66
Switched Capacitor Circuits

Switched)Capacitor)Circuits)€¦ · Introduc3on) • A)Switched)Capacitor)(SC))circuitis)builtof) OPAMPs,)switches,)capacitors,)and)clocks.) • The)OPAMPs)used)will)have)finite)dc)gain,)finite)

  • Upload
    hadat

  • View
    235

  • Download
    1

Embed Size (px)

Citation preview

Switched  Capacitor  Circuits  

Introduc3on  

•  Un3l  1970’s  analog  signal  processing  used  con3nuous  3me  approach  with  resistors  and  capacitors.  

•  RC  3me  constants  can  vary  by  as  much  as  20%.  •  Capacitor  ra3os  can  be  made  accurate  to  about  0.1%.  

•  In  addi3on  to  filtering,  switched  capacitor  approach  can  be  used  for  gain  stages,  VCO’s,  modulators,  DAC’s,  etc.  

Introduc3on  

•  A  Switched  Capacitor  (SC)  circuit  is  built  of  OPAMPs,  switches,  capacitors,  and  clocks.  

•  The  OPAMPs  used  will  have  finite  dc  gain,  finite  unity  gain  frequency  (GBW),  slew  rate,  and  dc  offset.  

•  The  capacitors  are  generally  parallel  plate  capacitors  and  should  be  correctly  modeled.  

•  The  ON  and  OFF  resistances  and  parasi3c  capacitances  of  the  switches  are  important.  

•  The  3ming  of  the  clocks  is  very  important  and  non-­‐overlapping  clocks  may  be  required.  

Introduc3on  

Phi1 Phi2

V1 V2

Introduc3on  

•  C1  is  charged  to  V1  and  V2  each  clock  period.  •  The  change  in  charge  over  one  clock  period  ΔQ1  is  given  by,  

•  Then,    

ΔQ1 = C1 V1 −V2( )

Iavg =C1 V1 −V2( )

T

Req =TC1

=1C1 f s

Technology  

•  Capacitors  can  be  realized  by  four  different  techniques;  metal-­‐n+,  metal  poly,  poly-­‐poly,  and  metal-­‐metal.  

•  Metal-­‐n+  uses  the  gate  oxide.  Hence,  large  capacitance  in  a  small  area.  However,  voltage  dependence  and  substrate  noise.  

•  Metal-­‐poly  is  more  linear,  but  has  large  parasi3cs.  

Technology  

•  Poly-­‐poly  is  also  quite  good,  but  not  available  in  many  technologies.  Also,  large  parasi3c  capacitances.  

•  MIM  (Metal-­‐Insulator-­‐Metal)  present  only  in  modern  technologies.  Typically  the  best  choice.  

•  You  can  even  build  your  own  ver3cal  capacitors.  However,  matching  will  not  be  that  good.  

Technology  

•  In  order  to  match  capacitors,  the  Area/Perimeter  ra3os  should  be  kept  the  same.  

•  Also,  use  symmetry  and  common  centroid  type  layouts.  

•  Be  careful  about  local  and  global  type  random  errors.  

Technology  

sweep

impe

danc

e

XXX

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2V

0.0

5.0

10.0

15.0

20.0

kohm (v(3) - v(4))/i(vdum)

Technology  

sweep

impe

danc

e

XXX

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5V

1

2

3

4

5

6

7

8

9

kohm (v(3) - v(4))/i(vdum)

Technology  

sweep

impe

danc

e

XXX

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5V

1.8

2.0

2.2

2.4

2.6

2.8

kohm (v(3) - v(4))/i(vdum)

Technology  

•  The  first  curve  is  the  ON  resistance  of  a  single  NMOS  (W=1µm  L=0.35µm).  

•  The  second  curve  is  the  ON  resistance  of  a  transmission  gate  with  iden3cal  NMOS  and  PMOS  devices.  

•  The  final  curve    is  the  ON  resistance  of  a  transmission  gate  with  a  PMOS  device  of  dimension  W=3.5µm  L=0.35µm.  

Technology  

•  For  small  supply  voltages,  the  two  peaks  come  together  and  the  resistance  is  not  reduced  properly.  

•  Now,  let  us  decrease  the  supply  voltage  to  2.5V  from  3.3V.  

•  Finally,  we  will  decrease  it  to  0.8V.  •  Take  the  most  symmetric  curve  (with  the  larger  PMOS  device).  

Technology  

sweep

impe

danc

e

XXX

0.0 0.5 1.0 1.5 2.0 2.5V

2.0

2.5

3.0

3.5

4.0

4.5

kohm (v(3) - v(4))/i(vdum)

Technology  

sweep

impe

danc

e

XXX

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8V

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

kohm (v(3) - v(4))/i(vdum)

Simple  Calcula3ons  

•  Let  us  now  calculate  the  effect  of  RON  on  the  opera3on  of  the  circuit.  

•  The  resistance  creates  a  simple  RC  network  with  the  capacitance  of  the  SC  circuit.  

•  One  can  easily  write  its  behavior.  

Vout =Vin 1− exp −tRC

⎝ ⎜

⎠ ⎟

⎝ ⎜

⎠ ⎟

ts = RC ln 1ε( )

Simple  Calcula3ons  

•  From  these  expressions,  one  finds  that  for  an  error  of  less  than  0.1%,  ts  should  be  chosen  around  7RC.  

•  Using  RON  =  10K  and  C  =  1pF,  ts  =  70  ns.  •  Then,  the  clock  period  is  140  ns.    •  This  yields  a  max.  clock  frequency  of  7  MHz.  

•  For  larger  clock  speeds,  either  make  the  capacitances  smaller,  or  the  switches  larger.  

Simple  Calcula3ons  

•  The  leakage  currents  through  the  OFF  switches  also  dictate  a  minimum  frequency.    

•  For  our  technology,  this  frequency  is  on  the  order  of  a  few  Hz  at  room  temperature  although  it  increases  exponen3ally  with  temperature.  

Simple  Calcula3ons  

•  Clock  feedthrough  is  also  important.  •  The  clock  signals  couple  to  the  capacitors  over  the  overlap  capacitances.  

•  For  W  =  3µm  and  L  =  0.7µm,  Cov  =  1fF.  

•  This  creates  about  3mV  error  in  the  stored  voltage.  

•  Note  however  that  this  error  is  at  the  clock  frequency  and  its  harmonics.    

Simple  Calcula3ons  

•  Charge  redistribu3on  is  also  important.    •  The  charge  stored  in  the  channel  disappears  when  the  transistor  is  switched  OFF.  

•  For  the  same  transistor,  Q  is  about  6fC.  

•  If  it  divides  into  two  equal  por3ons  (for  source  and  drain),  it  creates  3mV  error  on  the  1pF  external  capacitors.  

Simple  Calcula3ons  

•  One  solu3on  to  charge  redistribu3on  is  to  increase  the  capacitances.  However,  this  will  also  increase  the  area  and  the  power  and  decrease  the  speed.  

•  Another  op3on  is  to  insert  a  dummy  switch  of  half  size  working  at  the  opposite  phase.  This  is  successful  if  the  charge  is  split  into  two  equal  por3ons.  

Simple  Calcula3ons  

Phi2

Phi1

Phi1

Phi2

Simple  Calcula3ons  

•  If  the  charge  is  not  split  equally,  this  might  even  may  things  worse.  

•  How  the  charge  splits  is  a  complex  func3on  of  the  rise  and  fall  3mes  of  the  clocks,  the  clock  jijer,  and  the  capacitances  on  each  side  of  the  switch.  

•  For  steep  rise  and  fall  3mes,  the  capacitance  ra3os  on  either  side  has  less  effect.  

Simple  Calcula3ons  

•  Another  op3on  to  reduce  the  error  is  to  use  a  fully  differen3al  approach.  

•  Also,  using  iden3cal  NMOS  and  PMOS  devices  helps.  

Switched  Capacitor  Integrator  

Switched  Capacitor  Integrator  

•  Let  C1  =  aC  and  C2  =  C.  •  Ini3ally,  ignore  the  φ1  switch  at  the  output.  •  Then,  at  phase  1,  

•  At  phase  2,      €

QaC1 = aCVin n −1 2( )QC1 = −CVout n −1( )Vout n −1 2( ) =Vout n −1( )

QaC 2 = 0QC 2 = −CVout n( )

Switched  Capacitor  Integrator  

•  Using  charge  conserva3on,  

•  This  equa3on  is  valid  if  sampling  is  performed  at  φ2.  

•  If  φ1  is  preferred  for  sampling,    

QaC 2 +QC 2 =QaC1 +QC1

−CVout n( ) = aCVin n −1 2( ) −CVout n −1( )

−CVout n( ) = aCVin n −1( ) −CVout n −1( )

Switched  Capacitor  Integrator  

•  The  first  equa3on  becomes  in  the  z-­‐domain  

•  The  second  equa3on  becomes  

CVout = z−1CVout − z−1 2aCVin

Vout

Vin

= −a z−1 2

1− z−1

CVout = z−1CVout − z−1aCVin

Vout

Vin

= −a z−1

1− z−1

Switched  Capacitor  Integrator  

•  The  second  equa3on  looks  like  the  bejer  integrator.  Let  us  now  write  the  behavior  of  the  first  one  in  the  con3nuous  frequency  domain.  

•  For  x  =  0.1,  sinc(x)  =  0.997.  For  x  =  0.05,                sinc(x)  =  0.999  

H e jωTc( ) = −a e− jωTc 2

1− e− jωTc= −a 1

e jωTc 2 − e− jωTc 2= −

ajωTc

ωTc 2sin ωTc 2( )

Switched  Capacitor  Integrator  

•  The  second  equa3on  becomes  in  the  frequency  domain,  

•  This  equa3on  has  a  phase  error  in  addi3on  to  the  magnitude  error.  

•  The  phase  error  can  create  instabili3es  in  higher  order  systems.  

Vout

Vin

= −ajωTc

ωTc 2sin ωTc 2( )

e− jωTc 2

Switched  Capacitor  Integrator  

•  There  are  stray  capacitances  at  the  input.  These  are  typically  connected  to  ground.  Hence  they  are  shorted  out.  

•  There  are  also  stray  capacitances  also  in  the  feedback.    –  If  the  stray  capacitance  is  connected  to  the  nega3ve  input  of  the  OPAMP,  it  couples  noise.  

–  If  it  is  connected  to  the  output,  it  changes  the  load  capacitance.  

Switched  Capacitor  Integrator  

•  Moreover,  the  source  and  drain  capacitances  of  the  switches  are  added  to  the  input  capacitance,  causing  5  -­‐  10%  error.  

•  Thus,  this  integrator  is  rarely  used.    •  Instead,  a  stray  insensi3ve  integrator  should  be  preferred.  

Switched  Capacitor  Integrator  

Switched  Capacitor  Integrator  

•  Capacitor  C1  is  now  floa3ng.  •  Similar  func3ons  are  carried  out  during  the  two  phases.    

•  During  phase  1,  C1  is  charged  to  the  input  voltage.  

•  During  phase  2,  it  is  discharged  to  zero,  forcing  the  charge  to  C2.  

Switched  Capacitor  Integrator  

Switched  Capacitor  Integrator  

•  During  phase  1  (figure  a),  the  lel  side  of  the  capacitor  is  charged  posi3vely.  Its  right  side  is  nega3ve.    

•  During  phase  2  (figure  b),  it  is  applied  to  an  inver3ng  configura3on.  

•  Therefore,  the  net  result  is  that  it  is  a  non-­‐inver3ng  integrator.  

Switched  Capacitor  Integrator  

•  Now,  look  at  phase  1  (figure  a)  more  closely.    •  The  stray  capacitance  to  the  lel  of  C1  is  charged  to  the  input  voltage  through  a  low  impedance  node.    

•  Thus,  its  charge  does  not  affect  the  charge  on  C1.  

•  The  capacitance  to  the  right  is  shorted  to  ground.  Hence,  no  effect.  

Switched  Capacitor  Integrator  

•  During  phase  2  (figure  b),  the  parasi3c  capacitor  to  the  lel  of  C1  is  shunted  to  ground.  

•  Its  charge  obtained  during  phase  1  disappears  into  ground.  

•  The  parasi3c  capacitor  on  the  right  is  now  connected  to  the  nega3ve  terminal  of  the  OPAMP  and  hence  to  virtual  ground.  

•  This  way,  one  can  choose  the  integrator  capacitances  smaller,  saving  power  and  speed.  

Switched  Capacitor  Integrator  

Switched  Capacitor  Integrator  

Switched  Capacitor  OPAMP  Requirements  

•  For  a  step  input  to  an  OPAMP  with  feedback  factor  α,  we  expect  the  output  to  be  independent  of  OPAMP  gain  and  equal  to  1/α.  

Vout =A0Vstep

1+αA0

ε =Vstep α −Vout

Vstep α=1− A0α

1+αA0≈1αA0

A0 >1

αεmax

Switched  Capacitor  OPAMP  Requirements  

•  For  a  maximum  error  of  0.05%,  the  required  gain  is  5000  –  10000.  

•  The  sejling  3me  is  also  quite  important.  

•  Let  us  call  the  error  from  the  sejling  3me  the  dynamic  error  εD.  

•  For  a  devia3on  of  0.1%,  about  7  3me  constants  are  necessary.  

•  Let  us  look  at  this  more  analy3cally  

Switched  Capacitor  OPAMP  Requirements  

•  The  dynamic  error  is  given  by,  

εD = exp −αgmtsCL,ef

⎝ ⎜ ⎜

⎠ ⎟ ⎟

GBW =gm

2πCL ,ef

εD = exp −α2πGBWts( )

GBW =1

α2πtsln 1εD

⎝ ⎜

⎠ ⎟ =

2 fc2πα

ln 1εD

⎝ ⎜

⎠ ⎟

GBW >fcπαln 1εD

⎝ ⎜

⎠ ⎟

Switched  Capacitor  OPAMP  Requirements  

•  The  term  ln(1/εD)  is  about  7  for  0.1%,  but  7.6  for  0.05%.  

•  For  α  unity,  2.4*fc  would  be  enough.  •  Typically,  large  a  values  are  not  present  in  switched  capacitor  circuits.  Thus,  the  GBW  is  chosen  about  3  3mes  the  clock  period.  

Switched  Capacitor  Noise  

•  Because  the  GBW  is  always  larger  than  the  clock  frequency  fc,  the  noise  is  folded  back  towards  the  lowest  frequency  band.  This  is  a  heavy  case  of  aliasing.  

•  We  can  write  the  total  noise  as  

vni2 =

kTCGBWfc 2

Signal  Flow  Graph  Analysis  

•  Take  the  following  circuit  as  an  example.  

Signal  Flow  Graph  Analysis  

•  The  equivalent  signal  flow  graph  is  

•  We  can  write  the  transfer  func3on  as  

Vo z( ) = −C1CA

⎝ ⎜

⎠ ⎟ V1 z( ) +

C2

CA

⎝ ⎜

⎠ ⎟

z−1

1− z−1⎛

⎝ ⎜

⎠ ⎟ V2 z( ) − C3

CA

⎝ ⎜

⎠ ⎟

11− z−1⎛

⎝ ⎜

⎠ ⎟ V3 z( )

Switched  Capacitor  Filters  

•  A  first  order  ac3ve  filter  in  con3nuous  domain  is  as  follows:  

Switched  Capacitor  Filters  

•  A  direct  implementa3on  of  this  is  as  follows:  

Switched  Capacitor  Filters  

•  The  transfer  func3on  of  this  filter  is    

•  The  poles  and  zeros  are  given  by  €

CA 1− z−1( )Vo z( ) = −C3Vo z( ) −C2Vi z( ) −C1 1− z

−1( )Vi z( )

H z( ) = −

C1CA

⎝ ⎜

⎠ ⎟ 1− z−1( ) +

C2

CA

⎝ ⎜

⎠ ⎟

1− z−1 +C3

CA

= −

C1 +C2

CA

⎝ ⎜

⎠ ⎟ z +

C1CA

1+C3

CA

⎝ ⎜

⎠ ⎟ z −1

zp =CA

CA +C3

zz =C1

C1 +C2

Switched  Capacitor  Filters  

•  For  posi3ve  capacitance  values,  these  are  all  between  0  and  1.  

•  However,  in  fully  differen3al  opera3on,  it  is  easy  to  get  a  nega3ve  capacitance  by  interchanging  the  input  wires.  

•  Then,  sepng  C1  =  -­‐0.5C2,  one  can  obtain  a  zero  at  z=-­‐1.  

Switched  Capacitor  Filters  

•  Let  us  now  carry  out  an  exact  analysis  

•  Making  ωT<<1,  €

H z( ) = −

C1CA

⎝ ⎜

⎠ ⎟ z1 2 − z−1 2( ) +

C2

CA

⎝ ⎜

⎠ ⎟ z1 2

z1 2 − z−1 2 +C3

CA

z1 2

H e jωT( ) = −j 2C1 +C2

CA

sin ωT2

⎝ ⎜

⎠ ⎟ +

C2

CA

cos ωT2

⎝ ⎜

⎠ ⎟

j 2 +C3

CA

⎝ ⎜

⎠ ⎟ sin

ωT2

⎝ ⎜

⎠ ⎟ +

C3

CA

cos ωT2

⎝ ⎜

⎠ ⎟

H e jωT( ) ≈j C1 +C2 2

CA

⎝ ⎜

⎠ ⎟ ωT +

C2

CA

j 1+C3

2CA

⎝ ⎜

⎠ ⎟ ωT +

C3

CA

Switched  Capacitor  Filters  

•  This  approximate  equa3on  will  yield  a  zero  and  a  pole  at  

jω zT =−C2 C11+

C2

2C1

jω pT =−C3 CA

1+C3

2CA

Switched  Capacitor  Filters  

•  The  direct  implementa3on  does  not  yield  the  best  circuit.  

•  Some  switches  are  unnecessary  and  could  be  shared  with  others.  

Switched  Capacitor  Filters  

•  Switched  capacitor  filters  should  in  general  be  implemented  in  a  fully  differen3al  fashion.  

Switched  Capacitor  Filters  

•  One  can  design  more  complex  filters  with  the  techniques  shown  above.    

•  Many  higher  order  filters  are  designed  with  the  SC  technique  nowadays.  

•  However,  SC  circuits  have  many  more  applica3ons.  

Differen3al  SC  Integrator  

time

voltage

XXX

0.0 20.0 40.0 60.0 80.0 100.0us

-600

-400

-200

0

200

400

600

mV v(10) v(11)

Differen3al  SC  Integrator  

time

volt

age

XXX

0.0 2.0 4.0 6.0 8.0 10.0us

-60.0

-40.0

-20.0

0.0

20.0

40.0

60.0

mV v(10) v(11)

Switched  Capacitor  Gain  Circuits  

Switched  Capacitor  Gain  Circuits  

•  The  following  is  a  resejable  gain  circuit  where  OPAMP  offset  is  cancelled.  

Switched  Capacitor  Gain  Circuits  

•  During  phase  2  (figure  a),  the  OPAMP  offset  is  stored  on  both  C1  and  C2.    

Switched  Capacitor  Gain  Circuits  

•  At  the  end  of  phase  1  (figure  b),  the  voltage  across  C1  is  given  by  VC1(n)  =  Vin(n)  –  Voff.    

•  On  the  other  hand,  the  voltage  across  C2  is  given  by  VC2(n)  =  Vout(n)  –  Voff.  

•  Then,  

ΔQC1 = C1 VC1 n( ) − −Voff( )[ ] = C1Vin n( )

VC 2 n( ) =VC 2 n −1 2( ) − ΔQC 2

C2

Switched  Capacitor  Gain  Circuits  

•  Since  the  voltage  across  C2  one  period  earlier  was  –Voff  and  ΔQC2  =  ΔQC1,    

•  Finally,  since  one  side  of  C2  is  connected  to  virtual  ground  which  is  at  Voff,  

VC 2 n( ) = −Voff −C1Vin n( )C2

Vout n( ) =Voff +VC 2 n( )

Vout n( ) =Voff + −Voff −C1Vin n( )C2

⎝ ⎜

⎠ ⎟ = −

C1C2

⎝ ⎜

⎠ ⎟ Vin n( )

Switched  Capacitor  Gain  Circuits  

•  Note  that  offset  cancella3on  is  also  good  for  comba3ng  1/f    noise.  

•  Also  note  that  this  structure  requires  a  high  slew  rate  from  the  OPAMP.  

•  A  bejer  structure  is  called  the  capaci3ve  reset  circuit  and  is  as  follows:  

Switched  Capacitor  Gain  Circuits  

Switched  Capacitor  Gain  Circuits  

•  The  main  idea  here  is  the  inclusion  of  C3  which  charges  to  the  output  voltage  during  phase  1.  

•  During  phase  2,  it  prevents  the  output  from  going  to  zero.  The  output  remains  near  the  previous  output  level.  

•  Also,  during  phase  2,  the  charges  of  C1  and  C2  are  equal  and  thus  C3  does  not  effect  the  behavior  of  the  circuit.