sedra, “Effect of the Opamp Finite Gain & Bandwidth on the Performance of Switched-Capacitor Filters," IEEE Trans. Circuits Syst., vol. CAS-28, no. 8, pp. 822-829, Aug 1981.

Page 18: Switched-Capacitor Integrator - EECS Instructional …ee247/fa08/files07/lectures/L10s_f08.pdf · Bottom Plate Switched-Capacitor Integrator z-Transform Model 1 2 1 2 1 11 11 zz 1z

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 35

Effect of Opamp Finite Bandwidth on Filter Critical Frequency

fc /ft

Δωc /ωc

fc /fs=1/32

fc /fs=1/12

Active RC

Example:For maximum critical frequency shift of <1%

1- fc/fs=1/32fc/ft~0.028

ft>36fc

2- fc/fs=1/12fc/ft~0.046

ft>22fc

3- Active RCfc/ft~0.008

ft >125fc

C.T. filters

Ref: K.Martin, A. Sedra, “Effect of the Opamp Finite Gain & Bandwidth on the Performance of Switched-Capacitor Filters," IEEE Trans. Circuits Syst., vol. CAS-28, no. 8, pp. 822-829, Aug 1981.

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 36

Opamp Bandwidth Requirements for Switched-Capacitor Filters Compared to Continuous-Time Filters

• Finite opamp bandwidth causes phase lag at the unity-gain frequency of the integrator for both type filters

Results in negative intg. Q & thus increases overall Q and gain @ results in peaking in the passband in the frequency range of interest

• For given filter requirements, opamp bandwidth requirements muchless stringent for S.C. filters compared to cont. time filters

Lower power dissipation for S.C. filters (at low freq.s only due to other effects)

• Finite opamp bandwidth causes down shifting of critical frequencies in both type filters– Since cont. time filters are usually tuned tuning accounts for frequency

deviation– S.C. filters are untuned and thus frequency shift could cause problems

specially for narrow-band filters

Page 19: Switched-Capacitor Integrator - EECS Instructional …ee247/fa08/files07/lectures/L10s_f08.pdf · Bottom Plate Switched-Capacitor Integrator z-Transform Model 1 2 1 2 1 11 11 zz 1z

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 37

Sources of Distortion in Switched-Capacitor Filters

• Opamp output/input transfer function non-linearity- similar to cont. time filters

• Capacitor non-linearity, similar to cont. time filters

• Distortion induced by finite slew rate of the opamp

• Distortion incurred by finite setting time of the opamp

• Distortion due to switch clock feed-through and charge injection

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 38

What is Slewing?

oV

Vi+Vi-

φ2

Cs

-

+

Vin

Vo

φ2CI

Cs

CI

CL

Assumption:Integrator opamp is a simple class Atransconductance type differential pairwith fixed tail current, Iss=const.

Iss

Page 20: Switched-Capacitor Integrator - EECS Instructional …ee247/fa08/files07/lectures/L10s_f08.pdf · Bottom Plate Switched-Capacitor Integrator z-Transform Model 1 2 1 2 1 11 11 zz 1z

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 39

oV

Vi+Vi-

φ2

Cs

CI

Iss

What is Slewing?

Io

VinVmax

Imax= -Iss/2

Slope ~ gm

|VCs| > Vmax Output current constant Io=Iss/2 or –Iss/2Constant current charging/discharging CI: Vo ramps down/up Slewing

After VCs is discharged enough to have: |VCs|<Vmax Io=gm VCs Exponential or over-shoot settling

Io

Opamp Io v.s. Vin

Imax= +Iss/2

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 40

Distortion Induced by Opamp Finite Slew Rate

Multiple pole settling

One pole settling

Output Voltage

TimeSlewing SettlingSettling (multi-pole)

Vo

Page 21: Switched-Capacitor Integrator - EECS Instructional …ee247/fa08/files07/lectures/L10s_f08.pdf · Bottom Plate Switched-Capacitor Integrator z-Transform Model 1 2 1 2 1 11 11 zz 1z

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 41

Ideal Switched-Capacitor Output Waveform

φ1

φ2

Vin

Vo

Vcs

Clock-

+

Vin

Vo

φ1CI

Cs

-

+

Vin

Vo

φ2CI

Cs

φ2 High Charge transferred from Cs to CI

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 42

Slew Limited Switched-Capacitor IntegratorOutput Slewing & Settling

φ1

φ2

Vo-real

Vo-ideal

Clock

Slewing LinearSettling

Slewing LinearSettling

Page 22: Switched-Capacitor Integrator - EECS Instructional …ee247/fa08/files07/lectures/L10s_f08.pdf · Bottom Plate Switched-Capacitor Integrator z-Transform Model 1 2 1 2 1 11 11 zz 1z

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 43

Distortion Induced by Finite Slew Rate of the Opamp

Ref: K.L. Lee, “Low Distortion Switched-Capacitor Filters," U. C. Berkeley, Department of Electrical Engineering, Ph.D. Thesis, Feb. 1986 (ERL Memorandum No. UCB/ERL M86/12).

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 44

Distortion Induced by Opamp Finite Slew Rate

• Error due to exponential settling changes linearly with signal amplitude

• Error due to slew-limited settling changes non-linearly with signal amplitude (doubling signal amplitude X4 error)

For high-linearity need to have either high slew rate or non-slewing opamp

( )( )

( )

o s

o s

2T2ok 2r s

2T 22 oo o3 o s 3

r s r s

8 sinVHD S T k k 4

8 sin fV 8 VHD for f f HDS T 15 15S f

ω

ω

π

ππ

=−

→ = << → ≈

Ref: K.L. Lee, “Low Distortion Switched-Capacitor Filters," U. C. Berkeley, Department of Electrical Engineering, Ph.D. Thesis, Feb. 1986 (ERL Memorandum No. UCB/ERL M86/12).

Page 23: Switched-Capacitor Integrator - EECS Instructional …ee247/fa08/files07/lectures/L10s_f08.pdf · Bottom Plate Switched-Capacitor Integrator z-Transform Model 1 2 1 2 1 11 11 zz 1z

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 45

Example: Slew Related Harmonic Distortion

( )o s2T

2o3r s

2oo3

r s

8 sinVHD S T 15

f8 VHD 15S f

ω

π

π

=

Ref: K.L. Lee, “Low Distortion Switched-Capacitor Filters," U. C. Berkeley, Department of Electrical Engineering, Ph.D. Thesis, Feb. 1986 (ERL Memorandum No. UCB/ERL M86/12).

Switched-capacitor filter with 4kHz bandwidth, fs=128kHz, Sr=1V/μsec, Vo=3V

12dB

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 46

Distortion Induced by Finite Slew Rate of the Opamp

• Note that for a high order switched capacitor filter only the last stage slewing will affect the output linearity (as long as the previous stages settle to the required accuracy)

Can reduce slew limited linearity by using an amplifier with a higher slew rate only for the last stageCan reduce slew limited linearity by using class A/B amplifiers

• Even though the output/input characteristics is non-linear as long as the DC open-loop gain is high, the significantly higher slew rate compared to class A amplifiers helps improve slew rate induced distortion

• In cases where the output is sampled by another sampled data circuit (e.g. an ADC or a S/H) no issue with the slewing of the output as long as the output settles to the required accuracy & is sampled at the right time

Page 24: Switched-Capacitor Integrator - EECS Instructional …ee247/fa08/files07/lectures/L10s_f08.pdf · Bottom Plate Switched-Capacitor Integrator z-Transform Model 1 2 1 2 1 11 11 zz 1z

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 47

Sources of Noise in Switched-Capacitor Filters

• Opamp Noise– Thermal noise– 1/f (flicker) noise

• Thermal noise associated with the switching process (kT/C)– Same as continuous-time filters

• Precaution regarding aliasing of noise required

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 48

Switched-Capacitor Filter ApplicationExample: Voice-Band Codec (Coder-Decoder) Chip

Ref: D. Senderowicz et. al, “A Family of Differential NMOS Analog Circuits for PCM Codec Filter Chip,” IEEE Journal of Solid-State Circuits, Vol.-SC-17, No. 6, pp.1014-1023, Dec. 1982.

fs= 1024kHz fs= 128kHz fs= 8kHz fs= 8kHz

fs= 8kHz fs= 128kHz fs= 128kHz

fs= 128kHz

Page 25: Switched-Capacitor Integrator - EECS Instructional …ee247/fa08/files07/lectures/L10s_f08.pdf · Bottom Plate Switched-Capacitor Integrator z-Transform Model 1 2 1 2 1 11 11 zz 1z

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 49

CODEC Transmit Path Lowpass Filter Frequency Response

0 2000 4000 6000 8000-50

-40

-30

-20

-10

0

Frequency (Hz)

Mag

nitu

de (d

B)

Note: fs=128kHz

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 50

CODEC Transmit Path Highpass Filter

1000-50

-40

-30

-20

-10

0

Frequency (Hz)

Mag

nitu

de (d

B)

1000010010

Note: fs=8kHz

23060

Page 26: Switched-Capacitor Integrator - EECS Instructional …ee247/fa08/files07/lectures/L10s_f08.pdf · Bottom Plate Switched-Capacitor Integrator z-Transform Model 1 2 1 2 1 11 11 zz 1z

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 51

CODEC Transmit Path Filter Overall Frequency Response

1000-50

-40

-30

-20

-10

0

Frequency (Hz)

Mag

nitu

de (d

B)

1000010010

Low Q bandpass (Q<1) filter shape Implemented with lowpass followed by highpass

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 52

CODEC Transmit Path Clocking & Anti-Aliasing Scheme

First filter (1st order RC type) performs anti-aliasing for the next S.C. biquad

The 1st & 2nd stage filters form 3rd order elliptic LPF with corner frequency @ 32kHz Anti-aliasing for the next lowpass filter

The stages prior to the high-pass perform anti-aliasing for high-pass

Notice gradual lowering of clock frequency Ease of anti-aliasing

Page 27: Switched-Capacitor Integrator - EECS Instructional …ee247/fa08/files07/lectures/L10s_f08.pdf · Bottom Plate Switched-Capacitor Integrator z-Transform Model 1 2 1 2 1 11 11 zz 1z

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 53

SC Filter SummaryPole and zero frequencies proportional to

– Sampling frequency fs– Capacitor ratios

High accuracy and stability in responseLong time constants realizable without requiring large value R

Compatible with transconductance amplifiers– Reduced circuit complexity, power dissipation

Amplifier bandwidth requirements less stringent compared to CT filters (low frequencies only)Issue: Sampled-data filters require anti-aliasing prefiltering

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 54

Switched-Capacitor Filters versus Continuous-Time Filter Limitations

Considering overall effects of:

• Opamp finite slew rate

• Opamp finite unity-gain-bandwidth

• Opamp settling issues

• Clock feedthru

• Switch+ sampling cap. finite time-constant

Filter bandwidth

MagnitudeError

5-10MHz

S.C. Filter

Cont. Time Filter

Limited switched-capacitor filter performance frequency range

Page 28: Switched-Capacitor Integrator - EECS Instructional …ee247/fa08/files07/lectures/L10s_f08.pdf · Bottom Plate Switched-Capacitor Integrator z-Transform Model 1 2 1 2 1 11 11 zz 1z

EECS 247 Lecture 10 Switched-Capacitor Filters © 2008 H. K. Page 55

SummaryFilter Performance versus Filter Topology

_

1-5%

1-5%

1-5%

1-5%

Freq. tolerance+ tuning

<<1%40-90dB~ 10MHzSwitched Capacitor

+-40-60%40-70dB~ 100MHzGm-C

+-30-50%50-90dB~ 5MHzOpamp-MOSFET-RC

+-30-50%40-60dB~ 5MHzOpamp-MOSFET-C

+-30-50%60-90dB~10MHzOpamp-RC

Freq. tolerance w/o tuning

SNDRMax. Usable Bandwidth