137
Synthesis and Characterization of New Ferrocenyl-Containing Tin(IV) and Indium(III) Porphyrins A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Samantha Jolene Dammer IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE Advised by Dr. Victor Nemykin July 2011

Synthesis and Characterization of New Ferrocenyl

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Synthesis and Characterization of New Ferrocenyl

Synthesis and Characterization of New Ferrocenyl-Containing Tin(IV) and Indium(III) Porphyrins

A THESIS

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA

BY

Samantha Jolene Dammer

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

Advised by Dr. Victor Nemykin

July 2011

Page 2: Synthesis and Characterization of New Ferrocenyl

© Samantha Jolene Dammer 2011

Page 3: Synthesis and Characterization of New Ferrocenyl

i

Acknowledgements

I would first like to express great gratitude to my advisor Dr. Victor Nemykin for

his support and encouragement throughout my research. I would like to show my

appreciation to Pavlo Solntsev for his patience and guidance in the lab. I would also like

to thank Jared Sabin, for his aid in teaching me how to use all the instrumentation and for

running all of the computational chemistry. Lastly, I would like to thank the UMD

Chemistry Department as a whole for its support and the National Science Foundation

for funding (Grants CHE-0809203 and CHE-0922366) and the Minnesota Super

Computing Institute.

Part one is reprinted with permission from Chemical Communications. 2010, 46, 658. Copyright 2010. The Royal Society of Chemistry; http://pubs.rsc.org/en/content/articlelanding/2010/cc /c0cc02171g

Page 4: Synthesis and Characterization of New Ferrocenyl

ii

For Andy, Mom, Dad, and Sarah

&

To Those Trying to Set the World on Its Ear

Page 5: Synthesis and Characterization of New Ferrocenyl

iii

Abstract

A series of new tin (IV) σ-bonded ferrocene-containing porphyrins, FcXSnTPP

complexes (X = Fc or Cl; TPP = 5,10,15,20-tetraphenylporphyrin(2-)) and FcXSnOEP

complexes (X = Fc or OEt; OEP = 5,10,15,20-octaethylporphyrin(2-)), have been

prepared and characterized using 1H NMR, UV-Vis, and MCD spectroscopy. Structures

of all target compounds were confirmed by single crystal X-ray analysis. The redox

properties of these compounds were investigated using electrochemistry,

spectroelectrochemistry, and chemical oxidation techniques. It has been found that the

presence of one or more ferrocene groups leads to controlled redox behaviors that can

have potential application in optical and fluorescent sensors. Three new indium(III) poly-

ferrocenyl porphyrins (XInTFcP complexes [X = Cl, OH, or Fc; TFcP = 5,10,15,20-

tetraferrocenylporphyrin(2-)] have also been prepared and investigated by the similar

methods. Through redox property analysis, mixed-valence state formations were

observed between Fe(II)-Fe(III) centers. The mixed-valence nature of these compounds

makes them candidates for molecular electronics. DFT calculations were also performed

in order to understand the electronic structure and its relation to the redox properties

involved for some of the compounds.

Page 6: Synthesis and Characterization of New Ferrocenyl

iv

Table of Contents Acknowledgements i

Abstract ii

Table of Contents iv

Table of Figures vi

Table of Tables ix

Table of Schemes x

Introduction 1

1. σ- Bonded Ferrocene Containing Tin (IV) Pophryins 2

Introduction 2

Synthesis 4

X-Ray Analysis 5

NMR Spectroscopy 12

UV-Vis and MCD 15

Electrochemistry 16

Spectroelectrochemistry 18

Chemical Oxidation Titrations 20

Fluorescence Oxidation Titrations and Quantum Yield 24

Electronic Structure 28

Conclusions 33

2. Indium (III) Poly-Ferrocenyl Containing Porphyrins 34

Introduction 34

Page 7: Synthesis and Characterization of New Ferrocenyl

v

Synthesis 35

X-Ray Analysis 37

NMR Spectroscopy 42

UV-Vis and MCD 50

Electrochemistry 52

Spectroelectrochemistry 55

Chemical Oxidation Titrations 59

Electronic Structure 64

Conclusions 66

Experimental Section 67

Materials 67

Synthesis 67

Instrumentation 73

Computation Aspects 73

X-Ray Crystallography 74

References 78

Supplemental Information 82

1. Inter-Valence Charge Transfer Band Analysis 82

2. Electrochemical Data Deconvolution Analysis 83

3. CIF Information for 2, 3, 4, 5, 6, and 8 84

Page 8: Synthesis and Characterization of New Ferrocenyl

vi

Table of Figures

Figure 1: Robin-Day Classification for Mixed-Valence State Compounds 1

Figure 2: Crystal Structure of FcClSnTPP (2) 5

Figure 3: Crystal Structure of Fc2SnTPP (3) 6

Figure 4: Crystal Structure of Fc(OCH2CH3) (4) 6

Figure 5: Crystal Structure of Fc2SnOEP (5) 7

Figure 6: Role of C-H···π Packing Interactions of Compound 2 9

Figure 7: 1H NMR Spectrum of Cl2SnTPP (1) 12

Figure 8: 1H NMR Spectrum of FcClSnTPP (2) 13

Figure 9: 1H NMR Spectrum of Fc2SnTPP (3) 14

Figure 10: UV Vis (top) and MCD (bottom) Spectra of Compounds Cl2SnTPP (1), 16

FcClSnTPP (2), and Fc2SnTPP (3)

Figure 11: Spectroelectrochemical Titration Plot for FcClSnTPP (2) 19

Figure 12: Spectroelectrochemical Titration Plot for Fc2SnTPP (3) 20

Figure 13: Chemical Oxidation Titration using AgOTf Plot of FcClSnTPP (2) 21

Figure 14: Chemical Oxidation Titration using DDQ Plot of FcClSnTPP (2) 22

Figure 15: Chemical Oxidation Titration using AgOTf Plot of Fc2SnTPP (3) 23

Figure 16: Stand-still Comparitive Emission Spectra of 1, 2, and 3 25

Figure 17: Quantum Yield Comparison of 1, 2, and 3 25

Figure 18: Fluorescence Oxidation Titration using p-chloranil Plot of FcClSnTPP (2) 27

Figure 19: Fluorescence Oxidation Titration using p-chloranil Plot of Fc2SnTPP (3) 27

Figure 20: Molecular Orbital Energy Diagram of 1, 2, and 3 28 Figure 21: Molecular Orbital Contribution Diagram of Cl2SnTPP (1) 29 Figure 22: Molecular Orbital Contribution Diagram of FcClSnTPP (2) 30

Page 9: Synthesis and Characterization of New Ferrocenyl

vii

Figure 23: Molecular Orbital Contribution Diagram of Fc2SnTPP (3) 30

Figure 24: Selected Molecular Orbital Images for 1, 2, and 3 30, 31, 32

Figure 25: Time Dependent Density Functional Theory Plots of 1, 2, and 3 33

Figure 26: Crystal Structure of ClInTFcP (6) 37

Figure 27: Crystal Structure of FcInTFcP (8) 38

Figure 28: Zig-zag Packing of Complex 6 40

Figure 29: π-π Stacking of Complex 8 41

Figure 30: 1H NMR of ClInTFcP (6) 43

Figure 31: 1H NMR of OHInTFcP (7) 43

Figure 32: 1H NMR of FcInTFcP (8) 44

Figure 33: GCOSY of FcInTFcP (8) 45

Figure 34: Variable Temperature Data for FcInTFcP (8) 46

Figure 35: Variable Temperature Data for ClInTFcP (6) 46

Figure 36: 13C NMR of ClInTFcP (6) 48

Figure 37: 13C NMR of OHInTFcP (7) 48

Figure 38: 13C NMR of FcInTFcP (8) 49

Figure 39: HMQC of FcInTFcP (8) 49

Figure 40: UV-Vis and MCD of Compound 6 50

Figure 41: UV-Vis and MCD of Compound 7 51

Figure 42: UV-Vis and MCD of Compound 8 51

Figure 43: Electrochemical Plots for 6, 7, and 8 52

Figure 44: Spectroelectrochemical Titration Plot for Complex 6 56

Figure 45: Spectroelectrochemical Titration Plot for Complex 7 57

Figure 46: Spectroelectrochemical Titration Plot for Complex 8 58

Figure 47: Chemical Oxidation Titration using AgOTf Plot of Compound 6 60

Page 10: Synthesis and Characterization of New Ferrocenyl

viii

Figure 48: Chemical Oxidation Titration using DDQ Plot of Compound 6 60

Figure 49: Chemical Oxidation Titration using DDQ Plot of Compound 7 61

Figure 50: Chemical Oxidation Titration using AgOTf Plot of Compound 8 62

Figure 51: Molecular Energy Orbital Diagram of Compounds 6 and 8 64

Figure 52: Molecular Orbital Contribution Diagram of Compound 6 65

Figure 53: Molecular Orbital Contribution Diagram of Compound 8 65

Figure 54: Disorder of Ferrocene by Rotation around Sn-C Bond in 2 76

Figure 55: Disorder of Cp-ring by Rotation around Fe atom in 4 77

Figure 56: Disorder of ClInTFcP (6) Moiety and Toluene Molecule 77

Page 11: Synthesis and Characterization of New Ferrocenyl

ix

Table of Tables

Table 1. Table of Selected Bond Lengths (Å ) and Angles (°) for Compound 2 8

Table 2: Table of Selected Bond Lengths (Å ) and Angles (°) for Compound 3 8

Table 3: Table of Selected Bond Lengths (Å ) and Angles (°) for Compound 4 8

Table 4: Table of Selected Bond Lengths (Å ) and Angles (°) for Compound 5 8

Table 5: Table of Selected Crystallographic Parameters of Compounds 2 and 3 10

Table 6: Table of Selected Crystallographic Parameters of Compounds 4 and 5 11

Table 7: Summary of Electrochemical DPV Data for FcClSnTPP (2) 17

Table 8: Summary of Electrochemical DPV Data for Fc2SnTPP (3) 18

Table 9: Table of Selected Bond Lengths (Å ) and Angles (°) for Compound 6 39

Table 10: Table of Selected Bond Lengths (Å ) and Angles (°) for Compound 8 39

Table 11: Table of Selected Crystallographic Parameters of Compounds 6 and 8 41

Table 12: Summary of Electrochemical DPV Data for Compound 6 53

Table 13: Summary of Electrochemical DPV Data for Compound 7 54

Table 14: Summary of Electrochemical DPV Data for Compound 8 55

Table 15: Estimation Estimated magnitudes of Hab and α for mixed-valence

[ClInTFcP]+, [OHInTFcP]+, and [FcInTFcP]2+ complexes 63

Page 12: Synthesis and Characterization of New Ferrocenyl

x

Table of Schemes

Scheme 1: Preparation of FcxClySn TPPs and OEPs (2, 3, 4, and 5) 4

Scheme 2: Oxidation of Ferrocene Unit to Show Emission Scheme 26

Scheme 3: Preparation of ClInTFcP (6) 36

Scheme 4: Preparation of HOInTFcP (7) 36

Scheme 5: Preparation of FcInTFcP (8) 37

Page 13: Synthesis and Characterization of New Ferrocenyl

1

Introduction:

Mixed-valence compounds represent an important class of organometallic

complexes. Electron transfer between two metallocenters, induced either optically or

thermally, is responsible for mixed-valency1,2,3,4. According to Robin and Day

classification4, mixed-valence compounds can be

categorized into three classes. In a Class I mixed-valence

system, the metal ions do not communicate with each other

because of the ligand field strength difference, which

makes electron transfer between the two centers

impossible. A Class II mixed-valence compound can

undergo electron transfer either optically or thermally. As

electron transfer occurs, the oxidation states of the metal

ions, located in the same environment, change. Electron

transfer is a relatively slow, which allows separate

characterizations of oxidation and reduction between

metallocenters to be examined. For instance, when

dinuclear iron complexes are considered, electron transfer

to an Fe(II)/ Fe(III) center is slow, and two of these centers exhibit different spectroscopic

signatures in the UV-Vis-NIR region4. These signatures can be characterized by the

presence of solvent independent inter-valence charge transfer (IVCT) bands4. These

bands display different energies (υmax), intensities (ε) and bandwidths at half height

(∆υ1/2),4which can be used for the estimation of the coupling matrix element. Class III

mixed-valence electron transfer between two metallocenters is faster and thus such

Figure 1: Robin and Day Classification for Mixed­Valence State Compounds

Page 14: Synthesis and Characterization of New Ferrocenyl

2

compounds can be characterized as a valence average system. All types of behavior can

be seen in Figure 1.

In the majority of cases, the mixed-valence properties in dinuclear metallated

systems when metal distances are less than 5 or 6 Å are known, while examples of these

systems with a long range (10-12 Å) metal-metal coupling are rare5. These examples

include different types of porphyrins5,6,7, tetraazaporphyrins8, pthalocyanines9, corroles10

and their nonaromatic analogues10. The outstanding chemical and thermal stability, as

well as the possibility of fine-tuning their redox potentials, make these compounds

outstanding candidates for many areas of research. Not only can these compounds be

used to mimic different biological transfer systems12, but they can be potentially useful as

nanoscale materials13. For instance, these compounds can be incorporated into molecular

based electronic devices such as molecular multibit information storage elements and

also molecular electrogenic sensors14.

The following two chapters report the redox abilities of new poly(ferrocenyl)

tin(IV) and indium(III) containing porphyrins. Each has been characterized using NMR,

MCD, and crystal structure analysis. Electrochemical, spectroelectrochemical, and UV-

Vis-NIR techniques were also performed to test their applicability for chemical sensing

or molecular electronics.

Part 1 - σ-Bonded Ferrocene Containing Tin (IV) Porphyrins:

Introduction:

For creating a mixed valence system, ferrocene is an attractive ligand. As a matter

of fact, directly- linked ferrocenyl compounds were among the first mixed-valence

Page 15: Synthesis and Characterization of New Ferrocenyl

3

organometallic materials. Poly-ferrocenyl substituted complexes can exhibit multiple

redox processes and are very well known for their metal to metal coupling and excellent

thermal stability.15 Reports of porphyrins and their analogues with axial ferrocene

substituents directly σ-bonded to the central metal are extremely rare and are limited to

the Fc2GeP and FcPhGeP (P = TPP2- or OEP2-) complexes reported by Kadish and co-

workers at the end of the 1980s.16 It should be mentioned that these compounds were not

prepared in high purity.16 Not surprisingly, molecular structures of these complexes have

never been determined by X-ray crystallography. It has been mentioned that unlike the

other porphyrins with alkyl- and aryl-substituents σ-bonded to the central metal, axial

Fc2MP complexes are stable in solution and do not easily undergo M–Fc bond cleavage

under photochemical conditions because of the effective quenching of excited states by

ferrocene substituents.15a Such a quenching mechanism is commonly believed to be

responsible for the extremely low fluorescence quantum yields in ferrocenyl-containing

porphyrins with direct ferrocene–macrocyclic bonding. Indeed, as was shown recently,17

oxidation of the ferrocene substituent in zinc 5-ferrocenyl-10,15,20- tri(aryl)porphyrins

leads to the dramatic increase of the fluorescence quantum yields and thus opens a

potential application of such molecules in fluorescent imaging. Similar redox-driven

fluorescence response for porphyrins with axial ferrocene substituents directly σ-bonded

to the central metal has never been studied.

The formation and characterization of new Sn(IV) compounds have been

examined and reported in this chapter. Each new product has been evaluated for its

molecular structure, redox, and fluorescence properties, and has been compared to the

parent porphyrin and other ferrocenyl-containing porphyrins. It has been found that with

Page 16: Synthesis and Characterization of New Ferrocenyl

4

single or multiple redox-active ferrocene groups, these compounds have controlled redox

behaviors that can have potential application in optical and fluorescent sensory devices.

Synthesis:

Two new Sn(IV) tetraphenyl porphyrins (TPPs) have been created by low-

temperature interactions with a ferrocene lithium (FcLi) salt and SnCl2TPP18 (1). From

this reaction (Scheme 1), the axial chloride substituents are substituted by ferrocene

groups. Varying the amounts of FcLi salt used in the reaction will give mono- or di-

chloro substitution. For example, a 5 mmol excess of FcLi salt may show replacement of

only one chloride group (2), where a 6 mmol excess displays replacement of both

chlorines in the starting precursor (3). Both of the new compounds are stable, not only in

solid state, but also in acid-free solutions. Two new Sn(IV)octaethyl porphyrins (OEPs),

4 and 5, have been prepared the same way as 2 and 3, but are not quite as stable in

solution. Because of this instability, the axial chloro-substituent in 4 was found to have

been replaced by an ethoxy group via column chromatography.

Scheme 1: Preparation of FcxClySn TPPs and OEPs (2,3,4, and 5)

X

N N

NN

Ph

Ph

Ph

PhSn

Fe

Cl

N N

NN

Ph

Ph

Ph

PhSn

ClFcLi

ether/toluener.t. 30 min

X = Cl (2), Fc (3)

Cl

N N

NNSn

ClFcLi

ether/toluener.t. 30 min

X

N N

NNSn

Fe

X= OCH2CH3 (4) , Fc (5)

Page 17: Synthesis and Characterization of New Ferrocenyl

5

X-Ray Crystal Structures:

Tin(IV) containing porphyrins usually form symmetrically substituted

compounds, and they usually contain σ-donor ligands like alcohols or acids. However,

some other examples of tin(IV) porphyrins are also known. Arnold and co-workers

reported crystal structures for the trans- and cis- isomers of Ph2SnTPP19, while Woo and

co-workers reported a crystal structure of Sn(IV) porphyrin with phenylacetylene

ligand.20 Four new metal-organic compounds (2, 3, 4, and 5 (Scheme 1)) were

characterized by single crystal x-ray analysis. All compounds were crystallized in

triclinic symmetry with P-1 space group. The tin metal 4+ cation in porphyrins usually

adopts six-coordinate octahedral geometry, which consists of four nitrogens and two

extra atoms for axially coordinated substituents. The new porphyrin systems reported

here are unique because the axial ferrocene substitution reactions examined here yielded

both unsymmetrical (2 and 4) and symmetrical (3 and 5) compounds.

Figure 2: Crystal Structure of FcClSnTPP (2)

Page 18: Synthesis and Characterization of New Ferrocenyl

6

Figure 3: Crystal Structure of Fc2SnTPP (3)

Figure 4: Crystal Structure of Fc(OCH2CH3)SnOEP (4)

Page 19: Synthesis and Characterization of New Ferrocenyl

7

Figure 5: Crystal Structure of Fc2SnOEP (5)

Crystal structures of 2, 3, 4, and 5 are shown in Figures 2, 3, 4, and 5,

respectively. In complexes, 3 and 5, tin lies in the plane of the porphyrin, while with 2

and 4 the central tin metal sits above the porphyrin system (Sn-{C16,C11, C6, C1

(plane)} = 0.296Å (2) and Sn {C16,C11,C6,C1(plane)}= 0.216Å (4)). The coordination

environment of tin(IV) for these unsymmetrical systems consists of the four nitrogen

atoms of the porphyrin core (Sn-N=2.104(4)-2.120(4) Å for 2 and 2.117(2)-2.121(2) Å

for 4), one carbon atom of the ferrocenyl ligand (Sn-C =2.159(5) Å (2), 2.130(4) Å (4),

and either a chloride (Sn-Cl=2.498(9) Å) or an ethoxo (Sn-O=2.175(4) Å) ligand for 2

and 4, respectively. For symmetric compounds 3 and 5, two fold symmetry independent

of Sn-N can be seen and is the same and equal to two times 2.094(7) and 2.131(2),

2.132(2), correspondingly. It is of interest to note, that Sn-C distances for both

Page 20: Synthesis and Characterization of New Ferrocenyl

8

compounds are shorter than that for trans-Ph2SnTPP (2.196(4) Å and 2.212(4) Å)21, even

though ferrocene molecules are bulkier compared to phenyl groups. This fact also brings

about an idea related to the stability of the Sn-C bond for ferrocenyl substituted tin(IV)

porphyrin versus phenyl analog systems. A comparable Sn-C bond was also observed for

asymmetric Sn(C≡C-Ph)(OC6H4OH)TPP (2.140(1)) Å22.

Table 1: Table of Selected Bond Lengths (Å ) and Angles (°) for Compound 2

Selected Bond Lengths (Å) and Angles (°) for 2 Sn(1)-N(4) 2.117(2) Sn(1)-N(1) 2.121(2) N-Sn(1)-C(45) 93.44(13)-97.14(13) Sn(1)-N(2) 2.119(2) Sn(1)C(45) 2.130(4) N-Sn(1)-Cl(1) 84.58(8)-84.81(7) Sn(1)-N(3) 2.119(2) Sn(1)-Cl(1) 2.4981(9) C(45)-Sn(1)-Cl(1) 177.25 (11)

Table 2: Table of Selected Bond Lengths (Å ) and Angles (°) for Compound 3

Selected Bond Lengths (Å) and Angles (°) for 3 Sn(1)-N(1) 2.132(2) C(23)-Sn(1)-N(2) 87.78(10)

Sn(1)-N(2) 2.131(2) C(23)-Sn(1)-N(1) 94.10(9)

Sn(1)-C(23) 2.186(3) C(23)-Sn(1)-C(23)#1 179.995

Table 3: Table of Selected Bond Lengths (Å ) and Angles (°) for Compound 4

Table 4: Table of Selected Bond Lengths (Å ) and Angles (°) for Compound 5

Selected Bond Lengths (Å) and Angles (°) for 4 Sn(1)-N(4) 2.120(4) Sn(1)-N(1) 2.108(4) N-Sn(1)-O(1) 82.56(16)-88.12(15) Sn(1)- N(2) 2.109(4) Sn(1)-C(37) 2.159(5) N-Sn(1)-C(37) 90,85(17)-100.56(17) Sn(1)-N(3) 2.104(4) Sn(1)-O(1) 2.175(4) C(37)-Sn(1)-O(1) 174.74(15)

Selected Bond Lengths (Å) and Angles (°) for 5 Sn(1)-N 2.094(7) N(9)-Sn(1)-C(3) 88.7(3)

Sn(1)-C(3)#1 2.170(10) N(2)-Sn(1)-C(3) 85.8(3)

Sn(1)-C(3) 2.170(10) C(3)-Sn(1)-C(3)#1 180 (1)

Page 21: Synthesis and Characterization of New Ferrocenyl

9

The crystal packing diagram of 2 is shown above in Figure 6. It can be found that

p-phenyl ring protons interact with aromatic π-cloud systems of neighboring phenyl rings

by C-H···π interactions. The average distance between the C···Centroid is 3.660 Å, while

the distance for H···centroid is 2.760 Å, and the angle C-H-centroid is 158.40°.

Compound 3 packs with similar fashion but distances between protons and π-systems are

much longer—3.892. This type of interaction can also be observed for other similar

compounds, for example SnCl2TPP has average C···Centroid distances of 4.4095 Å, with

H···centroid distances of 4.095 Å.23

Figure 6: Role of C-H···π Packing Interactions of Compound 2

Page 22: Synthesis and Characterization of New Ferrocenyl

10

Table 5: Selected Crystallographic Parameters of Compounds 2 and 3

Selected Crystallographic Parameters of 2 and 3 2 3 Empirical formula C56.98 H43.96 Cl Fe N4 Sn C64H46Fe2N4Sn Formula weight 994.67 1101.48 Crystal system Triclinic Triclinic Space group, Z P-1, 2 P-1, 1 a (Å) 13.2771(2) 10.737(1) b (Å) 13.3199(2) 11.288(1) c (Å) 15.2657(10) 12.173(1) α (°) 114.559(8) 101.657(1) β (°) 95.207(7) 108.082(1) γ (°) 90.164(6) 115.058(1) Volume (Å3) 2442.91(17) 1171.4(2) ρcalc(g/cm3) 1.352 1.561 μ(Mo-Kα)(mm-1) 0.904 1.189 θmax(°) 27.6 29.13 Reflections collected/unique, Rint 82535 / 11207, 0.0635 16707 / 6273, 0.034 Data/restraints/parameters 11207 / 71 / 659 6252 / 0 / 322 GooF(F2) 1.036 0.9889 R1a, wR2b(F2>2σ(F2)) 0.0451, 0.1128

0.0354, 0.0901

R1a, wR2b (all data) 0.0560, 0.1179 0.0485, 0.1059 Δρmax/Δρmin (e/Å3) 1.356 / -0.723 1.41 / -1.46

R1(F) =Σ||Fo| - |Fc||/Σ|Fo|. bwR2(F2) = {Σ[w(Fo2 – Fc2)2]/Σw(Fo2)2]}1/2. w1/2 = [1.0/(2.14*t[0]'(x)+2.62*t[1]'(x)+0.644*t[2]'(x))]1/2,x = Fo/Fomax

Page 23: Synthesis and Characterization of New Ferrocenyl

11

Table 6: Table of Selected Crystallographic Parameters of Compounds 4 and 5

Selected Crystallographic Parameters of 4 and 5 4 5 Empirical formula C48H54FeN4OSn C56H62Fe2N4Sn Formula weight 877.49 1021.49 Crystal system Triclinic Triclinic Space group, Z P-1, 2 P-1, 1 a (Å) 10.047(5) 9.585(3) b (Å) 14.695(5) 10.313(3) c (Å) 15.322(5) 13.370(4) α (°) 73.676(5) 68.393(6) β (°) 80.334(5) 85.796(6) γ (°) 80.399(5) 66.759(5) Volume (Å3) 2123.0(15) 1157.1(6) ρcalc(g/cm3) 1.373 1.466 μ(Mo-Kα)(mm-1) 0.970 1.197 θmax(°) 20.79 27.48 Reflections collected/unique, Rint 26925 / 4395, 0.0271 27643/5107, 0.1441 Data/restraints/parameters 4395 / 80 / 551 5107 / 0 / 286 GooF(F2) 1.056 1.026 R1a, wR2b(F2>2σ(F2)) 0.0401, 0.1098 0.0963, 0.2459 R1a, wR2b (all data) 0.0440, 0.1125 0.1529, 0.2831 Δρmax/Δρmin (e/Å3) .982/ -0.652 1.638 / -1.550 aR1(F) =Σ||Fo| - |Fc||/Σ|Fo|. bwR2(F2) = {Σ[w(Fo2 – Fc2)2]/Σw(Fo2)2]}1/2.

w1/2 = [1.0/(2.14*t[0]'(x)+2.62*t[1]'(x)+0.644*t[2]'(x))]1/2,x = Fo/Fomax

Page 24: Synthesis and Characterization of New Ferrocenyl

12

NMR Spectra:

The parent SnCl2TPP (1) exhibits 3 different signals in proton NMR. The

porphyrin ring itself contributes one of these signals for the β-pyrrolic protons. These

protons lie furthest downfield at 9.23 ppm. Two signals that also appear on the spectrum

originate from the phenyl ring. The two protons directly nearby the coordination site, the

o-Ph’s, are located in a multiplet at 8.34 ppm. The meta and para protons, m-Ph and p-Ph,

are found as one entity within a doublet at 7.85 ppm24.

Figure 7: 1H NMR Spectrum of Cl2SnTPP (1)

Many of the same signals found for the parent precursor Cl2SnTPP (1) can be

seen in the spectrum for compound 2 with the addition of three more signals—all from

the new ferrocene substituent. Ferrocene is a sandwich compound in which an iron(II)

metal ion is located between two cyclopentadienyl ligands. When looking at the bond

between just one of those cyclopentadienyl rings and the porphyrin core, the two protons

closest to the connecting carbon are typically labeled alpha (α). The other two protons on

that ring are designated beta (β). The protons belonging to the unsubstituted

Page 25: Synthesis and Characterization of New Ferrocenyl

13

cyclopentadienyl ring maintain equivalency with each other and appear as one signal.

These are labeled “Cp-H”. All ferrocenyl protons are located near each other in and a

2:2:5 proton ratio. Axially substituted ferrocenes are found to be shifted upfield. The

alpha proton is found furthest upfield at -1.17 pm due to π-system ring current running

through the macrocycle which affects its closest axially bonded substituents (the α-Cp

protons). Similar spectral features were observed by Kadish with his axially

diferrocenally substituted germanium porphryins19.

Continuing downfield lie the Cp-H protons at 2.08 ppm and the β-Cps at 2.35

ppm. Next in the aromatic region of the spectrum, the meta and para protons are found at

7.83 ppm. The three protons are not seen as one multiplet, but rather a triplet and quartet

overlapped. These protons are depicted Hc, Hd, and He below. The two ortho protons are

also observed differently. Two doublets are located at 8.25 ppm and 8.38 ppm for the Hb

and Ha protons, respectively. A β-pyrrolic proton signal is also found furthest downfield

at 9.12 ppm.

Figure 8: 1H NMR Spectrum of FcClSnTPP (2)

Page 26: Synthesis and Characterization of New Ferrocenyl

14

The signals found for compound 3 are similar to those found for 1 and 2, now

with the difference being that it contains two axial ferrocene substituents. There is a β-

pyrrolic signal again furthest downfield at 8.96 ppm, followed by two phenyl ring signals.

The ortho protons appear together as one peak and so do the meta- and para- protons

combined—lying at 8.30 ppm and 7.80 ppm respectively. The two ferrocenyl substituents

exhibit their signals together, giving a β-Cp signal at 2.32 ppm, a Cp-H signal at 1.92

ppm, and an α-Cp signal at -1.84 ppm. These signals are found in a 4:10:4 proton ratio,

respectively.

Page 27: Synthesis and Characterization of New Ferrocenyl

15

UV-Vis NIR and MCD Spectra:

All UV-Vis NIR and MCD spectra are shown below describing compounds 1,2,

and 3 (Fig. 10). The MCD spectrum of the parent complex 1 contains three Faraday A-

terms centered at 426 nm, 562 nm, and 601 nm, all of which correspond to the three most

intense bands in the UV-Vis NIR spectrum and confirm its effective four-fold symmetry).

The axial coordination of one ferrocene substituent results in a red shift (a shift to lower

energy), of the Soret and Q-bands in the UV-Vis NIR spectra. This can be related to the

slight increase in porphyrin core non-planarity. Diferrocene substitution into the axial

positions shows very similar results, although the porphyrin core is more planar than the

mono-substituted complex.

The substitution of ferrocene for chlorine lowers the molecular symmetry of the

complex to Ci or Cs. Despite this, the MCD spectra for both are dominated by three

Faraday pseudo A-terms centered at 435, 574, and 614 nm for mono and 436, 449, and

633 nm for the di-substituted. This probably reflects free rotation of the ferrocene groups

around the Sn-Cipso(Fc) bond. All Faraday A- and pseudo A-terms shown in the MCD

spectra are centered close to the absorption maxima with negative components located at

lower energies. According to the perimeter model25, this observation suggests that the

∆HOMO > ∆LUMO (∆HOMO is the energy difference between the two highest

occupied π-orbitals centered at the porphyrin core and ∆LUMO is the energy difference

between the two lowest energy π*-orbitals centered at the porphyrin core) in agreement

with DFT calculations, which are shown later.

Page 28: Synthesis and Characterization of New Ferrocenyl

16

Electrochemistry

Cyclic voltammetry (CV), differential pulse voltammetry (DPV), and square

wave voltammetry (SWV) are all particularly useful for rapidly observing redox behavior

over a wide potential range. As electrical current loops from low to high voltage from a

middle point, different oxidation and reduction electron transfer processes can be

identified. The influence created by electrolyte and solvent combinations on electron-

transfer processes and ΔE1/2 values in the multi-nuclear transition-metal complexes are

well-discussed in the literature26. Since the oxidation of the ferrocene substituents in poly-

(ferrocenyl)-containing macrocycles is sensitive to the nature of solvent and electrolyte,26

the redox properties of both the new Sn(IV) porphyrins were investigated by the three

electrochemical methods in dichloromethane (DCM), a low polarity solvent, coupled

with either tetrabutylammonium perchlorate (TBAP) or tetrabutylammonium

tetrakis(perfluorophenyl)borate (TFAB)— non-coordinating electrolytes27.

0

2

4

6

8

400 600 800-9-6-3036

624439

617

574

434

342����

� , M-1 c

m-1

x 15

x 10

x 30

x 15

x 15

x 25

435346

406

428

447 521517

561

592602

630

628

434

435426

453562

556

607647

402

420 431446449

568 596

609

608������

, M-1 c

m-1 T

-1

Wavelength (nm)

Figure 10: UV Vis (top) and MCD (bottom) Spectra of Compounds Cl2SnTPP (1), FcClSnTPP (2), and Fc2SnTPP (3)

Page 29: Synthesis and Characterization of New Ferrocenyl

17

Electrochemical data for compound 1 has been published in literature. Oxidation

and reduction potentials were found at 1.44V, -0.79V, and -1.25V at 22°C and 1.88V,

1.42V, -0.73V, and -1.15V at a -75°C, respectively28. The lower temperature experiment

displayed the chemical reversibility of the compound better than higher temperature

experiment. These processes describe the electrons being transferred from the porphyrin

core. Compound 2 contains a ferrocene that can be oxidized, as well as the porphyrin

core. Ferrocene’s reversible oxidation is found at -0.03V, exhibiting a ∆E1/2 of 50 mV.

Porphyrin oxidation was detected at 1.22V, with a corresponding reduction peak at -

1.96V. Due to the impurity of the compound, further processes may have been seen, but

are not directly linked to the porphyrin system.

Table 7: Summary of DPV Data for FcClSnTPP (2)

Summary of Electrochemical Differential Pulse Voltammetry

Data for FcClSnTPP

Solvent/Electrolyte Redox Process

P­2 P­1 Fc+1 P+1

DCM/TFAB ­ ­1.96 ­0.03 1.22

Redox potentials vs (Fc+/Fc), electrolyte concentrations: TBAP = 0.1M;

CV and DPV experiments reveal three reversible oxidation and two reversible

reduction processes in 3. Similar to Fc2GeP systems, the first two closely spaced

oxidations were assigned to single-electron ferrocene-centered processes, while the third

oxidation and both reduction couples are porphyrin core-centered single-electron

processes. Both ferrocene substituents in 3 could be oxidized at lower potentials

compared to ferrocene, while the separation between the first two oxidation waves (250

mV) in 3 is significantly larger than the separation reported for Fc2GeP complexes (160–

180 mV).20

Page 30: Synthesis and Characterization of New Ferrocenyl

18

Table 8: Summary of DPV Data for Fc2SnTPP (3)

Spectroelectrochemistry:

Spectroelectrochemistry was performed in order to obtain UV-Vis-NIR

spectroscopic signatures of the different electron transfer processes that were seen with

the electrochemistry. Stepwise oxidation was performed in either a dichloromethane and

tetrabutylammonium perchlorate (TBAP) or tetrabutylammonium

tetrakis(perfluorophenyl)borate (TFAB) environment. Initial spectroelectrochemical

oxidation of FcClSnTPP showed a decreasing in intensity of the 430 nm (23255 cm-1).

The four Q-bands found for this compound also varied in their intensity. The Q-Band at

547 nm (18281 cm-1) decreased, while the 569 nm (17575 cm-1), where the 591 nm

(16920 cm-1) Q-band decreased, and the 614 nm (16287 cm-1) Q-band increased. The

Soret band and Q-bands all exhibited a red shift in energies from their initial intensities.

This change signifies the appearance of the [FcClSnTPP]+ signature, confirming a single

electron transfer. Further oxidation exhibited decomposition of the compound under

spectroelectrochemical conditions.

Summary of Electrochemical Differential Pulse Voltammetry Data for Fc2SnTPP

Solvent/Electrolyte Redox Process

P­2 P­1 Fc+1 Fc+2 P+1

DCM/TFAB ­2.21 ­1.70 ­0.31 ­0.07 1.17

Redox potentials vs (Fc+/Fc), electrolyte concentrations: TFAB = 0.09M;

Page 31: Synthesis and Characterization of New Ferrocenyl

19

Figure 11: Spectroelectrochemical Plot for FcClSnTPP (2); inset spectrum depicts Q­Band area only

Initial spectroelectrochemical oxidation of Fc2SnTPP showed a decreasing in

intensity of the main portion of the shoulder peaked Soret band at 447 nm (22371 cm-1).

The shoulder area of the Soret, which could be due to slight oxidation before

spectroelectrochemistry was started, shows an increase in intensity at 428 nm (23364 cm-

1). The initial Q-bands oscillate between increasing and decreasing intensity. There is a

rising of intensity at the 583 (17153 cm-1) Q-band, a decreasing of a shoulder at 603 nm

(16584 cm-1), a rising at 630 nm (15873 cm-1), and another decreasing at 654 nm (15291

cm-1). As oxidation continues, the Q-bands continue to change in the same manner, but

the Soret bands double peaks form to one at 435 nm (22988 cm-1). Continued oxidation

displays wavering in the Soret and Q-bands around the same intensities.

Page 32: Synthesis and Characterization of New Ferrocenyl

20

Figure 12: Spectroelectrochemical Plot for Fc2SnTPP (2); inset spectrum depicts Q­Band area only

Chemical Oxidations:

Chemical oxidation titrations were performed using either silver trifluoromethyl

sulfonate (AgOTf) or 2, 3-dichloro-5, 6-dicyanobenzoquinone (DDQ) in order to confirm

agreement with the spectroelectrochemical data. Titrations with AgOTf metals are

commonly used as they are good one electron oxidants29. The strength of silver as an

oxidant has been described from mild to strong29, but either way has proven very useful

for these chemical purposes.

In agreement with the spectroelectrochemical data obtained, the formation of the

first UV-Vis-NIR signature of 2, [FcClSnTPP]+, was replicated by using excess additions

Page 33: Synthesis and Characterization of New Ferrocenyl

21

of AgOTf. Initial Soret band intensity at 435 nm (22989 cm-1) was found to decrease and

blue shift to 430 nm (23256 cm-1). The different Q-Bands found at 547 nm (18281 cm-1),

574 nm (17421 cm-1), and 619 nm (16155 cm-1) all increase, decrease, and decrease,

respectively. A titration with DDQ displayed similar results. With DDQ, the initial Soret

band at 436 nm (22989 cm-1) displays an increasing in intensity, which is opposite than

the other titration, however in its increase it blue shifts, which is like the other titration.

This difference can be due to AgOTf’s ability to react with the compound, whereas DDQ

will oxidize the compound without reaction. The Q- Bands at 573 nm (17542 cm-1), 593

nm (16863 cm-1), and 621 nm (16103 cm-1) also similar changes in their intensities.

Figure 13: Chemical Oxidation Titration using AgCF3SO3 of FcClSnTPP (2); inset spectrum depicts Q-Band area only

Page 34: Synthesis and Characterization of New Ferrocenyl

22

Figure 14: Chemical Oxidation Titration using DDQ of FcClSnTPP (2); inset spectrum depicts Q-Band area only

Chemical oxidation experiments conducted on 3 proved to be similar to the

spectroelectrochemical transformations shown above. Two key processes were revealed

and found to be associated with the consecutive oxidation of the axial ferrocene

substituents. It should be noted that these results are also similar to those observed in the

Fc2GeTPP system reported earlier.15 Specifically, during the first oxidation, the Soret

band shifts from 447 (22371 cm-1) to 435 nm (22988 cm-1), while the Q-bands also

undergo a blue shift from 592 nm (16892 cm-1) and 630 nm (15873 cm-1) to 569 nm

(17575 cm-1) and 609 nm (16420 cm-1), respectively. During the second oxidation

process, the Soret band undergoes a further blue shift from 435 nm (22988 cm-1) to 426

nm (23474 cm-1), while the Q-bands shift from 569 nm (17575 cm-1) and 609 nm (16420

cm-1) to 559 nm (17889 cm-1) and 604 nm (16566 cm-1), respectively.

Page 35: Synthesis and Characterization of New Ferrocenyl

23

Figure 15: Chemical Oxidation Titration using AgCF3SO3 of Fc2SnTPP (3); inset spectrum depicts Q-Band area only

The development of an intense inter-valence charge-transfer (IVCT) band in the

NIR region of electronic absorption spectra of poly(ferrocenyl)-containing macrocyclic

complexes under chemical or electrochemical oxidation conditions5,6 has been suggested

for a long time to be indicative of the formation of mixed-valence compounds, where

IVCT characteristics, i.e. intensity, half-width, and absorption energy, were proven to be

useful in characterizing the metal–metal coupling in these systems.5,6 IVCT bands in

poly(ferrocenyl)-containing porphyrins usually appear as strong transitions in the NIR

region.5a,e,6d,e Similar to Fc2GeP systems, however, no intense IVCT band was observed

in the UV-Vis-NIR spectrum of 3+ between 700 and 2650 nm in the

spectroelectrochemistry or chemical oxidations. Such behavior in 3+ and [Fc2GeP]+

Page 36: Synthesis and Characterization of New Ferrocenyl

24

complexes could be explained on the basis of the electronic structure of 3 compared to

the electronic structures of the other poly-(ferrocenyl)-containing porphyrins with direct

ferrocene–porphyrin bonds.5g Indeed, when ferrocene substituents are directly bonded to

the porphyrin core, MLCT and IVCT transitions could borrow intensity from the

porphyrin-centered Π–π*excitations (as confirmed by TDDFT calculations that are

shown below),30 while in the case of Fc2MP complexes results suggest no mixing

between porphyrin-centered π–π* and MLCT transitions. Therefore, no IVCT band is

found. In the case of FcClSnTPP, where only one metal is involved an IVCT band is also

not found due to the inability to communicate with another metal.

Fluorescence Oxidation Titrations and Quantum Yield:

Studying the fluorescence of either an unsubstituted or substituted ferrocene

molecule proves very interesting. Unsubstituted ferrocene absorption and luminescent

abilities were first examined by Scott and Becker31, who reported that it was very

dependent on the excitation frequency. The axial coordination of the ferrocene

substituents in compounds, such as in both 2 and 3 for example, also affect its fluorescent

properties. When porphyrin electrons are excited from the S0 ground state to the S1

excited state (a π-π* transition), it is thought that the axial ferrocenes electrons fill the

ground state before relaxation—initiating quenching. Indeed, the fluorescence quantum

yields of 5-ferrocenyl-10,15,20-tri(aryl)porphyrins are very low17 and no observable

fluorescence in neutral 5,10-bisferrocenyl-15,20-diphenyl-, 5,15-bisferrocenyl-10,20-

diphenyl-, 5,10,15-trisferrocenyl-20-phenyl-, and 5,10,15,20-tetraferrocenyl-porphyrins

Page 37: Synthesis and Characterization of New Ferrocenyl

25

was found. Compounds 2 and 3 have unexpected detectable fluorescence, although it is

~10 times smaller when compared to high-emitting ZnTPP.

Page 38: Synthesis and Characterization of New Ferrocenyl

26

Scheme 2: Oxidation of Ferrocene Unit to Show Emission Scheme

It is speculated that because the ferrocene groups in 2 and 3 are ‘uncoupled’ from

the porphyrin π-system, they cannot quench π–π* transition based fluorescence as

effectively as in the case when ferrocene substituents are directly connected to the

porphyrin core. Similar to the 5-ferrocenyl-10,15,20-tr(aryl)porphyrins, however,

fluorescence intensity of 2+ and 22+ increases dramatically because the oxidation of

ferrocene group results in reduced probability of electron transfer from the iron center

into the photoexcited porphyrin core.22 Oxidation titrations were performed on these

compounds using p-chloranil as the oxidant to examine this idea. It was found that when

electrons are being removed, emission does indeed increase. This capability of these

compounds to be “turned-on” proves useful for chemical sensors (i.e. lasers). For

example, when the compound is oxidized— light is emitted, when it is later reduced—

light is absorbed.

h� h�

-e

-

Page 39: Synthesis and Characterization of New Ferrocenyl

27

Figure 18: Fluorescence Oxidation Titration using p­chloranil of FcClSnTPP (2)

Figure 19: Fluorescence Oxidation Titration using p­chloranil of Fc2SnTPP (3)

Page 40: Synthesis and Characterization of New Ferrocenyl

28

Electronic Structure:

-7

-6

-5

-4

-3

-2

-1

3MOs

Fc

Occ

upie

d

��

����E = 0.435 eVE = 0.606 eV

Cl2SnTPP (1) FcClSnTPP (2)

Uno

ccup

ied

Ene

rgy,

eV

Fc2SnTPP (3)

202, -4.935

203, -3.231

241, -3.742

242, -3.136

280, -3.554

281, -3.119

E = 1.704 eV

��

Fc6MOs

]]

Figure 20: Molecular Orbital Energy Diagram of 1, 2, and 3

Density functional theory calculations were performed to gain insight into the

nature of the electronic structures of 1, 2, and 3. Gas-phase geometries were optimized

using BP86 exchange-correlation function full- electron D6DZVP basis set for Sn and 6-

311G(d) basis set for all other atoms. The HOMO-LUMO gap shown in the molecular

orbital energy diagram above shows the energy differences for all three compounds,

compound 1 has the largest gap while compound 3 has the smallest. Molecular orbital

contribution diagrams are also shown below for all compounds in order of ferrocene

substitution. The electronic structures of 2 and 3 feature several are very similar. Similar

Page 41: Synthesis and Characterization of New Ferrocenyl

29

to other ferrocenyl-containing porphyrins, the HOMO to HOMO-3 for 2 and HOMO to

HOMO-5 for 3 are predominantly ferrocene centered MOs, while the occupied π-orbitals

centered at the porphyrin core have significantly lower energies. The LUMO to

LUMO+1 with all compounds are predominantly porphyrin core-centered π* orbitals

being doubly degenerate in the case of 1. The presence of six ferrocene-based orbitals in

3 between porphyrin π and π* MOs provides numerous possibilities for the MLCT (Fe -

Por) bands with lower energy than the Q-band(π-π* transition). Selected molecular

orbital images are also shown below for all tin compounds.

Figure 21: Molecular Orbital Contribution Diagram of Cl2SnTPP (1)

192

194

196

198

200

202

204

206

208

210

212

0 10 20 30 40 50 60 70 80 90 100

% Composition

Orb

ital N

umbe

r

Cl Sn Por

Occ.

Unocc.

Page 42: Synthesis and Characterization of New Ferrocenyl

30

232

234

236

238

240

242

244

246

248

250

252

0 10 20 30 40 50 60 70 80 90 100

% Composition

Orb

ital N

umbe

r

Cl Fe Cp Sn Por

Occ.

Unocc.

Figure 22: Molecular Orbital Contribution Diagram of FcClSnTPP (2)

270

272

274

276

278

280

282

284

286

288

290

0 10 20 30 40 50 60 70 80 90 100

% Composition

Orb

ital N

umbe

r

Fe Cp Sn Por

Occ.

Unocc.

Figure 23: Molecular Orbital Contribution Diagram of Fc2SnTPP (3)

Cl2SnTPP (1)

LUMO+1 LUMO+ HOMO HOMO-1

Page 43: Synthesis and Characterization of New Ferrocenyl

31

FcClSnTPP (2)

LUMO+1 LUMO HOMO HOMO-1

HOMO-2 HOMO-3 HOMO-4 HOMO-5

Fc2SnTPP (3)

LUMO+1 LUMO HOMO HOMO-1

HOMO-2 HOMO-3 HOMO-4 HOMO-5

Page 44: Synthesis and Characterization of New Ferrocenyl

32

HOMO-6 HOMO-7

Figure 24: Selected Molecular Orbital Pictures of 1, 2, and 3

Hypotheses from above where were further tested by a TDDFT approach, which

accurately predicts the energies of π–π* and MLCT transitions in ferrocene-containing

compounds, porphyrins, and phthalocyanines.32 TDDFT calculations on 1, 2, and 3 result

in a reasonable agreement between theory and experiment. However, TDDFT predicts

only π–π* transitions in the 250–900 nm region, while the energies of all MLCT bands in

3 were predicted in the ~2000–2500 nm energy envelope.

Page 45: Synthesis and Characterization of New Ferrocenyl

33

Figure 25: Time Dependent Density Function Theory Plots of 1, 2, and 3; Experimental spectra are shown in solid lines, while TDDFT states are presented by vertical red bars

Conclusions:

Four new Sn(IV) ferrocene-containing porphyrins were successfully prepared and

characterized by 1H NMR, UV-Vis, and MCD spectroscopy. New and interesting axially-

substituted crystal structures of all target compounds were confirmed by single crystal X-

ray analysis. The redox properties of these compounds were also examined. It was found

that compounds 2 and 3 displayed unexpected initial fluorescence (unquenched). When

undergoing oxidation, however, the emissions of 2 and 3 increased as expected. The

capability of these compounds to be “turned-on” is of extreme importance and therefore this

property is highly sought after for chemical sensing applications.

Page 46: Synthesis and Characterization of New Ferrocenyl

34

Part 2 - Indium(III) Poly-Ferrocenyl Containing Porphyrins

Introduction:

Compounds containing transition metals, that exhibit long-range metal-metal

coupling, have been intensely studied for their interesting fundamental properties (i.e.

multiredox processes, magnetic coupling, and unpaired electron density migration).

These properties make them potentially functional in nano-sized multinuclear switchable

arrays, which are attractive from the practical standpoint (molecular electronics, quantum

cellular automata, opto-electronic materials for application in high-speed photonic or

redox devices).15,33 Polynuclear transition metal complexes that can demonstrate mixed-

valence states, particularly those containing ferrocene, are responsible for the above.1

Ferrocene’s role is to be easily oxidized and later reduced, and this makes it a very

interesting ligand.

Meso-ferrocenyl substituted porphyrins have been studied and proven to be very

promising in terms of the properties and applications listed above.5e,6d,34,,35,36 Compounds

such as these, 5,10,15,20-tetraferrocenyl porphyrins, were first prepared in 197737, and

their synthesis that has been much improved upon since. 5e,38 Tetraferrocenyl porphyrins

with different central metal substituents have also been intensely studied;6d,36,39 these

metals include: Co, Ni, and Zn.5e,6d In this chapter, new 5,10,15,20-tetraferrocenyl

porphyrins with an indium metal central substituent are reported.

Indium is either found in a +1 or +3 oxidation state. Properties of indium have

been under deep investigation since 1924, when W.S. Murray found that its addition to

different metals improved the qualities of the resulting alloys.40 Indium’s usage in

organometallic chemistry was first examined with by Rieke and coworkers, when they

Page 47: Synthesis and Characterization of New Ferrocenyl

35

used it for a metal-mediated Reformatsky type reaction.41 Indium is often used

industrially; for example, in bearings, platings, and alloys.40 Indium (III) addition into

porphyrin systems contributes interesting qualities to the molecular structure, especially

for undergoing redox activity because itself does not become oxidized.

The new indium metallated porphyrins have been evaluated for their molecular

structure and redox properties. It has been found that with multiple ferrocene groups,

these compounds have controlled redox behaviors that can assist with the chemical

reversibility needed in molecular electronics.

Synthesis:

Three new In3+ polyferrocenyl containing porphyrins are presented in this work

and were prepared by the following syntheses. As can be seen in Scheme 2, metal-free

5,10,15,20-tetraferrocenyl porphyrin is used as the parent precursor. To this porphyrin

system, indium metal has been introduced to the central position.

Five-coordinate indium is bonded to four nitrogens within the porphyrin core; the

extra axial position allows for an additional substituent. The first indium compound

presented here has an axial chloride group. In the past, reactions used to create indium-

chloro compounds took place in glacial acetic acid media and for long periods of time41

Due to the sensitivity of the ferrocene groups involved in parent H2TFcP compound, a

new method was developed for the preparation of ClInTFcP complex (6). In the new

method, metal-free 5,10,15,20-tetraferrocenyl porphyrin was treated with LiN(SiMe3)2

and InCl3 in dry THF solvent, where it was refluxed for three hours (Scheme 3; see

Page 48: Synthesis and Characterization of New Ferrocenyl

36

experimental section for more detailed syntheses). The new synthesis gives >50% yield.

Compound 6 is the precursor to two other new compounds.

N

NH N

HN

Fe

Fe

Fe

Fe1) LiN(SiMe3)2, reflux 15 min2) InCl3, reflux 3 h, UV-Vis control N

N N

N

In

Cl

Fe

Fe

Fe

Fe

Scheme 3: Preparation of ClInTFcP (6)

A substitution of the chloro-substituent for a hydroxo-group could be achieved by

washing compound 6 three times with 2M NaOH and distilled water (Scheme 4). This

procedure was adapted from a technique used by P.G. Parzuchowski and coworkers.43

After thorough washing with both the base and water, the product is recrystallized with

hexanes. Impurities are removed via centrifugation. This particular reaction presents very

low yields (14%). This could be due to inefficient separation in the washing steps and

also with centrifuging.

N

N N

N

In

Cl

Fe

Fe

Fe

FeH2O /NaOH

N

N N

N

In

OH

Fe

Fe

Fe

Fe CH2Cl2

Scheme 4: Preparation of HOInTFcP (7)

6

6 7

Page 49: Synthesis and Characterization of New Ferrocenyl

37

Compound 6 also could be used for the preparation of the organometallic

compound 8 (FcInTFcP). The same synthesis as used previously for the Sn(IV)

complexes (Scheme 5) is utilized by again substituting a ferrocene group for the chlorine

using a ferrocene-lithium salt18. This reaction gives very stable compounds and also very

high reaction yields—at above 50%.

N

N N

N

InCl

Fe

Fe

Fe

FeN

N N

N

In

Fe

Fe

Fe

Fe

Fe

FcLi, toluene/ether

r.t. 30 min

Scheme 5: Preparation of FcInTFcP (8)

X-ray Crystal Structures:

Figure 26: Crystal Structure of ClInTFcP (6)

6 8

Page 50: Synthesis and Characterization of New Ferrocenyl

38

Figure 27: Crystal Structure of FcInTFcP (8)

Crystal structures of 6 and 8 are shown above in Figures 26 and 27. Both

compounds were crystallized in triclinic symmetry (P-1 space group) and contain two

molecules per unit cell. Indium metal is a five coordinate metal, thus it is located above

the porphyrin system. Corresponding distances from Indium to the C7-C8-C17-C18

porphyrin plane are 0.602 Å and and 0.734 Å for 6 and 8, respectively. Bond length

differences can be explained in terms of size of substituents. For example, ferrocene’s

larger size pulls indium out of the porphyrin plane more than the smaller chloride.

Indium metal in both compounds is coordinated to four nitrogens in the porphyrin

system and either a chloride anion (6) or the carbon atoms of the ferrocenyl ligand (8).

Corresponding In-N bond distances lie in the regions 2.146(2)-2.171(2) Å for 6 and

Page 51: Synthesis and Characterization of New Ferrocenyl

39

2.183(4)-2.218(4) Å for 8, while In-Cl is 2.394(1) Å which are comparable to the

distances observed for similar compounds (2.369(2)44, 2.374(1) Å45, 2.360(2) Å46). The

distances found for In-C in 8 is 2.152(6) Å and is very close to that for CH3InTPP

(2.1328(2) Å).47

Table 9: Table of Selected Bond Lengths (Å ) and Angles (°) for Compound 6

Selected Bond Lengths (Å) and Angles (°) for 6 In(1A)-N(1) 2.146(2) In(1A)-N(4) 2.153(2) In(1A)-N(2) 2.158(2) In(1A)-Cl(1A) 2.394(10) In(1A)-N(3) 2.171(3) N-In(1A)-Cl 99.30-112.85 (7)

Table 10: Table of Selected Bond Lengths (Å ) and Angles (°) for Compound 8

Selected Bond Lengths (Å) and Angles (°) for 6 In(1)-N(1) 2.191(4) In(1)-N(4) 2.213(4) In(1)-N(2) 2.218(4) In(1)-C(61) 2.151(6) In(1)-N(3) 2.183(4) C(61)-In(1)-N 106.30(19)-113.85(19)

An interesting feature of these compounds is their equivalence in NMR

spectroscopy pertaining to the ferrocene substituents attached to the porphyrin core.

Indeed, in each compound’s 1H NMR spectra, the three separate signals appear for the

ferrocene substituent, (α-Cp, β-Cp, and Cp-H protons) confirming that the ferrocene

substituents are free to rotate around single C-C double bonds and probably adopt

different conformations in solid state. It is also important to say that ClInTPP porphyrin

does not reveal such behavior or splitting of the ortho- protons of the phenyl ring.44 The

porphyrin bound equatorial ferrocenes can be rotated up or down with respect to the

porphyrin system, which can be assigned α or β, respectively. Compound 6 adopts an

α,α,β,β conformation of ferrocene substituents, while compound 8 has an unpredictable

α,α,α,α conformation. It is of interest to note that the parent compound, H2TFcP, exhibits

Page 52: Synthesis and Characterization of New Ferrocenyl

40

a more expected α,β,α,β conformation.48 Such conformation, on the other hand, cannot be

considered favorable because of significant distortion of the porphyrin core that has not

been observed for 6 and 8. Also, the ferrocene molecules with the same conformation

(α,α or β,β) can affect on the β-pyrrolic carbon atoms, pushing them to opposite

directions (angles 162.15°-178.94°). The conformation of the ferrocenes also dictates a

small distortion of the porphyrin system that can be considered an “S” (6) and “C” curve

(8). Compound 6 crystallized with solvent molecules of toluene (one per molecule

ClInTFcP) which forms π-π interactions. Indeed, in the structure of 8 two molecules form

a supramolecular dimer through π-π interactions between aromatic macrocycles. Such π-π

stacking also exists between Cp rings of σ-bonded ferrocenes (Cpaxial-Cpequatorial = 3.370

Å). Two FcInTFcP molecules can be associated by π-π stacking and related through a

center of inversion, where the In-C bond becomes shielded towards substitution at the

indium metal. Packing diagrams for 6 and 8 are shown below in Figures 28 and 29.

Figure 28: Zig-Zag Packing of Complex 6

Page 53: Synthesis and Characterization of New Ferrocenyl

41

Figure 29: π-π Stacking of Complex 8

Table 11: Selected Crystallographic Parameters of 6 and 8

Selected Crystallographic Parameters of 6 and 8

6 8 Empirical formula C70.91 H62.75 Cl Fe4 In N4 C70H53Fe5InN4

Formula weight 1344.59 1344.23 Crystal system Triclinic Triclinic Space group, Z P-1, 2 P-1, 2 a (Å) 11.2415(3) 13.709 b (Å) 15.3866(3) 14.553 c (Å) 16.2741(11) 15.818

α (°) 82.613(6) 69.95 β (°) 81.185(6) 76.12 γ (°) 76.854(5) 63.42 Volume (Å3) 2695.9(2) 2637.3 ρcalc(g/cm3) 1.656 1.693 μ(Mo-Kα)(mm-1) 1.573 1.820 θmax(°) 27.48 25.04 Reflections collected/unique, Rint

3246 / 12287, 0.0380

26966 / 9252, 0.0879

Data/restraints/parameters 12287 / 0 / 714 9252 / 0 / 721 GooF(F2) 1.132 1.010 R1a, wR2b(F2>2σ(F2)) 0.0391, 0.0967 0.0549, 0.1274 R1a, wR2b (all data) 0.0437, 0.0987 0.0810, 0.1435 Δρmax/Δρmin (e/Å3) 0.595/ -0.450 1.171/ -0.953 aR1(F) =Σ||Fo| - |Fc||/Σ|Fo|. bwR2(F2) = {Σ[w(Fo2 – Fc2)2]/Σw(Fo2)2]}1/2.

w1/2 = [1.0/(2.14*t[0]'(x)+2.62*t[1]'(x)+0.644*t[2]'(x))]1/2,x = Fo/Fomax

Page 54: Synthesis and Characterization of New Ferrocenyl

42

NMR Spectra:

The H2TFcP precursor itself exhibits five different proton signals. The porphyrin

ring, composed of four pyrroles, contributes two of those signals, one of them being from

its β-pyrrolic position. This proton lies furthest downfield. The second one originating

from the porphyrin core is from inner NH-pyrrolic protons, which are found in the

completely opposite updield direction due to π- system ring current5g. The last three of

the five signals displayed come from the ferrocene units connected to the meso-

substituted porphyrin. Like with the Sn(IV) compounds discussed above, ferrocene again

contributes alpha (α) proton signal, a beta (β) proton signal, and a “Cp-H” signal to the

spectra.

With all the new tetraferrocenyl porphyrins reported here, the metal indium was

introduced into the porphyrin ring. Doing so eliminates the inner pyrrolic proton signals

from the spectrum. All new compounds, varying only by their axial substituent, contain

roughly the same central set of signals. Chemical shifts for the ClInTFcP compound were

reported at 4.25 (Cp-H), 4.86 (β-Cp), 5.54 (α-Cp), and 10.02 (β-pyrrole) ppm with respect to

a tetramethylsilane (TMS) standard. All peaks were found as singlets (for all In(III)

compounds), for which there are no coupling constants.5g

Page 55: Synthesis and Characterization of New Ferrocenyl

43

Compound 7 contains all the same signals as 6, but also exhibits an extra signal at

-5.37 ppm for the O-H proton. The extreme upfield displacement is attributable to the π-

system ring current running through the center of the porphyrin. Signals were reported at

4.36 (Cp-H), 4.86 (β-Cp), 5.54 (α-Cp), and 10.02 (β-pyrrole) ppm with respect to the

tetramethylsilane (TMS) standard.

Figure 30: 1H NMR Spectrum of ClInTFcP (6)

Figure 31: 1H NMR Spectrum of OHInTFcP (7)

Cp

α-Cp β-Cp

β-Pyrrole

α-Pyrrole

Cmeso

Cipso

N

N N

N

In

Cl

Fe

Fe

Fe

Fe

α-Cp

β-Pyrrole

α-Pyrrole

Cmeso

Cipso

N

N N

N

In

OH

Fe

Fe

Fe

Fe

Cp

β-Cp

Page 56: Synthesis and Characterization of New Ferrocenyl

44

Compound 8, FcInTFcP, reveals three additional proton signals its spectrum, All

three come from the ferrocene group axially bound to indium. Now, there are two types of

alpha protons, beta protons, and also Cp-H protons. However, the protons from the axial

ferrocene lay further upfield—again due to ring current. Chemical shifts were confirmed

by two-dimensional GCOSY NMR and are reported here as: 0.85 (α-Cp axial Fc), 2.49 (Cp-

Haxial Fc), 2.99 (β-Cpaxial Fc), 4.15 (Cpeq. Fc), 4.81 (β-Cpeq. Fc), 5.54 (α-Cpeq. Fc), 9.90 (β-

Pyrrole) with respect to a tetramethylsilane (TMS) standard.

Page 57: Synthesis and Characterization of New Ferrocenyl

45

Figure 33: GCOSY NMR Spectrum of FcInTFcP (8)

Variable temperature NMR was performed on ClInTFcP and FcInTFcP to

examine the barrier of rotation the equatorial ferrocenes face when in contact with the β-

pyrrolic protons and the center axial substituent. Through the use of this dynamic type of

NMR, the measurements of activation energies can be performed to gain insight into

these processes. Through a gradual decreasing in temperature, proton splitting was

evaluated. With compound 8, the β-pyrrolic protons split between the temperatures 183-

174 K due to the ferrocenes locking in place. Coalescense for this compound is 199 K.

Off of this value, the free energy of activation for this compound was estimated to be

35.7 kJ/mol

α-Cp (axial)

β-Cp (axial)

Cp-H (axial)

Page 58: Synthesis and Characterization of New Ferrocenyl

46

The indium-chloro compound’s β-pyrrolic protons did not split with the decrease

in temperatures. This study displayed broadening of the downfield β-pyrrolic signal at

low temperatures—suggesting that the ferrocene moieties were at or around coalescence

temperature. An exact temperature for coalescence could not be obtained due to the

freezing point of the solvent.

199

K183

178

174

298

253

K

213

K

298 K

253 K

229 K

185 K

180 K

177 K

Page 59: Synthesis and Characterization of New Ferrocenyl

47

Previous work with both tetraphenyl porphyrins49and tetraferrocenyl

porphyrins5eshow that the temperature at which rotation is fast on the NMR time scale

may depend on the metal; in addition, it has been found that substituent rotation also

requires significant distortion of the porphyrin49. Estimated activation energies for

previously prepared metallated tetraferrocenyl porphyrins increase in the order of Ni < H2

< Zn.6d When in comparison with the new indium metallated porphyrins, the new

compounds fall in the following order: InCl < Ni <H2 < Zn < InFc. Although indium is

slightly bigger than both nickel and zinc, the degree of planarity found within the

tetraferrocenyl porphyrin is quite different. This can be due to the coordination

capabilities of the metal and the overall effect they have on the molecule.

As for 13C NMR spectroscopy, the same assignments can be assigned to the

carbons that harbor the protons already described. There are three new species to assign

however. These include, a Cpipso carbon which is the carbon that belongs to ferrocene in

the bond that bonds it to the porphyrin ring. The porphyrin core carbon that is also part of

this bond is labeled the Cmeso carbon. Meso-substituted “connotation” comes from

substituents bonded to this carbon. An α-pyrrolic carbon is also seen. Chemical shifts for

the ClInTFcP compound are 69.29 (β-Cp), 70.63 (Cp), 76.02 (α-Cp), 89.99 (Cpipso),

120.30 (Cmeso), 131.62 (β-Pyrrole), and 149.28 ppm (α-Pyrrole). These values are very

similar to the shifts reported for H2TFcP. Chemical shifts for OHInTFcP are very similar

to the ones just discussed. They are reported as such: 69.05 (β-Cp), 71.01 (Cp), 78.09 (α-

Cp), 90.71 (Cpipso), 120.02 (Cmeso), 131.13 (β-Pyrrole), and 150.03 ppm (α-Pyrrole).

Page 60: Synthesis and Characterization of New Ferrocenyl

48

Cp

α­Cp β­Cp

β­Pyrrole

α­Pyrrole

Cmeso

Cipso

N

N N

N

In

Cl

Fe

Fe

Fe

Fe

α­Cp

β­Pyrrole

α­Pyrrole

Cmeso

Cipso

N

N N

N

In

OH

Fe

Fe

Fe

Fe

Cp

β­Cp

Page 61: Synthesis and Characterization of New Ferrocenyl

49

The same designated proton areas in the FcInTFcP compound were seen as

carbons, as well as the α-pyrrole carbon, the Cmeso carbon, and the Cpipso. Peak

assignments were verified using two-dimensional HMQC NMR. They were reported as:

66.65 (Cpaxial Fc), 67.87 (β-Cpaxial Fc), 69.16 (β-Cpeq. Fc), 70.85 (Cpeq. Fc), 71.06 (α-Cpaxial Fc),

72.52 (α-Cpeq. Fc), 90.36 (Cpipso), 119.36 (Cmeso), 132.14 (β-Pyrrole), and 149.31 (α-Pyrrole).

α­Cpaxial

β­Cpaxial Cp­Haxial

β­Cpeq.

Cpeq.

α­Cpeq.

Figure 38: 13

C NMR Spectrum of FcInTFcP (8)

Page 62: Synthesis and Characterization of New Ferrocenyl

50

UV-Vis NIR and MCD data:

The UV-Vis NIR/MCD spectra for ClInTFcP (Fig 40), OHInTFcP (Fig 41), and

FcInTFcP (Fig 42) are shown below. Each exhibit an intense Soret band located at 437

nm, 437 nm, and 442 nm respectively. Each also display single Q-Bands at 719 nm, 712

nm, and 724 nm correspondingly. These Soret bands are represented in their

corresponding MCD specta by Faraday pseudo-A terms at 439, 439, and 443 nm,

respectively. The Q-Bands are also represented by Faraday pseudo A-terms at 716, 713,

and 722 nm, correspondingly. The precursor to all of these compounds, H2TFcP, exhibits

its Soret band at 433 nm and two Q-bands at 664 nm and 728 nm. The corresponding

MCD spectrum for H2TFcP also exhibits an Faraday pseudo A-term for the Soret band;

however, the Q-Bands are represented as negative and positive Faraday B-terms because

of the lower effective symmetry. Consistency of Faraday Pseudo A-terms found among

all three indium compounds indicates that all three new compounds exhibit double

degeneracy in their excited state.

Figure 40: UV-Vis and MCD Spectrum of Compound 6

Page 63: Synthesis and Characterization of New Ferrocenyl

51

Figure 42: UV Vis and MCD Spectrum of Compound 8

Figure 41: UV­Vis and MCD Spectrum of Compound 7

Page 64: Synthesis and Characterization of New Ferrocenyl

52

Electrochemistry

Similar to the tin(IV) compounds discussed previously, cyclic voltammetry (CV),

differential pulse voltammetry (DPV), and square wave voltammetry (SWV) were used

to evaluate the redox capabilities of the new indium compounds 6-8. Again, it is very

useful for rapidly observing redox behavior over a wide potential range. Before it was

interesting to observe the redox properties of the axial substituents, now there are four

ferrocenyl units connected to the porphyrin which may or may not exhibit slightly

different behavior.

Figure 43: Electrochemical Plots for Compounds 6, 7, and 8; Left legend corresponds to red CV data, while

the right legend corresponds to blue DPV data

Page 65: Synthesis and Characterization of New Ferrocenyl

53

The redox behavior of InClTFcP was studied by methods introduced above, using

dichloromethane as the solvent and tetrabutylammonium tetrakis(perfluorophenyl)borate

(TFAB) as the electrolyte. CV and DPV results are shown in the Figure 43 above. DPV

shows five oxidation processes, with one of them being irreversible, and two reversible

reduction processes. Found in the CV portion are two very close reversible oxidation

processes with a ΔE1/2 difference between the first and second oxidation waves found to

be 229 mV. Out of these two processes, indicated by peaks, one is single and very

prominent, while the other is broader and could actually be three very close signals. The

same idea can be seen with the DPV data. The reduction waves were found at -2.016 V

and -1.678 V and were assigned to the porphyrin macrocycle. Electron transfer is a result

of communication between redox active centers.

Typically each peak, whether CV or DPV, would indicate a single electron

transfer process. For the broader peaks, it can be thought that single electron transfers are

occurring very rapidly after each other. Deconvolution was perfomed on the oxidation

processes found by differential pulse voltammetry; the results of which can be seen in the

table below.

Table 12: Summary of Electrochemical DPV Data for Compound 6

Summary of Electrochemical Differential Pulse Voltammetry Data for ClInTFcP

Solvent/Electrolyte Redox Process P-2 P-1 Fc+1 Fc+2 Fc+3 Fc+4 P+1

DCM/TFAB -2.016 -1.678 0.050 0.206 0.276 0.360 - Data Deconvolution - - 0.059 0.221 0.280 0.360 -

Redox potentials vs (Fc+/Fc), electrolyte concentrations: TFAB = 0.09M;

The redox behavior of OHInTFcP reports four reversible oxidation processes and

two reversible reduction processes. On the CV portion, two reversible oxidation

Page 66: Synthesis and Characterization of New Ferrocenyl

54

processes can be observed, as well as two reversible reductions. Similar to compound 6

discussed above, each oxidation peak, whether found in the CV or DPV, is again

attributed to single-electron transfers. Again a very prominent first peak is shown,

followed by a broader peak. The ΔE1/2 difference between the first and second oxidation

waves was found to be 265 mV. This value is just a little bit higher than with 6,

suggesting that the removal of an electron requires more energy, which it is then followed

by the loss of two additional electrons. The reduction waves were found at ~-2.062

mV and ~-1.703 mV and were again assigned to the porphyrin macrocycle.

Deconvolution was also performed for this compound.

Table 13: Summary of Electrochemical DPV Data for Compound 7

Summary of Electrochemical Differential Pulse Voltammetry Data for OHInTFcP

Solvent/Electrolyte Redox Process P-2 P-1 Fc+1 Fc+2 Fc+3 Fc+4 P+1

DCM/TFAB -2.062 -1.703 0.020 0.209 0.303 0.387 - Data Deconvolution - - 0.022 0.196 0.317 0.421 -

Redox potentials vs (Fc+/Fc), electrolyte concentrations: TFAB = 0.09M;

The unique FcInTFcP compound reports 6 oxidation processes, one irreversible

and two reversible reduction processes. Both in CV and DPV, the five reversible

processes can be observed; these processes were also evaluated through deconvolution.

Again, the broadness of the last two oxidation peaks on the CV portion of the spectrum

above indicates consecutive electron losses.

Page 67: Synthesis and Characterization of New Ferrocenyl

55

Table 14: Summary of Electrochemical DPV Data for Compound 8

Spectroelectrochemistry

Spectroelectrochemistry was also performed on the new poly(ferrocenyl)

containing compounds in order to obtain a visual of the UV-Vis-NIR spectroscopic

signatures found in the electrochemistry. Stepwise oxidation was performed in a

DCM/TFAB environment. Inter-valence charge transfer bands (IVCT) were found within

the NIR region.

Initial spectroelectrochemical oxidation of ClInTFcP showed a decreasing in

intensity and a red shift of the 437 nm (22883 cm-1) Soret band to 442 nm (22624 cm-1),

as well as a decreasing intensity of the 717 nm (13947 cm-1) Q-Band. At this time, an

IVCT band at approximately 945 nm (10582 cm-1) rose, confirming the appearance of a

mixed valency product—[ClInTFcP]+. Continuing oxidation, the Soret band here shifted

from 442 nm (22624 cm-1) to 477 nm (20964 cm-1). There was also the rising of another

NIR band at ~1184 (~8445 cm-1) nm. This new IVCT band is assigned to the mixture of

[ClInTFcP]2+ and [ClInTFcP]3+ due to the wide nature of the new band and the unclear

falling of the first NIR band. Like the electrochemisty suggests, this could confirm the

possibility of multiple electrons being transferred very quickly after one another. When

continuing oxidation, all areas of the spectrum displayed a decreasing of intensity. This

Summary of Electrochemical Differential Pulse Voltammetry Data for FcInTFcP

Solvent/Electrolyte Redox Process P-2 P-1 Fc+1 Fc+2 Fc+3 Fc+4 Fc+5 P+1

DCM/TFAB - - -0.127 0.115 0.263 0337 0.457 - Data Deconvolution - - -0.124 0.114 0.256 0.353 0.456 -

Redox potentials vs (Fc+/Fc), electrolyte concentrations: TFAB = 0.09M;

Page 68: Synthesis and Characterization of New Ferrocenyl

56

either indicates that a completely oxidized species was obtained or decomposition of

compound under electrochemical conditions.

Figure: 44: Spectroelectrochemical Titration Plot for Complex 6; inset spectrum depicts IVCT area only

The spectroelectrochemical oxidation of OHInTFcP showed amazing similarity to

that of ClInTFcP. First, exhibiting a decreasing in intensity and a red shift of the 437 nm

(22883 cm-1) Soret band to 475 nm (21052 cm-1), as well as a decreasing intensity of the

712 nm (14045 cm-1) Q-Band. An IVCT band also rose at this time around 938 nm

(10660 cm-1), confirming mixed valency of [OHInTFcP]+. Continuing oxidation, the

Soret band at 475 nm remained constant and the Q-band further decreased. There was

also the rising of another NIR band at ~1161 nm (8613 cm-1). This new IVCT band is

assigned to the mixture of [OHInTFcP]2+ and [OHInTFcP]3+ due to the wide nature of the

Page 69: Synthesis and Characterization of New Ferrocenyl

57

new band. There was also simultaneous falling of the first IVCT band. Much like

compound 6, further electron transfer processes were not obtained.

Figure 45: Spectroelectrochemical Titration Plot for Complex 7; inset spectrum depicts IVCT area only

Spectroelectrochemical oxidations of the five ferrocene FcInTFcP first displayed

the decreasing in intensity and a red shift of the 444 nm (22522 cm-1) Soret band. The

single Q-Band lying at 724 nm (13812 cm-1) also decreased at this time. An IVCT band

did not rise at this time. Due to the fact that an inter-valence charge transfer band was not

visible in the first process hints the possibility that the axial ferrocene was oxidized first.

This was later confirmed by density functional theory (discussion follows). Further

anodic oxidation gave rise to a first IVCT band. This band appeared in approximately the

same region as the two compounds tested before it at ~950 nm (10526 cm-1). At this time,

Page 70: Synthesis and Characterization of New Ferrocenyl

58

the Soret band and Q-bands further decreased in their absorbance intensity. As

spectroelectrochemical oxidation continued the Soret and Q-Band intensity remained

constant, while the first IVCT band fell and another arose around 1185 nm (8438 cm-1).

Further chemical signatures were not found.

Figure 46: Spectroelectrochemical Titration Plot for Complex 8; inset spectrum depicts IVCT area only

Overall, the spectroelectrochemical experiments performed generated the

spectroscopic signatures of at least three mixed-valence cations ([XTFcP]+, [XTFcP]2+,

and [XTFcP]3+, with X= Cl, OH, or Fc). In some cases [XTFcP]2+ and [XTFcP]3+ may have

been combined. With FcInTFcP, a combined [XTFcP]3+ and [XTFcP]4+ may be present,

but this is only a hypothesis. Each compound displays characteristic IVCT bands in NIR

Page 71: Synthesis and Characterization of New Ferrocenyl

59

region of UV-Vis-NIR spectra. Each next successful removal of the electron from the

mixed-valence complexes results in a low-energy shift of this IVCT band.

Chemical Oxidation:

Knowing that at least two of each of the new indium porphyrin UV-Vis-NIR

spectroscopic signatures can be obtained through spectroelectrochemical experiments, it

is interesting to observe the chemical oxidation of each. Chemical oxidation titrations

were again performed using excess of silver trifluoromethyl sulfonate (AgOTf) and one

equivalent additions of 2, 3-dichloro-5, 6-dicyanobenzoquinone (DDQ).

In agreement with the spectroelectrochemical data obtained for ClInTFcP, the

first UV-Vis-NIR signature, [ClInTFcP]+, was replicated by the addition of excess

AgOTf, producing an IVCT band at ~938 nm (10660 cm-1). Also observed for the

formation of [ClInTFcP]+ was a decrease in Soret and Q-band intensity. Upon additional

oxidation, complexes [ClInTFcP]2+ and [ClInTFcP]3+ were observed the rise of a second

broad IVCT band at 1041 nm (9606 cm-1). The continuous red shift of the Soret band

through continuous oxidation was also in agreement with the spectroelectrochemistry.

The oxidation of ClInTFcP using DDQ also displayed correlating results for the

formation of the first oxidation complex [ClInTFcP]+. Here, there was consistent

decreasing of both the 437 nm Soret band and 717 nm Q-Band, as well as an increasing

of a ~952 nm NIR band. Any further complex formations were inconclusive.

Page 72: Synthesis and Characterization of New Ferrocenyl

60

Figure 47: Chemical Oxidation Titration using AgCF3SO3 Plot of Compound 6; inset spectrum depicts IVCT area only

Figure 48: Chemical Oxidation Titration using DDQ Plot for Compound 6; inset spectrum depicts IVCT area only

Page 73: Synthesis and Characterization of New Ferrocenyl

61

Chemical oxidation of OHInTFcP using one equivalent additions of DDQ

produced an IVCT band at ~920 nm (10869 cm-1). The formation of [OHInTFcP]+ was

observed by a sharp decrease in Soret band intensity at 437 nm (22883 cm-1) and also of

the Q-band at 710 nm (14084 cm-1). Upon additional oxidation, the probable

[OHInTFcP]2+ and [OHInTFcP]3+ signatures were observed by a decrease of first IVCT

band at and the rise of a second broad IVCT band at 1041 nm (9606 cm-1). The

continuous red shift of the Soret band through continuous oxidation was also in

agreement with the Spectroelectrochemistry. Also with this compound, any further

complex formations were inconclusive.

Figure: 49: Chemical Oxidation Titration using DDQ Plot of Compound 7; inset spectrum depicts IVCT area only

Page 74: Synthesis and Characterization of New Ferrocenyl

62

Only one chemical signature was able to be obtained for compound 8 using

AgOTf. Here, the initial 442 nm (22624 cm-1) Soret band increases in intensity and blue

shifts. At the same time, the 720 nm (13889 cm-1) Q-Band decreases and no rise of an

inter-valence charge transfer band is apparent. Because there is no IVCT rising, this

indicates the possibility of the axial ferrocene being oxidized first. Upon oxidation, axial

and equatorial ferrocenes would not communicate and transfer electrons between each

other. This idea will be further examined below through using density functional theory

analysis.

Figure: 50: Chemical Oxidation Titration using AgOTf Plot of Compound 8

The Hush method 2,50 is typically used for the analysis of experimental data in

mixed-valence compounds. In this case, spectroelectrochemical and chemical oxidation

data was used. Here Gaussian fits were performed on cleanly risen inter-valence charge

transfer bands. All information that is obtained from this technique specifically relates to

Page 75: Synthesis and Characterization of New Ferrocenyl

63

the properties involved with these bands. Synthetic chemists typically look for the Hab

parameter (the electronic coupling matrix element) and the α parameter (for

delocalization). These parameters can be estimated using equations 1, 2, and crystal

structure calculated distances, and are displayed below in Table 153,4,50 Here νmax is the

energy of the IVCT at band maximum in cm-1, Δν1/2 is the half-width at the band

maximum in cm-1, εmax is the molar extinction coefficient of the IVCT, and rab is the

distance between redox centers in Å. The detection of mixed-valence state behavior is

interesting and indicates that these compounds are potentially useful for molecular

electronics.

��� � 2.05�10�����������∆�����/� Equation 1

� � 4.2�10���∆��

�����

�������� � Equation2

Table 15: Estimated Magnitudes of Hab and α for mixed-valence [ClInTFcP]+, [OHInTFcP]+, and [FcInTFcP]2+; S.E. Spectroelectrochemica

Estimated magnitudes of Hab and α for mixed-valence [ClInTFcP]+, [OHInTFcP]+, and [FcInTFcP]2+ complexes

Compound/Oxidant ν(max) cm-1

ε(max) M-1

Δν1/2 cm-1

raba Å

Hab cm-1

α 103

[ClInTFcP]+ / DDQ 10510 7907 1280 9.760 688.4 0.066

[ClInTFcP]+ / S.E. 10596 7333 1320 9.760 676.0 0.064

[OHInTFcP]+/ DDQ 10982 5373 1234 9.760 569.5 0.052

[OHInTFcP]+/ S.E. 10746 11727 1405 9.760 888.1 0.083

[FcInTFcP]2+ / S.E. 10463 8941 1309 9.205 783.1 0.075

Page 76: Synthesis and Characterization of New Ferrocenyl

64

Electronic Structure:

Figure 51: Molecular Energy Orbital Diagram of Compounds 6 and 8

Density functional theory calculations were performed to acquire insight into the

nature of the electronic structure and absorption properties of 6 and 8 using the BP86

exchange-correlation functionality and DGDZVP(In)/6311G(d) (all other atoms) basis

set. The molecular orbital energy diagram, shown above, displays that the HOMO-

LUMO gap of 6 to be larger than 8 by roughly 0.53 eV. Compound 8 contains a whole

other ferrocene unit than 6, which gives it additional redox abilities. The prediction as to

which ferrocene will being oxidized first comes into play. The fact that the axial

ferrocene energies lie a bit higher than the equatorial ones for compound 8 hints that the

axial ferrocene is the first to be oxidized.

Molecular orbital contributions of individual moieties for 6 and 8 are represented

graphically in Figures 52 and 53, respectively. The highest occupied orbitals (HOMO,

-4.0

-3.5

-3.0

}InClTFcP InFcTFcP

BP86

Ene

rgy,

eV

}Fca

Fce

Page 77: Synthesis and Characterization of New Ferrocenyl

65

HOMO-1, HOMO-2, etc.) for 6 are predominantly based on the iron centers, Cp ring

moieties, and the porphyrin core. Again, all ferrocenyl units for this compound are

attached to the meso positions on the ring. The highest MOs for 8 do not contain any

porphyrin contributions, but rather just axial iron and Cp components. Because the

highest HOMO orbitals are the most willing to loose electrons, these contribution

diagrams confirm that when compound 8 undergoes oxidation, its axial ferrocene is the

first to lose an electron.

Figure 52: Molecular Orbital Contribution Diagram of Compound 6

Figure 53: Molecular Orbital Contribution Diagram of Compound 8

298

299

300

301

302

303

304

305

0 10 20 30 40 50 60 70 80 90 100

% Contribution

Orb

ital N

umbe

r

Porp Cl Cp Fe in

Unocc.

Occ.

335

336

337

338

339

340

341

342

0 10 20 30 40 50 60 70 80 90 100

% Contribution

Orb

ital N

umbe

r

AxialCp AxialFe Cp Fe Porph In

Unocc.

Occ.

Page 78: Synthesis and Characterization of New Ferrocenyl

66

Conclusions:

Three new indium(III) metallated poly-ferrocenyl containing porphyrins have

been successfully prepared and characterized via NMR, UV-Vis, and MCD spectroscopy.

Two new crystal structures have been reported The redox properties were also examined

and mixed-valence behavior was found for all three compounds. Interestingly, it was

found that when ferrocene is σ-bonded to the central metal, it does not participate in

formation of mixed-valence states. The mixed-valence properties shown for these

compounds indicate they would be potentially useful for molecular electronics.

Page 79: Synthesis and Characterization of New Ferrocenyl

67

Experimental:

Materials:

All reactions were performed under dry argon atmosphere with flame-dried

glassware. All solvents and reagents were purchased from commercial sources and used

without additional purification. Dry toluene was obtained by distillation over sodium and

benzophenone indicator, dry DCM was obtained by distillation over calcium hydride

prior experiments, and dry THF was obtained by distillation over Na/K alloy with

diphenylketone. Silica gel (60 Å, 63-100 μm) needed for column chromatography was

purchased from Dynamic Adsorbents, while basic aluminum oxide (Activity I, 58 Å, 150

mesh) was purchased from Fischer Inc. The compound tetrabutylammonium

tetrakis(pentafluorophenyl)borate (TFAB) was used in anhydrous DCM for

electrochemical studies, after preparation according to literature.25

Synthesis of FcClSnTPP

A 195 mg (0.625 mmol) amount of iodoferrocene was dissolved in 6 mL of dry

diethyl ether at room temperature and then cooled down to -78° using an acetone/dry ice

bath. A 0.3 mL amount of 2.5M solution of butyl lithium in hexane was added drop-wise

to the solution with intensive stirring. After stirring at -78° for 5 min, the cold bath was

removed and the mixture was left to warm up to room temperature. At this time, the

formation of an orange solid (a ferrocene lithium salt) was observed. A suspension of this

salt was added as one portion to a solution of SnCl2TPP (100 mg, 0.125 mmol) in 10 mL

of dry toluene. The new solution immediately became green. The reaction mixture was

Page 80: Synthesis and Characterization of New Ferrocenyl

68

stirred at room temperature for 24 h and then quenched with 1 mL of distilled water. All

solvents were removed under vacuum and the remaining solid was washed with toluene.

The resulting toluene solution was chromatographed using Al2O3 and several fractions

(monitored by UV-Vis spectroscopy) were collected. The first and second fractions were

eluted using toluene and produced, first, a yellow ferrocene fraction, followed by green

fraction of Fc2SnTPP (3). A third fraction, FcClSnTPP (2), was collected using a 50:50

toluene/ethanol mixture and then pure ethanol. Solvents were removed under vacuum.

Compound (2) was crystallized from a toluene-hexane mixture as a violet powder. Yield:

45 mg (45 %).

1H NMR (500 MHz, CDCl3, TMS), δ (ppm) =: 9.12 (s, 8H, β-pyrrole), 8.38 (d, 4H,

J=11.6 Hz, Ha-Ph), 8.25 (d, 4H, J= 7 Hz, Hb-Ph), 7.83 (t,q, 12H, J= 7.5 Hz, Hc, Hd, and He

-Ph), 2.35 (s, 2H, β-Cp), 2.08 (s, 5H, Cp), -1.17 (s, 2H, α-Cp).

Synthesis of Fc2SnTPP

An amount of 233 mg (0.748 mmol) iodoferrocene was dissolved in 6 mL of dry

diethyl ether at room temperature and then cooled down to -78°C using an acetone/dry

ice bath. An amount of 0.3 mL of 2.5M solution of butyl lithium in hexane was added

drop-wise with intensive stirring. After stirring at -78°C for 5 min, the cold bath was

removed and the mixture was left to warm up to room temperature. The appearance of a

ferrocene-lithium salt was found. A suspension of this was added as one portion to a

solution of SnCl2TPP (100 mg, 0.125 mmol) in 10 mL of dry toluene—which created a

green mixture. This reaction mixture was stirred at room temperature for 24 h and then

quenched with 1 mL of distilled water. All solvents were removed under vacuum and the

Page 81: Synthesis and Characterization of New Ferrocenyl

69

remaining solid was washed with toluene. The resulting solution was chromatographed

using Al2O3 and a toluene-dichloromethane-triethyl amine (50:50:1) mixture as the

eluent. Several fractions (monitored by UV-Vis spectroscopy) were collected. Ferrocene

was collected as a first fraction, followed by a second green Fc2SnTPP (3) fraction. The

solvent from this fraction was removed under vacuum. Compound (3) was crystallized

from a toluene-hexane as a green powder. Yield: 34 mg (25 %).

1H NMR (500 MHz, CDCl3, TMS), δ (ppm) =: 8.96 (s, 8H, β-pyrrole), 8.30 (s, 8H, o-Ph),

7.79 (s, 12H, m,p-Ph), 2.36 (s, 4H, β-Cp), 1.92 (s, 10H, Cp), -1.84 (s, 4H, α-Cp).

Anal. Calc. (found): C, 69.79 (69.54), H, 4.21 (4.48), N, 5.09 (4.99). Synthesis of Fc(OCH2CH3)SnOEP and Fc2SnOEP

An amount of 259.3 mg (0.831 mmol) iodoferrocene was dissolved in 10 mL of

dry diethyl ether at room temperature and then cooled down to -78°C using an

acetone/dry ice bath. An amount of 0.3 mL of 2.5M solution of butyl lithium in hexane

was added drop-wise with intensive stirring. After stirring at -78°C for 5 min, the cold

bath was removed and the mixture was left to warm up to room temperature. It was found

that a ferrocene lithium salt was formed at this time. The suspension of salt formed was

added as one portion to a solution of SnCl2OEP (100 mg, 0.139 mmol) in 20 ml of dry

toluene and the resulting solution immediately became green. The reaction mixture was

stirred at room temperature for thirty minutes (sheltered from light and controlled by UV-

Vis spectroscopy). The reaction was quenched using 1 mL of distilled water. All solvents

were removed under vacuum and the remaining solid was washed with toluene. The new

Page 82: Synthesis and Characterization of New Ferrocenyl

70

toluene solution was passed through an aluminum column to eluate a first ferrocene

fraction and a second Fc2SnOEP (5) fraction. Mono-ferrocene octaethyl porphyrin,

Fc(OCH2CH3)SnOEP (4), was also obtained in a third fraction using an ethanol-toluene

mixture (1:1 ratio). The appearance of metal-free octaethyl porphyrin was seen in all

fractions due to de-metallation of the porphyrin system. All solvents were removed under

vacuum. The second and third fractions were recrystallized using a toluene-hexane

system, yielding a light red SnFc2OEP (5) powder and a darker red Fc(OCH2CH3)SnOEP

(4) powder. Due to the high impurity of these compounds, yields could not be calculated.

Synthesis of ClInTFcP

An amount of 800 mg (0.766 mmol) metal-free 5,10,15,20-

tetraferrocenylporphyrin was measured into a 250 mL round bottom flask containing a

magnetic stir-bar. The porphyrin reagent was dissolved in 160 mL dry THF. With

stirring, 1.6 g (0.009 mol) LiN[Si(CH3)3]2 was added and stirred for fifteen minutes. 4.0 g

(0.018 mol) InCl3 was then added and refluxing began for three hours (controlled by UV-

Vis). The mixture was then cooled down, evaporated to dryness under vacuum (0.1-0.5

mmHg), and the solid was set aside for column chromatography. The product was added

to a column packed of silica gel, dichloromethane, and triethylamine. Other eluants used

were straight ethyl acetate, a mixture of dichlomethane and tetrahydrofuran, ethanol, and

also methanol. The first two bands to pass through the column were from unreacted

starting materials—distinct by their light color and small amount. The main product came

out in the third band (confirmed by UV-Vis spectroscopy). Flasks containing the main

Page 83: Synthesis and Characterization of New Ferrocenyl

71

fraction (Compound (6)) were combined and the solvent was removed under reduced

pressure. Yield: 475 mg (52%)

1H NMR (500 MHz, CDCl3, TMS), δ (ppm) = 4.25 (s, 8H, Cp), 4.86 (s, 8H, β-Cp), 5.54

(s, 20H, α-Cp), 10.02 (s, 4H, β-Pyrrole). 13C NMR (125 MHz, CDCl3, TMS), δ (ppm) =

69.29 (β-Cp), 70.63 (Cp), 76.02 (α-Cp), 89.99 (Cpipso), 120.30 (Cmeso), 131.62 (β-

Pyrrole), 149.28 (α-Pyrrole).

Anal. Calc. (found): C 60.32 (58.79), H 3.71 (3.77), N 4.69 (4.85). MS (APCI, THF, m/z): 1194 [M] + 1231 [M-Cl+THF]+

Synthesis of OHInTFcP

An amount of 30 mg (0.025 mmol) InClTFcP was measured and placed into a 250

mL Erlenmeyer flask and dissolved in dichloromethane. The product was washed three

times with a 2M sodium hydroxide solution. The dark product was then washed three

times with distilled water. The sample was dried with sodium sulfate. Solvent was

removed under reduced pressure. The product was recrystallized using dichloromethane

and hexanes. Centrifugation was used to separate solvent and product. The sample,

Compound (7), was air dried to yield: 4 mg (14%)

1H NMR (500 MHz, CDCl3, TMS), δ (ppm) = 4.36 (s, 8H, Cp), 4.86 (s, 8H, β-Cp), 5.54

(s, 20H, α-Cp), 10.02 (s, 4H, β-Pyrrole). 13C NMR (125 MHz, CDCl3, TMS), δ (ppm) =

69.05 (β-Cp), 71.01 (Cp), 78.09 (α-Cp), 90.71 (Cpipso), 120.02 (Cmeso), 131.13 (β-

Pyrrole), 150.03 (α-Pyrrole).

Page 84: Synthesis and Characterization of New Ferrocenyl

72

Anal. Calc. (found): C 61.27 (61.48), H 3.86 (4.00), N 4.76 (4.55). APCI MS, THF: 1194 [M+H2O] +, 1230 [M-OH+THF]+

Synthesis of FcInTFcP

An amount of 196.2 mg (0.629 mol) ferrocene iodide was measured into a

Schlenk flask containing a stir bar. A 145 mg (0.121 mmol) amount of InClTFcP was

measured into another Schlenk containing a stir bar. Both flasks were placed under

pressure and flushed with Argon. To the flask containing InClTFcP, 10 mL of toluene

was added. The ferrocene iodide was dissolved in approximately eight milliliters of

diethyl ether. While being flushed with Argon, the temperature of this solution was

brought down using a dry-ice and isopropanol slurry. After temperature was low enough,

0.26 mL butyl lithium was added, stirring began. The new orange FcLi salt was added to

the porphyrin solution via syringe. The reaction mixture was stirred for 45 minutes where

it was then quenched with eight milliliters of distilled water. Solvent was removed under

vacuum (0.1-0.5 mmHg) and solid was set aside for column chromatography. One main

fraction, Compound (8), was obtained. Yield: 94 mg (58%)

1H NMR (500 MHz, THF-d8, TMS), δ (ppm) = 0.85 (s, 2H, α-Cp coordinated Fc), 2.49

(s, 5H, Cp Coordinated Fc), 2.99 (s, 2H, β-Cp Coordinated Fc), 4.15 (s, 20H, Cp

porphyrin Fc), 4.81 (s, 8H, β-Cp porphyrin Fc), 5.54 (s, 8H, α-Cp coordinated Fc), 9.90

(s, 4H, β-Pyrrole). 13C NMR (125 MHz, CDCl3, TMS), δ (ppm) = 66.65 (Cp

Coordinated Fc), 67.87 (β-Cp Coordinated Fc), 69.16 (β-Cp porphyrin Fc), 70.85 (Cp

porphyrin Fc), 71.06 (α-Cp coordinated Fc), 72.52 (α-Cp porphyrin Fc), 90.36 (Cpipso),

Page 85: Synthesis and Characterization of New Ferrocenyl

73

119.36 (Cmeso), 132.14 (β-Pyrrole), 149.31 (α-Pyrrole).

Anal. Calc. (found): C 62.69 (62.625), H 4.22 (4.245), N 4.12 (3.98). MS (APCI, THF, m/z): 1345 [M]+

Instrumentation:

A Varian Unity INOVA NMR instrument was used to evaluate spectra taken at

500 MHz frequency for protons and 125 MHz for carbons. Each were referenced to TMS

as an internal standard and chemical shifts were recorded in parts per million. All UV-Vis

data was obtained on a JASCO-720 spectrophotometer at room temperature. An OLIS

DCM 17 CD spectropolarimeter with 1.4 T DeSa magnet was used to obtain all MCD

data. Electrochemical measurements were conducted using a CHI620C electrochemical

analyzer utilizing the three-electrode scheme. Either carbon or platinum working,

auxiliary and reference electrodes were used in 0.05 M solution of TFAB (or 0.1 M

TBAP) in DCM with redox potentials corrected using internal standard

(decamethylferrocene) in all cases. Spectroelectrochemical data was collected using a

custom-made 1 mm cell, a working electrode made of platinum mesh, and a 0.15 M

solution of TBAF in DCM. Fluorescence techniques were performed using a Varian Cary

Eclipse Fluorescence Spectrometer. Elemental analysis was performed by Atlantic

Microlab, Inc. in Atlanta, Georgia.

Computational Aspects:

All computations were performed using Gaussian03 software package running

under Windows or UNIX OS52 Molecular orbital contributions were compiled from

Page 86: Synthesis and Characterization of New Ferrocenyl

74

single point calculations using the VMOdes program.53 TDDFT calculated excitation

energies were found where the lowest 150 singlet excited states had been considered. In

all calculations, Becke’s exchange functional and Pedrew-Wang correlation functional

(BPW91) were used. Wachter’s full-electron basis set was used for iron, DGauss DZDVP

basis set was used for tin atom, while for all other atoms 6-311G(d) basis set was

employed. The percentage of atomic orbital contributions to their respective molecular

orbitals were calculated by using the VMOdes program. In all cases, frequency

calculations were performed to ensure that the optimized structures represent potential

energy surface minima. It has been shown that BPW91 exchange-correlation functional

coupled with the mentioned above basis set could accurately predict MLCT and ���* in

variety of ferrocene-containing compounds, porphyrins, and phthalocyanines.31 The

typical errors for the TDDFT predicted by the mentioned above combination of the

exchange-correlation functional and basis set method are within ~0.1 eV.

X-ray Crystallography

X-ray quality single crystals of 2,3, 4, and 5 were obtained by slow diffusion of

dichloromethane solutions with hexanes. Indium metallated porphyrin crystals, 6 and 8,

were grown from slow diffusion of toluene solutions with pentane. Experimental data for

all compounds except 3 were collected using Rigaku Rapid II X-ray diffractometer with

curved IPDS detector using graphite-monochromatized Mo-Kα radiation (λ = 0.71075

Å), while 3 was collected using SMART APEX II diffractometer with the same radiation.

Structure (2) was solved by Patterson search method using the DIRDIF-200854

program; structure (3) was solved by direct method implemented into SHELXS-9755

Page 87: Synthesis and Characterization of New Ferrocenyl

75

program; (4), (5), (6) and (8) were solved by direct method using SIR-92 program56. All

missed non hydrogen atoms were located from analysis of a difference Fourier-map and

refined in an isotropic and then in the anisotropic approximations. All aromatic hydrogen

atoms were placed geometrically while hydrogens for methyl group were located from

the difference Fourier-map analysis and were constrained. Thermal displacement

parameters for hydrogen atoms were constrained to the parent atom like Uiso(H) =

1.2Ueq(C) for methylene and aromatic hydrogens including porphyrin system, and Uiso(H)

= 1.5Ueq(C) for methyl group, so called "riding mode" (Ueq=1/3(U11+U22+U33)).

Structures were completely refined using a full-matrix least square method using

SHELXL-97 program.55 The ferrocene subunits in (2) and (4) were found to be

disordered in two different ways: by rotation of unsubstituted cyclopentadiene (Cp) ring

(Fig. 54) and by rotation of the overall ferrocene molecule around the Sn-C bond (Fig.

55). To resolve these disorders a set of geometrical constrains were applied. In the both

cases distances C-C of disordered ferrocene units were constrained to be 1.42 Å within

e.s.d. 0.02 Å and all ferrocene's carbon atoms of unsubstituted Cp ring were constrained

to get planar geometry.

The indium-chloride moiety in (6) was found to be statically disordered

over two positions. Indeed, such disorder is very common for indium contained

macrocycles and induced by five-coordinate central ion where the metal atom lies out of

porphyrin plane. Final refined populations for the two positions were 0.84 and 0.16,

respectively (Fig. 56). In the crystal structure, the position of the minor component of

indium-chloride moiety (In1b-Cl1b) overlaps with the position of the toluene molecule

(C61-C67). For this reason, population of the toluene molecule position less than one and

Page 88: Synthesis and Characterization of New Ferrocenyl

76

related to the In-Cl part. Two positions were refined together like related variables with

total contribution to a population equal to 1. The best value for R1 was 0.051, but the

difference electron density map analysis revealed five peaks: 3.35, 3.03 2.23, 2.08, 2.05

e-/Å3, that correspond to disordered a pentane molecule (toluene/pentane solvent system

was used for crystallization of the ClInTFcP). It is a very well-known fact that it is very

difficult to correctly model disorder of alkane chains. Unfortunately, such disorder could

not be resolved, so the SQUEEZE procedure was implemented into the PLATON57

program to remove contribution from the disordered area. Afterwards, refinement was

successfully completed with final R1 equals 0.039 and maximum/minimum of electron

density equals 0.6/-0.45 e-/Å3. ORTEP-358for Windows and PLATON/PLUTON57

software were used for visualization of results. All information about the refinement of

crystal structures is presented in Tables 5, 6, and 11 above; the corresponding CIF files

are presented in the Supplemental Section.

Figure 54. The disorder of the ferrocene by rotation around bond Sn-C in (2)

Page 89: Synthesis and Characterization of New Ferrocenyl

77

Figure 55. Disorder of Cp ring by rotation around Fe atom in (4)

Figure 56. Disorder of ClInTFcP (6) moiety and toluene molecule

Page 90: Synthesis and Characterization of New Ferrocenyl

78

References:

(1) D’Alessandro, D.; Keene, R. Chem. Soc. Rev., 2006, 35, 424.

(2) Hush, N. S. Prog. Inorg. Chem. 1967, 8, 391.

(3) Creutz, C. Prog. Inor. Chem., 1983, 30, 1.

(4) Robin, M.; Day, P. Advances in Radiochemistry. 1967, 10, 248.

(5) (a) Burrell, A.K.; Campbell, W.M.; Jameson, G.B.; Officer, D.L.; Boyd, P. D. W.; Zhao, Z.; Cocks, P. A.; Gordon, K. C. Chem. Commun. 1999, 637; (b) Rhee, S.W.; Na, Y. H.; Do, Y.; Kim, J. Inorg. Chim. Acta. 2000, 309, 49; (c) Auger, A.; Swarts, J. C. Organometallics. 2007, 26, 102; (d) Auger, A.; Muller, A.J.; Swarts, J.C. Dalton Trans. 2007, 3623. (e) Nemykin, V. N.;. Barrett, C. D.; Hadt, R. G.; Subbotin, R. I.; Maximov, A. Y.; Polshin, E. V.; Koposov, A. Y. Dalton Trans. 2007, 3378; (f) Nemykin, V. N.; Makarova, E. A.; Grosland, J. O.; Hadt, R. G.; Koposov, A. Y. Inorg. Chem. 2007, 46, 9591. (6) (a) Bucher,C.; Devillers, C.H.; Moutet, J.C.; Royal, G.; Saint-Aman, E. Coord. Chem. Rev. 2009, 253, 21; (b) Shoji, O.; Okada, S.; Satake, A.; Kobuke, Y. J. Am. Chem. Soc. 2005, 127, 2201; (c) Nemykin, V. N.; Galloni, P.; Floris, B.; Barrett, C. D.; Hadt, R. G.; Subbotin, R. I.; Marrani, A. G.; Zanoni, R.; Loim, N. M. Dalton Trans. 2008, 4233; (d) Nemykin, V. N.; Rohde, G. T.; Barrett, C. D.; Hadt, R. G.; Bizzarri, C.; Galloni, P.; Floris, B.; Nowik, I.; Herber, R. H.; Marrani, A. G.; Zanoni, R.; Loim, N. M. J. Am. Chem. Soc. 2009, 131, 14969; (e) Nemykin, V. N.; Rohde, G. T.; Barrett, C. D.; Hadt, R. G.; Sabin, J. R.; Reina, G.; Galloni, P.; Floris, B. Inorg. Chem. 2010, 49, 7497. (7) (a) Burrell, A. K.; Campbell, W.; Officer, D. L. Tetrahedron Lett. 1997, 38, 1249; (b) Wang, H. J. H.; Jaquinod, L.; Olmstead, M. M.; Vicente, M. G. H.; Kadish, K. M.; Ou, Z.; Smith, K. M. Inorg. Chem. 2007, 46, 2898. (8) (a) Nemykin, V. N.; Kobayashi, N. Chem. Commun. 2001, 165; (b) Lukyanets, E. A.; Nemykin, V. N. J. Porphyrins Phthalocyanines, 2010, 14, 1; (c) Nemykin, V. N.; Makarova, E. A.; Grosland, J. O.; Dudkin, S. V.; Hadt, R. G.;. Lukyanets, E. A. Dalton Trans. 2010, submitted. (9) (a) Jin, Z.; Nolan, K.; McArthur, C. R.; Lever, A. B. P.; Leznoff, C. C.; J. Organomet. Chem. 1994, 468, 205; (b) Poon, K.-W.; Yan, Y.; Li, X. Y.; Ng, D. K. P. Organometallics, 1999, 18, 3528; (c) Nemykin, V. N.; Lukyanets, E. A. ARKIVOC, 2010, (i), 136. (10) (a) Gryko, D. T.; Piechowska, J.; Jaworski, J. S.; Galezowski, M.; Tasior, M.; Cembor, M.; Butenschoen, H.; New J. Chem. 2007, 31, 1613; (b) Kumar, R.; Misra, R.; PrabhuRaja, V;. Chandrashekar, T. K. Chem.–Eur. J. 2005, 11, 5695.

Page 91: Synthesis and Characterization of New Ferrocenyl

79

(11) (a) Bucher, C.; Devillers, C. H.; Moutet, J.-C.; Pecaut, J.; Royal, G.; Saint-Aman, E.; Thomas, F. Dalton Trans. 2005, 3620; (b) Szymanska, I.; Radecka, H.; Radecki, J.; Gale, P. A.; Warriner, C. N. J. Electroanal. Chem. 2006, 591, 223. (12) Fuhrhop, J.-H.; Mauzerall, D. J. Am. Chem. Soc. 1969, 91 (15), 4174.

(13) Heath, J.R.; Ratner, M.A. Phys. Today, 2003, 56, 43; Chen, J.; Lee, T.; Su, J.; Wang, W.;. Reed, M.A. Encyclopedia of Nanoscience and Nanotechnology, 2004, 5 633. (14) (a) Cowan, D. O.; Kaufman, F. J. Am. Chem. Soc. 1970, 92, 6198; (b) Morrison, Jr. W. H.; Hendrickson, D. N. Inorg. Chem. 1975, 14, 2331; (c) Patoux, C.; Coudret, C.; Launay. J. P.; Joachim, C.; Gourdon, A. Inorg. Chem. 1997, 36, 5037. (15) Barlow, Stephen; O'Hare, Dermot. Chem. Rev. 1997, 97 (3), 637. (16) (a) Kadish, K. M.; Xu, Q. Y.; Barbe, J. M. Inorg. Chem. 1987, 26, 2565; (b) Xu, Q. Y.; Barbe, J. M.; Kadish, K. M. Inorg. Chem. 1988, 27, 2373; (c) Maiya, G. B.; Barbe, J. M.; Kadish, K. M. Inorg. Chem. 1989, 28, 2524.

(17) Rochford, J.; Rooney, A.D.; Pryce, M.T. Inorg. Chem. 2007, 46, 7247.

(18) Crossley, M. J.; Thordarson, P.; Wu, R. A.-S. J. Chem. Soc., Perkin Trans. 1, 2001, 2294.

(19) Dawson, D.; Sangalang, J.; Arnold, J. J. Am. Chem. Soc. 1996, 118, 6082. (20) Chen, J.; Woo, L.K. Inorg. Chem. 1998, 37, 3269. (21) Dawson, D.Y;. Sangalang, J.C.; Arnold, J. J. Am. Chem. Soc. 1996, 1972, 94, 6689. (22) Du,G.; Ellern, A.; Woo, L.K. Inorg. Chem. 2004, 43, 2379. (23) Collins, D.M.; Scheidt, W.R.; Hoard, J.L. J. Am. Chem. Soc, 1972, 94, 6689. (24) Hawley, J.C.; Bampos, N.; Sanders, J.K. M. Chem. Eur. J. 2003, 9, 5211. (25) (a) Waluk, J.; Michl, J. J. Org. Chem. 1991, 56, 2729; (b) Gorski, A.; Vogel, E.; Sessler, J. L.; Waluk J. J. Phys. Chem. A. 2002, 106, 8139; (c) Mack, J.; Stillman, M.;J. Kobayashi, N. Coord. Chem. Rev. 2007, 251, 429. (26) Barriere, F.; Geiger, W. E. J. Am. Chem. Soc. 2006, 128, 3980.

(27) LeSuer, Robert J., et al. Anal. Chem. 2004, 76, 6395.

(28) Ou, Z.; E, Wenbo; Zhu, W.; Thordarson, P.; Sintic,P; Crossley, M.J.; Kadish, K. Inorg. Chem. 2007, 46 (25), 10840.

Page 92: Synthesis and Characterization of New Ferrocenyl

80

(29) Connelly, N. G.; Geiger, W. E. Chem. Rev. 1996, 96, 877.

(30) Hadt, R. G.; Nemykin, V. N. manuscript in preparation.

(31) Scott, D.R.; Becker, R.S. J. Chem. Phys. 1961, 35, 516.

(32) Mack, J.; Asano, Y.; Kobayashi, N.; Stillman, M. J. J. Am. Chem. Soc., 2005, 127, 17697; (b) Nemykin, V. N.; Hadt, R. G.; Belosludov, R. V.; Mizuseki, H.; Kawazoe, Y.; J. Phys. Chem. A. 2007. 111, 12901;.

(33) (a) Miller, J. S.; Epstein, A. J. Angew. Chem. Int. Ed. 1994, 33, 385. (b) Epstein, A. J.; Miller, J. S. Synth. Met. 1996, 80, 231. (c) Barlow, S. Inorg. Chem. 2001, 40, 7047. (34) Nemykin, V. N.; McGinn, M.; Koposov, A. Y.; Tretyakova, I. N.; Polshin, E. V.; Loim, N. M.;Abramova, N. V. Ukr. Khim. Zh. 2005, 71, 79. (35) (a) Gostev, F. E.; Nadtochenko, V. A.; Sarkisov, O. M.; Loim, N. M.; Abramova, N. V.; Chirvonyi, V. S. Khimicheskaya Frzika, 2004, 23, 3. (b) Nadtochenko, V. A.; Denisov, N. N.; Gak, V. Y.; Abramova, N. V.; Loim, N. M. Rus. Chem. Bull. 1999, 148, 1900. (36) Galloni, P.; Floris, B.; De Cola, L.; Cecchetto, E.; Williams, R. M. J. of Phys. Chem. C 2007, 111, 1517. (37) Wollmann, R. G.; Hendrickson, D.N. Inorg. Chem., 1977, 16, 3079. (38) Loim, N.M.; Abramova, N.V.; Sokolov, V.I. Mendeleev Commun. 1996, 46. (39) Narayanan, S.J.; Venkatraman, S.; Dey, S. R.; Sridevi, B.; Anand, V. R. G.; Chandrashekar, T. K. Synlett, 2000, 1834. (40) Ludwick, M.T. Metal Finishing. 1942, 40, 13.

(41) Rieke, R. D.; Chao, L. C. J. Org. Chem. 1975, 40, 2253.

(42) (a) Hong, Tay-Ning, et al. Polyhedron. 1996, 15 (15), 2647. (b) Cocolios, P.; Guilard, R.; Bayeul, D.; Lecomte, C. Inorg. Chem. 1985, 24, 2058.

(43) Parzuchowski, P.G.; et al. Inorg. Chim. Acta. 2003, 355, 302.

(44) Ball, R. G.; Lee, K. M.; Marshall, A. G.; Trotter, J. Inorg. Chem. 1980, 19, 1463. (45) Bedel-Cloutour, C. H.; Mauclaire, L.; Pereyre, M.; Adams, S.; Drager, M. Polyhedron. 1990, 9, 1297.

Page 93: Synthesis and Characterization of New Ferrocenyl

81

(46) Raptopoulou,C.; Daphnomili, D.; Karamalides,A.; Vaira, M.D.; Terzis, A.; Coutsolelos, A.G. Polyhedron. 2004, 23, 1777. (47) Lecomte, C.; Protas, J.; Cocolios, P.; Guilard, R. Acta Crystallogr., Sect.B: Struct.Crystallogr. Cryst.Chem.1980, 36, 2769. (48) Indian. J. Chem. Sect. A. Inorg. Bio-Inorg. Phys. Theor. Anal. Chem. 2003, 42, 2191. (49) Eaton, S.S.; Eaton, G.R. J. Am. Chem. Soc. 1975, 97 (13), 3660-3666. (50) Hush, N. S. Coord. Chem. Rev. 1985, 64, 135. (51) Lever, A. B. P. Inorganic Electronic Spectroscopy. 2nd ed. Elsevier, Amsterdam, 1984; pp 612.

(52) Gaussian 03, Revision C.02,. Frisch, M. J; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.;. Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.;. Cioslowski, J.; Stefanov, B. B.; Liu, G.;. Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Wallingford CT, 2004. (53) VMOdes Program, Revision A 7.2. Nemykin,V. N.; Basu, P.; University of Minnesota Duluth and Duquesne University; 2001, 2003, 2005.

(54) Beurskens P.T., Beurskens G., R. de Gelder, Garcia-Granda S., Gould R.O., and Smits J.M.M. (2008). The DIRDIF2008 program system, Crystallography Laboratory, University of Nijmegen, The Netherlands. (55) Sheldrick, G.M. Acta Cryst. 2008. A64,112. (56) Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Burla, M. C.; Polidori, G.; Camalli, M. J. Appl. Cryst. 1994. 27, 435 (57) Spek, A.L. Acta Cryst. 2009, D65, 148-155.

Page 94: Synthesis and Characterization of New Ferrocenyl

82

(58) Burnett, M. N.; Johnson, C.K. ORTEP-III: Oak Ridge Thermal Ellipsoid Plot Program for Crystal Structure Illustrations, Oak Ridge National Laboratory Report ORNL-6895, 1996.

Supplemental Material: Inter-Valence Charge Transfer Band Analysis:

Through spectroelectrochemistry, it is possible to obtain spectroscopic signatures

of the different oxidation states possible for a chemical compound. These signatures are

apparent when there is a rising, or falling, of an inter-valence charge transfer band. Due

to investigate the nature of these bands within the different compounds, Hab parameters

were investigated. Using the equations from above and the following fitted Gaussian

plots, the parameters were determined. These parameters can be again seen in Table 11

above.

1.

Page 95: Synthesis and Characterization of New Ferrocenyl

83

Electrochemical Data Deconvolution Analysis

The typical oxidation of a tetraferrocenyl porphyin consists of four stepwise one

electron transfer processes. All three indium metallated poly (ferrocenyl) containing

porphyrins have very close together electrons transfers—some of which appear as a

single hump and their true electrochemical potentials cannot be seen. To gain better

insight into these processes, Lorentz or Gaussian fitted deconvolution processing was

performed. The plots below display the results.

Page 96: Synthesis and Characterization of New Ferrocenyl

84

CIF Information for Compound 2:

Crystal data and structure refinement

Empirical formula C56.98 H43.96 Cl Fe N4 Sn Formula weight 994.67 Temperature 123(2) K Wavelength 0.71073 A Crystal system, space group Triclinic, P-1 Unit cell dimensions a = 13.2771(2) A alpha = 114.559(8) deg. b = 13.3199(2) A beta = 95.207(7) deg. c = 15.2657(10) A gamma = 90.164(6) deg. Volume 2442.91(17) A^3 Z, Calculated density 2, 1.352 Mg/m^3 Absorption coefficient 0.904 mm^-1 F(000) 1014 Crystal size 0.25 x 0.20 x 0.20 mm Theta range for data collection 3.00 to 27.6 deg.

Page 97: Synthesis and Characterization of New Ferrocenyl

85

Limiting indices -17<=h<=17, -17<=k<=17, -19<=l<=19 Reflections collected / unique 82535 / 11207 [R(int) = 0.0635] Completeness to theta = 27.48 99.8 % Absorption correction Semi-empirical from equivalents Max. and min. transmission 1.000 and 0.836 Refinement method Full-matrix least-squares on F^2 Data / restraints / parameters 11207 / 71 / 659 Goodness-of-fit on F^2 1.036 Final R indices [I>2sigma(I)] R1 = 0.0451, wR2 = 0.1128 R indices (all data) R1 = 0.0560, wR2 = 0.1179 Largest diff. peak and hole 1.356 and -0.723 e.A^-3

Atomic coordinates ( x 10^4) and equivalent isotropic displacement parameters (A^2 x 10^3)

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

x y z U(eq) x y z U(eq) ______________________________________________________________________________

Sn(1) 2278(1) 1453(1) 2824(1) 23(1) Cl(1) 2457(1) 2326(1) 4633(1) 32(1) N(1) 2655(2) 3064(2) 2962(2) 29(1) N(2) 745(2) 1873(2) 2956(2) 25(1) N(3) 1927(2) -20(2) 2969(2) 24(1) N(4) 3839(2) 1166(2) 2975(2) 26(1) C(1) 3619(2) 3490(3) 3034(2) 29(1) C(2) 3543(2) 4604(3) 3112(3) 33(1) C(3) 2541(2) 4837(3) 3114(3) 35(1) C(4) 1976(2) 3862(2) 3028(2) 28(1) C(5) 928(2) 3774(2) 3059(2) 27(1) C(6) 361(2) 2862(2) 3033(2) 26(1) C(7) -707(2) 2824(3) 3127(3) 32(1) C(8) -949(2) 1819(3) 3116(3) 30(1) C(9) -24(2) 1225(2) 3028(2) 25(1) C(10) 77(2) 187(2) 3055(2) 26(1) C(11) 978(2) -374(2) 3031(2) 25(1) C(12) 1071(2) -1415(3) 3121(3) 31(1) C(13) 2070(2) -1640(3) 3136(3) 31(1)

C(14) 2618(2) -748(2) 3051(2) 26(1) C(15) 3675(2) -629(2) 3083(2) 28(1) C(16) 4234(2) 255(2) 3056(2) 27(1) C(17) 5322(2) 388(3) 3157(3) 35(1) C(18) 5556(2) 1390(3) 3159(3) 35(1) C(19) 4620(2) 1888(3) 3058(2) 28(1) C(20) 4522(2) 2950(3) 3072(2) 28(1) C(21) 356(2) 4793(2) 3199(2) 28(1) C(22) 350(3) 5630(3) 4123(3) 37(1) C(23) -171(3) 6583(3) 4274(3) 41(1) C(24) -683(2) 6706(3) 3499(3) 36(1) C(25) -672(3) 5891(3) 2587(3) 43(1) C(26) -163(3) 4928(3) 2425(3) 37(1) C(27) -859(2) -334(2) 3198(2) 27(1) C(28) -1426(3) -1171(3) 2435(3) 36(1) C(29) -2298(3) -1625(3) 2599(3) 41(1) C(30) -2596(2) -1269(3) 3512(3) 38(1) C(31) -2035(3) -447(3) 4282(3) 40(1) C(32) -1174(3) 25(3) 4121(3) 36(1)

C(33) 4273(2) -1528(3) 3207(3) 30(1)C(34) 4487(3) -1489(3) 4135(3) 39(1) C(35) 5040(3) -2312(3) 4263(3) 44(1) C(36) 5377(3) -3162(3) 3488(3) 44(1) C(37) 5164(3) -3205(3) 2576(3) 49(1) C(38) 4612(3) -2388(3) 2428(3) 42(1) C(39) 5492(2) 3610(2) 3217(3) 28(1) C(40) 5892(3) 3693(3) 2441(3) 39(1) C(41) 6802(3) 4311(3) 2604(3) 46(1) C(42) 7285(3) 4842(3) 3514(3) 41(1) C(43) 6886(3) 4766(3) 4281(3) 43(1) C(44) 5994(3) 4147(3) 4135(3) 38(1)

C(45) 2085(3) 774(4) 1283(3) 51(1) Fe(1A) 2006(1) -671(1) 178(1) 45(1) C(46A) 1252(6) 703(7) 675(7) 43(2) C(47A) 1556(9) 495(8) -302(9) 49(2) C(48A) 2629(7) 574(6) -146(6) 49(2) C(49A) 2950(6) 718(8) 710(7) 62(2) C(50A) 2140(10) -2161(8) -935(6) 83(3) C(51A) 1156(10) -2079( -633(8) 86(3) C(52A) 1233(13) -1883(8) 355(8) 105(4) C(53A) 2274(13) -1874(8) 665(7) 111(5) C(54A) 2803(11) -2046( -134(8) 99(4)

Page 98: Synthesis and Characterization of New Ferrocenyl

86

Fe(1B) 2799(1) 24(2) 105(1) 79(1) C(46B) 1655(10) 1070(10) 605(7) 76(4) C(47B) 1341(9) 270(10) -266(8) 65(3) C(48B) 1461(14) -744(11) -268(10) 109(5) C(49B) 1808(14 -481(10) 712(10) 107(6) C(50B) 3590(17) -920(15) -995(11) 155(8) C(51B) 3925(18 -1109(18) 166(12)184(10) C(52B) 4260(15) -33(19) 527(15)175(8)

C(53B) 4187(15) 860(20) 228(14)182(10) C(54B) 3805(17) 243(16) -760(13) 167(8) C(55) 530(20) -2980(20) 480(20) 222(12) C(56)1530(20) -3690(20) 340(20) 227(13) C(57) 1722(16) -4730(18) 524(18) 172(9) C(58) 2759(15) -5095(16) 250(17)161(8) C(59) 2730(13) -6212(15) 355(15) 148(7) C(60) 3831(13) -6438(17) 201(15) 150(7)

______________________________________________________________________________

Bond lengths [A] and angles [deg] ______________________________________________________________________________ Sn(1)-N(4) 2.117(2) Sn(1)-N(2) 2.119(2) Sn(1)-N(3) 2.119(2) Sn(1)-N(1) 2.121(2) Sn(1)-C(45) 2.130(4) Sn(1)-Cl(1) 2.4981(9) N(1)-C(4) 1.373(4) N(1)-C(1) 1.376(4) N(2)-C(9) 1.375(4) N(2)-C(6) 1.376(4) N(3)-C(11) 1.369(4) N(3)-C(14) 1.372(4) N(4)-C(16) 1.371(4) N(4)-C(19) 1.373(4) C(1)-C(20) 1.408(4) C(1)-C(2) 1.444(4) C(2)-C(3) 1.366(4) C(3)-C(4) 1.450(4) C(4)-C(5) 1.403(4) C(5)-C(6) 1.411(4) C(5)-C(21) 1.503(4) C(6)-C(7) 1.442(4) C(7)-C(8) 1.369(4) C(8)-C(9) 1.449(4) C(9)-C(10) 1.408(4) C(10)-C(11) 1.407(4) C(10)-C(27) 1.499(4) C(11)-C(12) 1.453(4) C(12)-C(13) 1.361(4) C(13)-C(14) 1.449(4) C(14)-C(15) 1.407(4) C(15)-C(16) 1.408(4) C(15)-C(33) 1.505(4) C(16)-C(17) 1.441(4) C(17)-C(18) 1.367(5) C(18)-C(19) 1.438(4) C(19)-C(20) 1.412(4) C(20)-C(39) 1.504(4) C(21)-C(22) 1.389(5) C(21)-C(26) 1.389(5)

C(22)-C(23) 1.391(5) C(23)-C(24) 1.379(5) C(24)-C(25) 1.366(6) C(25)-C(26) 1.392(5) C(27)-C(28) 1.387(5) C(27)-C(32) 1.391(5) C(28)-C(29) 1.395(5) C(29)-C(30) 1.369(6) C(30)-C(31) 1.380(5) C(31)-C(32) 1.392(5) C(33)-C(38) 1.378(5) C(33)-C(34) 1.398(5) C(34)-C(35) 1.391(5) C(35)-C(36) 1.367(6) C(36)-C(37) 1.372(6) C(37)-C(38) 1.397(5) C(39)-C(44) 1.383(5) C(39)-C(40) 1.386(5) C(40)-C(41) 1.403(5) C(41)-C(42) 1.363(6) C(42)-C(43) 1.368(6) C(43)-C(44) 1.387(5) C(45)-C(46B) 1.337(10) C(45)-C(46A) 1.354(9) C(45)-C(49A) 1.489(8) C(45)-C(49B) 1.554(12) C(45)-Fe(1A) 1.956(5) C(45)-Fe(1B) 1.988(4) Fe(1A)-C(46A) 1.980(9) Fe(1A)-C(54A) 2.019(10) Fe(1A)-C(50A) 2.028(9) Fe(1A)-C(51A) 2.031(10) Fe(1A)-C(52A) 2.033(12) Fe(1A)-C(47A) 2.044(9) Fe(1A)-C(53A) 2.047(10) Fe(1A)-C(49A) 2.051(9) Fe(1A)-C(48A) 2.105(7) C(46A)-C(47A) 1.493(12) C(47A)-C(48A) 1.419(13) C(48A)-C(49A) 1.273(12)

Page 99: Synthesis and Characterization of New Ferrocenyl

87

C(50A)-C(54A) 1.393(12) C(50A)-C(51A) 1.414(14) C(51A)-C(52A) 1.413(13) C(52A)-C(53A) 1.417(15) C(53A)-C(54A) 1.399(14) Fe(1B)-C(49B) 1.943(17) Fe(1B)-C(48B) 1.961(17) Fe(1B)-C(52B) 2.00(2) Fe(1B)-C(50B) 2.019(13) Fe(1B)-C(47B) 2.033(13) Fe(1B)-C(46B) 2.042(11) Fe(1B)-C(54B) 2.061(15) Fe(1B)-C(51B) 2.072(17) Fe(1B)-C(53B) 2.105(18) C(46B)-C(47B) 1.341(13) C(47B)-C(48B) 1.359(14) C(48B)-C(49B) 1.419(14) C(50B)-C(51B) 1.423(15) C(50B)-C(54B) 1.458(16) C(51B)-C(52B) 1.422(18) C(52B)-C(53B) 1.445(17) C(53B)-C(54B) 1.427(17) C(55)-C(56) 1.608(17) C(56)-C(57) 1.539(17) C(57)-C(58) 1.499(16) C(58)-C(59) 1.561(16) C(59)-C(60) 1.513(16) N(4)-Sn(1)-N(2) 169.42(10) N(4)-Sn(1)-N(3) 89.58(9) N(2)-Sn(1)-N(3) 89.39(9) N(4)-Sn(1)-N(1) 89.60(9) N(2)-Sn(1)-N(1) 89.49(9) N(3)-Sn(1)-N(1) 169.39(10) N(4)-Sn(1)-C(45) 97.14(13) N(2)-Sn(1)-C(45) 93.44(13) N(3)-Sn(1)-C(45) 97.12(14) N(1)-Sn(1)-C(45) 93.47(15) N(4)-Sn(1)-Cl(1) 84.81(7) N(2)-Sn(1)-Cl(1) 84.61(7) N(3)-Sn(1)-Cl(1) 84.81(7) N(1)-Sn(1)-Cl(1) 84.58(8) C(45)-Sn(1)-Cl(1) 177.25(11) C(4)-N(1)-C(1) 109.0(2) C(4)-N(1)-Sn(1) 125.4(2) C(1)-N(1)-Sn(1) 125.5(2) C(9)-N(2)-C(6) 108.6(2) C(9)-N(2)-Sn(1) 125.68(19) C(6)-N(2)-Sn(1) 125.6(2) C(11)-N(3)-C(14) 109.3(2) C(11)-N(3)-Sn(1) 125.31(19) C(14)-N(3)-Sn(1) 125.40(19) C(16)-N(4)-C(19) 108.8(2) C(16)-N(4)-Sn(1) 125.5(2) C(19)-N(4)-Sn(1) 125.5(2) N(1)-C(1)-C(20) 125.8(3) N(1)-C(1)-C(2) 108.0(3)

C(20)-C(1)-C(2) 126.1(3) C(3)-C(2)-C(1) 107.6(3) C(2)-C(3)-C(4) 107.4(3) N(1)-C(4)-C(5) 126.2(3) N(1)-C(4)-C(3) 107.9(3) C(5)-C(4)-C(3) 125.8(3) C(4)-C(5)-C(6) 127.4(3) C(4)-C(5)-C(21) 116.1(3) C(6)-C(5)-C(21) 116.4(3) N(2)-C(6)-C(5) 125.7(3) N(2)-C(6)-C(7) 108.3(3) C(5)-C(6)-C(7) 126.0(3) C(8)-C(7)-C(6) 107.6(3) C(7)-C(8)-C(9) 107.2(3) N(2)-C(9)-C(10) 126.0(3) N(2)-C(9)-C(8) 108.2(2) C(10)-C(9)-C(8) 125.8(3) C(11)-C(10)-C(9) 126.8(3) C(11)-C(10)-C(27) 116.7(3) C(9)-C(10)-C(27) 116.4(3) N(3)-C(11)-C(10) 126.7(3) N(3)-C(11)-C(12) 107.6(2) C(10)-C(11)-C(12) 125.6(3) C(13)-C(12)-C(11) 107.7(3) C(12)-C(13)-C(14) 107.4(3) N(3)-C(14)-C(15) 126.0(3) N(3)-C(14)-C(13) 108.0(3) C(15)-C(14)-C(13) 125.9(3) C(14)-C(15)-C(16) 127.4(3) C(14)-C(15)-C(33) 115.8(3) C(16)-C(15)-C(33) 116.7(3) N(4)-C(16)-C(15) 125.9(3) N(4)-C(16)-C(17) 108.0(3) C(15)-C(16)-C(17) 126.0(3) C(18)-C(17)-C(16) 107.4(3) C(17)-C(18)-C(19) 107.5(3) N(4)-C(19)-C(20) 126.0(3) N(4)-C(19)-C(18) 108.1(3) C(20)-C(19)-C(18) 125.8(3) C(1)-C(20)-C(19) 127.3(3) C(1)-C(20)-C(39) 116.4(3) C(19)-C(20)-C(39) 116.2(3) C(22)-C(21)-C(26) 118.8(3) C(22)-C(21)-C(5) 119.4(3) C(26)-C(21)-C(5) 121.8(3) C(21)-C(22)-C(23) 120.7(3) C(24)-C(23)-C(22) 119.9(4) C(25)-C(24)-C(23) 119.7(3) C(24)-C(25)-C(26) 121.1(4) C(21)-C(26)-C(25) 119.8(4) C(28)-C(27)-C(32) 118.6(3) C(28)-C(27)-C(10) 121.9(3) C(32)-C(27)-C(10) 119.5(3) C(27)-C(28)-C(29) 120.0(3) C(30)-C(29)-C(28) 120.8(3) C(29)-C(30)-C(31) 120.1(3)

Page 100: Synthesis and Characterization of New Ferrocenyl

88

C(30)-C(31)-C(32) 119.5(3) C(27)-C(32)-C(31) 121.1(3) C(38)-C(33)-C(34) 119.3(3) C(38)-C(33)-C(15) 121.5(3) C(34)-C(33)-C(15) 119.2(3) C(35)-C(34)-C(33) 119.9(4) C(36)-C(35)-C(34) 120.6(4) C(35)-C(36)-C(37) 119.6(3) C(36)-C(37)-C(38) 121.0(4) C(33)-C(38)-C(37) 119.6(4) C(44)-C(39)-C(40) 119.3(3) C(44)-C(39)-C(20) 120.0(3) C(40)-C(39)-C(20) 120.8(3) C(39)-C(40)-C(41) 119.1(4) C(42)-C(41)-C(40) 121.0(4) C(41)-C(42)-C(43) 119.8(3) C(42)-C(43)-C(44) 120.2(4) C(39)-C(44)-C(43) 120.6(4) C(46B)-C(45)-C(46A) 33.1(6) C(46B)-C(45)-C(49A) 78.6(7) C(46A)-C(45)-C(49A) 104.5(6) C(46B)-C(45)-C(49B) 95.7(8) C(49A)-C(45)-Sn(1) 121.5(5) C(49B)-C(45)-Sn(1) 118.8(6) Fe(1A)-C(45)-Sn(1) 139.2(2) Fe(1B)-C(45)-Sn(1) 143.4(2) C(45)-Fe(1A)-C(46A) 40.2(3) C(45)-Fe(1A)-C(54A) 133.4(3) C(46A)-Fe(1A)-C(54A) 172.0(4) C(45)-Fe(1A)-C(50A) 171.9(4) C(46A)-Fe(1A)-C(50A) 146.6(4 C(54A)-Fe(1A)-C(50A) 40.3(4) C(45)-Fe(1A)-C(51A) 146.6(4) C(46A)-Fe(1A)-C(51A) 115.7(4) C(54A)-Fe(1A)-C(51A) 67.3(5) C(50A)-Fe(1A)-C(51A) 40.8(4) C(45)-Fe(1A)-C(52A) 115.0(3) C(46A)-Fe(1A)-C(52A) 109.2(5

C(54A)-Fe(1A)-C(52A) 67.7(6) C(50A)-Fe(1A)-C(52A) 69.0(5) C(51A)-Fe(1A)-C(52A) 40.7(4) C(46A)-Fe(1A)-C(47A) 43.5(3) C(54A)-Fe(1A)-C(47A) 144.0(5 C(50A)-Fe(1A)-C(47A) 111.7(4 C(51A)-Fe(1A)-C(47A) 107.4(5 C(52A)-Fe(1A)-C(47A) 132.5(6) C(45)-Fe(1A)-C(53A) 109.3(3) C(46A)-Fe(1A)-C(53A) 132.7(4 C(54A)-Fe(1A)-C(53A) 40.3(4) C(50A)-Fe(1A)-C(53A) 68.7(4) C(51A)-Fe(1A)-C(53A) 68.1(5) C(52A)-Fe(1A)-C(53A) 40.7(4) C(47A)-Fe(1A)-C(53A) 173.0(6 C(45)-Fe(1A)-C(49A) 43.6(3) C(46A)-Fe(1A)-C(49A) 67.8(3) C(54A)-Fe(1A)-C(49A) 111.0(5 C(50A)-Fe(1A)-C(49A) 129.9(5) C(51A)-Fe(1A)-C(49A) 167.5(4 C(52A)-Fe(1A)-C(49A) 151.4(5) C(47A)-Fe(1A)-C(49A) 66.2(5) C(53A)-Fe(1A)-C(49A) 119.3(5) C(45)-Fe(1A)-C(48A) 67.9(3) C(46A)-Fe(1A)-C(48A) 67.7(3) C(54A)-Fe(1A)-C(48A) 116.4(5) C(50A)-Fe(1A)-C(48A) 109.1(4) C(51A)-Fe(1A)-C(48A) 132.9(4 C(52A)-Fe(1A)-C(48A) 171.8(5) C(47A)-Fe(1A)-C(48A) 40.0(3) C(53A)-Fe(1A)-C(48A) 146.9(5 C(49A)-Fe(1A)-C(48A) 35.6(3) C(45)-C(46A)-C(47A) 109.8(8) C(45)-C(46A)-Fe(1A) 69.0(4) C(47A)-C(46A)-Fe(1A) 70.5(5) C(46B)-C(45)-Fe(1A) 81.3(5) C(46A)-C(45)-Fe(1A) 70.8(4) C(49A)-C(45)-C(49B) 92.5(8)

C(46A)-C(45)-C(49B) 74.3(7) C(49A)-C(45)-Fe(1A) 71.6(4) C(49B)-C(45)-Fe(1A) 23.5(6) C(46B)-C(45)-Fe(1B) 72.8(5) C(45)-Fe(1A)-C(47A) 71.2(4) C(46A)-C(45)-Fe(1B) 86.6(5) C(49A)-C(45)-Fe(1B) 29.3(4) C(49B)-C(45)-Fe(1B) 65.2(7) Fe(1A)-C(45)-Fe(1B) 42.85(11 C(46B)-C(45)-Sn(1) 136.7(5)

C(46A)-C(45)-Sn(1) 129.9(5) C(48A)-C(47A)-C(46A) 102.8(9)

C(48A)-C(47A)-Fe(1A) 72.3(5) C(46A)-C(47A)-Fe(1A) 65.9(5) C(49A)-C(48A)-C(47A) 112.2(8) C(49A)-C(48A)-Fe(1A) 69.8(5) C(47A)-C(48A)-Fe(1A) 67.7(4) C(48A)-C(49A)-C(45) 110.4(7)

C(48A)-C(49A)-Fe(1A) 74.5(5) C(45)-C(49A)-Fe(1A) 64.9(4) C(54A)-C(50A)-C(51A) 106.1(11) C(54A)-C(50A)-Fe(1A) 69.5(5) C(51A)-C(50A)-Fe(1A) 69.8(5) C(52A)-C(51A)-C(50A) 108.9(12) C(52A)-C(51A)-Fe(1A) 69.7(6) C(50A)-C(51A)-Fe(1A) 69.5(6) C(51A)-C(52A)-C(53A) 107.5(12) C(51A)-C(52A)-Fe(1A) 69.6(6) C(53A)-C(52A)-Fe(1A) 70.2(7) C(54A)-C(53A)-C(52A) 106.6(10) C(54A)-C(53A)-Fe(1A) 68.8(6) C(52A)-C(53A)-Fe(1A) 69.2(6) C(50A)-C(54A)-C(53A) 110.8(12) C(50A)-C(54A)-Fe(1A) 70.2(6) C(53A)-C(54A)-Fe(1A) 70.9(6) C(49B)-Fe(1B)-C(48B) 42.6(5)

Page 101: Synthesis and Characterization of New Ferrocenyl

89

C(49B)-Fe(1B)-C(45) 46.6(4) C(48B)-Fe(1B)-C(45) 76.9(5) C(49B)-Fe(1B)-C(52B) 117.2(8) C(48B)-Fe(1B)-C(52B) 146.5(9) C(45)-Fe(1B)-C(52B) 108.0(5) C(49B)-Fe(1B)-C(50B) 127.2(7) C(48B)-Fe(1B)-C(50B) 102.5(8) C(45)-Fe(1B)-C(50B) 170.3(5) C(52B)-Fe(1B)-C(50B) 67.0(8) C(49B)-Fe(1B)-C(47B) 66.0(5) C(48B)-Fe(1B)-C(47B) 39.7(4) C(45)-Fe(1B)-C(47B) 69.6(3) C(52B)-Fe(1B)-C(47B) 173.5(8) C(50B)-Fe(1B)-C(47B) 116.2(7) C(49B)-Fe(1B)-C(46B) 65.2(5) C(48B)-Fe(1B)-C(46B) 67.4(6) C(45)-Fe(1B)-C(46B) 38.7(3) C(52B)-Fe(1B)-C(46B) 136.5(7) C(50B)-Fe(1B)-C(46B) 150.1(6) C(47B)-Fe(1B)-C(46B) 38.4(4) C(49B)-Fe(1B)-C(54B) 168.4(6) C(48B)-Fe(1B)-C(54B) 129.1(7) C(45)-Fe(1B)-C(54B) 144.9(6) C(52B)-Fe(1B)-C(54B) 64.8(9) C(50B)-Fe(1B)-C(54B) 41.8(5) C(47B)-Fe(1B)-C(54B) 113.3(7) C(46B)-Fe(1B)-C(54B) 122.1(7) C(49B)-Fe(1B)-C(51B) 105.1(8) C(48B)-Fe(1B)-C(51B) 110.2(9) C(45)-Fe(1B)-C(51B) 130.2(5) C(52B)-Fe(1B)-C(51B) 40.8(6) C(50B)-Fe(1B)-C(51B) 40.7(5) C(47B)-Fe(1B)-C(51B) 145.2(8) C(46B)-Fe(1B)-C(51B) 168.5(6) C(54B)-Fe(1B)-C(51B) 68.6(9) C(49B)-Fe(1B)-C(53B) 148.9(7) C(48B)-Fe(1B)-C(53B) 168.3(7) C(45)-Fe(1B)-C(53B) 110.9(6)

C(52B)-Fe(1B)-C(53B) 41.1(5) C(50B)-Fe(1B)-C(53B) 71.3(9) C(47B)-Fe(1B)-C(53B) 133.3(8) C(46B)-Fe(1B)-C(53B) 112.8(8) C(54B)-Fe(1B)-C(53B) 40.0(5) C(51B)-Fe(1B)-C(53B) 72.0(9) C(45)-C(46B)-C(47B) 118.1(10) C(45)-C(46B)-Fe(1B) 68.5(5) C(47B)-C(46B)-Fe(1B) 70.4(7) C(46B)-C(47B)-C(48B) 110.8(11) C(46B)-C(47B)-Fe(1B) 71.2(7) C(48B)-C(47B)-Fe(1B) 67.3(9) C(47B)-C(48B)-C(49B) 102.5(11) C(47B)-C(48B)-Fe(1B) 73.0(8) C(49B)-C(48B)-Fe(1B) 68.0(9) C(48B)-C(49B)-C(45) 111.4(10) C(48B)-C(49B)-Fe(1B) 69.4(9) C(45)-C(49B)-Fe(1B) 68.2(6) C(51B)-C(50B)-C(54B) 107.8(18) C(51B)-C(50B)-Fe(1B) 71.6(9) C(54B)-C(50B)-Fe(1B) 70.6(8) C(52B)-C(51B)-C(50B) 102.5(19) C(52B)-C(51B)-Fe(1B) 66.9(11) C(50B)-C(51B)-Fe(1B) 67.7(8) C(51B)-C(52B)-C(53B) 118(2) C(51B)-C(52B)-Fe(1B) 72.3(11) C(53B)-C(52B)-Fe(1B) 73.3(12) C(54B)-C(53B)-C(52B) 99(2) C(54B)-C(53B)-Fe(1B) 68.3(9) C(52B)-C(53B)-Fe(1B) 65.6(12) C(53B)-C(54B)-C(50B) 113.0(19) C(53B)-C(54B)-Fe(1B) 71.6(9) C(50B)-C(54B)-Fe(1B) 67.5(8) C(57)-C(56)-C(55) 129(2) C(58)-C(57)-C(56) 107.8(19) C(57)-C(58)-C(59) 98.9(14) C(60)-C(59)-C(58) 95.2(1)

Anisotropic displacement parameters (A^2 x 10^3)

The anisotropic displacement factor exponent takes the form:

-2 pi^2 [ h^2 a*^2 U11 + ... + 2 h k a* b* U12 ]

______________________________________________________________________

U11 U22 U33 U23 U13 U12 _______________________________________________________________________

Sn(1) 18(1) 20(1) 35(1) 15(1) 5(1) 3(1) Cl(1) 31(1) 30(1) 37(1) 14(1) 5(1) 3(1) N(1) 20(1) 26(1) 49(2) 23(1) 9(1) 4(1)

Page 102: Synthesis and Characterization of New Ferrocenyl

90

N(2) 23(1) 21(1) 36(1) 15(1) 4(1) 2(1) N(3) 18(1) 21(1) 36(1) 14(1) 4(1) 1(1) N(4) 22(1) 22(1) 38(2) 16(1) 7(1) 4(1) C(1) 26(2) 25(2) 43(2) 21(1) 8(1) 2(1) C(2) 28(2) 24(2) 55(2) 24(2) 8(1) 3(1) C(3) 26(2) 29(2) 59(2) 27(2) 7(2) 1(1) C(4) 24(2) 23(1) 42(2) 18(1) 6(1) 4(1) C(5) 23(1) 22(1) 40(2) 18(1) 4(1) 4(1) C(6) 23(1) 24(1) 35(2) 16(1) 3(1) 5(1) C(7) 23(2) 31(2) 51(2) 24(2) 7(1) 5(1) C(8) 21(1) 28(2) 47(2) 20(2) 4(1) 4(1) C(9) 19(1) 24(1) 35(2) 15(1) 2(1) 0(1) C(10) 20(1) 23(1) 34(2) 13(1) 1(1) 0(1) C(11) 22(1) 22(1) 35(2) 14(1) 3(1) 1(1) C(12) 26(2) 25(2) 49(2) 22(2) 4(1) 0(1) C(13) 26(2) 24(2) 50(2) 20(2) 4(1) 1(1) C(14) 23(1) 21(1) 36(2) 14(1) 5(1) 3(1) C(15) 22(1) 23(1) 41(2) 15(1) 5(1) 5(1) C(16) 23(1) 22(1) 41(2) 17(1) 6(1) 5(1) C(17) 21(2) 33(2) 60(2) 27(2) 8(1) 6(1) C(18) 21(2) 30(2) 60(2) 24(2) 9(1) 6(1) C(19) 18(1) 27(2) 43(2) 19(1) 7(1) 2(1) C(20) 21(1) 25(2) 41(2) 17(1) 6(1) 1(1) C(21) 20(1) 24(2) 46(2) 20(1) 7(1) 2(1) C(22) 36(2) 35(2) 44(2) 20(2) 5(2) 9(1) C(23) 33(2) 30(2) 56(2) 14(2) 12(2) 8(1) C(24) 24(2) 28(2) 67(2) 30(2) 12(2) 6(1) C(25) 38(2) 43(2) 60(2) 35(2) 2(2) 11(2) C(26) 36(2) 34(2) 45(2) 19(2) 2(2) 9(1) C(27) 19(1) 24(1) 43(2) 19(1) 3(1) 2(1) C(28) 34(2) 36(2) 42(2) 19(2) 1(1) -7(1) C(29) 29(2) 41(2) 57(2) 26(2) -8(2) -12(2) C(30) 20(2) 36(2) 72(3) 37(2) 7(2) 3(1) C(31) 35(2) 38(2) 56(2) 24(2) 20(2) 5(2) C(32) 32(2) 32(2) 43(2) 13(2) 8(1) -1(1) C(33) 18(1) 24(2) 53(2) 22(2) 6(1) 3(1) C(34) 31(2) 38(2) 53(2) 25(2) 6(2) 9(1) C(35) 32(2) 49(2) 69(3) 41(2) 4(2) 6(2) C(36) 23(2) 31(2) 89(3) 37(2) 4(2) 3(1) C(37) 41(2) 28(2) 74(3) 15(2) 8(2) 11(2) C(38) 40(2) 33(2) 54(2) 18(2) 3(2) 12(2) C(39) 20(1) 21(1) 47(2) 17(1) 9(1) 4(1) C(40) 36(2) 37(2) 49(2) 20(2) 14(2) -0(2) C(41) 39(2) 42(2) 69(3) 30(2) 28(2) 6(2) C(42) 22(2) 28(2) 79(3) 28(2) 9(2) 3(1) C(43) 32(2) 35(2) 61(2) 22(2) -4(2) -4(1) C(44) 33(2) 38(2) 49(2) 23(2) 5(2) -3(1) C(45) 49(2) 67(3) 39(2) 23(2) 10(2) 25(2) Fe(1A) 61(1) 39(1) 31(1) 10(1) 2(1) 12(1) C(46A) 36(4) 48(5) 50(5) 27(4) -2(3) -1(3) C(47A) 80(4) 39(3) 58(3) 42(3) 40(3) 19(3) C(48A) 80(4) 39(3) 58(3) 42(3) 40(3) 19(3) C(49A) 40(4) 61(6) 61(5) -1(5) 19(4) -12(4) C(50A) 135(9) 60(6) 32(4) -1(4) 0(5) 48(7) C(51A) 132(8) 37(5) 66(6) 2(5) -10(6) -7(6) C(52A) 202(11) 30(5) 73(6) 6(5) 36(7) -13(7)

Page 103: Synthesis and Characterization of New Ferrocenyl

91

C(53A) 244(14) 32(5) 38(5) 3(4) -16(6) 38(8) C(54A) 146(9) 58(6) 70(7) 11(6) -14(6) 54(7) Fe(1B) 89(1) 93(2) 48(1) 18(1) 26(1) 28(1) C(46B) 120(12) 66(6) 48(6) 30(5) 9(6) 41(7) C(47B) 69(7) 102(8) 42(5) 51(5) -7(5) -29(6) C(48B) 162(15) 80(7) 70(7) 25(6) -33(10) -34(9) C(49B) 210(19) 61(6) 49(7) 23(6) 14(9) 12(9) C(50B) 260(20) 142(11) 76(7) 44(8) 88(10) 117(13) C(51B) 260(30) 194(15) 96(11) 52(11) 59(14) 159(17) C(52B) 130(16) 260(20) 103(10) 37(11) 68(9) 69(16) C(53B) 140(18) 245(17) 148(14) 54(12) 87(14) -42(15) C(54B) 230(20) 163(13) 115(10) 46(10) 130(13) 42(15)

CIF Information for Compound 3:

Crystal data and structure refinement Empirical formula C64 H46 Fe2 N4 Sn1 Formula weight 1101.48 Temperature 173 K Wavelength 0.71073 A Crystal system, space group Triclinic, P -1 Unit cell dimensions a = 10.7368(10) A alpha = 101.6570(10) deg. b = 11.2881(10) A beta = 108.0820(10) deg. c = 12.1733(11) A gamma = 115.0580(10) deg. Volume 1171.36(19) A^3 Z, Calculated density 1, 1.561 Mg/m^3 Absorption coefficient 1.189 mm^-1 F(000) 560 Crystal size 0.110 x 0.050 x 0.030 mm Theta range for data collection 1.909 to 29.129 deg. Limiting indices -14<=h<=14, -15<=k<=15, -16<=l<=16 Reflections collected / unique 16707 / 6273 [R(int) = 0.034] Completeness to theta = 28.255 99.5 % Absorption correction None Max. and min. transmission 0.9649 and 0.9423 Refinement method Full-matrix least-squares on F^2 Data / restraints / parameters 6252 / 0 / 322 Goodness-of-fit on F^2 0.9889 Final R indices [I>2sigma(I)] R1 = 0.0354, wR2 = 0.0901 R indices (all data) R1 = 0.0485, wR2 = 0.1059 Largest diff. peak and hole 1.41 and -1.46 e.A^-3 Atomic coordinates ( x 10^4) and equivalent isotropic displacement parameters (A^2 x 10^3)

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

______________________________________________________________________________

Page 104: Synthesis and Characterization of New Ferrocenyl

92

x y z U(eq) x y z U(eq) ______________________________________________________________________________

C(6) 3175(3) 1829(3) 7358(2) 14 C(5) 3550(3) 3031(3) 7035(3) 15 C(4) 2624(3) 3163(3) 6008(3) 14 C(1) 640(3) 2633(3) 4273(2) 14 C(2) 1849(3) 4089(3) 4644(3) 16 C(3) 3065(3) 4407(3) 5704(3) 17 C(10) 803(3) -1848(3) 6802(2) 12 C(9) 1934(3) -386(3) 7252(2) 13 C(17)1192(3) -2658(3) 7541(3) 13 C(18 1546(3) -2235(3) 8813(3) 16 C(19 1884(3) -3012(3) 9482(3) 20 C(20)1845(3) -4224(3) 8890(3) 22 C(21 1500(4) -4647(3) 7633(3) 22 C(22 1198(4) -3859(3) 6965(3) 19 C(8) 3460(3) 346(3) 8278(3) 16 C(7) 4211(3) 1702(3) 8352(3) 16 C(11) 5153(3) 4284(3) 7841(2) 13 C(12) 5453(3) 5477(3) 8743(3) 19

C(13) 6960(3) 6625(3) 9473(3) 21 C(14) 8157(3) 6582(3) 9304(3) 20 C(15) 7870(3) 5406(3) 8406(3) 21 C(16) 6368(3) 4253(3) 7674(3) 20 C(23) 1179(3) -673(3) 4083(3) 15 C(24) 2653(3) -516(3) 4704(3) 21 C(28) 3958(6) 2157(4) 3771(4) 43 C(32) 2500(6) 1677(4) 2788(4) 41 C(31) 2218(5) 659(4) 1705(4) 31 C(30) 3530(4) 524(4) 2011(3 27 C(29) 4594(5) 1450(4) 3271(4 35 C(25) 2857(4) -1400(4) 3853(3) 25 C(26) 1516(4) -2128(3) 2694(3) 25 C(27) 497(4) -1685(3) 2839(3) 21 Fe(1) 2536(1) 12(1) 3172(1) 19 N(2) 1805(3) 563(2) 6749(2) 13 N(1) 1170(3) 2125(2) 5119(2) 13 Sn(1) 0 0 5000 1

Bond lengths [A] and angles [deg]

______________________________________________________________________________

C(6)-C(5) 1.417(4) C(6)-C(7) 1.447(3) C(6)-N(2) 1.368(3) C(5)-C(4) 1.416(4) C(5)-C(11) 1.501(3) C(4)-C(3) 1.445(4) C(4)-N(1) 1.367(3) C(1)-C(10)#1 1.417(4) C(1)-C(2) 1.456(4) C(1)-N(1) 1.365(3) C(2)-C(3) 1.366(4) C(10)-C(9) 1.422(4) C(10)-C(17) 1.497(3) C(9)-C(8) 1.447(3) C(9)-N(2) 1.371(3) C(17)-C(18) 1.398(4) C(17)-C(22) 1.399(4) C(18)-C(19) 1.391(4) C(19)-C(20) 1.389(5) C(20)-C(21) 1.382(4) C(21)-C(22) 1.389(4) C(8)-C(7) 1.361(4) C(11)-C(12) 1.392(4)

C(11)-C(16) 1.394(4) C(12)-C(13) 1.398(4) C(13)-C(14) 1.381(4) C(14)-C(15) 1.382(4) C(15)-C(16) 1.397(4) C(23)-C(24) 1.439(4) C(23)-C(27) 1.427(4) C(23)-Fe(1) 2.084(3) C(23)-Sn(1) 2.186(3) C(24)-C(25) 1.424(4) C(24)-Fe(1) 2.054(3) C(28)-C(32) 1.426(7) C(28)-C(29) 1.414(6) C(28)-Fe(1) 2.047(4) C(32)-C(31) 1.413(6) C(32)-Fe(1) 2.040(4) C(31)-C(30) 1.423(5) C(31)-Fe(1) 2.049(4) C(30)-C(29) 1.415(5) C(30)-Fe(1) 2.053(3) C(29)-Fe(1) 2.062(4) C(25)-C(26) 1.416(5) C(25)-Fe(1) 2.041(3)

Page 105: Synthesis and Characterization of New Ferrocenyl

93

C(26)-C(27) 1.425(4) C(26)-Fe(1) 2.042(3) C(27)-Fe(1) 2.052(3) N(2)-Sn(1) 2.131(2) N(1)-Sn(1) 2.132(2) C(5)-C(6)-C(7) 125.7(2) C(5)-C(6)-N(2) 126.3(2) C(7)-C(6)-N(2) 107.9(2) C(6)-C(5)-C(4) 127.8(2) C(6)-C(5)-C(11) 115.9(2) C(4)-C(5)-C(11) 116.3(2) C(5)-C(4)-C(3) 125.9(2) C(5)-C(4)-N(1) 125.8(2) C(3)-C(4)-N(1) 108.3(2) C(10)#1-C(1)-C(2) 126.7(2) C(10)#1-C(1)-N(1) 125.6(2) C(2)-C(1)-N(1) 107.7(2) C(1)-C(2)-C(3) 107.5(2) C(4)-C(3)-C(2) 107.2(2) C(1)#1-C(10)-C(9) 127.6(2) C(1)#1-C(10)-C(17) 116.2(2) C(9)-C(10)-C(17) 116.2(2) C(10)-C(9)-C(8) 126.0(2) C(10)-C(9)-N(2) 126.2(2) C(8)-C(9)-N(2) 107.8(2) C(10)-C(17)-C(18) 120.8(2) C(10)-C(17)-C(22) 120.4(2) C(18)-C(17)-C(22) 118.8(2) C(17)-C(18)-C(19) 120.1(3) C(18)-C(19)-C(20) 120.5(3) C(19)-C(20)-C(21) 119.8(3) C(20)-C(21)-C(22) 120.1(3) C(17)-C(22)-C(21) 120.7(3) C(9)-C(8)-C(7) 107.5(2) C(6)-C(7)-C(8) 107.5(2) C(5)-C(11)-C(12) 121.7(2) C(5)-C(11)-C(16) 119.0(2) C(12)-C(11)-C(16) 119.3(2) C(11)-C(12)-C(13) 120.0(3) C(12)-C(13)-C(14) 120.2(3) C(13)-C(14)-C(15) 120.2(3) C(14)-C(15)-C(16) 119.9(3) C(15)-C(16)-C(11) 120.3(3) C(24)-C(23)-C(27) 105.3(3) C(24)-C(23)-Fe(1) 68.51(16) C(27)-C(23)-Fe(1) 68.59(16) C(24)-C(23)-Sn(1) 125.9(2) C(27)-C(23)-Sn(1) 126.6(2) Fe(1)-C(23)-Sn(1) 140.10(14) C(23)-C(24)-C(25) 109.5(3) C(23)-C(24)-Fe(1) 70.79(17) C(25)-C(24)-Fe(1) 69.17(19) C(32)-C(28)-C(29) 106.8(4) C(32)-C(28)-Fe(1) 69.3(2) C(29)-C(28)-Fe(1) 70.4(2) C(28)-C(32)-C(31) 109.3(4)

C(28)-C(32)-Fe(1) 69.8(2) C(31)-C(32)-Fe(1) 70.1(2) C(32)-C(31)-C(30) 106.8(4) C(32)-C(31)-Fe(1) 69.4(2) C(30)-C(31)-Fe(1) 69.8(2) C(31)-C(30)-C(29) 108.5(3) C(31)-C(30)-Fe(1) 69.56(19) C(29)-C(30)-Fe(1) 70.23(19) C(30)-C(29)-C(28) 108.5(4) C(30)-C(29)-Fe(1) 69.5(2) C(28)-C(29)-Fe(1) 69.3(2) C(24)-C(25)-C(26) 107.7(3) C(24)-C(25)-Fe(1) 70.14(18) C(26)-C(25)-Fe(1) 69.73(19) C(25)-C(26)-C(27) 107.6(3) C(25)-C(26)-Fe(1) 69.67(18) C(27)-C(26)-Fe(1) 70.01(18) C(23)-C(27)-C(26) 109.9(3) C(23)-C(27)-Fe(1) 71.04(16) C(26)-C(27)-Fe(1) 69.26(18) C(23)-Fe(1)-C(29) 148.57(14) C(23)-Fe(1)-C(24) 40.70(11) C(29)-Fe(1)-C(24) 116.30(15) C(23)-Fe(1)-C(30) 170.42(13) C(29)-Fe(1)-C(30) 40.22(15) C(24)-Fe(1)-C(30) 147.60(13) C(23)-Fe(1)-C(27) 40.37(11) C(29)-Fe(1)-C(27) 169.50(15) C(24)-Fe(1)-C(27) 67.45(12) C(30)-Fe(1)-C(27) 131.59(14) C(23)-Fe(1)-C(31) 131.68(13) C(29)-Fe(1)-C(31) 68.15(16) C(24)-Fe(1)-C(31) 171.04(14) C(30)-Fe(1)-C(31) 40.61(14) C(27)-Fe(1)-C(31) 109.66(15) C(23)-Fe(1)-C(28) 116.71(14) C(29)-Fe(1)-C(28) 40.26(17) C(24)-Fe(1)-C(28) 109.04(15) C(30)-Fe(1)-C(28) 68.12(15) C(27)-Fe(1)-C(28) 149.62(16) C(23)-Fe(1)-C(26) 68.91(12) C(29)-Fe(1)-C(26) 130.02(15) C(24)-Fe(1)-C(26) 68.09(13) C(30)-Fe(1)-C(26) 107.96(14) C(27)-Fe(1)-C(26) 40.73(13) C(23)-Fe(1)-C(25) 69.05(12) C(29)-Fe(1)-C(25) 107.79(16) C(24)-Fe(1)-C(25) 40.69(12) C(30)-Fe(1)-C(25) 114.92(14) C(27)-Fe(1)-C(25) 68.13(13) C(23)-Fe(1)-C(32) 110.06(14) C(29)-Fe(1)-C(32) 67.56(18) C(24)-Fe(1)-C(32) 132.49(15) C(30)-Fe(1)-C(32) 67.61(15) C(27)-Fe(1)-C(32) 117.96(17)

Page 106: Synthesis and Characterization of New Ferrocenyl

94

C(31)-Fe(1)-C(28) 68.85(17) C(31)-Fe(1)-C(26) 115.73(15) C(28)-Fe(1)-C(26) 168.56(19) C(31)-Fe(1)-C(25) 147.25(14) C(28)-Fe(1)-C(25) 130.14(18) C(26)-Fe(1)-C(25) 40.60(14) C(31)-Fe(1)-C(32) 40.43(16) C(28)-Fe(1)-C(32) 40.8(2) C(26)-Fe(1)-C(32) 148.94(18) C(25)-Fe(1)-C(32) 170.21(18) C(9)-N(2)-C(6) 109.2(2) C(9)-N(2)-Sn(1) 124.51(17) C(6)-N(2)-Sn(1) 124.27(17) C(4)-N(1)-C(1) 109.3(2) C(4)-N(1)-Sn(1) 124.92(18) C(1)-N(1)-Sn(1) 125.56(18) C(23)-Sn(1)-C(23)#1 179.995 C(23)-Sn(1)-N(1)#1 85.90(9) C(23)#1-Sn(1)-N(1)#1 94.10(9) C(23)-Sn(1)-N(1) 94.10(9) C(23)#1-Sn(1)-N(1) 85.90(9) N(1)#1-Sn(1)-N(1) 179.995 C(23)-Sn(1)-N(2)#1 92.22(10) C(23)#1-Sn(1)-N(2)#1 87.78(10) N(1)#1-Sn(1)-N(2)#1 90.08(8) N(1)-Sn(1)-N(2)#1 89.92(8) C(23)-Sn(1)-N(2) 87.78(10) C(23)#1-Sn(1)-N(2) 92.22(10) N(1)#1-Sn(1)-N(2) 89.92(8) N(1)-Sn(1)-N(2) 90.08(8) N(2)#1-Sn(1)-N(2) 179.995

Page 107: Synthesis and Characterization of New Ferrocenyl

95

Symmetry transformations used to generate equivalent atoms:

#1 -x,-y,-z+1

______________________________________________________________________________

Anisotropic displacement parameters (A^2 x 10^3)

The anisotropic displacement factor exponent takes the form:

-2 pi^2 [ h^2 a*^2 U11 + ... + 2 h k a* b* U12 ]

_______________________________________________________________________ U11 U22 U33 U23 U13 U12 _______________________________________________________________________ C(6) 10(1) 14(1) 12(1) 5(1) 2(1) 5(1) C(5) 10(1) 14(1) 15(1) 5(1) 3(1) 3(1) C(4) 11(1) 12(1) 16(1) 6(1) 6(1) 3(1) C(1) 12(1) 13(1) 14(1) 7(1) 5(1) 5(1) C(2) 14(1) 13(1) 18(1) 9(1) 5(1) 4(1) C(3) 17(1) 13(1) 18(1) 8(1) 5(1) 5(1) C(10) 12(1) 14(1) 12(1) 7(1) 5(1) 7(1) C(9) 11(1) 16(1) 13(1) 7(1) 4(1) 8(1) C(17) 11(1) 14(1) 16(1) 8(1) 5(1) 6(1) C(18) 11(1) 18(1) 15(1) 8(1) 5(1) 6(1) C(19) 14(1) 26(1) 17(1) 13(1) 4(1) 8(1) C(20) 18(1) 24(1) 24(1) 16(1) 6(1) 11(1) C(21) 23(1) 18(1) 28(2) 13(1) 10(1) 14(1) C(22) 23(1) 19(1) 17(1) 7(1) 8(1) 13(1) C(8) 11(1) 19(1) 15(1) 9(1) 1(1) 7(1) C(7) 8(1) 17(1) 16(1) 8(1) 1(1) 5(1) C(11) 9(1) 13(1) 12(1) 5(1) 1(1) 3(1) C(12) 15(1) 19(1) 21(1) 6(1) 7(1) 8(1) C(13) 19(1) 16(1) 18(1) 2(1) 4(1) 5(1) C(14) 12(1) 17(1) 19(1) 8(1) 3(1) 1(1) C(15) 13(1) 23(1) 22(1) 7(1) 7(1) 7(1) C(16) 14(1) 16(1) 22(1) 3(1) 5(1) 6(1) C(23) 13(1) 15(1) 17(1) 8(1) 6(1) 6(1) C(24) 17(1) 23(1) 23(1) 10(1) 8(1) 12(1) C(28) 67(3) 17(2) 44(2) 11(2) 40(2) 10(2) C(32) 66(3) 37(2) 57(3) 34(2) 49(2) 36(2) C(31) 41(2) 33(2) 38(2) 24(2) 27(2) 23(2) C(30) 34(2) 30(2) 30(2) 15(1) 23(1) 17(1) C(29) 30(2) 29(2) 38(2) 14(2) 19(2) 4(2) C(25) 27(2) 27(2) 34(2) 15(1) 19(1) 19(1) C(26) 30(2) 18(1) 29(2) 8(1) 19(1) 10(1) C(27) 22(1) 17(1) 22(1) 7(1) 11(1) 7(1) Fe(1) 21(1) 17(1) 22(1) 8(1) 12(1) 9(1) N(2) 9(1) 12(1) 13(1) 6(1) 2(1) 5(1) N(1) 10(1) 12(1) 14(1) 6(1) 4(1) 5(1)

Page 108: Synthesis and Characterization of New Ferrocenyl

96

Sn(1) 9(1) 10(1) 10(1) 4(1) 2(1) 4(1) _______________________________________________________________________

CIF Information for Compound 4:

Crystal data and structure refinement

Empirical formula C48 H54 Fe N4 O Sn Formula weight 877.49 Temperature 123(2) K Wavelength 0.71069 A Crystal system, space group Triclinic, P-1 Unit cell dimensions a = 10.047(5) A alpha = 73.676(5) deg. b = 14.695(5) A beta = 80.334(5) deg. c = 15.322(5) A gamma = 80.399(5) deg. Volume 2123.0(15) A^3 Z, Calculated density 2, 1.373 Mg/m^3 Absorption coefficient 0.970 mm^-1 F(000) 908 Crystal size 0.22 x 0.20 x 0.18 mm Theta range for data collection 3.07 to 20.79 deg. Limiting indices -10<=h<=10, -14<=k<=14, -15<=l<=15 Reflections collected / unique 26925 / 4395 [R(int) = 0.0271] Completeness to theta = 20.79 99.6 % Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.8448 and 0.8149 Refinement method Full-matrix least-squares on F^2 Data / restraints / parameters 4395 / 80 / 551 Goodness-of-fit on F^2 1.056 Final R indices [I>2sigma(I)] R1 = 0.0401, wR2 = 0.1098 R indices (all data) R1 = 0.0440, wR2 = 0.1125 Largest diff. peak and hole 0.982 and -0.652 e.A^-3

Table 2. Atomic coordinates ( x 10^4) and equivalent isotropic displacement parameters (A^2 x 10^3)

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

______________________________________________________________________________

Page 109: Synthesis and Characterization of New Ferrocenyl

97

x y z U(eq) x y z U(eq) ______________________________________________________________________________

Sn(1 1663(1) 2575(1) 2609(1) 56(1) N(1) 574(4) 1421(3) 3324(3) 64(1) N(2) 3341(4) 1598(3) 2295(3) 59(1) N(3) 2887(4) 3687(3) 2095(3) 59(1) N(4) 135(4) 3505(3) 3175(3) 66(1) C(1) -731(5) 1496(4) 3783(4) 64(1) C(2) -1182(6) 557(4) 4064(4) 69(2) C(3) -145(5) -63(4) 3769(3) 65(2) C(4) 971(6) 483(4) 3303(4) 63(1) C(5) 2234(5) 127(4) 2910(4) 65(1) C(6) 3331(5) 631(4) 2453(4) 60(1) C(7) 4614(5) 228(4) 2048(4) 66(1) C(8) 5394(5) 953(4) 1672(4) 65(1) C(9) 4580(5) 1831(4) 1821(3) 59(1) C(10) 4974(5) 2751(4) 1543(4) 61(1) C(11) 4206(5) 3601(4) 1677(3) 61(1) C(12) 4658(6) 4549( 1398(4) 64(1) C(13) 3598(6) 5165(4) 1650(4) 66(1) C(14) 2479(6) 4627(4) 2113(4) 64(1) C(15) 1219(6) 4978(4 2529(4) 68(2) C(16) 155(5) 4463(4) 3041(4) 67(1) C(17) -1105(6) 4851(4) 3489(4) 81(2) C(18) -1860(6) 4112(5) 3878(5) 87(2) C(19) -1069(6) 3252(4) 3676(4) 71(2) C(20) -1466(6) 2338(4) 3940(4) 72(2) C(21) -2562(6) 350(5) 4548(4) 82(2) C(22) -3596(7) 566(6) 3880(5) 108(2) C(23) -116(7) -1108(4) 3851(4) 83(2) C(24) -323(9) -1304(5) 2964(5) 113(2) C(25) 4973(6) -808(4) 2020(5) 84(2)

C(26) 5386(9) -1453(5) 2910(6) 125(3) C(27) 6795(6) 908(4) 1141(4) 79(2) C(28) 6762(7) 1166(5) 115(5) 102(2) C(29) 6063(6) 4755(4) 963(4) 72(2) C(30) 7029(6) 4620(5) 1647(5) 97(2) C(31) 3531(7) 6234(4) 1500(5) 90(2) C(32) 3801(10) 6493(6) 2315(7) 142(3) C(33) -1472(8) 5885(5) 3531(6) 109(2) C(34) -897(14) 6078(7) 4283(8) 198(6) C(35) -3377(11) 4151(6) 4341(6) 153(4) C(36) -3298(11) 3837(9) 5269(9) 185(5) Fe(1) 983(1) 2438(1) 202(1) 69(1) C(37) 683(5) 2901(3) 1387(3) 56(1) C(38) -450(5) 2492(4) 1289(4) 73(2) C(39) -958(6) 3016(5) 455(4) 84(2) C(40) -143(6) 3732(4) 29(4) 80(2) C(41) 858(6) 3661(4) 598(4) 71(2) C(42A) 1120(30) 1910(20) -927(19) 115(9) C(43A) 2170(30) 2477(17) -1024(13) 119(9) C(44A) 2984(18) 2130(20) 300(20) 105(7) C(45A 2400(30) 1300(20) 257(16) 95(8) C(46A)1270(30) 1182(19) -112(19) 129(9) C(42B) 860(30) 1340(30 -370(30) 111(9) C(43B) 1440(40) 2110(30) -990(20) 111(11) C(44B) 2640(30) 2280(20) -730(20) 102(10) C(45B) 2780(30) 1570(30) 120(20) 82(8) C(46B 1730(40) 994(15) 310(20) 103(10) O(1) 2466(4) 2275(3) 3907(3) 79(1) C(47) 3276(11) 2665(10) 4150(5) 194(6) C(48) 3706(9) 2219(6) 4984(5) 123(3)

______________________________________________________________________________

Bond lengths [A] and angles [deg]

______________________________________________________________________________

Sn(1)-N(3) 2.104(4) Sn(1)-N(1) 2.108(4) Sn(1)-N(2) 2.109(4) Sn(1)-N(4) 2.120(4) Sn(1)-C(37) 2.159(5) Sn(1)-O(1) 2.175(4) N(1)-C(4) 1.377(7) N(1)-C(1) 1.383(7) N(2)-C(6) 1.374(6) N(2)-C(9) 1.376(6) N(3)-C(11) 1.373(6) N(3)-C(14) 1.380(6) N(4)-C(19) 1.367(7) N(4)-C(16) 1.367(7)

C(1)-C(20) 1.392(7) C(1)-C(2) 1.450(7) C(2)-C(3) 1.369(8) C(2)-C(21) 1.495(8) C(3)-C(4) 1.456(7) C(3)-C(23) 1.502(8) C(4)-C(5) 1.395(8) C(5)-C(6) 1.406(7) C(6)-C(7) 1.442(7) C(7)-C(8) 1.365(8) C(7)-C(25) 1.516(8) C(8)-C(9) 1.462(7) C(8)-C(27) 1.504(8) C(9)-C(10) 1.402(7)

Page 110: Synthesis and Characterization of New Ferrocenyl

98

C(10)-C(11) 1.403(7) C(11)-C(12) 1.463(7) C(12)-C(13) 1.355(8) C(12)-C(29) 1.498(8) C(13)-C(14) 1.451(7) C(13)-C(31) 1.514(8) C(14)-C(15) 1.404(8) C(15)-C(16) 1.409(8) C(16)-C(17) 1.445(8) C(17)-C(18) 1.367(9) C(17)-C(33) 1.520(8) C(18)-C(19) 1.459(8) C(18)-C(35) 1.568(11) C(19)-C(20) 1.395(8) C(21)-C(22) 1.514(9) C(23)-C(24) 1.519(9) C(25)-C(26) 1.503(9) C(27)-C(28) 1.515(9) C(29)-C(30) 1.496(8) C(31)-C(32) 1.481(10) C(33)-C(34) 1.484(12) C(35)-C(36) 1.378(13) Fe(1)-C(43B) 1.98(4) Fe(1)-C(45A) 2.00(2) Fe(1)-C(46A) 2.00(3) Fe(1)-C(39) 2.014(6) Fe(1)-C(40) 2.016(5) Fe(1)-C(38) 2.021(6) Fe(1)-C(44B) 2.03(3) Fe(1)-C(41) 2.032(5) Fe(1)-C(43A) 2.039(19) Fe(1)-C(45B) 2.04(3) Fe(1)-C(44A) 2.054(18) Fe(1)-C(42A) 2.06(2) C(37)-C(41) 1.405(7) C(37)-C(38) 1.421(7) C(38)-C(39) 1.421(8) C(39)-C(40) 1.387(9) C(40)-C(41) 1.412(8) C(42A)-C(46A) 1.408(18) C(42A)-C(43A) 1.409(18) C(43A)-C(44A) 1.414(16) C(44A)-C(45A) 1.423(15) C(45A)-C(46A) 1.411(16) C(42B)-C(43B) 1.39(2) C(42B)-C(46B) 1.41(2) C(43B)-C(44B) 1.41(2) C(44B)-C(45B) 1.43(2) C(45B)-C(46B) 1.40(2) O(1)-C(47) 1.227(11) C(47)-C(48) 1.367(9) N(3)-Sn(1)-N(1) 170.68(15) N(3)-Sn(1)-N(2) 89.40(16) N(1)-Sn(1)-N(2) 89.55(16) N(3)-Sn(1)-N(4) 89.98(17) N(1)-Sn(1)-N(4) 89.23(17)

N(2)-Sn(1)-N(4) 168.59(16) N(3)-Sn(1)-C(37) 94.33(17) N(1)-Sn(1)-C(37) 94.97(18) N(2)-Sn(1)-C(37) 100.56(17) N(4)-Sn(1)-C(37) 90.85(17) N(3)-Sn(1)-O(1) 88.12(15) N(1)-Sn(1)-O(1) 82.56(16) N(2)-Sn(1)-O(1) 84.10(15) N(4)-Sn(1)-O(1) 84.49(16) C(37)-Sn(1)-O(1) 174.74(15) C(4)-N(1)-C(1) 108.6(4) C(4)-N(1)-Sn(1) 125.3(4) C(1)-N(1)-Sn(1) 125.6(3) C(6)-N(2)-C(9) 108.7(4) C(6)-N(2)-Sn(1) 125.3(3) C(9)-N(2)-Sn(1) 125.8(3) C(11)-N(3)-C(14) 109.1(4) C(11)-N(3)-Sn(1) 125.8(3) C(14)-N(3)-Sn(1) 125.1(3) C(19)-N(4)-C(16) 109.4(4) C(19)-N(4)-Sn(1) 125.0(4) C(16)-N(4)-Sn(1) 125.4(4) N(1)-C(1)-C(20) 124.9(5) N(1)-C(1)-C(2) 108.3(5) C(20)-C(1)-C(2) 126.8(5) C(3)-C(2)-C(1) 107.4(5) C(3)-C(2)-C(21) 128.0(5) C(1)-C(2)-C(21) 124.5(5) C(2)-C(3)-C(4) 107.5(5) C(2)-C(3)-C(23) 128.7(5) C(4)-C(3)-C(23) 123.8(5) N(1)-C(4)-C(5) 125.3(5) N(1)-C(4)-C(3) 108.1(5) C(5)-C(4)-C(3) 126.6(5) C(4)-C(5)-C(6) 128.1(5) N(2)-C(6)-C(5) 125.4(5) N(2)-C(6)-C(7) 108.7(5) C(5)-C(6)-C(7) 125.9(5) C(8)-C(7)-C(6) 107.5(5) C(8)-C(7)-C(25) 127.4(5) C(6)-C(7)-C(25) 125.0(5) C(7)-C(8)-C(9) 107.3(5) C(7)-C(8)-C(27) 128.2(5) C(9)-C(8)-C(27) 124.5(5) N(2)-C(9)-C(10) 125.3(5) N(2)-C(9)-C(8) 107.8(4) C(10)-C(9)-C(8) 126.9(5) C(9)-C(10)-C(11) 127.7(5) N(3)-C(11)-C(10) 125.6(4) N(3)-C(11)-C(12) 107.9(5) C(10)-C(11)-C(12) 126.4(5) C(13)-C(12)-C(11) 107.0(5) C(13)-C(12)-C(29) 128.2(5) C(11)-C(12)-C(29) 124.7(5) C(12)-C(13)-C(14) 108.4(5) C(12)-C(13)-C(31) 128.0(5)

Page 111: Synthesis and Characterization of New Ferrocenyl

99

C(14)-C(13)-C(31) 123.6(5) N(3)-C(14)-C(15) 125.4(5) N(3)-C(14)-C(13) 107.4(5) C(15)-C(14)-C(13) 127.1(5) C(14)-C(15)-C(16) 128.4(5) N(4)-C(16)-C(15) 125.1(5) N(4)-C(16)-C(17) 108.5(5) C(15)-C(16)-C(17) 126.4(5) C(18)-C(17)-C(16) 107.0(5) C(18)-C(17)-C(33) 127.6(6) C(16)-C(17)-C(33) 125.3(6) C(17)-C(18)-C(19) 107.6(5) C(17)-C(18)-C(35) 128.5(6) C(19)-C(18)-C(35) 123.4(6) N(4)-C(19)-C(20) 126.1(5) N(4)-C(19)-C(18) 107.5(5) C(20)-C(19)-C(18) 126.4(5) C(1)-C(20)-C(19) 128.3(5) C(2)-C(21)-C(22) 111.4(5) C(3)-C(23)-C(24) 112.7(5) C(26)-C(25)-C(7) 112.7(6) C(8)-C(27)-C(28) 112.4(5) C(30)-C(29)-C(12) 113.2(5) C(32)-C(31)-C(13) 112.6(6) C(34)-C(33)-C(17) 112.2(7) C(36)-C(35)-C(18) 104.9(10) C(43B)-Fe(1)-C(45A) 68.2(12) C(43B)-Fe(1)-C(46A) 48.6(13) C(45A)-Fe(1)-C(46A) 41.4(5) C(43B)-Fe(1)-C(39) 114.4(10) C(45A)-Fe(1)-C(39) 151.0(10) C(46A)-Fe(1)-C(39) 116.8(8) C(43B)-Fe(1)-C(40) 109.3(10) C(45A)-Fe(1)-C(40) 168.7(10) C(46A)-Fe(1)-C(40) 145.2(8) C(39)-Fe(1)-C(40) 40.3(2) C(43B)-Fe(1)-C(38) 146.0(11) C(45A)-Fe(1)-C(38) 120.1(8) C(46A)-Fe(1)-C(38) 113.2(8) C(39)-Fe(1)-C(38) 41.2(2) C(40)-Fe(1)-C(38) 68.4(3) C(43B)-Fe(1)-C(44B) 41.2(8) C(45A)-Fe(1)-C(44B) 52.3(9) C(46A)-Fe(1)-C(44B) 66.1(12) C(39)-Fe(1)-C(44B) 148.4(11) C(40)-Fe(1)-C(44B) 118.2(9) C(38)-Fe(1)-C(44B) 170.2(11) C(43B)-Fe(1)-C(41) 134.2(12) C(45A)-Fe(1)-C(41) 132.8(8) C(46A)-Fe(1)-C(41) 174.0(8) C(39)-Fe(1)-C(41) 67.9(2) C(40)-Fe(1)-C(41) 40.8(2) C(38)-Fe(1)-C(41) 67.4(2) C(44B)-Fe(1)-C(41) 112.2(9) C(43B)-Fe(1)-C(43A) 27.7(10) C(45A)-Fe(1)-C(43A) 67.3(8)

C(46A)-Fe(1)-C(43A) 67.6(10) C(39)-Fe(1)-C(43A) 129.3(8) C(40)-Fe(1)-C(43A) 105.2(7) C(38)-Fe(1)-C(43A) 170.4(8) C(44B)-Fe(1)-C(43A) 19.4(6) C(41)-Fe(1)-C(43A) 112.9(8) C(43B)-Fe(1)-C(45B) 67.7(10) C(45A)-Fe(1)-C(45B) 16.0(8) C(46A)-Fe(1)-C(45B) 53.8(10) C(39)-Fe(1)-C(45B) 166.8(12) C(40)-Fe(1)-C(45B) 152.7(12) C(38)-Fe(1)-C(45B) 130.0(10) C(44B)-Fe(1)-C(45B) 41.1(7) C(41)-Fe(1)-C(45B) 120.8(10) C(43A)-Fe(1)-C(45B) 58.8(8) C(43B)-Fe(1)-C(44A) 60.2(9) C(45A)-Fe(1)-C(44A) 41.1(5) C(46A)-Fe(1)-C(44A) 69.8(8) C(39)-Fe(1)-C(44A) 166.7(10) C(40)-Fe(1)-C(44A) 127.8(9) C(38)-Fe(1)-C(44A) 149.2(8) C(44B)-Fe(1)-C(44A) 21.1(6) C(41)-Fe(1)-C(44A) 106.4(6) C(43A)-Fe(1)-C(44A) 40.4(5) C(45B)-Fe(1)-C(44A) 26.0(8) C(43B)-Fe(1)-C(42A) 12.6(12) C(45A)-Fe(1)-C(42A) 68.5(8) C(46A)-Fe(1)-C(42A) 40.5(6) C(39)-Fe(1)-C(42A) 107.7(8) C(40)-Fe(1)-C(42A) 111.7(7) C(38)-Fe(1)-C(42A) 134.2(9) C(44B)-Fe(1)-C(42A) 52.1(12) C(41)-Fe(1)-C(42A) 143.4(9) C(43A)-Fe(1)-C(42A) 40.2(6) C(45B)-Fe(1)-C(42A) 71.6(11) C(44A)-Fe(1)-C(42A) 69.3(8) C(41)-C(37)-C(38) 105.6(5) C(41)-C(37)-Fe(1) 68.4(3) C(38)-C(37)-Fe(1) 67.7(3) C(41)-C(37)-Sn(1) 127.6(4) C(38)-C(37)-Sn(1) 126.0(4) Fe(1)-C(37)-Sn(1) 136.2(2) C(37)-C(38)-C(39) 108.9(5) C(37)-C(38)-Fe(1) 71.7(3) C(39)-C(38)-Fe(1) 69.1(3) C(40)-C(39)-C(38) 107.8(5) C(40)-C(39)-Fe(1) 69.9(3) C(38)-C(39)-Fe(1) 69.6(3) C(39)-C(40)-C(41) 107.6(5) C(39)-C(40)-Fe(1) 69.8(3) C(41)-C(40)-Fe(1) 70.2(3) C(37)-C(41)-C(40) 110.0(5) C(37)-C(41)-Fe(1) 71.5(3) C(40)-C(41)-Fe(1) 69.0(3) C(46A)-C(42A)-C(43A) 106(2) C(46A)-C(42A)-Fe(1) 67.3(14)

Page 112: Synthesis and Characterization of New Ferrocenyl

100

C(43A)-C(42A)-Fe(1) 69.0(12) C(42A)-C(43A)-C(44A) 112(2) C(42A)-C(43A)-Fe(1) 70.8(12) C(44A)-C(43A)-Fe(1) 70.4(10) C(43A)-C(44A)-C(45A) 104.0(18) C(43A)-C(44A)-Fe(1) 69.2(10) C(45A)-C(44A)-Fe(1) 67.3(12) C(46A)-C(45A)-C(44A) 109.9(15) C(46A)-C(45A)-Fe(1) 69.4(13) C(44A)-C(45A)-Fe(1) 71.6(11) C(42A)-C(46A)-C(45A) 108.4(19) C(42A)-C(46A)-Fe(1) 72.2(13) C(45A)-C(46A)-Fe(1) 69.2(14) C(43B)-C(42B)-C(46B) 105(3) C(43B)-C(42B)-Fe(1) 66.6(16) C(46B)-C(42B)-Fe(1) 71.3(17) C(42B)-C(43B)-C(44B) 112(3) C(42B)-C(43B)-Fe(1) 73.2(16) C(44B)-C(43B)-Fe(1) 71.1(16) C(43B)-C(44B)-C(45B) 104(2) C(43B)-C(44B)-Fe(1) 67.7(16) C(45B)-C(44B)-Fe(1) 70.0(16) C(46B)-C(45B)-C(44B) 109.1(18) C(46B)-C(45B)-Fe(1) 72.4(16) C(44B)-C(45B)-Fe(1) 68.9(14) C(45B)-C(46B)-C(42B) 109(2) C(45B)-C(46B)-Fe(1) 68.1(17) C(42B)-C(46B)-Fe(1) 69.0(17) C(47)-O(1)-Sn(1) 131.2(5) O(1)-C(47)-C(48) 116.3(11)

Page 113: Synthesis and Characterization of New Ferrocenyl

101

Anisotropic displacement parameters (A^2 x 10^3) for orig2.

The anisotropic displacement factor exponent takes the form:

-2 pi^2 [ h^2 a*^2 U11 + ... + 2 h k a* b* U12 ]

______________________________________________________________________________

U11 U22 U33 U23 U13 U12 ______________________________________________________________________________

Sn(1) 55(1) 50(1) 69(1) -22(1) -9(1) -8(1) N(1) 64(3) 57(3) 74(3) -22(2) -3(2) -13(2) N(2) 57(3) 48(3) 78(3) -18(2) -14(2) -9(2) N(3) 57(3) 48(3) 78(3) -24(2) -10(2) -10(2) N(4) 66(3) 58(3) 78(3) -31(2) -3(2) -6(2) C(1) 67(4) 62(4) 65(3) -18(3) -3(3) -18(3) C(2) 74(4) 71(4) 63(3) -13(3) -8(3) -21(3) C(3) 71(4) 61(4) 64(3) -9(3) -10(3) -22(3) C(4) 72(4) 54(3) 67(3) -13(3) -20(3) -15(3) C(5) 61(4) 56(3) 78(4) -17(3) -14(3) -7(3) C(6) 60(3) 49(3) 75(3) -19(3) -19(3) -1(3) C(7) 57(3) 58(3) 89(4) -26(3) -17(3) 0(3) C(8) 52(3) 63(4) 85(4) -25(3) -16(3) 0(3) C(9) 47(3) 64(4) 71(3) -25(3) -17(3) -2(3) C(10) 61(3) 54(3) 73(3) -22(3) -14(3) -11(3) C(11) 60(4) 63(4) 68(3) -19(3) -11(3) -20(3) C(12) 71(4) 62(4) 65(3) -18(3) -14(3) -21(3) C(13) 79(4) 52(3) 75(4) -16(3) -18(3) -20(3) C(14) 72(4) 54(3) 73(3) -22(3) -19(3) -12(3) C(15) 74(4) 59(3) 78(4) -28(3) -16(3) -4(3) C(16) 66(4) 62(4) 79(4) -34(3) -9(3) -1(3) C(17) 85(4) 67(4) 95(4) -37(3) -6(3) -3(3) C(18) 69(4) 90(5) 103(5) -45(4) 14(3) -3(4) C(19) 59(4) 77(4) 82(4) -35(3) -3(3) 0(3) C(20) 74(4) 64(4) 83(4) -29(3) 0(3) -14(3) C(21) 81(4) 82(4) 85(4) -19(3) 3(3) -28(3) C(22) 87(5) 132(6) 109(5) -27(5) -12(4) -33(4) C(23) 93(4) 62(4) 93(4) -9(3) -6(3) -28(3) C(24) 147(7) 95(5) 116(6) -38(4) -26(5) -43(5) C(25) 66(4) 58(4) 125(5) -25(4) -12(3) 5(3) C(26) 144(7) 81(5) 161(8) -29(5) -67(6) -1(5) C(27) 58(4) 70(4) 112(5) -31(3) -15(3) -2(3) C(28) 95(5) 96(5) 113(6) -40(4) 10(4) -9(4) C(29) 73(4) 71(4) 78(4) -18(3) -9(3) -26(3) C(30) 74(4) 127(6) 103(5) -44(4) -11(4) -29(4) C(31) 110(5) 57(4) 109(5) -23(3) -10(4) -27(3) C(32) 179(9) 95(6) 182(9) -61(6) -54(7) -26(6) C(33) 115(6) 82(5) 134(6) -55(5) 15(5) -8(4) C(34) 338(18) 105(7) 161(10) -65(7) -30(11) -6(9) C(35) 222(11) 89(6) 115(7) -35(5) 51(7) 11(6) C(36) 142(9) 210(13) 205(13) -83(10) 12(9) -15(8) Fe(1) 68(1) 71(1) 77(1) -34(1) -22(1) 7(1) C(37) 53(3) 51(3) 66(3) -20(3) -6(2) 0(2) C(38) 57(3) 85(4) 83(4) -23(3) -11(3) -23(3)

Page 114: Synthesis and Characterization of New Ferrocenyl

102

C(39) 64(4) 99(5) 99(5) -43(4) -26(3) 4(4) C(40) 91(4) 61(4) 87(4) -20(3) -28(4) 11(3) C(41) 69(4) 64(4) 84(4) -21(3) -16(3) -8(3) C(42A) 133(17) 128(18) 118(17) -98(15) -65(13) 50(14) C(43A) 101(18) 181(18) 75(11) -59(11) -24(11) 39(14) C(44A) 83(12) 148(19) 96(16) -65(15) -16(11) 18(12) C(45A) 108(19) 94(17) 105(15) -66(11) -45(13) 28(13) C(46A) 148(19) 102(14) 165(19) -79(14) -91(14) 53(13) C(42B) 121(19) 100(20) 150(20) -67(16) -66(17) 20(15) C(43B) 92(18) 140(20) 121(19) -52(17) -46(15) 1(16) C(44B) 75(17) 151(19) 80(20) -53(16) -12(15) 12(14) C(45B) 75(14) 90(19) 87(16) -35(14) -24(12) 13(13) C(46B) 110(20) 52(12) 160(20) -54(12) -36(16) 16(12) O(1) 88(3) 73(3) 79(3) -16(2) -15(2) -15(2) C(47) 164(9) 366(18) 79(6) -63(8) -60(6) -51(11) C(48) 138(7) 132(7) 114(6) -33(5) -48(5) -18(5) _______________________________________________________________________

CIF Information for Compound 5:

Crystal data and structure refinement

Empirical formula C56 H62 Fe2 N4 Sn Formula weight 1021.49 Temperature 123(2) K Wavelength 0.71075 A Crystal system, space group Triclinic, P-1 Unit cell dimensions a = 9.858(3) A alpha = 68.393(6) deg. b = 10.313(3) A beta = 85.796(6) deg. c = 13.370(4) A gamma = 66.759(5) deg. Volume 1157.1(6) A^3 Z, Calculated density 1, 1.466 Mg/m^3 Absorption coefficient 1.197 mm^-1 F(000) 528 Crystal size 0.20 x 0.20 x 0.20 mm Theta range for data collection 3.25 to 27.48 deg. Limiting indices -12<=h<=12, -12<=k<=12, -17<=l<=17 Reflections collected / unique 27643 / 5107 [R(int) = 0.1441] Completeness to theta = 27.48 96.1 % Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.7957 and 0.7957 Refinement method Full-matrix least-squares on F^2 Data / restraints / parameters 5107 / 0 / 286 Goodness-of-fit on F^2 1.026 Final R indices [I>2sigma(I)] R1 = 0.0963, wR2 = 0.2459 R indices (all data) R1 = 0.1529, wR2 = 0.2831 Largest diff. peak and hole 1.638 and -1.550 e.A^-3

Page 115: Synthesis and Characterization of New Ferrocenyl

103

Atomic coordinates ( x 10^4) and equivalent isotropic displacement parameters (A^2 x 10^3)

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

______________________________________________________________________________ x y z U(eq) x y z U(eq ______________________________________________________________________________ Sn(1) 0 0 0 49(1) Fe(1) 2954(2) 218(2) -2249(1) 70(1) N(2) -390(8) 1845(8) 457(5) 46(2) N(9) -1708(8) 1396(8) -1237(5) 47(2) C(3) 1507(10) 774(11) -1083(7) 51(2) C(4) 2988(15) 566(14 -846(9) 77(3) C(5) -3823(12) 6009(12) 760(10) 70(3) C(6) -3310(13) 5959(12) -3895(7) 64(3) C(7) -438(14) 3319(13) 3240(8) 67(3) C(8)-2594(13) 2217(13) -4664(8) 67(3) C(10)-3340(10) 3503(10) -2553(6) 48(2) C(11) -1325(10) 4226(10) 525(7) 47(2) C(12) -3709(11) 2314(11) -3835(7) 54(2) C(13) -2082(9) 974(10) -2017(6) 46(2) C(14) -4240(11) 5153(10) -3185(7)55(2) C(15) -3107(10) 2310(10) -2842(7) 48(2)

C(16) 264(11) 3744(12 2175(7) 53(2) C(17) -2452(10) 2946(10) -1545(7)46(2) C(18) -1405(10) 3302(10) -45(6) 45(2) C(19) -1476(10) -519(10) -1998(7) 47(2) C(20) -2335(10) 3765(10) -963(7)46(2) C(21) -2341(11) 5859(10) 267(8) 52(2) C(22) -248(10) 3324(10) 1341(6) 46(2) C(24) 364(10) 1810(11) 1306(7) 48(2) C(25) 1152(16) 2021(15) -2175(10) 82(3) C(26) 2819(17) -1575(17) -2423(12) 82(4) C(28) 3970(30) -165(19) -3529(13) 117(7) C(29) 4150(20) -1976(17) -1988(14) 105(5) C(33) 2560(20) -320(30) -3478(18) 130(8) C(23) 4853(17) -1208(18) -2568(15) 94(4) C(30) 2374(17) 2448(15) -2513(11) 85(4) C(31) 3538(16) 1522(16) -1703(11) 82(3)

______________________________________________________________________________

Bond lengths [A] and angles [deg]

______________________________________________________________________________

Sn(1)-N(9)#1 2.094(7) Sn(1)-N(9) 2.094(7) Sn(1)-N(2) 2.094(7) Sn(1)-N(2)#1 2.094(7) Sn(1)-C(3)#1 2.170(10) Sn(1)-C(3) 2.170(10) Fe(1)-C(26) 2.002(13) Fe(1)-C(29) 2.002(14) Fe(1)-C(28) 2.005(14) Fe(1)-C(23) 2.006(14) Fe(1)-C(31) 2.018(13) Fe(1)-C(33) 2.023(13) Fe(1)-C(25) 2.031(13) Fe(1)-C(30) 2.033(13) Fe(1)-C(4) 2.041(11) Fe(1)-C(3) 2.117(9) N(2)-C(18) 1.371(11) N(2)-C(24) 1.384(11) N(9)-C(17) 1.378(11) N(9)-C(13) 1.388(10) C(3)-C(4) 1.431(16)

C(3)-C(25) 1.499(16) C(4)-C(31) 1.442(18) C(5)-C(21) 1.532(14) C(6)-C(14) 1.525(14) C(7)-C(16) 1.528(13) C(8)-C(12) 1.505(14) C(10)-C(15) 1.353(13) C(10)-C(17) 1.456(11) C(10)-C(14) 1.502(12) C(11)-C(22) 1.352(12) C(11)-C(18) 1.447(12) C(11)-C(21) 1.500(12) C(12)-C(15) 1.491(12) C(13)-C(19) 1.406(13) C(13)-C(15) 1.443(12) C(16)-C(22) 1.515(12) C(17)-C(20) 1.380(12) C(18)-C(20) 1.401(11) C(19)-C(24)#1 1.385(12) C(22)-C(24) 1.453(13) C(24)-C(19)#1 1.385(12)

Page 116: Synthesis and Characterization of New Ferrocenyl

104

C(25)-C(30) 1.429(19) C(26)-C(29) 1.32(2) C(26)-C(33) 1.48(3) C(28)-C(23) 1.41(2) C(28)-C(33) 1.45(2) C(29)-C(23) 1.27(2) C(30)-C(31) 1.399(19) N(9)#1-Sn(1)-N(9) 179.999(1) N(9)#1-Sn(1)-N(2) 90.4(3) N(9)-Sn(1)-N(2) 89.6(3) N(9)#1-Sn(1)-N(2)#1 89.6(3) N(9)-Sn(1)-N(2)#1 90.4(3) N(2)-Sn(1)-N(2)#1 180.0 N(9)#1-Sn(1)-C(3)#1 88.7(3) N(9)-Sn(1)-C(3)#1 91.3(3) N(2)-Sn(1)-C(3)#1 94.2(3) N(2)#1-Sn(1)-C(3)#1 85.8(3) N(9)#1-Sn(1)-C(3) 91.3(3) N(9)-Sn(1)-C(3) 88.7(3) N(2)-Sn(1)-C(3) 85.8(3) N(2)#1-Sn(1)-C(3) 94.2(3) C(3)#1-Sn(1)-C(3) 180.000(1) C(26)-Fe(1)-C(29) 38.5(6) C(26)-Fe(1)-C(28) 68.2(6) C(29)-Fe(1)-C(28) 65.7(7) C(26)-Fe(1)-C(23) 65.4(6) C(29)-Fe(1)-C(23) 36.9(6) C(28)-Fe(1)-C(23) 41.1(7) C(26)-Fe(1)-C(31) 162.6(7) C(29)-Fe(1)-C(31) 125.6(7) C(28)-Fe(1)-C(31) 115.5(7) C(23)-Fe(1)-C(31) 105.4(6) C(26)-Fe(1)-C(33) 43.0(7) C(29)-Fe(1)-C(33) 68.9(7) C(28)-Fe(1)-C(33) 42.2(7) C(23)-Fe(1)-C(33) 70.2(7) C(31)-Fe(1)-C(33) 150.6(9) C(26)-Fe(1)-C(25) 123.2(6) C(29)-Fe(1)-C(25) 155.5(7) C(28)-Fe(1)-C(25) 130.1(7) C(23)-Fe(1)-C(25) 167.4(6) C(31)-Fe(1)-C(25) 68.7(6) C(33)-Fe(1)-C(25) 109.0(6) C(26)-Fe(1)-C(30) 156.9(7) C(29)-Fe(1)-C(30) 162.2(8) C(28)-Fe(1)-C(30) 107.6(6) C(23)-Fe(1)-C(30) 127.3(6) C(31)-Fe(1)-C(30) 40.4(5) C(33)-Fe(1)-C(30) 118.2(8) C(25)-Fe(1)-C(30) 41.2(5) C(26)-Fe(1)-C(4) 127.3(6) C(29)-Fe(1)-C(4) 109.0(6) C(28)-Fe(1)-C(4) 150.2(8) C(23)-Fe(1)-C(4) 116.6(6) C(31)-Fe(1)-C(4) 41.6(5) C(33)-Fe(1)-C(4) 166.5(8)

C(25)-Fe(1)-C(4) 67.0(5) C(30)-Fe(1)-C(4) 68.0(5) C(26)-Fe(1)-C(3) 108.2(5) C(29)-Fe(1)-C(3) 118.5(6) C(28)-Fe(1)-C(3) 169.1(7) C(23)-Fe(1)-C(3) 148.0(6) C(31)-Fe(1)-C(3) 71.2(5) C(33)-Fe(1)-C(3) 128.1(6) C(25)-Fe(1)-C(3) 42.3(4) C(30)-Fe(1)-C(3) 71.4(5) C(4)-Fe(1)-C(3) 40.2(4) C(18)-N(2)-C(24) 108.0(7) C(18)-N(2)-Sn(1) 126.3(6) C(24)-N(2)-Sn(1) 125.7(6) C(17)-N(9)-C(13) 107.8(7) C(17)-N(9)-Sn(1) 125.7(6) C(13)-N(9)-Sn(1) 125.4(6) C(4)-C(3)-C(25) 100.1(10) C(4)-C(3)-Fe(1) 67.0(6) C(25)-C(3)-Fe(1) 65.8(6) C(4)-C(3)-Sn(1) 129.1(7) C(25)-C(3)-Sn(1) 128.6(8) Fe(1)-C(3)-Sn(1) 140.8(5) C(3)-C(4)-C(31) 113.9(11) C(3)-C(4)-Fe(1) 72.7(6) C(31)-C(4)-Fe(1) 68.3(7) C(12)-C(8)-H(8C) 109.5 C(15)-C(10)-C(17) 108.4(8) C(15)-C(10)-C(14) 127.4(8) C(17)-C(10)-C(14) 124.0(8) C(22)-C(11)-C(18) 107.5(7) C(22)-C(11)-C(21) 127.8(8) C(18)-C(11)-C(21) 124.6(8) C(15)-C(12)-C(8) 111.7(8) N(9)-C(13)-C(19) 123.8(7) N(9)-C(13)-C(15) 109.0(8) C(19)-C(13)-C(15) 127.2(7) C(10)-C(14)-C(6) 112.6(8) C(10)-C(15)-C(13) 107.0(7) C(10)-C(15)-C(12) 128.5(8) C(13)-C(15)-C(12) 124.4(8) C(22)-C(16)-C(7) 112.5(8) N(9)-C(17)-C(20) 123.9(7) N(9)-C(17)-C(10) 107.8(8) C(20)-C(17)-C(10) 128.3(8) N(2)-C(18)-C(20) 123.6(8) N(2)-C(18)-C(11) 108.8(7) C(20)-C(18)-C(11) 127.6(8) C(24)#1-C(19)-C(13) 130.1(8) C(17)-C(20)-C(18) 130.2(8) C(11)-C(21)-C(5) 111.5(8) C(11)-C(22)-C(24) 107.7(7) C(11)-C(22)-C(16) 128.2(8) C(24)-C(22)-C(16) 124.1(8) N(2)-C(24)-C(19)#1 124.3(9) N(2)-C(24)-C(22) 107.9(8)

Page 117: Synthesis and Characterization of New Ferrocenyl

105

C(19)#1-C(24)-C(22) 127.8(8) C(30)-C(25)-C(3) 111.6(12) C(30)-C(25)-Fe(1) 69.5(8) C(3)-C(25)-Fe(1) 71.9(6) C(29)-C(26)-C(33) 108.9(14) C(29)-C(26)-Fe(1) 70.8(9) C(33)-C(26)-Fe(1) 69.3(7) C(23)-C(28)-C(33) 108.5(15) C(23)-C(28)-Fe(1) 69.5(8) C(33)-C(28)-Fe(1) 69.6(8) C(23)-C(29)-C(26) 113.6(17) C(23)-C(29)-Fe(1) 71.7(9) C(26)-C(29)-Fe(1) 70.8(9) C(28)-C(33)-C(26) 100.4(14) C(28)-C(33)-Fe(1) 68.2(8) C(26)-C(33)-Fe(1) 67.7(8) C(29)-C(23)-C(28) 108.6(16) C(29)-C(23)-Fe(1) 71.4(9) C(28)-C(23)-Fe(1) 69.4(9) C(31)-C(30)-C(25) 107.8(12) C(31)-C(30)-Fe(1) 69.2(8) C(25)-C(30)-Fe(1) 69.3(7) C(30)-C(31)-C(4) 106.6(12) C(30)-C(31)-Fe(1) 70.4(8) C(4)-C(31)-Fe(1) 70.0(7)

Page 118: Synthesis and Characterization of New Ferrocenyl

106

Symmetry transformations used to generate equivalent atoms:

#1 -x,-y,-z

______________________________________________________________________________

Anisotropic displacement parameters (A^2 x 10^3)

The anisotropic displacement factor exponent takes the form:

-2 pi^2 [ h^2 a*^2 U11 + ... + 2 h k a* b* U12 ]

______________________________________________________________________________

U11 U22 U33 U23 U13 U12 ______________________________________________________________________________ Sn(1) 46(1) 51(1) 41(1) -17(1) -13(1) -9(1) Fe(1) 69(1) 77(1) 60(1) -26(1) 7(1) -27(1) N(2) 44(4) 56(4) 31(4) -15(3) 2(3) -15(3) N(9) 49(4) 56(4) 33(4) -15(3) -1(3) -18(3) C(3) 35(5) 74(6) 35(4) -25(4) 2(3) -7(4) C(4) 93(9) 75(7) 56(6) -27(5) 4(6) -23(6) C(5) 60(7) 58(6) 82(8) -27(5) 15(6) -15(5) C(6) 81(8) 69(6) 37(5) -9(4) -1(5) -34(6) C(7) 79(8) 85(7) 52(6) -34(5) 18(5) -41(6) C(8) 78(8) 77(7) 41(5) -21(5) -6(5) -24(6) C(10) 41(5) 62(5) 30(4) -9(4) -2(3) -14(4) C(11) 47(5) 52(5) 36(4) -13(4) 7(4) -17(4) C(12) 52(6) 65(5) 31(4) -7(4) -10(4) -17(4) C(13) 38(5) 62(5) 34(4) -16(4) -1(3) -18(4) C(14) 50(6) 60(5) 38(5) -9(4) -8(4) -14(4) C(15) 47(5) 61(5) 32(4) -16(4) 8(4) -19(4) C(16) 57(6) 68(6) 38(5) -21(4) 7(4) -27(5) C(17) 40(5) 55(5) 35(4) -9(4) 0(3) -16(4) C(18) 41(5) 52(5) 33(4) -8(3) 4(3) -17(4) C(19) 41(5) 68(5) 36(4) -17(4) 2(3) -25(4) C(20) 38(5) 49(4) 40(4) -8(4) 5(4) -14(4) C(21) 51(6) 54(5) 47(5) -17(4) 7(4) -20(4) C(22) 50(5) 59(5) 32(4) -19(4) 14(4) -26(4) C(24) 44(5) 65(5) 35(4) -14(4) 6(4) -26(4) C(25) 84(9) 85(8) 71(8) -34(6) 9(7) -23(7) C(26) 85(10) 104(10) 82(9) -43(8) 33(8) -57(8) C(28) 200(20) 103(11) 69(9) -45(8) 58(11) -81(13) C(29) 111(13) 78(9) 106(12) -40(8) -5(10) -12(9) C(33) 97(12) 179(19) 164(19) -142(17) -3(12) -31(12) C(23) 74(9) 95(10) 131(14) -60(10) 40(9) -39(8) C(30) 106(11) 74(7) 70(8) -26(6) 29(8) -35(7) C(31) 78(9) 101(9) 78(8) -41(7) 14(7) -40(7) ______________________________________________________________________________

Page 119: Synthesis and Characterization of New Ferrocenyl

107

CIF Information for Compound 6:

Empirical formula C70.91 H62.75 Cl Fe4 In N4 Formula weight 1344.59 Temperature 123(2) K Wavelength 0.71075 A Crystal system, space group Triclinic, P-1 Unit cell dimensions a = 11.2415(3) A alpha = 82.613(6) deg. b = 15.3866(3) A beta = 81.185(6) deg. c = 16.2741(11) A gamma = 76.854(5) deg. Volume 2695.9(2) A^3 Z, Calculated density 2, 1.656 Mg/m^3 Absorption coefficient 1.573 mm^-1 F(000) 1372 Crystal size 0.20 x 0.20 x 0.20 mm Theta range for data collection 3.00 to 27.48 deg. Limiting indices -14<=h<=14, -19<=k<=19, -21<=l<=21 Reflections collected / unique 73246 / 12287 [R(int) = 0.0380] Completeness to theta = 27.48 99.5 % Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.7438 and 0.7438 Refinement method Full-matrix least-squares on F^2 Data / restraints / parameters 12287 / 0 / 714 Goodness-of-fit on F^2 1.132 Final R indices [I>2sigma(I)] R1 = 0.0391, wR2 = 0.0967 R indices (all data) R1 = 0.0437, wR2 = 0.0987 Largest diff. peak and hole 0.595 and -0.450 e.A^-3

Atomic coordinates ( x 10^4) and equivalent isotropic displacement parameters (A^2 x 10^3)

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

______________________________________________________________________________

x y z U(eq) x y z U(eq)

______________________________________________________________________________

In(1A) 7235(1) 2011(1) 2963(1) 22(1) Cl(1A) 7930(1) 1865(1) 4303(1) 37(1) C(61) 6915(6) 1269(5) 150(4) 78(2) C(62) 6545(8) 443(6) 249(6) 95(2) C(63) 5549(8) 353(6) 857(5) 93(2) C(64) 4941(7) 1066(5) 1333(5) 82(2) C(65) 5348(6) 1864(5) 1207(4) 70(2) C(66) 6330(6) 1984(5) 619(4) 65(2)

C(67) 6741(7) 2853(5) 469(4) 76(2) In(1B) 6798(1) 2147(1) 2225(1) 24(1) Cl(1B) 5938(7) 2493(5) 950(5) 55(2) Fe(1) 4710(1) 6420(1) 2763(1) 26(1) Fe(2) 2146(1) 331(1) 3817(1) 25(1) Fe(3) 9297(1) -2297(1) 2462(1) 24(1) Fe(4) 11823(1) 3930(1) 1073(1) 26(1) N(1) 5358(2) 2687(2) 3280(2) 26(1)

Page 120: Synthesis and Characterization of New Ferrocenyl

108

N(2) 6529(2) 825(2) 2933(2) 29(1) N(3) 8675(2) 1462(2) 2004(2) 26(1) N(4) 7535(2) 3303(2) 2405(2) 26(1) C(1) 5062(3) 3556(2) 3499(2) 26(1) C(2) 4018(3) 3642(2) 4132(2) 32(1) C(3) 3673(3) 2838(2) 4275(2) 32(1) C(4) 4504(3) 2241(2) 3739(2) 27(1) C(5) 4468(3) 1329(2) 3715(2) 25(1) C(6) 5430(3) 672(2) 3359(2) 27(1) C(7) 5428(3) -264(2) 3378(2) 29(1) C(8) 6513(3) -660(2) 2967(2) 29(1) C(9) 7209(3) 19(2) 2667(2) 28(1) C(10) 8329(3) -97(2) 2139(2) 26(1) C(11) 8926(3) 601(2) 1768(2) 25(1) C(12) 9873(3) 530(2) 1067(2) 27(1) C(13) 10208(3) 1337(2) 892(2) 26(1) C(14) 9468(3) 1923(2) 1488(2) 25(1) C(15) 9525(3) 2830(2) 1514(2) 25(1) C(16) 8608(3) 3461(2) 1934(2) 26(1) C(17) 8591(3) 4406(2) 1897(2) 29(1) C(18) 7515(3) 4800(2) 2322(2) 29(1) C(19) 6850(3) 4110(2) 2658(2) 26(1) C(20) 5692(3) 4246(2) 3164(2) 26(1) C(21) 5092(3) 5153(2) 3414(2) 28(1) C(22) 3795(3) 5531(2) 3467(2) 32(1) C(23) 3548(3) 6345(2) 3845(2) 37(1) C(24) 4686(3) 6492(2) 4019(2) 34(1) C(25) 5626(3) 5771(2) 3750(2) 29(1) C(26) 5855(3) 6943(2) 1814(2) 33(1) C(27) 5278(3) 6326(2) 1518(2) 35(1) C(28) 3982(3) 6644(2) 1659(2) 37(1) C(29) 3751(3) 7457(2) 2047(2) 36(1)

C(30) 4901(3) 7638(2) 2137(2) 33(1) C(31) 3302(3) 1081(2) 4130(2) 27(1) C(32) 3121(3) 379(2) 4773(2) 30(1) C(33) 1837(3) 492(2) 5052(2) 36(1) C(34) 1213(3) 1260(2) 4592(2) 35(1) C(35) 2105(3) 1613(2) 4022(2) 30(1) C(36) 2803(3) -274(2) 2733(2) 31(1) C(37) 2588(3) -922(2) 3414(2) 33(1) C(38) 1320(3) -693(2) 3742(2) 34(1) C(39) 761(3) 91(2) 3271(2) 36(1) C(40) 1676(3) 348(2) 2649(2) 34(1) C(41) 8931(3) -1000(2) 1862(2) 26(1) C(42) 10226(3) -1378(2) 1815(2) 28(1) C(43) 10486(3) -2169(2) 1400(2) 32(1) C(44) 9355(3) -2297(2) 1203(2) 32(1) C(45) 8393(3) -1592(2) 1492(2) 29(1) C(46) 9111(3) -3547(2) 2984(2) 31(1) C(47) 10237(3) -3374(2) 3145(2) 32(1) C(48) 9940(3) -2604(2) 3601(2) 33(1) C(49) 8642(3) -2308(2) 3711(2) 32(1) C(50) 8127(3) -2892(2) 3331(2) 31(1) C(51) 10595(3) 3115(2) 975(2) 26(1) C(52) 11847(3) 2624(2) 928(2) 28(1) C(53) 12554(3) 3011(2) 238(2) 30(1) C(54) 11754(3) 3760(2) -135(2) 30(1) C(55) 10556(3) 3830(2) 321(2) 26(1) C(56) 11498(3) 4487(3) 2188(2) 39(1) C(57) 12701(4) 3937(3) 2089(2) 45(1) C(58) 13350(3) 4287(3) 1348(3) 48(1) C(59) 12548(4) 5045(3) 991(3) 45(1) C(60) 11410(3) 5169(2) 1510(2) 38(1)

______________________________________________________________________________

Bond lengths [A] and angles [deg]

______________________________________________________________________________

In(1A)-N(1) 2.146(2) In(1A)-N(4) 2.153(2) In(1A)-N(2) 2.158(2) In(1A)-N(3) 2.171(3) In(1A)-Cl(1A) 2.3940(10) C(61)-C(66) 1.399(10) C(61)-C(62) 1.408(10) C(62)-C(63) 1.395(11) C(63)-C(64) 1.410(11) C(64)-C(65) 1.386(9) C(65)-C(66) 1.375(8) C(66)-C(67) 1.491(9) In(1B)-N(3) 2.132(3) In(1B)-N(4) 2.195(3) In(1B)-N(2) 2.265(3) In(1B)-N(1) 2.273(3)

In(1B)-Cl(1B) 2.370(7) Fe(1)-C(22) 2.030(3) Fe(1)-C(23) 2.033(3) Fe(1)-C(27) 2.043(3) Fe(1)-C(28) 2.044(3) Fe(1)-C(29) 2.047(3) Fe(1)-C(30) 2.054(3) Fe(1)-C(26) 2.057(3) Fe(1)-C(24) 2.058(3) Fe(1)-C(25) 2.066(3) Fe(1)-C(21) 2.082(3) Fe(2)-C(33) 2.025(3) Fe(2)-C(38) 2.026(3) Fe(2)-C(34) 2.028(3) Fe(2)-C(39) 2.029(3) Fe(2)-C(35) 2.032(3)

Page 121: Synthesis and Characterization of New Ferrocenyl

109

Fe(2)-C(40) 2.044(3) Fe(2)-C(37) 2.045(3) Fe(2)-C(32) 2.054(3) Fe(2)-C(36) 2.057(3) Fe(2)-C(31) 2.079(3) Fe(3)-C(43) 2.033(3) Fe(3)-C(42) 2.037(3) Fe(3)-C(44) 2.040(3) Fe(3)-C(46) 2.042(3) Fe(3)-C(47) 2.046(3) Fe(3)-C(48) 2.052(3) Fe(3)-C(49) 2.052(3) Fe(3)-C(50) 2.053(3) Fe(3)-C(45) 2.063(3) Fe(3)-C(41) 2.087(3) Fe(4)-C(54) 2.031(3) Fe(4)-C(53) 2.037(3) Fe(4)-C(59) 2.041(3) Fe(4)-C(58) 2.044(4) Fe(4)-C(52) 2.047(3) Fe(4)-C(60) 2.049(3) Fe(4)-C(57) 2.054(4) Fe(4)-C(56) 2.054(3) Fe(4)-C(55) 2.057(3) Fe(4)-C(51) 2.100(3) N(1)-C(4) 1.377(4) N(1)-C(1) 1.382(4) N(2)-C(6) 1.374(4) N(2)-C(9) 1.384(4) N(3)-C(14) 1.381(4) N(3)-C(11) 1.383(4) N(4)-C(19) 1.379(4) N(4)-C(16) 1.380(4) C(1)-C(20) 1.414(4) C(1)-C(2) 1.431(4) C(2)-C(3) 1.361(4) C(3)-C(4) 1.429(4) C(4)-C(5) 1.418(4) C(5)-C(6) 1.411(4) C(5)-C(31) 1.486(4) C(6)-C(7) 1.436(4) C(7)-C(8) 1.351(4) C(8)-C(9) 1.436(4) C(9)-C(10) 1.401(4) C(10)-C(11) 1.416(4) C(10)-C(41) 1.494(4) C(11)-C(12) 1.433(4) C(12)-C(13) 1.361(4) C(13)-C(14) 1.442(4) C(14)-C(15) 1.418(4) C(15)-C(16) 1.404(4) C(15)-C(51) 1.492(4) C(16)-C(17) 1.444(4) C(17)-C(18) 1.352(4) C(18)-C(19) 1.440(4) C(19)-C(20) 1.418(4)

C(20)-C(21) 1.484(4) C(21)-C(25) 1.434(4) C(21)-C(22) 1.435(4) C(22)-C(23) 1.419(5) C(23)-C(24) 1.424(5) C(24)-C(25) 1.411(5) C(26)-C(30) 1.421(5) C(26)-C(27) 1.430(5) C(27)-C(28) 1.421(5) C(28)-C(29) 1.428(5) C(29)-C(30) 1.414(5) C(31)-C(35) 1.431(4) C(31)-C(32) 1.431(4) C(32)-C(33) 1.423(5) C(33)-C(34) 1.417(5) C(34)-C(35) 1.412(4) C(36)-C(40) 1.418(5) C(36)-C(37) 1.422(5) C(37)-C(38) 1.424(5) C(38)-C(39) 1.416(5) C(39)-C(40) 1.414(5) C(41)-C(42) 1.433(4) C(41)-C(45) 1.436(4) C(42)-C(43) 1.418(4) C(43)-C(44) 1.420(5) C(44)-C(45) 1.418(5) C(46)-C(50) 1.417(5) C(46)-C(47) 1.419(5) C(47)-C(48) 1.428(4) C(48)-C(49) 1.416(5) C(49)-C(50) 1.419(4) C(51)-C(55) 1.427(4) C(51)-C(52) 1.434(4) C(52)-C(53) 1.420(4) C(53)-C(54) 1.422(4) C(54)-C(55) 1.423(4) C(56)-C(60) 1.420(5) C(56)-C(57) 1.421(5) C(57)-C(58) 1.420(6) C(58)-C(59) 1.421(6) C(59)-C(60) 1.410(5) N(1)-In(1A)-N(4) 85.75(9) N(1)-In(1A)-N(2) 86.70(9) N(4)-In(1A)-N(2) 150.45(10) N(1)-In(1A)-N(3) 147.85(10) N(4)-In(1A)-N(3) 85.80(9) N(2)-In(1A)-N(3) 85.55(9) N(1)-In(1A)-Cl(1A) 99.30(8) N(4)-In(1A)-Cl(1A) 103.94(8) N(2)-In(1A)-Cl(1A) 105.46(8) N(3)-In(1A)-Cl(1A) 112.85(7) C(66)-C(61)-C(62) 123.3(7) C(63)-C(62)-C(61) 116.7(8) C(62)-C(63)-C(64) 121.0(8) C(65)-C(64)-C(63) 119.6(7) C(66)-C(65)-C(64) 121.6(8)

Page 122: Synthesis and Characterization of New Ferrocenyl

110

C(65)-C(66)-C(61) 117.7(7) C(65)-C(66)-C(67) 121.4(8) C(61)-C(66)-C(67) 120.9(6) N(3)-In(1B)-N(4) 85.73(10) N(3)-In(1B)-N(2) 83.88(10) N(4)-In(1B)-N(2) 138.40(12) N(3)-In(1B)-N(1) 140.66(11) N(4)-In(1B)-N(1) 81.79(10) N(2)-In(1B)-N(1) 81.25(10) N(3)-In(1B)-Cl(1B) 110.0(2) N(4)-In(1B)-Cl(1B) 106.9(2) N(2)-In(1B)-Cl(1B) 114.5(2) N(1)-In(1B)-Cl(1B) 109.3(2) C(22)-Fe(1)-C(23) 40.88(13) C(22)-Fe(1)-C(27) 121.73(14) C(23)-Fe(1)-C(27) 155.72(15) C(22)-Fe(1)-C(28) 104.04(15) C(23)-Fe(1)-C(28) 118.32(15) C(27)-Fe(1)-C(28) 40.68(14) C(22)-Fe(1)-C(29) 119.00(14) C(23)-Fe(1)-C(29) 103.24(15) C(27)-Fe(1)-C(29) 68.46(14) C(28)-Fe(1)-C(29) 40.86(13) C(22)-Fe(1)-C(30) 155.84(13) C(23)-Fe(1)-C(30) 121.03(14) C(27)-Fe(1)-C(30) 68.15(13) C(28)-Fe(1)-C(30) 68.23(14) C(29)-Fe(1)-C(30) 40.35(13) C(22)-Fe(1)-C(26) 160.01(13) C(23)-Fe(1)-C(26) 159.07(13) C(27)-Fe(1)-C(26) 40.83(13) C(28)-Fe(1)-C(26) 68.61(15) C(29)-Fe(1)-C(26) 68.35(14) C(30)-Fe(1)-C(26) 40.45(13) C(22)-Fe(1)-C(24) 68.50(14) C(23)-Fe(1)-C(24) 40.75(14) C(27)-Fe(1)-C(24) 162.94(14) C(28)-Fe(1)-C(24) 155.24(14) C(29)-Fe(1)-C(24) 120.57(14) C(30)-Fe(1)-C(24) 108.44(13) C(26)-Fe(1)-C(24) 125.81(14) C(22)-Fe(1)-C(25) 68.16(13) C(23)-Fe(1)-C(25) 67.97(14) C(27)-Fe(1)-C(25) 127.43(13) C(28)-Fe(1)-C(25) 160.87(13) C(29)-Fe(1)-C(25) 158.25(13) C(30)-Fe(1)-C(25) 125.89(13) C(26)-Fe(1)-C(25) 112.48(13) C(24)-Fe(1)-C(25) 40.03(13) C(22)-Fe(1)-C(21) 40.83(12) C(23)-Fe(1)-C(21) 68.58(13) C(27)-Fe(1)-C(21) 109.67(13) C(28)-Fe(1)-C(21) 122.45(13) C(29)-Fe(1)-C(21) 156.80(13) C(30)-Fe(1)-C(21) 162.26(13) C(26)-Fe(1)-C(21) 126.38(13)

C(24)-Fe(1)-C(21) 68.14(13) C(25)-Fe(1)-C(21) 40.45(12) C(33)-Fe(2)-C(38) 103.13(14) C(33)-Fe(2)-C(34) 40.92(15) C(38)-Fe(2)-C(34) 115.92(13) C(33)-Fe(2)-C(39) 118.39(14) C(38)-Fe(2)-C(39) 40.88(14) C(34)-Fe(2)-C(39) 101.42(14) C(33)-Fe(2)-C(35) 68.51(14) C(38)-Fe(2)-C(35) 152.44(13) C(34)-Fe(2)-C(35) 40.70(13) C(39)-Fe(2)-C(35) 118.39(14) C(33)-Fe(2)-C(40) 155.88(14) C(38)-Fe(2)-C(40) 68.38(14) C(34)-Fe(2)-C(40) 120.81(15) C(39)-Fe(2)-C(40) 40.62(14) C(35)-Fe(2)-C(40) 108.06(14) C(33)-Fe(2)-C(37) 120.81(14) C(38)-Fe(2)-C(37) 40.95(13) C(34)-Fe(2)-C(37) 153.64(14) C(39)-Fe(2)-C(37) 68.82(14) C(35)-Fe(2)-C(37) 165.34(13) C(40)-Fe(2)-C(37) 68.34(14) C(33)-Fe(2)-C(32) 40.82(13) C(38)-Fe(2)-C(32) 123.38(14) C(34)-Fe(2)-C(32) 68.62(14) C(39)-Fe(2)-C(32) 157.05(14) C(35)-Fe(2)-C(32) 68.20(13) C(40)-Fe(2)-C(32) 162.06(13) C(37)-Fe(2)-C(32) 110.56(13) C(33)-Fe(2)-C(36) 159.17(14) C(38)-Fe(2)-C(36) 68.40(13) C(34)-Fe(2)-C(36) 159.88(14) C(39)-Fe(2)-C(36) 68.40(13) C(35)-Fe(2)-C(36) 127.67(13) C(40)-Fe(2)-C(36) 40.46(13) C(37)-Fe(2)-C(36) 40.56(13) C(32)-Fe(2)-C(36) 127.05(13) C(33)-Fe(2)-C(31) 68.66(13) C(38)-Fe(2)-C(31) 162.40(14) C(34)-Fe(2)-C(31) 68.73(13) C(39)-Fe(2)-C(31) 156.71(14) C(35)-Fe(2)-C(31) 40.71(12) C(40)-Fe(2)-C(31) 125.30(13) C(37)-Fe(2)-C(31) 128.89(13) C(32)-Fe(2)-C(31) 40.51(12) C(36)-Fe(2)-C(31) 113.58(12) C(43)-Fe(3)-C(42) 40.78(12) C(43)-Fe(3)-C(44) 40.79(13) C(42)-Fe(3)-C(44) 68.34(13) C(43)-Fe(3)-C(46) 119.47(13) C(42)-Fe(3)-C(46) 155.04(13) C(44)-Fe(3)-C(46) 106.75(13) C(43)-Fe(3)-C(47) 103.17(14) C(42)-Fe(3)-C(47) 119.17(13) C(44)-Fe(3)-C(47) 120.47(13)

Page 123: Synthesis and Characterization of New Ferrocenyl

111

C(46)-Fe(3)-C(47) 40.62(13) C(43)-Fe(3)-C(48) 120.23(14) C(42)-Fe(3)-C(48) 106.15(13) C(44)-Fe(3)-C(48) 156.62(14) C(46)-Fe(3)-C(48) 68.14(13) C(47)-Fe(3)-C(48) 40.78(12) C(43)-Fe(3)-C(49) 158.03(14) C(42)-Fe(3)-C(49) 124.28(13) C(44)-Fe(3)-C(49) 160.93(14) C(46)-Fe(3)-C(49) 68.03(13) C(47)-Fe(3)-C(49) 68.35(13) C(48)-Fe(3)-C(49) 40.37(14) C(43)-Fe(3)-C(50) 157.04(13) C(42)-Fe(3)-C(50) 162.00(13) C(44)-Fe(3)-C(50) 123.80(13) C(46)-Fe(3)-C(50) 40.48(13) C(47)-Fe(3)-C(50) 68.38(13) C(48)-Fe(3)-C(50) 68.07(13) C(49)-Fe(3)-C(50) 40.46(13) C(43)-Fe(3)-C(45) 68.57(13) C(42)-Fe(3)-C(45) 68.45(12) C(44)-Fe(3)-C(45) 40.43(13) C(46)-Fe(3)-C(45) 124.64(12) C(47)-Fe(3)-C(45) 158.26(13) C(48)-Fe(3)-C(45) 160.71(13) C(49)-Fe(3)-C(45) 126.33(13) C(50)-Fe(3)-C(45) 111.05(13) C(43)-Fe(3)-C(41) 68.41(12) C(42)-Fe(3)-C(41) 40.64(12) C(44)-Fe(3)-C(41) 67.95(12) C(46)-Fe(3)-C(41) 162.23(13) C(47)-Fe(3)-C(41) 156.91(12) C(48)-Fe(3)-C(41) 123.56(12) C(49)-Fe(3)-C(41) 111.10(12) C(50)-Fe(3)-C(41) 127.25(13) C(45)-Fe(3)-C(41) 40.48(11) C(54)-Fe(4)-C(53) 40.91(13) C(54)-Fe(4)-C(59) 103.99(15) C(53)-Fe(4)-C(59) 118.41(14) C(54)-Fe(4)-C(58) 117.93(15) C(53)-Fe(4)-C(58) 102.49(14) C(59)-Fe(4)-C(58) 40.71(17) C(54)-Fe(4)-C(52) 68.37(12) C(53)-Fe(4)-C(52) 40.70(12) C(59)-Fe(4)-C(52) 155.47(15) C(58)-Fe(4)-C(52) 120.66(15) C(54)-Fe(4)-C(60) 122.63(14) C(53)-Fe(4)-C(60) 156.12(14) C(59)-Fe(4)-C(60) 40.32(15) C(58)-Fe(4)-C(60) 68.00(15) C(52)-Fe(4)-C(60) 162.87(14) C(54)-Fe(4)-C(57) 154.41(15) C(53)-Fe(4)-C(57) 119.58(15) C(59)-Fe(4)-C(57) 68.45(17) C(58)-Fe(4)-C(57) 40.56(17) C(52)-Fe(4)-C(57) 107.88(15)

C(60)-Fe(4)-C(57) 68.21(15) C(54)-Fe(4)-C(56) 161.14(14) C(53)-Fe(4)-C(56) 157.95(14) C(59)-Fe(4)-C(56) 68.07(16) C(58)-Fe(4)-C(56) 67.96(15) C(52)-Fe(4)-C(56) 125.85(14) C(60)-Fe(4)-C(56) 40.49(15) C(57)-Fe(4)-C(56) 40.47(15) C(54)-Fe(4)-C(55) 40.73(12) C(53)-Fe(4)-C(55) 68.57(13) C(59)-Fe(4)-C(55) 122.20(15) C(58)-Fe(4)-C(55) 155.66(16) C(52)-Fe(4)-C(55) 68.03(12) C(60)-Fe(4)-C(55) 110.67(13) C(57)-Fe(4)-C(55) 163.43(15) C(56)-Fe(4)-C(55) 127.94(14) C(54)-Fe(4)-C(51) 68.07(12) C(53)-Fe(4)-C(51) 68.31(12) C(59)-Fe(4)-C(51) 160.12(15) C(58)-Fe(4)-C(51) 159.17(15) C(52)-Fe(4)-C(51) 40.45(12) C(60)-Fe(4)-C(51) 127.54(13) C(57)-Fe(4)-C(51) 126.49(15) C(56)-Fe(4)-C(51) 113.37(14) C(55)-Fe(4)-C(51) 40.14(11) C(4)-N(1)-C(1) 107.3(3) C(4)-N(1)-In(1A) 121.37(19) C(1)-N(1)-In(1A) 121.51(19) C(4)-N(1)-In(1B) 125.7(2) C(1)-N(1)-In(1B) 126.4(2) In(1A)-N(1)-In(1B) 35.18(5) C(6)-N(2)-C(9) 107.7(2) C(6)-N(2)-In(1A) 124.9(2) C(9)-N(2)-In(1A) 125.66(19) C(6)-N(2)-In(1B) 124.7(2) C(9)-N(2)-In(1B) 120.9(2) In(1A)-N(2)-In(1B) 35.19(5) C(14)-N(3)-C(11) 107.3(2) C(14)-N(3)-In(1B) 116.68(19) C(11)-N(3)-In(1B) 118.36(19) C(14)-N(3)-In(1A) 126.20(19) C(11)-N(3)-In(1A) 126.4(2) In(1B)-N(3)-In(1A) 36.30(6) C(19)-N(4)-C(16) 108.0(2) C(19)-N(4)-In(1A) 124.2(2) C(16)-N(4)-In(1A) 125.27(19) C(19)-N(4)-In(1B) 125.85(19) C(16)-N(4)-In(1B) 120.3(2) In(1A)-N(4)-In(1B) 35.91(5) N(1)-C(1)-C(20) 125.9(3) N(1)-C(1)-C(2) 108.7(3) C(20)-C(1)-C(2) 125.4(3) C(3)-C(2)-C(1) 107.5(3) C(2)-C(3)-C(4) 107.6(3) N(1)-C(4)-C(5) 126.2(3) N(1)-C(4)-C(3) 108.9(3)

Page 124: Synthesis and Characterization of New Ferrocenyl

112

C(5)-C(4)-C(3) 124.8(3) C(6)-C(5)-C(4) 125.8(3) C(6)-C(5)-C(31) 119.9(3) C(4)-C(5)-C(31) 114.3(3) N(2)-C(6)-C(5) 125.3(3) N(2)-C(6)-C(7) 108.7(3) C(5)-C(6)-C(7) 126.0(3) C(8)-C(7)-C(6) 107.5(3) C(7)-C(8)-C(9) 108.1(3) N(2)-C(9)-C(10) 125.7(3) N(2)-C(9)-C(8) 108.0(3) C(10)-C(9)-C(8) 126.1(3) C(9)-C(10)-C(11) 125.2(3) C(9)-C(10)-C(41) 120.1(3) C(11)-C(10)-C(41) 114.4(3) N(3)-C(11)-C(10) 126.0(3) N(3)-C(11)-C(12) 108.9(2) C(10)-C(11)-C(12) 125.1(3) C(13)-C(12)-C(11) 107.6(3) C(12)-C(13)-C(14) 107.4(3) N(3)-C(14)-C(15) 126.1(3) N(3)-C(14)-C(13) 108.6(2) C(15)-C(14)-C(13) 125.2(3) C(16)-C(15)-C(14) 124.7(3) C(16)-C(15)-C(51) 120.3(3) C(14)-C(15)-C(51) 114.7(3) N(4)-C(16)-C(15) 126.4(3) N(4)-C(16)-C(17) 108.1(3) C(15)-C(16)-C(17) 125.3(3) C(18)-C(17)-C(16) 107.7(3) C(17)-C(18)-C(19) 107.8(3) N(4)-C(19)-C(20) 126.4(3) N(4)-C(19)-C(18) 108.3(3) C(20)-C(19)-C(18) 125.3(3) C(1)-C(20)-C(19) 124.4(3) C(1)-C(20)-C(21) 115.5(3) C(19)-C(20)-C(21) 120.0(3) C(25)-C(21)-C(22) 106.2(3) C(25)-C(21)-C(20) 128.2(3) C(22)-C(21)-C(20) 125.0(3) C(25)-C(21)-Fe(1) 69.15(17) C(22)-C(21)-Fe(1) 67.62(17) C(20)-C(21)-Fe(1) 133.8(2) C(23)-C(22)-C(21) 108.7(3) C(23)-C(22)-Fe(1) 69.67(19) C(21)-C(22)-Fe(1) 71.55(18) C(22)-C(23)-C(24) 108.0(3) C(22)-C(23)-Fe(1) 69.45(19) C(24)-C(23)-Fe(1) 70.57(19) C(25)-C(24)-C(23) 107.8(3) C(25)-C(24)-Fe(1) 70.28(18) C(23)-C(24)-Fe(1) 68.7(2) C(24)-C(25)-C(21) 109.2(3) C(24)-C(25)-Fe(1) 69.69(19) C(21)-C(25)-Fe(1) 70.40(18) C(30)-C(26)-C(27) 107.2(3)

C(30)-C(26)-Fe(1) 69.67(19) C(27)-C(26)-Fe(1) 69.0(2) C(30)-C(26)-H(26) 126.4 C(27)-C(26)-H(26) 126.4 C(28)-C(27)-C(26) 108.4(3) C(28)-C(27)-Fe(1) 69.7(2) C(26)-C(27)-Fe(1) 70.13(19) C(27)-C(28)-C(29) 107.7(3) C(27)-C(28)-Fe(1) 69.60(19) C(29)-C(28)-Fe(1) 69.65(19) C(30)-C(29)-C(28) 107.9(3) C(30)-C(29)-Fe(1) 70.12(18) C(28)-C(29)-Fe(1) 69.48(19) C(29)-C(30)-C(26) 108.8(3) C(29)-C(30)-Fe(1) 69.53(19) C(26)-C(30)-Fe(1) 69.88(18) C(35)-C(31)-C(32) 106.3(3) C(35)-C(31)-C(5) 123.8(3) C(32)-C(31)-C(5) 129.4(3) C(35)-C(31)-Fe(2) 67.85(17) C(32)-C(31)-Fe(2) 68.78(17) C(5)-C(31)-Fe(2) 134.1(2) C(33)-C(32)-C(31) 108.4(3) C(33)-C(32)-Fe(2) 68.52(19) C(31)-C(32)-Fe(2) 70.71(17) C(34)-C(33)-C(32) 108.2(3) C(34)-C(33)-Fe(2) 69.64(19) C(32)-C(33)-Fe(2) 70.66(18) C(35)-C(34)-C(33) 107.7(3) C(35)-C(34)-Fe(2) 69.79(18) C(33)-C(34)-Fe(2) 69.44(19) C(34)-C(35)-C(31) 109.3(3) C(34)-C(35)-Fe(2) 69.51(18) C(31)-C(35)-Fe(2) 71.44(17) C(40)-C(36)-C(37) 107.9(3) C(40)-C(36)-Fe(2) 69.28(18) C(37)-C(36)-Fe(2) 69.26(18) C(36)-C(37)-C(38) 107.5(3) C(36)-C(37)-Fe(2) 70.18(18) C(38)-C(37)-Fe(2) 68.83(18) C(39)-C(38)-C(37) 108.3(3) C(39)-C(38)-Fe(2) 69.66(18) C(37)-C(38)-Fe(2) 70.22(18) C(40)-C(39)-C(38) 107.9(3) C(40)-C(39)-Fe(2) 70.26(18) C(38)-C(39)-Fe(2) 69.46(19) C(39)-C(40)-C(36) 108.4(3) C(39)-C(40)-Fe(2) 69.12(19) C(36)-C(40)-Fe(2) 70.27(18) C(42)-C(41)-C(45) 107.0(3) C(42)-C(41)-C(10) 124.6(3) C(45)-C(41)-C(10) 127.9(3) C(42)-C(41)-Fe(3) 67.82(16) C(45)-C(41)-Fe(3) 68.85(16) C(10)-C(41)-Fe(3) 134.5(2) C(43)-C(42)-C(41) 108.7(3)

Page 125: Synthesis and Characterization of New Ferrocenyl

113

C(43)-C(42)-Fe(3) 69.47(17) C(41)-C(42)-Fe(3) 71.54(17) C(42)-C(43)-C(44) 107.6(3) C(42)-C(43)-Fe(3) 69.75(18) C(44)-C(43)-Fe(3) 69.85(18) C(45)-C(44)-C(43) 108.8(3) C(45)-C(44)-Fe(3) 70.64(18) C(43)-C(44)-Fe(3) 69.36(19) C(44)-C(45)-C(41) 107.9(3) C(44)-C(45)-Fe(3) 68.93(18) C(41)-C(45)-Fe(3) 70.67(17) C(50)-C(46)-C(47) 108.6(3) C(50)-C(46)-Fe(3) 70.15(17) C(47)-C(46)-Fe(3) 69.85(18) C(46)-C(47)-C(48) 107.3(3) C(46)-C(47)-Fe(3) 69.54(18) C(48)-C(47)-Fe(3) 69.80(18) C(49)-C(48)-C(47) 108.1(3) C(49)-C(48)-Fe(3) 69.82(18) C(47)-C(48)-Fe(3) 69.41(18) C(48)-C(49)-C(50) 108.2(3) C(48)-C(49)-Fe(3) 69.81(19) C(50)-C(49)-Fe(3) 69.81(18) C(46)-C(50)-C(49) 107.7(3) C(46)-C(50)-Fe(3) 69.37(18) C(49)-C(50)-Fe(3) 69.73(18) C(55)-C(51)-C(52) 106.7(3) C(55)-C(51)-C(15) 127.2(3) C(52)-C(51)-C(15) 125.4(3) C(55)-C(51)-Fe(4) 68.31(16) C(52)-C(51)-Fe(4) 67.78(16) C(15)-C(51)-Fe(4) 136.2(2) C(53)-C(52)-C(51) 108.9(3) C(53)-C(52)-Fe(4) 69.26(17) C(51)-C(52)-Fe(4) 71.77(17) C(52)-C(53)-C(54) 107.5(3) C(52)-C(53)-Fe(4) 70.04(18) C(54)-C(53)-Fe(4) 69.33(18) C(53)-C(54)-C(55) 108.3(3) C(53)-C(54)-Fe(4) 69.76(18) C(55)-C(54)-Fe(4) 70.62(17) C(54)-C(55)-C(51) 108.5(3) C(54)-C(55)-Fe(4) 68.65(17) C(51)-C(55)-Fe(4) 71.55(17) C(60)-C(56)-C(57) 108.2(3) C(60)-C(56)-Fe(4) 69.55(19) C(57)-C(56)-Fe(4) 69.7(2) C(58)-C(57)-C(56) 107.4(4) C(58)-C(57)-Fe(4) 69.3(2) C(56)-C(57)-Fe(4) 69.8(2) C(57)-C(58)-C(59) 108.3(3) C(57)-C(58)-Fe(4) 70.1(2) C(59)-C(58)-Fe(4) 69.5(2) C(60)-C(59)-C(58) 107.9(4) C(60)-C(59)-Fe(4) 70.14(19) C(58)-C(59)-Fe(4) 69.7(2)

C(59)-C(60)-C(56) 108.2(3) C(59)-C(60)-Fe(4) 69.5(2) C(56)-C(60)-Fe(4) 70.0(2)

Page 126: Synthesis and Characterization of New Ferrocenyl

114

______________________________________________________________________________ Anisotropic displacement parameters (A^2 x 10^3)

The anisotropic displacement factor exponent takes the form:

-2 pi^2 [ h^2 a*^2 U11 + ... + 2 h k a* b* U12 ]

_______________________________________________________________________ U11 U22 U33 U23 U13 U12 _______________________________________________________________________

In(1A) 21(1) 16(1) 29(1) 1(1) -5(1) -6(1) Cl(1A) 39(1) 37(1) 35(1) -3(1) -14(1) -2(1) C(61) 65(4) 100(5) 62(4) 3(4) -4(3) -9(4) C(62) 88(5) 86(5) 108(6) 26(4) -25(5) -26(4) C(63) 97(6) 88(5) 95(6) 20(4) -31(5) -25(5) C(64) 74(4) 91(5) 83(5) 30(4) -30(4) -31(4) C(65) 61(4) 89(5) 55(3) 19(3) -17(3) -14(3) C(66) 54(3) 85(5) 55(3) 24(3) -25(3) -23(3) C(67) 82(4) 90(5) 64(4) 14(3) -24(3) -35(4) In(1B) 22(1) 17(1) 33(1) -1(1) -5(1) -5(1) Cl(1B) 56(4) 55(4) 50(4) -8(3) -26(3) 12(3) Fe(1) 26(1) 19(1) 34(1) -5(1) -5(1) -5(1) Fe(2) 23(1) 25(1) 28(1) -6(1) 0(1) -9(1) Fe(3) 28(1) 17(1) 28(1) -3(1) -5(1) -6(1) Fe(4) 27(1) 24(1) 29(1) -3(1) -3(1) -10(1) N(1) 23(1) 18(1) 38(1) 1(1) -7(1) -7(1) N(2) 22(1) 18(1) 46(2) -2(1) -4(1) -6(1) N(3) 23(1) 18(1) 37(1) -1(1) -4(1) -6(1) N(4) 22(1) 19(1) 37(1) 1(1) -3(1) -6(1) C(1) 26(1) 23(1) 31(2) -1(1) -8(1) -6(1) C(2) 42(2) 26(2) 31(2) -6(1) 0(1) -15(1) C(3) 38(2) 30(2) 29(2) -4(1) -1(1) -14(1) C(4) 25(1) 25(2) 32(2) -1(1) -6(1) -9(1) C(5) 25(1) 21(1) 32(2) 1(1) -7(1) -9(1) C(6) 22(1) 23(1) 38(2) 1(1) -7(1) -7(1) C(7) 26(2) 22(1) 41(2) 3(1) -6(1) -11(1) C(8) 26(2) 18(1) 44(2) 0(1) -9(1) -8(1) C(9) 22(1) 18(1) 44(2) -2(1) -8(1) -5(1) C(10) 25(1) 17(1) 37(2) 0(1) -10(1) -6(1) C(11) 26(1) 20(1) 32(2) 1(1) -9(1) -6(1) C(12) 32(2) 21(1) 30(2) -1(1) -9(1) -8(1) C(13) 30(2) 22(1) 28(2) 1(1) -7(1) -8(1) C(14) 24(1) 20(1) 32(2) 2(1) -6(1) -7(1) C(15) 25(1) 19(1) 33(2) 3(1) -9(1) -7(1) C(16) 25(1) 18(1) 36(2) 2(1) -7(1) -7(1) C(17) 28(2) 18(1) 41(2) 1(1) -5(1) -7(1) C(18) 28(2) 17(1) 43(2) -2(1) -5(1) -7(1) C(19) 25(1) 18(1) 37(2) 2(1) -8(1) -6(1) C(20) 25(1) 20(1) 34(2) -1(1) -8(1) -7(1) C(21) 30(2) 22(1) 33(2) -2(1) -4(1) -7(1) C(22) 28(2) 24(2) 46(2) -4(1) -1(1) -9(1) C(23) 35(2) 29(2) 43(2) -8(1) 5(1) -6(1)

Page 127: Synthesis and Characterization of New Ferrocenyl

115

C(24) 43(2) 28(2) 33(2) -7(1) -3(1) -8(1) C(25) 34(2) 23(1) 32(2) -1(1) -9(1) -8(1) C(26) 38(2) 25(2) 35(2) -2(1) -3(1) -5(1) C(27) 44(2) 27(2) 35(2) -6(1) -9(1) -5(1) C(28) 41(2) 30(2) 44(2) -7(1) -19(2) -4(1) C(29) 35(2) 26(2) 49(2) -4(1) -17(2) 1(1) C(30) 38(2) 20(1) 43(2) -3(1) -8(1) -7(1) C(31) 28(2) 26(2) 28(2) -5(1) -4(1) -9(1) C(32) 38(2) 29(2) 28(2) -3(1) -5(1) -14(1) C(33) 42(2) 41(2) 28(2) -12(1) 7(1) -20(2) C(34) 33(2) 36(2) 40(2) -17(1) 6(1) -13(1) C(35) 28(2) 24(2) 38(2) -8(1) 1(1) -9(1) C(36) 31(2) 36(2) 28(2) -12(1) 1(1) -10(1) C(37) 37(2) 27(2) 37(2) -8(1) -6(1) -9(1) C(38) 36(2) 35(2) 37(2) -10(1) 1(1) -20(1) C(39) 28(2) 39(2) 46(2) -12(2) -6(1) -12(1) C(40) 39(2) 35(2) 32(2) -4(1) -10(1) -13(1) C(41) 30(2) 19(1) 31(2) -1(1) -6(1) -9(1) C(42) 30(2) 19(1) 37(2) -3(1) -3(1) -9(1) C(43) 35(2) 24(2) 35(2) -5(1) 4(1) -7(1) C(44) 47(2) 25(2) 28(2) -2(1) -5(1) -12(1) C(45) 36(2) 23(1) 32(2) 1(1) -11(1) -12(1) C(46) 40(2) 20(1) 33(2) -1(1) -6(1) -8(1) C(47) 37(2) 22(2) 37(2) -2(1) -11(1) -3(1) C(48) 43(2) 23(2) 34(2) -1(1) -16(1) -5(1) C(49) 47(2) 23(2) 26(2) -3(1) -5(1) -6(1) C(50) 35(2) 25(2) 33(2) 3(1) -4(1) -10(1) C(51) 29(2) 19(1) 31(2) -1(1) -6(1) -9(1) C(52) 29(2) 20(1) 35(2) -1(1) -3(1) -8(1) C(53) 31(2) 26(2) 34(2) -5(1) -1(1) -10(1) C(54) 38(2) 26(2) 27(2) -2(1) -3(1) -11(1) C(55) 34(2) 18(1) 28(2) -1(1) -7(1) -8(1) C(56) 43(2) 46(2) 34(2) -14(2) -6(2) -13(2) C(57) 46(2) 49(2) 45(2) -14(2) -21(2) -7(2) C(58) 32(2) 54(2) 67(3) -28(2) -4(2) -17(2) C(59) 54(2) 39(2) 53(2) -14(2) 1(2) -30(2) C(60) 42(2) 30(2) 47(2) -15(2) -6(2) -11(1) _______________________________________________________________________

CIF Information for Compound 8:

Empirical formula C70 H53 Fe5 In N4 Formula weight 1344.23 Temperature 123(2) K Wavelength 0.71073 A Crystal system, space group Triclinic, P-1 Unit cell dimensions a = 13.709 A alpha = 69.95 deg. b = 14.553 A beta = 76.12 deg. c = 15.818 A gamma = 63.42 deg. Volume 2637.3 A^3 Z, Calculated density 2, 1.693 Mg/m^3 Absorption coefficient 1.820 mm^-1 F(000) 1360 Crystal size 0.30 x 0.04 x 0.04 mm

Page 128: Synthesis and Characterization of New Ferrocenyl

116

Theta range for data collection 3.00 to 25.04 deg. Limiting indices -15<=h<=16, -17<=k<=17, -18<=l<=18 Reflections collected / unique 26966 / 9252 [R(int) = 0.0879] Completeness to theta = 25.04 99.0 % Absorption correction Empirical Max. and min. transmission 0.9308 and 0.6113 Refinement method Full-matrix least-squares on F^2 Data / restraints / parameters 9252 / 0 / 721 Goodness-of-fit on F^2 1.010 Final R indices [I>2sigma(I)] R1 = 0.0549, wR2 = 0.1274 R indices (all data) R1 = 0.0810, wR2 = 0.1435 Largest diff. peak and hole 1.171 and -0.953 e.A^-3

Atomic coordinates ( x 10^4) and equivalent isotropic displacement parameters (A^2 x 10^3)

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

______________________________________________________________________________ x y z U(eq) x y z U(eq) ______________________________________________________________________________

In(1) 5095(1) 6993(1) 286(1) 23(1) Fe(1) 8123(1) 7048(1) 2771(1) 31(1) Fe(2) 2406(1) 6490(1) 4187(1) 34(1) Fe(3) 1619(1) 8007(1) -2307(1) 26(1) Fe(4) 7335(1) 8513(1) -3637(1) 29(1) Fe(5) 2675(1) 9616(1) 323(1) 41(1) N(1) 6865(4) 6556(4) -38(3) 24(1) N(2) 5543(4) 6106(3) 1684(3) 23(1) N(3) 3947(3) 6220(4) 680(3) 22(1) N(4) 5226(3) 6736(4) -1044(3) 22(1) C(1) 7425(4) 6600(4) -882(4) 26(1) C(2) 8579(4) 6243(5) -798(4) 28(1) C(3) 8676(4) 6065(4) 71(4) 27(1) C(4) 7608(4) 6279(4) 563(4) 24(1) C(5) 7350(4) 6192(4) 1501(4) 22(1) C(6) 6398(4) 6090(4) 2017(4) 27(1) C(7) 6186(4) 5844(4) 2988(4) 27(1) C(8) 5222(4) 5729(5) 3221(4) 29(1) C(9) 4814(4) 5899(4) 2405(4) 25(1) C(10) 3833(4) 5838(4) 2340(4) 26(1) C(11) 3506(4) 5889(4) 1542(4) 23(1) C(12) 2632(4) 5603(4) 1500(4) 25(1) C(13) 2543(4) 5800(4) 624(4) 25(1) C(14) 3331(4) 6226(4) 90(4) 24(1) C(15) 3449(4) 6583(4) -861(4) 23(1) C(16) 4368(4) 6760(4) -1380(4) 24(1) C(17) 4595(5) 6970(5) -2346(4) 28(1) C(18) 5563(4) 7074(5) -2586(4) 28(1) C(19) 5955(4) 6935(4) -1769(4) 24(1)

C(20) 6981(4) 6912(4) -1702(4) 25(1) C(21) 8215(4) 6172(4) 1942(4) 26(1) C(22) 8828(5) 6826(5) 1532(4) 33(1) C(23) 9644(5) 6531(6) 2089(5) 41(2) C(24) 9549(5) 5693(5) 2853(5) 39(2) C(25) 8682(5) 5477(5) 2766(4) 31(1) C(26) 8058(6) 8229(5) 3226(5) 49(2) C(27) 7316(7) 8666(5) 2549(5) 54(2) C(28) 6558(6) 8192(6) 2868(5) 52(2) C(29) 6808(6) 7479(6) 3715(5) 49(2) C(30) 7720(7) 7497(6) 3952(5) 51(2) C(31) 3043(5) 5702(5) 3171(4) 30(1) C(32) 3242(5) 4961(5) 4041(4) 35(1) C(33) 2223(6) 5079(6) 4577(4) 46(2) C(34) 1375(6) 5893(7) 4048(5) 47(2) C(35) 1886(5) 6283(5) 3188(4) 35(2) C(36) 1412(7) 7705(10) 4727(9) 89(4) C(37) 1991(7) 8091(6) 3906(6) 63(2) C(38) 3087(6) 7549(6) 4005(5) 51(2) C(39) 3234(8) 6885(7) 4826(7) 66(2) C(40) 2237(13) 6963(9) 5305(5) 99(4) C(41) 2523(4) 6746(4) -1292(4) 22(1) C(42) 2519(4) 6384(4) -2035(4) 26(1) C(43) 1404(5) 6645(4) -2131(4) 28(1) C(44) 711(5) 7180(5) -1478(4) 31(1) C(45) 1382(4) 7258(5) -966(4) 27(1) C(46) 1249(5) 8950(5) -3584(4) 40(2) C(47) 512(5) 9461(5) -2936(5) 42(2) C(48) 1109(5) 9597(5) -2400(4) 38(2)

Page 129: Synthesis and Characterization of New Ferrocenyl

117

C(49) 2239(5) 9149(5) -2731(4) 38(2) C(50) 2317(5) 8755(5) -3462(4) 37(2) C(51) 7696(4) 7197(5) -2533(4) 28(1) C(52) 8290(4) 7820(5) -2607(4) 28(1) C(53) 8960(5) 7870(5) -3445(4) 38(2) C(54) 8770(5) 7300(5) -3907(4) 34(1) C(55) 8003(5) 6881(5) -3351(4) 29(1) C(56) 6797(6) 9550(5) -4854(5) 47(2) C(57) 5996(6) 9162(5) -4331(5) 49(2) C(58) 5688(6) 9452(5) -3511(5) 45(2) C(59) 6293(6) 10015(5) -3515(5) 48(2)

C(60) 6990(6) 10076(5) -4333(5) 49(2) C(61) 4336(5) 8659(5) 246(5) 37(2) C(62) 3987(6) 9100(6) 1011(6) 55(2) C(63) 3508(7) 10240(6) 705(8) 73(3) C(64) 3588(6) 10507(6) -249(7) 61(2) C(65) 4085(5) 9542(5) -522(6) 49(2) C(66) 1432(6) 9359(8) 1206(6) 71(3) C(67) 1046(6) 10411(7) 640(7) 68(3) C(68) 1230(6) 10341(6) -251(6) 59(2) C(69) 1727(6) 9250(6) -232(6) 53(2) C(70) 1819(5) 8659(6) 665(5) 47(2)

______________________________________________________________________________

Bond lengths [A] and angles [deg]

______________________________________________________________________________

In(1)-C(61) 2.152(6) In(1)-N(3) 2.183(4) In(1)-N(1) 2.191(4) In(1)-N(4) 2.213(4) In(1)-N(2) 2.218(4) Fe(1)-C(22) 2.030(6) Fe(1)-C(23) 2.036(7) Fe(1)-C(26) 2.040(6) Fe(1)-C(27) 2.045(7) Fe(1)-C(29) 2.053(7) Fe(1)-C(28) 2.055(7) Fe(1)-C(24) 2.055(6) Fe(1)-C(30) 2.060(6) Fe(1)-C(25) 2.063(6) Fe(1)-C(21) 2.069(5) Fe(2)-C(36) 2.009(8) Fe(2)-C(35) 2.037(6) Fe(2)-C(40) 2.038(7) Fe(2)-C(33) 2.043(7) Fe(2)-C(34) 2.043(6) Fe(2)-C(37) 2.044(7) Fe(2)-C(39) 2.044(7) Fe(2)-C(38) 2.047(7) Fe(2)-C(32) 2.064(6) Fe(2)-C(31) 2.086(6) Fe(3)-C(49) 2.040(6) Fe(3)-C(50) 2.041(6) Fe(3)-C(47) 2.044(6) Fe(3)-C(46) 2.046(6) Fe(3)-C(45) 2.048(6) Fe(3)-C(44) 2.048(6) Fe(3)-C(43) 2.049(6) Fe(3)-C(48) 2.058(6) Fe(3)-C(42) 2.059(6) Fe(3)-C(41) 2.093(5) Fe(4)-C(52) 2.026(6) Fe(4)-C(57) 2.041(7) Fe(4)-C(54) 2.044(6)

Fe(4)-C(60) 2.045(7) Fe(4)-C(53) 2.049(6) Fe(4)-C(55) 2.050(6) Fe(4)-C(58) 2.053(7) Fe(4)-C(59) 2.054(7) Fe(4)-C(56) 2.054(7) Fe(4)-C(51) 2.059(6) Fe(5)-C(66) 2.015(9) Fe(5)-C(67) 2.031(7) Fe(5)-C(63) 2.033(8) Fe(5)-C(62) 2.039(7) Fe(5)-C(64) 2.043(8) Fe(5)-C(68) 2.048(7) Fe(5)-C(65) 2.051(7) Fe(5)-C(69) 2.056(7) Fe(5)-C(70) 2.062(7) Fe(5)-C(61) 2.070(6) N(1)-C(1) 1.368(7) N(1)-C(4) 1.392(7) N(2)-C(9) 1.370(7) N(2)-C(6) 1.384(7) N(3)-C(11) 1.367(7) N(3)-C(14) 1.397(7) N(4)-C(19) 1.371(7) N(4)-C(16) 1.384(6) C(1)-C(20) 1.410(8) C(1)-C(2) 1.452(7) C(2)-C(3) 1.337(8) C(3)-C(4) 1.434(8) C(4)-C(5) 1.415(8) C(5)-C(6) 1.405(8) C(5)-C(21) 1.498(7) C(6)-C(7) 1.440(8) C(7)-C(8) 1.354(8) C(8)-C(9) 1.430(7) C(9)-C(10) 1.414(7) C(10)-C(11) 1.408(7) C(10)-C(31) 1.507(8)

Page 130: Synthesis and Characterization of New Ferrocenyl

118

C(11)-C(12) 1.455(7) C(12)-C(13) 1.339(8) C(13)-C(14) 1.439(8) C(14)-C(15) 1.408(8) C(15)-C(16) 1.406(8) C(15)-C(41) 1.472(7) C(16)-C(17) 1.436(8) C(17)-C(18) 1.351(8) C(18)-C(19) 1.434(7) C(19)-C(20) 1.419(7) C(20)-C(51) 1.494(8) C(21)-C(25) 1.432(8) C(21)-C(22) 1.436(8) C(22)-C(23) 1.413(8) C(23)-C(24) 1.421(10) C(24)-C(25) 1.405(8) C(26)-C(30) 1.421(10) C(26)-C(27) 1.436(10) C(27)-C(28) 1.402(11) C(28)-C(29) 1.392(11) C(29)-C(30) 1.402(10) C(31)-C(35) 1.424(8) C(31)-C(32) 1.424(8) C(32)-C(33) 1.420(9) C(33)-C(34) 1.418(10) C(34)-C(35) 1.425(9) C(36)-C(40) 1.417(15) C(36)-C(37) 1.427(14) C(37)-C(38) 1.368(10) C(38)-C(39) 1.324(11) C(39)-C(40) 1.371(14) C(41)-C(42) 1.444(7) C(41)-C(45) 1.450(7) C(42)-C(43) 1.433(7) C(43)-C(44) 1.412(8) C(44)-C(45) 1.424(8) C(46)-C(47) 1.405(9) C(46)-C(50) 1.409(9) C(47)-C(48) 1.422(9) C(48)-C(49) 1.429(9) C(49)-C(50) 1.420(9) C(51)-C(55) 1.428(8) C(51)-C(52) 1.429(8) C(52)-C(53) 1.419(8) C(53)-C(54) 1.412(8) C(54)-C(55) 1.419(8) C(56)-C(57) 1.416(10) C(56)-C(60) 1.433(9) C(57)-C(58) 1.411(10) C(58)-C(59) 1.399(10) C(59)-C(60) 1.415(10) C(61)-C(65) 1.407(10) C(61)-C(62) 1.444(10) C(62)-C(63) 1.430(11) C(63)-C(64) 1.413(13) C(64)-C(65) 1.430(10)

C(66)-C(70) 1.397(11) C(66)-C(67) 1.410(13) C(67)-C(68) 1.402(12) C(68)-C(69) 1.412(10) C(69)-C(70) 1.387(10) C(61)-In(1)-N(3) 113.85(19) C(61)-In(1)-N(1) 107.65(19) N(3)-In(1)-N(1) 138.43(16) C(61)-In(1)-N(4) 112.3(2) N(3)-In(1)-N(4) 83.41(16) N(1)-In(1)-N(4) 83.23(15) C(61)-In(1)-N(2) 106.3(2) N(3)-In(1)-N(2) 82.97(16) N(1)-In(1)-N(2) 83.41(16) N(4)-In(1)-N(2) 141.35(16) C(22)-Fe(1)-C(23) 40.7(2) C(22)-Fe(1)-C(26) 124.1(3) C(23)-Fe(1)-C(26) 104.8(3) C(22)-Fe(1)-C(27) 104.9(3) C(23)-Fe(1)-C(27) 115.6(3) C(26)-Fe(1)-C(27) 41.2(3) C(22)-Fe(1)-C(29) 153.5(3) C(23)-Fe(1)-C(29) 165.8(3) C(26)-Fe(1)-C(29) 67.6(3) C(27)-Fe(1)-C(29) 67.2(3) C(22)-Fe(1)-C(28) 118.2(3) C(23)-Fe(1)-C(28) 150.4(3) C(26)-Fe(1)-C(28) 68.0(3) C(27)-Fe(1)-C(28) 40.0(3) C(29)-Fe(1)-C(28) 39.6(3) C(22)-Fe(1)-C(24) 68.1(3) C(23)-Fe(1)-C(24) 40.7(3) C(26)-Fe(1)-C(24) 117.9(3) C(27)-Fe(1)-C(24) 151.0(3) C(29)-Fe(1)-C(24) 131.0(3) C(28)-Fe(1)-C(24) 168.2(3) C(22)-Fe(1)-C(30) 162.9(3) C(23)-Fe(1)-C(30) 126.7(3) C(26)-Fe(1)-C(30) 40.6(3) C(27)-Fe(1)-C(30) 68.1(3) C(29)-Fe(1)-C(30) 39.9(3) C(28)-Fe(1)-C(30) 67.2(3) C(24)-Fe(1)-C(30) 109.9(3) C(22)-Fe(1)-C(25) 68.0(2) C(23)-Fe(1)-C(25) 67.9(3) C(26)-Fe(1)-C(25) 153.3(3) C(27)-Fe(1)-C(25) 165.5(3) C(29)-Fe(1)-C(25) 113.1(3) C(28)-Fe(1)-C(25) 130.9(3) C(24)-Fe(1)-C(25) 39.9(2) C(30)-Fe(1)-C(25) 122.2(3) C(22)-Fe(1)-C(21) 41.0(2) C(23)-Fe(1)-C(21) 68.8(2) C(26)-Fe(1)-C(21) 162.9(3) C(27)-Fe(1)-C(21) 126.0(3) C(29)-Fe(1)-C(21) 121.9(2)

Page 131: Synthesis and Characterization of New Ferrocenyl

119

C(28)-Fe(1)-C(21) 109.4(3) C(24)-Fe(1)-C(21) 68.2(2) C(30)-Fe(1)-C(21) 155.5(3) C(25)-Fe(1)-C(21) 40.6(2) C(36)-Fe(2)-C(35) 118.7(4) C(36)-Fe(2)-C(40) 41.0(4) C(35)-Fe(2)-C(40) 156.1(5) C(36)-Fe(2)-C(33) 122.3(4) C(35)-Fe(2)-C(33) 68.2(3) C(40)-Fe(2)-C(33) 109.2(3) C(36)-Fe(2)-C(34) 104.0(3) C(35)-Fe(2)-C(34) 40.9(2) C(40)-Fe(2)-C(34) 121.4(4) C(33)-Fe(2)-C(34) 40.6(3) C(36)-Fe(2)-C(37) 41.2(4) C(35)-Fe(2)-C(37) 106.5(3) C(40)-Fe(2)-C(37) 67.0(4) C(33)-Fe(2)-C(37) 159.3(3) C(34)-Fe(2)-C(37) 122.4(3) C(36)-Fe(2)-C(39) 67.6(4) C(35)-Fe(2)-C(39) 160.9(4) C(40)-Fe(2)-C(39) 39.2(4) C(33)-Fe(2)-C(39) 125.6(3) C(34)-Fe(2)-C(39) 158.2(4) C(37)-Fe(2)-C(39) 65.3(3) C(36)-Fe(2)-C(38) 67.5(3) C(35)-Fe(2)-C(38) 125.2(3) C(40)-Fe(2)-C(38) 65.3(4) C(33)-Fe(2)-C(38) 159.7(3) C(34)-Fe(2)-C(38) 159.4(3) C(37)-Fe(2)-C(38) 39.1(3) C(39)-Fe(2)-C(38) 37.8(3) C(36)-Fe(2)-C(32) 160.7(4) C(35)-Fe(2)-C(32) 67.6(3) C(40)-Fe(2)-C(32) 126.9(4) C(33)-Fe(2)-C(32) 40.4(3) C(34)-Fe(2)-C(32) 68.0(3) C(37)-Fe(2)-C(32) 157.9(3) C(39)-Fe(2)-C(32) 113.0(3) C(38)-Fe(2)-C(32) 125.7(3) C(36)-Fe(2)-C(31) 155.2(4) C(35)-Fe(2)-C(31) 40.4(2) C(40)-Fe(2)-C(31) 162.8(5) C(33)-Fe(2)-C(31) 68.2(2) C(34)-Fe(2)-C(31) 68.5(2) C(37)-Fe(2)-C(31) 121.6(3) C(39)-Fe(2)-C(31) 127.4(3) C(38)-Fe(2)-C(31) 110.9(3) C(32)-Fe(2)-C(31) 40.1(2) C(49)-Fe(3)-C(50) 40.7(3) C(49)-Fe(3)-C(47) 68.0(3) C(50)-Fe(3)-C(47) 67.8(3) C(49)-Fe(3)-C(46) 68.1(3) C(50)-Fe(3)-C(46) 40.3(2) C(47)-Fe(3)-C(46) 40.2(3) C(49)-Fe(3)-C(45) 122.1(2)

C(50)-Fe(3)-C(45) 158.6(2) C(47)-Fe(3)-C(45) 122.9(3) C(46)-Fe(3)-C(45) 159.1(2) C(49)-Fe(3)-C(44) 156.5(3) C(50)-Fe(3)-C(44) 160.0(2) C(47)-Fe(3)-C(44) 105.8(3) C(46)-Fe(3)-C(44) 122.8(2) C(45)-Fe(3)-C(44) 40.7(2) C(49)-Fe(3)-C(43) 162.5(3) C(50)-Fe(3)-C(43) 125.1(2) C(47)-Fe(3)-C(43) 120.3(2) C(46)-Fe(3)-C(43) 107.4(2) C(45)-Fe(3)-C(43) 68.1(2) C(44)-Fe(3)-C(43) 40.3(2) C(49)-Fe(3)-C(48) 40.8(3) C(50)-Fe(3)-C(48) 68.5(3) C(47)-Fe(3)-C(48) 40.6(3) C(46)-Fe(3)-C(48) 68.3(3) C(45)-Fe(3)-C(48) 106.7(2) C(44)-Fe(3)-C(48) 119.8(3) C(43)-Fe(3)-C(48) 155.0(2) C(49)-Fe(3)-C(42) 126.0(2) C(50)-Fe(3)-C(42) 109.3(2) C(47)-Fe(3)-C(42) 156.6(2) C(46)-Fe(3)-C(42) 122.4(2) C(45)-Fe(3)-C(42) 68.5(2) C(44)-Fe(3)-C(42) 68.5(2) C(43)-Fe(3)-C(42) 40.9(2) C(48)-Fe(3)-C(42) 162.1(2) C(49)-Fe(3)-C(41) 108.9(2) C(50)-Fe(3)-C(41) 123.4(2) C(47)-Fe(3)-C(41) 160.5(2) C(46)-Fe(3)-C(41) 158.4(2) C(45)-Fe(3)-C(41) 41.0(2) C(44)-Fe(3)-C(41) 68.8(2) C(43)-Fe(3)-C(41) 68.6(2) C(48)-Fe(3)-C(41) 124.5(2) C(42)-Fe(3)-C(41) 40.7(2) C(52)-Fe(4)-C(57) 161.3(3) C(52)-Fe(4)-C(54) 68.2(2) C(57)-Fe(4)-C(54) 124.0(3) C(52)-Fe(4)-C(60) 119.5(3) C(57)-Fe(4)-C(60) 68.2(3) C(54)-Fe(4)-C(60) 122.4(3) C(52)-Fe(4)-C(53) 40.8(2) C(57)-Fe(4)-C(53) 157.6(3) C(54)-Fe(4)-C(53) 40.4(2) C(60)-Fe(4)-C(53) 105.0(3) C(52)-Fe(4)-C(55) 68.2(2) C(57)-Fe(4)-C(55) 110.8(3) C(54)-Fe(4)-C(55) 40.6(2) C(60)-Fe(4)-C(55) 160.2(3) C(53)-Fe(4)-C(55) 68.1(2) C(52)-Fe(4)-C(58) 123.8(3) C(57)-Fe(4)-C(58) 40.3(3) C(54)-Fe(4)-C(58) 160.3(3)

Page 132: Synthesis and Characterization of New Ferrocenyl

120

C(60)-Fe(4)-C(58) 67.9(3) C(53)-Fe(4)-C(58) 158.7(3) C(55)-Fe(4)-C(58) 125.1(3) C(52)-Fe(4)-C(59) 106.5(3) C(57)-Fe(4)-C(59) 67.4(3) C(54)-Fe(4)-C(59) 158.3(3) C(60)-Fe(4)-C(59) 40.4(3) C(53)-Fe(4)-C(59) 121.9(3) C(55)-Fe(4)-C(59) 159.0(3) C(58)-Fe(4)-C(59) 39.8(3) C(52)-Fe(4)-C(56) 155.7(3) C(57)-Fe(4)-C(56) 40.5(3) C(54)-Fe(4)-C(56) 107.7(3) C(60)-Fe(4)-C(56) 40.9(3) C(53)-Fe(4)-C(56) 120.5(3) C(55)-Fe(4)-C(56) 125.3(2) C(58)-Fe(4)-C(56) 68.0(3) C(59)-Fe(4)-C(56) 68.0(3) C(52)-Fe(4)-C(51) 40.9(2) C(57)-Fe(4)-C(51) 126.0(3) C(54)-Fe(4)-C(51) 68.7(2) C(60)-Fe(4)-C(51) 156.1(2) C(53)-Fe(4)-C(51) 68.9(2) C(55)-Fe(4)-C(51) 40.7(2) C(58)-Fe(4)-C(51) 109.1(2) C(59)-Fe(4)-C(51) 122.0(3) C(56)-Fe(4)-C(51) 162.0(2) C(66)-Fe(5)-C(67) 40.8(4) C(66)-Fe(5)-C(63) 116.5(4) C(67)-Fe(5)-C(63) 108.4(3) C(66)-Fe(5)-C(62) 108.9(4) C(67)-Fe(5)-C(62) 131.1(3) C(63)-Fe(5)-C(62) 41.1(3) C(66)-Fe(5)-C(64) 149.6(4) C(67)-Fe(5)-C(64) 117.2(3) C(63)-Fe(5)-C(64) 40.6(4) C(62)-Fe(5)-C(64) 67.8(4) C(66)-Fe(5)-C(68) 67.7(4) C(67)-Fe(5)-C(68) 40.2(3) C(63)-Fe(5)-C(68) 130.8(3) C(62)-Fe(5)-C(68) 169.9(3) C(64)-Fe(5)-C(68) 109.9(3) C(66)-Fe(5)-C(65) 168.2(3) C(67)-Fe(5)-C(65) 149.9(4) C(63)-Fe(5)-C(65) 68.8(4) C(62)-Fe(5)-C(65) 67.5(3) C(64)-Fe(5)-C(65) 40.9(3) C(68)-Fe(5)-C(65) 117.8(3) C(66)-Fe(5)-C(69) 67.5(3) C(67)-Fe(5)-C(69) 67.8(3) C(63)-Fe(5)-C(69) 169.6(3) C(62)-Fe(5)-C(69) 148.5(3) C(64)-Fe(5)-C(69) 131.5(4) C(68)-Fe(5)-C(69) 40.2(3) C(65)-Fe(5)-C(69) 109.3(3) C(66)-Fe(5)-C(70) 40.0(3)

C(67)-Fe(5)-C(70) 67.4(3) C(63)-Fe(5)-C(70) 149.4(4) C(62)-Fe(5)-C(70) 117.4(3) C(64)-Fe(5)-C(70) 169.2(3) C(68)-Fe(5)-C(70) 66.7(3) C(65)-Fe(5)-C(70) 130.5(3) C(69)-Fe(5)-C(70) 39.4(3) C(66)-Fe(5)-C(61) 130.1(3) C(67)-Fe(5)-C(61) 169.6(4) C(63)-Fe(5)-C(61) 69.9(3) C(62)-Fe(5)-C(61) 41.1(3) C(64)-Fe(5)-C(61) 68.6(3) C(68)-Fe(5)-C(61) 148.3(3) C(65)-Fe(5)-C(61) 39.9(3) C(69)-Fe(5)-C(61) 115.7(3) C(70)-Fe(5)-C(61) 108.5(3) C(1)-N(1)-C(4) 107.3(4) C(1)-N(1)-In(1) 126.1(3) C(4)-N(1)-In(1) 126.3(4) C(9)-N(2)-C(6) 107.9(4) C(9)-N(2)-In(1) 123.9(3) C(6)-N(2)-In(1) 123.2(4) C(11)-N(3)-C(14) 107.3(4) C(11)-N(3)-In(1) 126.0(3) C(14)-N(3)-In(1) 124.9(4) C(19)-N(4)-C(16) 107.3(4) C(19)-N(4)-In(1) 124.6(3) C(16)-N(4)-In(1) 123.9(3) N(1)-C(1)-C(20) 126.7(5) N(1)-C(1)-C(2) 108.5(5) C(20)-C(1)-C(2) 124.8(5) C(3)-C(2)-C(1) 107.4(5) C(3)-C(2)-H(2) 126.3 C(1)-C(2)-H(2) 126.3 C(2)-C(3)-C(4) 108.3(5) C(2)-C(3)-H(3) 125.8 C(4)-C(3)-H(3) 125.8 N(1)-C(4)-C(5) 125.5(5) N(1)-C(4)-C(3) 108.1(5) C(5)-C(4)-C(3) 126.3(5) C(6)-C(5)-C(4) 125.1(5) C(6)-C(5)-C(21) 120.4(5) C(4)-C(5)-C(21) 114.4(5) N(2)-C(6)-C(5) 125.5(5) N(2)-C(6)-C(7) 107.8(5) C(5)-C(6)-C(7) 126.4(5) C(8)-C(7)-C(6) 107.9(5) C(7)-C(8)-C(9) 107.5(5) N(2)-C(9)-C(10) 124.9(5) N(2)-C(9)-C(8) 108.9(5) C(10)-C(9)-C(8) 126.2(5) C(11)-C(10)-C(9) 125.3(5) C(11)-C(10)-C(31) 114.5(5) C(9)-C(10)-C(31) 120.2(5) N(3)-C(11)-C(10) 125.9(5) N(3)-C(11)-C(12) 108.8(4)

Page 133: Synthesis and Characterization of New Ferrocenyl

121

C(10)-C(11)-C(12) 125.3(5) C(13)-C(12)-C(11) 107.3(5) C(12)-C(13)-C(14) 108.4(5) N(3)-C(14)-C(15) 126.7(5) N(3)-C(14)-C(13) 108.0(5) C(15)-C(14)-C(13) 125.3(5) C(16)-C(15)-C(14) 124.4(5) C(16)-C(15)-C(41) 121.3(5) C(14)-C(15)-C(41) 114.3(5) N(4)-C(16)-C(15) 125.9(5) N(4)-C(16)-C(17) 108.1(5) C(15)-C(16)-C(17) 126.0(5) C(18)-C(17)-C(16) 108.3(5) C(17)-C(18)-C(19) 106.9(5) N(4)-C(19)-C(20) 124.6(5) N(4)-C(19)-C(18) 109.4(4) C(20)-C(19)-C(18) 125.8(5) C(1)-C(20)-C(19) 124.6(5) C(1)-C(20)-C(51) 114.6(5) C(19)-C(20)-C(51) 120.7(5) C(25)-C(21)-C(22) 105.9(5) C(25)-C(21)-C(5) 129.9(5) C(22)-C(21)-C(5) 123.9(5) C(25)-C(21)-Fe(1) 69.5(3) C(22)-C(21)-Fe(1) 68.0(3) C(5)-C(21)-Fe(1) 131.4(4) C(23)-C(22)-C(21) 109.0(6) C(23)-C(22)-Fe(1) 69.9(4) C(21)-C(22)-Fe(1) 71.0(3) C(22)-C(23)-C(24) 107.6(6) C(22)-C(23)-Fe(1) 69.4(4) C(24)-C(23)-Fe(1) 70.4(4) C(25)-C(24)-C(23) 108.3(5) C(25)-C(24)-Fe(1) 70.3(3) C(23)-C(24)-Fe(1) 69.0(4) C(24)-C(25)-C(21) 109.2(5) C(24)-C(25)-Fe(1) 69.8(3) C(21)-C(25)-Fe(1) 70.0(3) C(30)-C(26)-C(27) 107.1(7) C(30)-C(26)-Fe(1) 70.5(4) C(27)-C(26)-Fe(1) 69.6(4) C(28)-C(27)-C(26) 107.5(7) C(28)-C(27)-Fe(1) 70.4(4) C(26)-C(27)-Fe(1) 69.3(4) C(29)-C(28)-C(27) 108.6(7) C(29)-C(28)-Fe(1) 70.1(4) C(27)-C(28)-Fe(1) 69.6(4) C(28)-C(29)-C(30) 109.2(7) C(28)-C(29)-Fe(1) 70.3(4) C(30)-C(29)-Fe(1) 70.3(4) C(29)-C(30)-C(26) 107.6(7) C(29)-C(30)-Fe(1) 69.8(4) C(26)-C(30)-Fe(1) 69.0(4) C(35)-C(31)-C(32) 106.4(5) C(35)-C(31)-C(10) 123.6(5) C(32)-C(31)-C(10) 129.8(5)

C(35)-C(31)-Fe(2) 68.0(3) C(32)-C(31)-Fe(2) 69.1(3) C(10)-C(31)-Fe(2) 131.1(4) C(33)-C(32)-C(31) 109.0(6) C(33)-C(32)-Fe(2) 69.0(4) C(31)-C(32)-Fe(2) 70.8(3) C(34)-C(33)-C(32) 108.1(6) C(34)-C(33)-Fe(2) 69.7(4) C(32)-C(33)-Fe(2) 70.6(4) C(33)-C(34)-C(35) 107.2(6) C(33)-C(34)-Fe(2) 69.7(4) C(35)-C(34)-Fe(2) 69.3(3) C(31)-C(35)-C(34) 109.3(6) C(31)-C(35)-Fe(2) 71.7(3) C(34)-C(35)-Fe(2) 69.8(3) C(40)-C(36)-C(37) 104.8(8) C(40)-C(36)-Fe(2) 70.6(5) C(37)-C(36)-Fe(2) 70.7(4) C(38)-C(37)-C(36) 107.5(8) C(38)-C(37)-Fe(2) 70.6(4) C(36)-C(37)-Fe(2) 68.1(5) C(39)-C(38)-C(37) 110.0(8) C(39)-C(38)-Fe(2) 71.0(5) C(37)-C(38)-Fe(2) 70.3(4) C(38)-C(39)-C(40) 109.7(9) C(38)-C(39)-Fe(2) 71.2(4) C(40)-C(39)-Fe(2) 70.1(5) C(39)-C(40)-C(36) 107.9(8) C(39)-C(40)-Fe(2) 70.6(5) C(36)-C(40)-Fe(2) 68.4(4) C(42)-C(41)-C(45) 105.9(4) C(42)-C(41)-C(15) 130.0(5) C(45)-C(41)-C(15) 123.8(5) C(42)-C(41)-Fe(3) 68.4(3) C(45)-C(41)-Fe(3) 67.8(3) C(15)-C(41)-Fe(3) 132.0(4) C(43)-C(42)-C(41) 108.3(5) C(43)-C(42)-Fe(3) 69.2(3) C(41)-C(42)-Fe(3) 70.9(3) C(44)-C(43)-C(42) 108.7(5) C(44)-C(43)-Fe(3) 69.8(3) C(42)-C(43)-Fe(3) 69.9(3) C(43)-C(44)-C(45) 108.0(5) C(43)-C(44)-Fe(3) 69.9(3) C(45)-C(44)-Fe(3) 69.6(3) C(44)-C(45)-C(41) 109.0(5) C(44)-C(45)-Fe(3) 69.7(3) C(41)-C(45)-Fe(3) 71.2(3) C(47)-C(46)-C(50) 108.1(6) C(47)-C(46)-Fe(3) 69.8(4) C(50)-C(46)-Fe(3) 69.7(3) C(46)-C(47)-C(48) 109.1(6) C(46)-C(47)-Fe(3) 70.0(3) C(48)-C(47)-Fe(3) 70.3(4) C(47)-C(48)-C(49) 106.6(6) C(47)-C(48)-Fe(3) 69.2(4)

Page 134: Synthesis and Characterization of New Ferrocenyl

122

C(49)-C(48)-Fe(3) 68.9(3) C(50)-C(49)-C(48) 108.2(6) C(50)-C(49)-Fe(3) 69.7(4) C(48)-C(49)-Fe(3) 70.3(4) C(46)-C(50)-C(49) 108.0(6) C(46)-C(50)-Fe(3) 70.0(4) C(49)-C(50)-Fe(3) 69.6(4) C(55)-C(51)-C(52) 106.2(5) C(55)-C(51)-C(20) 130.5(5) C(52)-C(51)-C(20) 123.2(5) C(55)-C(51)-Fe(4) 69.3(3) C(52)-C(51)-Fe(4) 68.3(3) C(20)-C(51)-Fe(4) 130.2(4) C(53)-C(52)-C(51) 109.3(5) C(53)-C(52)-Fe(4) 70.5(3) C(51)-C(52)-Fe(4) 70.8(3) C(54)-C(53)-C(52) 107.4(5) C(54)-C(53)-Fe(4) 69.6(3) C(52)-C(53)-Fe(4) 68.7(3) C(53)-C(54)-C(55) 108.4(5) C(53)-C(54)-Fe(4) 70.0(3) C(55)-C(54)-Fe(4) 70.0(3) C(54)-C(55)-C(51) 108.7(5) C(54)-C(55)-Fe(4) 69.5(3) C(51)-C(55)-Fe(4) 70.0(3) C(57)-C(56)-C(60) 106.9(6) C(57)-C(56)-Fe(4) 69.3(4) C(60)-C(56)-Fe(4) 69.2(4) C(58)-C(57)-C(56) 108.7(6) C(58)-C(57)-Fe(4) 70.3(4) C(56)-C(57)-Fe(4) 70.2(4) C(59)-C(58)-C(57) 108.0(7) C(59)-C(58)-Fe(4) 70.1(4) C(57)-C(58)-Fe(4) 69.4(4) C(58)-C(59)-C(60) 108.8(6) C(58)-C(59)-Fe(4) 70.1(4) C(60)-C(59)-Fe(4) 69.5(4)

C(59)-C(60)-C(56) 107.6(6) C(59)-C(60)-Fe(4) 70.1(4) C(56)-C(60)-Fe(4) 69.9(4) C(65)-C(61)-C(62) 105.7(6) C(65)-C(61)-Fe(5) 69.3(4) C(62)-C(61)-Fe(5) 68.3(4) C(65)-C(61)-In(1) 127.6(5) C(62)-C(61)-In(1) 126.7(6) Fe(5)-C(61)-In(1) 127.2(3) C(63)-C(62)-C(61) 109.7(8) C(63)-C(62)-Fe(5) 69.2(4) C(61)-C(62)-Fe(5) 70.6(4) C(64)-C(63)-C(62) 106.4(7) C(64)-C(63)-Fe(5) 70.1(4) C(62)-C(63)-Fe(5) 69.6(4) C(63)-C(64)-C(65) 108.5(7) C(63)-C(64)-Fe(5) 69.4(5) C(65)-C(64)-Fe(5) 69.9(4) C(61)-C(65)-C(64) 109.6(7) C(61)-C(65)-Fe(5) 70.8(4) C(64)-C(65)-Fe(5) 69.2(4) C(70)-C(66)-C(67) 108.1(8) C(70)-C(66)-Fe(5) 71.8(4) C(67)-C(66)-Fe(5) 70.2(5) C(68)-C(67)-C(66) 107.3(7) C(68)-C(67)-Fe(5) 70.6(4) C(66)-C(67)-Fe(5) 69.0(4) C(67)-C(68)-C(69) 108.2(8) C(67)-C(68)-Fe(5) 69.2(5) C(69)-C(68)-Fe(5) 70.2(4) C(70)-C(69)-C(68) 107.7(7) C(70)-C(69)-Fe(5) 70.5(4) C(68)-C(69)-Fe(5) 69.6(4) C(69)-C(70)-C(66) 108.7(7) C(69)-C(70)-Fe(5) 70.1(4) C(66)-C(70)-Fe(5) 68.2(5)

______________________________________________________________________________

Anisotropic displacement parameters (A^2 x 10^3)

The anisotropic displacement factor exponent takes the form:

-2 pi^2 [ h^2 a*^2 U11 + ... + 2 h k a* b* U12 ______________________________________________________________________________

U11 U22 U33 U23 U13 U12 ______________________________________________________________________________

In(1) 26(1) 23(1) 20(1) -3(1) -5(1) -11(1) Fe(1) 39(1) 27(1) 31(1) -9(1) -10(1) -13(1) Fe(2) 44(1) 45(1) 23(1) -14(1) 3(1) -25(1) Fe(3) 33(1) 23(1) 23(1) -3(1) -7(1) -12(1)

Page 135: Synthesis and Characterization of New Ferrocenyl

123

Fe(4) 38(1) 30(1) 21(1) -2(1) -3(1) -18(1) Fe(5) 39(1) 35(1) 48(1) -16(1) -8(1) -8(1) N(1) 32(3) 26(3) 16(2) -3(2) -3(2) -15(2) N(2) 31(2) 20(2) 18(2) -3(2) -3(2) -13(2) N(3) 25(2) 26(3) 19(2) -5(2) -1(2) -15(2) N(4) 20(2) 24(2) 20(2) -2(2) -5(2) -8(2) C(1) 34(3) 21(3) 23(3) -7(2) 0(2) -12(2) C(2) 24(3) 31(3) 27(3) -7(3) -2(3) -12(2) C(3) 26(3) 25(3) 27(3) -4(3) -6(3) -9(2) C(4) 26(3) 21(3) 26(3) -3(2) -7(2) -11(2) C(5) 21(3) 22(3) 28(3) -8(2) -7(2) -9(2) C(6) 31(3) 24(3) 28(3) -11(3) -11(3) -6(2) C(7) 34(3) 32(3) 19(3) -6(3) -8(2) -16(3) C(8) 34(3) 36(3) 19(3) -8(3) -4(3) -15(3) C(9) 35(3) 23(3) 17(3) -2(2) -5(2) -12(2) C(10) 31(3) 24(3) 21(3) -5(2) -5(2) -10(2) C(11) 23(3) 20(3) 26(3) -6(2) 0(2) -9(2) C(12) 29(3) 19(3) 25(3) -5(2) 0(2) -9(2) C(13) 26(3) 25(3) 26(3) -8(3) -2(2) -11(2) C(14) 31(3) 20(3) 24(3) -7(2) -1(2) -14(2) C(15) 25(3) 24(3) 22(3) -6(2) -1(2) -12(2) C(16) 26(3) 24(3) 23(3) -7(2) -3(2) -11(2) C(17) 36(3) 30(3) 18(3) -3(2) -8(2) -14(3) C(18) 29(3) 38(3) 20(3) -7(3) -1(2) -17(3) C(19) 29(3) 22(3) 17(3) 2(2) -8(2) -9(2) C(20) 36(3) 19(3) 18(3) -1(2) -1(2) -12(2) C(21) 23(3) 28(3) 31(3) -13(3) -1(2) -10(2) C(22) 35(3) 33(3) 34(3) -9(3) -6(3) -15(3) C(23) 36(3) 52(4) 50(4) -19(4) -12(3) -22(3) C(24) 38(3) 35(4) 44(4) -11(3) -16(3) -10(3) C(25) 36(3) 28(3) 30(3) -8(3) -11(3) -9(3) C(26) 74(5) 39(4) 48(4) -17(4) -13(4) -28(4) C(27) 84(6) 25(4) 47(4) -10(3) -11(4) -15(4) C(28) 51(4) 48(5) 56(5) -31(4) -4(4) -7(4) C(29) 52(4) 53(5) 52(5) -30(4) 4(4) -24(4) C(30) 86(5) 39(4) 35(4) -17(3) -3(4) -29(4) C(31) 43(3) 35(3) 22(3) -8(3) -3(3) -24(3) C(32) 54(4) 39(4) 23(3) -7(3) -2(3) -30(3) C(33) 80(5) 59(5) 25(3) -17(3) 11(4) -54(4) C(34) 41(4) 84(6) 35(4) -35(4) 12(3) -36(4) C(35) 35(3) 53(4) 27(3) -20(3) 7(3) -25(3) C(36) 54(5) 134(10) 132(10) -115(9) 47(6) -53(6) C(37) 90(6) 30(4) 60(5) -20(4) -38(5) 4(4) C(38) 63(5) 47(4) 58(5) -27(4) 10(4) -34(4) C(39) 90(6) 62(6) 69(6) -27(5) -26(5) -35(5) C(40) 237(15) 87(7) 18(4) -19(5) 11(6) -111(9) C(41) 26(3) 21(3) 21(3) -1(2) -7(2) -11(2) C(42) 29(3) 26(3) 23(3) 0(2) -2(2) -15(2) C(43) 38(3) 23(3) 27(3) 0(3) -15(3) -14(2) C(44) 32(3) 38(4) 26(3) -4(3) -3(3) -22(3) C(45) 31(3) 31(3) 19(3) -6(3) 3(2) -17(3) C(46) 53(4) 36(4) 26(3) 4(3) -13(3) -19(3) C(47) 44(4) 27(3) 48(4) 0(3) -15(3) -10(3) C(48) 53(4) 24(3) 34(4) -4(3) -3(3) -15(3) C(49) 46(4) 29(3) 37(4) 2(3) -10(3) -18(3) C(50) 49(4) 28(3) 26(3) 5(3) -6(3) -17(3)

Page 136: Synthesis and Characterization of New Ferrocenyl

124

C(51) 26(3) 32(3) 23(3) -3(3) -6(2) -12(2) C(52) 26(3) 34(3) 26(3) -4(3) -3(2) -17(2) C(53) 35(3) 51(4) 34(4) -7(3) -1(3) -29(3) C(54) 33(3) 42(4) 21(3) -10(3) 3(3) -12(3) C(55) 33(3) 31(3) 23(3) -5(3) -8(3) -11(3) C(56) 75(5) 37(4) 29(4) 1(3) -14(3) -26(4) C(57) 63(5) 32(4) 48(4) 5(3) -26(4) -19(3) C(58) 46(4) 36(4) 38(4) 2(3) -2(3) -14(3) C(59) 65(5) 35(4) 41(4) -15(3) -6(4) -14(3) C(60) 79(5) 33(4) 33(4) -2(3) -9(4) -26(4) C(61) 30(3) 27(3) 61(5) -15(3) -8(3) -13(3) C(62) 55(4) 52(5) 65(5) -27(4) -23(4) -10(4) C(63) 69(5) 38(5) 119(9) -43(5) -40(6) 3(4) C(64) 44(4) 31(4) 106(8) -21(5) -12(5) -11(3) C(65) 41(4) 31(4) 66(5) -9(4) -10(4) -9(3) C(66) 58(5) 92(7) 47(5) -21(5) 4(4) -19(5) C(67) 45(4) 60(6) 98(7) -51(6) -2(5) -2(4) C(68) 53(4) 43(4) 80(6) -6(4) -19(4) -20(4) C(69) 58(5) 52(5) 59(5) -14(4) -5(4) -31(4) C(70) 30(3) 45(4) 57(5) -6(4) 4(3) -18(3) _______________________________________________________________________

Page 137: Synthesis and Characterization of New Ferrocenyl

�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������