4
Revista Mexicana de F´ ısica S 58 (2) 77–80 DICIEMBRE 2012 Synthesis, structural, magnetic and ferroelectric characterization of biferroic Bi 3 R 2 FeTi 3 O 15 O.D. Gil Novoa, D.A. Land´ ınez T´ ellez * , and J. Roa-Rojas Grupo F´ ısica de Nuevos Materiales, Departamento de F´ ısica, Universidad Nacional de Colombia, AA 14490, Bogot´ a D. C., Colombia. * e-mail: [email protected] Recibido el 25 de junio de 2010; aceptado el 7 de octubre de 2010 In this work we report for the first time synthesis of polycrystalline samples of Bi 5 FeTi 3 O 15 (BFTO) and Bi 3 R 2 FeTi 3 O 15 compounds with R= Gd, Dy. The materials were synthesized by the standard solid-state reaction recipe from high purity powders of Bi2O3, Gd2O3, Dy2O3, Fe2O3 and TiO2, submitted to thermal treatments of 650, 800 and 810 C by 10, 20 and 24 h, respectively. We analyzed the structural characteristics by XRD technique, obtaining pure phase in all compounds with orthorhombic crystal structure. Polarization (P-E) measurements were performed, showing hysteretic behavior, which indicates that the compounds can be used as ferroelectric materials. Magnetic susceptibility measurements as a function of temperature were obtain with a MPMS SQUID Magnetometer between 5 and 300 K, on the application of an applied magnetic field of 0.01 T. Results reveal that materials evidence paramagnetic behavior. Using the Curie-Weiss fitting, we obtain the characteristic parameters C and θ0. From the Curie constant, we determine the effective magnetic moment, which is in agreement with the theoretical expected value for Gd +3 and Dy +3 cations, calculated by the Hund’s rule. Keywords: New materials; rietveld refinement; electric hysteresis; magnetic susceptibility. Se reporta por vez primera la s´ ıntesis de muestras policristalinas de los compuestos Bi 5 FeTi 3 O 15 (BFTO) y Bi 3 R 2 FeTi 3 O 15 para R= Gd y Dy, sinterizados a trav´ es de la t´ ecnica de reacci´ on en estado s´ olido a partir de precursores ´ oxidos de alta pureza (Aldrich 99,99%): Bi2O3, Gd 2 O 3 , Dy 2 O 3 , Fe 2 O 3 , TiO 2 ; con tratamientos t´ ermicos de 650 C, 800 C, y 810 C durante 10 h, 20 h y 24 h respectivamente. Posteri- ormente se analizaron las caracter´ ısticas estructurales a trav´ es de la t´ ecnica DRX, obteniendo fase ´ unica en cada compuesto con estructura cristalina ortorr´ ombica. Se realizaron medidas de polarizaci´ on en funci´ on de campo el´ ectrico aplicado (P-E) para voltajes aplicados, ob- serv´ andose comportamiento hister´ etico, el cual indica que los compuestos pueden ser usados como materiales ferroel´ ectricos. Las medidas de susceptibilidad magn´ eticas en funci ´ on de la temperatura se obtuvieron con un magnet ´ ometro SQUID, para rangos de temperatura de 5 K a 300 K, con un campo aplicado de 100 Oe; los compuestos muestran comportamiento paramagn´ etico que se ajusta a la ley de Curie-Weiss. Los par´ ametros θ, C y χ0 fueron encontrados realizando el ajuste de las curvas respectivas, as´ ı mismo se determin´ o que el momento magn´ etico efectivo calculado a trav´ es de la regla de Hund para los iones Gd +3 y Dy +3 coincide relativamente bien con el momento magn´ etico efectivo de los iones de tierras. Descriptores: Nuevos materiales; refinamiento Rietveld; hist´ eresis el´ ectrica; susceptibilidad magn´ etica. PACS: 61.05.cp; 77.84.Bw; 75.30.Cr 1. Introduction The layered bismuth oxides structures in special Aurivil- lius structure have attracted the attention from a number of researchers because to biferroic properties and the poten- tial technologies in the storage devices non-volatile [1-5]. The Aurivillius oxides are structures whose growth is ob- tained {001} direction, thus generating a series of layers of perovskite blocks alternating with layers of (Bi 2 O 2 ) +2 oxides [6]. The stacking of octahedral blocks is given by [A n-1 B n X 3n+1 ] -2 . Where A is a mono, di or trivalent cation (or mixture of them). B is a tri, tetra or hexavalent cation and X represents the position of oxygen ion [7-8]. In this work we report the synthesis process, structural, ferroelectric and magnetic characteristics of Bi 5 FeTi 3 O 15 and Bi 3 R 2 FeTi 3 O 15 with R=Dy and Gd. 2. Experimental The polycrystalline samples Bi 5 FeTi 3 O 15 (BFTO), Bi 3 Gd 2 FeTi 3 O 15 (BGFTO) and Bi 3 Dy 2 FeTi 3 O 15 (BDFTO), were prepared by the solid state reaction route, starting stoi- chiometric mixture of high purity precursor powders oxides: Bi 2 O 3 , Gd 2 O 3 , Dy 2 O 3 , Fe 2 O 3 and TiO 2 (Aldrich 99.99%). The powders were ground in an agate mortar to get a homo- geneous mixture, and then submitted to thermal treatments of 650 C, 800 C and 810 C for 10 h, 20 h and 24 h respectively with milling process intermediate. The powders were pressed by the action of load 8 ton. The structural analysis carried out with the X Ray Diffraction by means of a PW1710 diffrac- tometer with λ CuKα = 1.54064 ˚ A. The structural refinement was performed by the Rietveld method by means of GSAS code [9], the input data were taken from the card N 74037 using the Data Base crystallographic ISCD [10]. The electric hysteresis loops were obtained with the Fer- roelectric test system of Radiant Technologies, for different values of applied electric field. The remanent polarization (2P r ) and coercive field (2E c ), showed the ferroelectric be- havior for all compounds. The magnetic properties were obtained with the MPMS SQUID magnetometer (Quantum Design) in the range be-

Synthesis, structural, magnetic and ferroelectric characterization of

Embed Size (px)

Citation preview

Revista Mexicana de Fısica S58 (2) 77–80 DICIEMBRE 2012

Synthesis, structural, magnetic and ferroelectric characterizationof biferroic Bi 3R2FeTi3O15

O.D. Gil Novoa, D.A. Landınez Tellez∗, and J. Roa-RojasGrupo Fısica de Nuevos Materiales, Departamento de Fısica, Universidad Nacional de Colombia,

AA 14490, Bogota D. C., Colombia.∗e-mail: [email protected]

Recibido el 25 de junio de 2010; aceptado el 7 de octubre de 2010

In this work we report for the first time synthesis of polycrystalline samples of Bi5FeTi3O15 (BFTO) and Bi3R2FeTi3O15 compoundswith R= Gd, Dy. The materials were synthesized by the standard solid-state reaction recipe from high purity powders of Bi2O3, Gd2O3,Dy2O3, Fe2O3 and TiO2, submitted to thermal treatments of 650, 800 and 810◦C by 10, 20 and 24 h, respectively. We analyzed thestructural characteristics by XRD technique, obtaining pure phase in all compounds with orthorhombic crystal structure. Polarization (P-E)measurements were performed, showing hysteretic behavior, which indicates that the compounds can be used as ferroelectric materials.Magnetic susceptibility measurements as a function of temperature were obtain with a MPMS SQUID Magnetometer between 5 and 300 K,on the application of an applied magnetic field of 0.01 T. Results reveal that materials evidence paramagnetic behavior. Using the Curie-Weissfitting, we obtain the characteristic parameters C andθ0. From the Curie constant, we determine the effective magnetic moment, which is inagreement with the theoretical expected value for Gd+3and Dy+3 cations, calculated by the Hund’s rule.

Keywords: New materials; rietveld refinement; electric hysteresis; magnetic susceptibility.

Se reporta por vez primera la sıntesis de muestras policristalinas de los compuestos Bi5FeTi3O15 (BFTO) y Bi3R2FeTi3O15 para R= Gd yDy, sinterizados a traves de la tecnica de reaccion en estado solido a partir de precursoresoxidos de alta pureza (Aldrich 99,99%): Bi2O3,Gd2O3, Dy2O3, Fe2O3, TiO2; con tratamientos termicos de 650◦C, 800◦C, y 810◦C durante 10 h, 20 h y 24 h respectivamente. Posteri-ormente se analizaron las caracterısticas estructurales a traves de la tecnica DRX, obteniendo faseunica en cada compuesto con estructuracristalina ortorrombica. Se realizaron medidas de polarizacion en funcion de campo electrico aplicado (P-E) para voltajes aplicados, ob-servandose comportamiento histeretico, el cual indica que los compuestos pueden ser usados como materiales ferroelectricos. Las medidasde susceptibilidad magneticas en funcion de la temperatura se obtuvieron con un magnetometro SQUID, para rangos de temperatura de 5 K a300 K, con un campo aplicado de 100 Oe; los compuestos muestran comportamiento paramagnetico que se ajusta a la ley de Curie-Weiss. Losparametrosθ, C y χ0 fueron encontrados realizando el ajuste de las curvas respectivas, ası mismo se determino que el momento magneticoefectivo calculado a traves de la regla de Hund para los iones Gd+3y Dy+3 coincide relativamente bien con el momento magnetico efectivode los iones de tierras.

Descriptores: Nuevos materiales; refinamiento Rietveld; histeresis electrica; susceptibilidad magnetica.

PACS: 61.05.cp; 77.84.Bw; 75.30.Cr

1. Introduction

The layered bismuth oxides structures in special Aurivil-lius structure have attracted the attention from a number ofresearchers because to biferroic properties and the poten-tial technologies in the storage devices non-volatile [1-5].The Aurivillius oxides are structures whose growth is ob-tained {001} direction, thus generating a series of layersof perovskite blocks alternating with layers of (Bi2O2)+2

oxides [6]. The stacking of octahedral blocks is given by[An−1BnX3n+1]−2. Where A is a mono, di or trivalentcation (or mixture of them). B is a tri, tetra or hexavalentcation and X represents the position of oxygen ion [7-8].

In this work we report the synthesis process, structural,ferroelectric and magnetic characteristics of Bi5FeTi3O15

and Bi3R2FeTi3O15 with R=Dy and Gd.

2. Experimental

The polycrystalline samples Bi5FeTi3O15 (BFTO),Bi3Gd2FeTi3O15 (BGFTO) and Bi3Dy2FeTi3O15 (BDFTO),

were prepared by the solid state reaction route, starting stoi-chiometric mixture of high purity precursor powders oxides:Bi2O3, Gd2O3, Dy2O3, Fe2O3 and TiO2 (Aldrich 99.99%).The powders were ground in an agate mortar to get a homo-geneous mixture, and then submitted to thermal treatments of650◦C, 800◦C and 810◦C for 10 h, 20 h and 24 h respectivelywith milling process intermediate. The powders were pressedby the action of load 8 ton. The structural analysis carried outwith the X Ray Diffraction by means of a PW1710 diffrac-tometer withλCuKα = 1.54064A. The structural refinementwas performed by the Rietveld method by means of GSAScode [9], the input data were taken from the card N◦ 74037using the Data Base crystallographic ISCD [10].

The electric hysteresis loops were obtained with the Fer-roelectric test system of Radiant Technologies, for differentvalues of applied electric field. The remanent polarization(2Pr) and coercive field (2Ec), showed the ferroelectric be-havior for all compounds.

The magnetic properties were obtained with the MPMSSQUID magnetometer (Quantum Design) in the range be-

78 O.D. GIL NOVOA, D.A. LANDINEZ TELLEZ, AND J. ROA-ROJAS

FIGURE 1. Powder X-ray diffraction patterns for (a) pure phase(BFTO), (b) substitution with Gd (BGFTO) and (c) substitutionwith Dy (BDFTO); the cross symbols show the experimental data,the red line the calculated pattern, the lower blue line indicate thedifference between experimental and calculated data and the verti-cal lines correspond to Bragg peaks.

tween 5 to 300 K., with an applied magnetic field of 0.01 T.The paramagnetic behavior, was fitting using the Curie-Weisstheory.

The compound (BFTO) was synthesized, taking it as atarget for determining of magnetic contribution on earth rare(Gd+3 or Dy+3).

3. Results

The data obtained of X ray diffraction were refined using theRietveld method. Figure 1 shows the powder x-ray diffrac-tion patterns for all compounds. Rietveld Refinement of theseexperimental data is shown too. The continuous curve corre-sponds to the pattern calculated and the symbols representthe experimental diffractogram. In the same graph, locationsof Bragg peaks are shown as vertical lines. Curve in bot-tom of figure represents the difference between experimen-tal pattern and the calculated one. From Rietveld refine-ment we determined that this diffraction pattern is charac-teristic of orthorhombic structure, space groupFmm2. Thecell parameters of compounds are a=5.434520, b=41.234894,c=5.458526 for the BFTO compound. For the compoundwith the gadolinium substitution BDFTO, the cell parame-ters are: a=5.377405, b=41.557407 and c= 5.393126. Forthe dysprosium substitution compound (BDFTO), the cell pa-rameters are: a=5.401689, b=41.445927, c= 5.404562. Allthe cell parameters obtained are consistent with the data ob-tained of ICSD Card N◦ 74037.

The discrepancy factors obtained from Rietveld analysisare presented in the Table I; can see the small differences be-tween observed and calculated data, inferring from it so thatthe structure obtained for all compounds, correspond to Au-rivillius phase as reported for BFTO compound [2,4,5].

Measurements of polarization as a function of appliedvoltage were performed in order to establish the biferroic be-havior of the materials. Figure 4 show hysteresis loops forall compounds in a capacitor configuration, under several ap-plied voltages, which reveals a characteristic ferroelectric re-sponse.

All compounds showed a weak ferroelectric behavior. Itis observed in the values 2Pr and 2Ec for all applied voltages(350, 1100 and 2000 V). With this data, was not possible todetermine the saturation polarization (Ps).

It may be noted that the maximum remanent polarizationis present in the substitution for Gd compound, the other handthe largest coercive field is obtained in the substitution of Dycompound;i.e. it has been improved the values 2Pr and 2Ecfor Bi substitutions by rare earth ion as the Gd and Dy re-spectively.

TABLE I. Discrepancy factors obtained from Rietveld refinement.

Compound χ2(%) R2F (%) RWP (%)

BFTO 2,214 5,13 4,48

BGFTO 3,901 12,25 5,53

BDFTO 1,974 4,86 3,79

Rev. Mex. Fis. S58 (2) (2012) 77–80

SYNTHESIS, STRUCTURAL, MAGNETIC AND FERROELECTRIC CHARACTERIZATION OF BIFERROIC Bi3R2FeTi3O15 79

FIGURE 2. Hysteresis loops for (a) BFTO, (b) BGFTO and (c)BDFTO compound; the 2Pr and 2Ec data are shown in the inserttables.

Figure 3 shows the magnetic susceptibility dependence oftemperature for the BFTO, BGFTO and BDFTO compounds.Figure 3(a) shows the magnetic susceptibility as a function oftemperature for BFTO compound, in the first insert is shownthe inverse susceptibility (open squares) and the linear regres-sion (red line). Figure 3(b) shows the susceptibility loops of

FIGURE 3. Magnetic susceptibility for (a) BFTO, (b) BGFTO and(c) BDFTO compound; the external graph show the magnetic sus-ceptibility, the difference between magnetic susceptibility and purecompound (after subtraction of the BFTO contribution) and the sec-ond internal graph show the inverse susceptibility of the calculateddifference.

BFTO (open triangles) and BGFTO (open circles), in the firstinset is shown the difference between the magnetic suscepti-bility BGFTO and pure compound.I.e. after subtraction of

Rev. Mex. Fis. S58 (2) (2012) 77–80

80 O.D. GIL NOVOA, D.A. LANDINEZ TELLEZ, AND J. ROA-ROJAS

TABLE II. Constants obtained from fitting of Curie-Weiss theory

Compound χ0 C(emu θc µeff

(emu/mol) K/cm3) (K) (µB)

BFTO 0.0033 1.1751 -3.322 3.062

BGFTO 0.0040 13.543 -2.025 5.198

BDFTO 0.0439 36.126 -1.136 8.490

the BFTO contribution (open squares) and the Curie-Weissfitting (red line), likewise shown the inverse susceptibilitydifference in the second insert (open circles) and lineal re-gression (red line). Figure 3(c) shows the susceptibility loopsof BFTO (open circles) and BDFTO (open squares) in thefirst insert is shown the difference loop of magnetic suscep-tibility between them (open triangles), in the second insert isshown the inverse susceptibility of this difference (open tri-angles inverse) and the linear regression respective.

The susceptibility data was fitting according to the Curie-Weiss lawχ = χ0 +C/(T − θ0), with C=Nµ2

eff/3kB Curieconstant,N Avogadro number,µeff effective magnetic mo-ment,µB Bohr magneton,kB Boltzmann constant,θ0 mag-netic transition temperature andχ0 susceptibility indepen-dent of temperature

The corresponding data of susceptibility independent oftemperatureχ0, the Curie constantC, the magnetic transi-tion temperatureθ0 and the effective magnetic moment areshown in the Table II.

The effective magnetic moment was determined byBFTO unit formula; the data for the BGFTO and BDFTOcompounds correspond by ion of earth rare; this data are con-sistent with the literature report for Gd+3 and Dy+3 ions.

4. Conclusions

The synthesis of Bi3R2FeTiO15 with R= Gd and Dy, werecarried out, the Rietveld refinement reveals that experimen-tal data correspond to orthorhombic structure belonging toFmm2 (#42) space group. The polarization as a functionof electric field has shown ferroelectric behavior in all com-pounds. The effective magnetic contribution of earth rare Gdand Dy ions was determined subtracting the magnetic con-tribution of pure compound BFTO. The magnetic momentobtained for BGFTO and BDFTO are consistent with the ef-fective magnetic moment of earth rare substituent.

1. M. Carlos, L. Luis, T. Jesus, and D. Pedro,Cer. Int.29 (2003)91-97.

2. O. Pena, T. Guizouarn, C. Moure, V. Gil, and J. Tartaj,Bol. Soc.Esp. Ceram. V.47 (2008) 129-132.

3. B.J. Kennedy, Qingdi Zhou, Ismunandar, Y. Kubota, and K.Kato,J. of Sol. St. Chemistry181(2008) 1377.

4. X.Y. Mao, W. Wang, and X.B. Chen,Mat. Res. Bul.147(2008)186-189.

5. J. Rymarczyk, D. Machura, and J. Ilczuk,Eur. Phys. J. SpecialTopics154(2008) 187-190.

6. D. Avila–Brande,Fases De Sillen-Aurivillius: Oxihaluros deBismuto y Metales de Transicion (W, Ti, Mn, Fe, Cu) (Univer-

sidad Complutense de Madrid, Facultad de Ciencias Quımicas,Departamento de Quımica Inorganica I, 2005). p. 1-30

7. K.M. Rabe, Ch.H. Ahn, and Jean-Marc Triscone,Topics in Ap-plied Physics: Physics of Ferroelectrics, A Modern Perspective.Pp. 2007.

8. L.B. Kong, T.S. Zhang, J. Ma, and F. Boey,Prog. in Mat. Sc.53 (2008) 207.

9. A.C. Larson and R.B. Von Dreele,General structure analy-sis system (GSAS)(Los Alamos National Laboratory ReportLAUR, 2000). p. 86.

10. F. Kubel and H. Schmid,Ferroelectrics129(1992) 101-112.

Rev. Mex. Fis. S58 (2) (2012) 77–80